JP2008125528A - Healthcare device - Google Patents

Healthcare device Download PDF

Info

Publication number
JP2008125528A
JP2008125528A JP2006310049A JP2006310049A JP2008125528A JP 2008125528 A JP2008125528 A JP 2008125528A JP 2006310049 A JP2006310049 A JP 2006310049A JP 2006310049 A JP2006310049 A JP 2006310049A JP 2008125528 A JP2008125528 A JP 2008125528A
Authority
JP
Japan
Prior art keywords
carbon particles
effect
shock wave
health care
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006310049A
Other languages
Japanese (ja)
Inventor
Masakazu Komuro
正和 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ARUTA KK
Original Assignee
NIPPON ARUTA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ARUTA KK filed Critical NIPPON ARUTA KK
Priority to JP2006310049A priority Critical patent/JP2008125528A/en
Priority to US11/765,164 priority patent/US20080057320A1/en
Publication of JP2008125528A publication Critical patent/JP2008125528A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Magnetic Treatment Devices (AREA)
  • Electrotherapy Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a healthcare device efficiently emitting infrared rays and charged particles. <P>SOLUTION: Carbon semiconductor powder having the SP3 structure synthesized by the explosion of CB gunpowder inside a sealed vessel or by applying the explosion shock wave to a mixture of metal power and carbon powder, is mixed, heated and cured with a fiber, or a resin or a glass bonding agent to make an element. The element made in this way is disposed on a human-body contact face of a non-magnetic or feebly magnetic metal band. Accordingly, radiation of infrared rays and emission of charged particles can be efficiently performed when the device is attached to the human body, so that the blood circulation improving effect and the body-temperature rising effect can be improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、赤外線及び荷電粒子の人体浸透効果をもたらす健康医療器具に関する。   The present invention relates to a health care device that provides a human body penetration effect of infrared rays and charged particles.

人体に対して赤外線を放射すると、血行促進効果、神経繊維活性化効果、鎮痛効果等があることが認められている。従来、身体の一部に装着して赤外線放射による健康増進効果を図る健康医療器具には、赤外線放射材料としてGe及びトルマリンをチップ状に加工したものが知られている。   When infrared rays are emitted to the human body, it is recognized that there are blood circulation promoting effects, nerve fiber activation effects, analgesic effects, and the like. 2. Description of the Related Art Conventionally, a health care device that is worn on a part of a body and promotes health promotion effect by infrared radiation is known in which Ge and tourmaline are processed into chips as an infrared radiation material.

また、トルマリン等の圧電焦電材料が体温により活性化されて出す荷電粒子の人体への浸透による筋肉の疲労回復効果、鎮痛効果も認識され、利用されてきている。   In addition, muscle fatigue recovery effect and analgesic effect by penetration of charged particles activated by body temperature of piezoelectric pyroelectric materials such as tourmaline into the human body have been recognized and utilized.

最近では、磁力線、赤外線及び荷電粒子の相乗効果を狙って、磁石材料と圧電焦電効果を有する赤外線放射材料からなる複合磁石が提案されている(例えば、特許文献1)。
特開平05−347206号公報
Recently, a composite magnet composed of a magnet material and an infrared radiation material having a piezoelectric pyroelectric effect has been proposed with the aim of a synergistic effect of magnetic field lines, infrared rays and charged particles (for example, Patent Document 1).
JP 05-347206 A

しかしながら、提案されている圧電焦電材料、例えばトルマリン及び半導体材料Geを使用した健康医療器具は、人体温度による加温効果が続いている間は活性化され、材料固有の赤外線を放射し、その効果は持続するが、圧電焦電効果により発生する荷電粒子は、トルマリンが体温により加熱されて結晶体が歪む時、又は体温と健康医療器具の間の温度差の変化が継続して結晶が歪む時に発生するものであり、医療器具の装着後、全体の温度が定常状態になると、圧電焦電材料は電気的には絶縁体に属するため、その放出電荷量は激減し、荷電粒子の効果は期待できなくなる。すなわち、圧電焦電材料の電荷放出効果は健康医療器具の温度が定常状態に達するまでの時間に限られ、その作用効果は時間的に限定される。   However, the proposed medical pyroelectric material, such as tourmaline and semiconductor material Ge, is activated while the heating effect due to the human body temperature continues, and emits infrared material specific to it. Although the effect is sustained, charged particles generated by the piezoelectric pyroelectric effect are distorted when the tourmaline is heated by the body temperature and the crystal body is distorted, or the temperature difference between the body temperature and the health care device continues to change. When the entire temperature reaches a steady state after the medical device is mounted, the piezoelectric pyroelectric material electrically belongs to an insulator, so that the amount of emitted charge is drastically reduced and the effect of charged particles is You can't expect. That is, the charge release effect of the piezoelectric pyroelectric material is limited to the time until the temperature of the health care device reaches a steady state, and the action effect is limited in terms of time.

また、トルマリンは、0.1−0.4eVのエネルギーレベルから放射される波長4−10μmの温熱効果の大きな赤外線を放射するが、絶縁体であるため、レベル密度が低く、励起されるキャリアーの数が少ないので、体温程度の熱励起では赤外線の放射量が充分に確保できない。また、トルマリン等の圧電焦電材料は、電気的には絶縁物であるため、励起される荷電粒子の数も少なく、発生した荷電粒子が電界により加速されて物体中を動く移動度も小さいので、荷電粒子浸透効果はあまり期待できない。   In addition, tourmaline emits infrared rays having a large thermal effect with a wavelength of 4-10 μm emitted from an energy level of 0.1-0.4 eV, but since it is an insulator, the level density is low, and the excited carrier Since the number is small, a sufficient amount of infrared radiation cannot be ensured by thermal excitation at about body temperature. In addition, since piezoelectric pyroelectric materials such as tourmaline are electrically insulating materials, the number of excited charged particles is small, and the generated charged particles are accelerated by an electric field and have little mobility to move in the object. The charged particle penetration effect cannot be expected so much.

さらに、Geは禁制帯幅が0.6eV程度と小さく、その不純物レベル0.01eVより放射される赤外線は、主として波長100μm前後のものが多く、深く人体に浸透するとされ、使用されているが、波長100μmの赤外線は、ウイーンの変位則に示されるように、物体が30度K程度の極低温の物体から放射される赤外線に近く、温熱効果は少ないので、作用効果は主として体温による加熱励起による荷電粒子浸透効果であると思われる。   Furthermore, Ge has a forbidden band width as small as about 0.6 eV, and infrared rays radiated from an impurity level of 0.01 eV are mainly used at a wavelength of about 100 μm and penetrate deeply into the human body. As shown in Wien's displacement law, infrared rays with a wavelength of 100 μm are close to infrared rays emitted from a cryogenic object with a temperature of about 30 ° K. Since the thermal effect is small, the effect is mainly due to heating excitation by body temperature. It seems to be a charged particle penetration effect.

荷電粒子の効果と赤外線及び磁力線の相乗効果を目的として製造されている磁石粉末と赤外線放射材料粉末の混合体をプレス成型して作成される複合磁石では、荷電粒子の効果を特に増すため、赤外線及び荷電粒子放射材料であるトルマリン粉末を予めカップリング剤で絶縁コーティングして、樹脂成型する製造方法も提案されている(特許文献2)。
特開2001−126908号公報
In composite magnets made by press-molding a mixture of magnet powder and infrared radiation material powder produced for the purpose of synergistic effect of charged particles and infrared rays and magnetic field lines, the effect of charged particles is particularly increased. In addition, a manufacturing method in which tourmaline powder, which is a charged particle emitting material, is insulation-coated with a coupling agent in advance and resin-molded has been proposed (Patent Document 2).
JP 2001-126908 A

希土類磁石は導電性の金属材料であり、赤外線をほぼ完全に反射する。フェライト磁石は絶縁体であり、赤外線を透過させる。そのため、磁石材料による赤外線の吸収ロスは余りないと思われるが、ボンド樹脂は基本となる高分子主鎖に付随した官能基による赤外線吸収能が大きいので、磁石内部の赤外線放射材料が体温で活性化されて出す赤外線は途中で吸収され、複合磁石表面には到達し難い。そのため、配合された赤外線放射材料は、その放射能が大きくない限り有効性は低い。   The rare earth magnet is a conductive metal material and reflects infrared rays almost completely. The ferrite magnet is an insulator and transmits infrared rays. Therefore, it seems that there is not much absorption loss of infrared rays due to the magnet material, but since the bond resin has a large infrared absorption ability due to the functional group attached to the basic polymer main chain, the infrared radiation material inside the magnet is active at body temperature. Infrared rays that are converted into light are absorbed on the way and hardly reach the surface of the composite magnet. Therefore, the blended infrared radiation material has low effectiveness unless its radioactivity is large.

また、荷電粒子の人体浸透効果についていえば、発生する電荷は定常状態に達するまでの時間限定的なものであり、圧電焦電材料であるトルマリンの表面が絶縁された場合は、荷電粒子は絶縁膜を通りにくいので、その効果は殆ど期待できない。絶縁膜を抜けた荷電粒子もボンド樹脂中の電荷のライフタイム及び移動度は大きくないため、樹脂中でトラップされ、例えトルマリンから電荷が発生しても人体表面に達する量は少ない。Geは半導体であるため荷電粒子放射能は大きいが、半導体バンド構造に起因する赤外線の波長が100μmと大きいため、赤外線による温熱効果は小さい。このため、従来型の赤外線及び荷電粒子を使用した複合磁石型での赤外線&電荷浸透の相乗効果は殆ど期待できない。   As for the effect of charged particles on the human body, the generated charge is limited to the time required to reach a steady state. When the surface of tourmaline, a piezoelectric pyroelectric material, is insulated, the charged particles are insulated. The effect is hardly expected because it is difficult to pass through the membrane. The charged particles that have passed through the insulating film are not trapped in the resin because the lifetime and mobility of the charge in the bond resin are not large, and even if charge is generated from tourmaline, the amount reaching the human body surface is small. Since Ge is a semiconductor, charged particle radioactivity is large, but since the infrared wavelength resulting from the semiconductor band structure is as large as 100 μm, the thermal effect of infrared is small. For this reason, the synergistic effect of infrared & charge penetration in the composite magnet type using conventional infrared and charged particles can hardly be expected.

本発明者は、従来の圧電焦電材料を用いる健康医療器具が荷電粒子及び赤外線の人体への浸透効果に時間的限定を受ける欠点を解消し、身体に装着している時には常に有効な荷電粒子及び赤外線を放射し得る健康医療器具を、特願2006-241359において提案した。この提案に係る健康医療器具は、衝撃波で合成されたSP3構造及びSP2構造を有する複合炭素粒子を、健康医療器具を構成する金属又は非金属の人体接触面側に配置したことを特徴とする。そして、この健康医療器具は、装着している時には常に有効な荷電粒子及び赤外線を放射し得る特長を有する。   The present inventor has solved the drawback that conventional medical medical devices using piezoelectric pyroelectric materials are limited in time due to the penetration effect of charged particles and infrared rays into the human body, and charged particles that are always effective when worn on the body. And a medical device capable of emitting infrared rays was proposed in Japanese Patent Application No. 2006-241359. The health care device according to this proposal is characterized in that the composite carbon particles having SP3 structure and SP2 structure synthesized by shock wave are arranged on the metal or non-metal human contact surface side constituting the health care device. And this health care device has the feature which can always radiate | emit effective charged particle and infrared rays, when mounting | wearing.

ところが、出願後の継続された研究により、次の事実が判明した。すなわち、通常、爆発法により作られるダイヤモンドは、中心核のSP3構造(ダイヤモンド構造)と、外郭のSP2構造(グラファイト構造)で構成されているが、これは、ダイヤモンド生成過程で、冷却時に温度が高く、圧力が低くなった時に、SP3構造の一部がSP2構造に戻るためである。そして、電気抵抗の測定により、衝撃波で合成されたSP3炭素粒子が不純物レベル0.38eV付近のエネルギーレベルを持つことが判明した。このエネルギーレベルに励起された電子が安定する時出る赤外線の波長は4−10μmである。これにより、衝撃波で合成されたSP3構造及びSP2構造を有する複合炭素粒子から放出される有効な電子及び赤外線は、全て中心核のSP3構造から放出されることが明確になった。他方、SP2構造は、電気伝導体であるため、SP3構造から放出される電子をショートして、炭素粒子からの放出量を減らす働きをする。また、SP2構造は、エネルギー幅が0の電気伝導体であるので、全ての波長の赤外線を吸収する。従って、温度300−400℃から放出される温熱効果の大きい波長4−10μmの赤外線も吸収してしまう。   However, continued research after filing revealed the following facts. In other words, diamonds produced by the explosion method are usually composed of a central SP3 structure (diamond structure) and an outer SP2 structure (graphite structure). This is because part of the SP3 structure returns to the SP2 structure when the pressure is high and the pressure is low. And by measuring the electrical resistance, it was found that the SP3 carbon particles synthesized by the shock wave have an energy level around the impurity level of 0.38 eV. The wavelength of infrared rays emitted when electrons excited to this energy level are stabilized is 4-10 μm. As a result, it became clear that all the effective electrons and infrared rays emitted from the composite carbon particles having the SP3 structure and the SP2 structure synthesized by the shock wave are emitted from the SP3 structure of the central core. On the other hand, since the SP2 structure is an electrical conductor, the electrons emitted from the SP3 structure are short-circuited to reduce the amount of emission from the carbon particles. Moreover, since the SP2 structure is an electric conductor having an energy width of 0, it absorbs infrared rays of all wavelengths. Therefore, infrared rays having a wavelength of 4 to 10 μm, which is emitted from a temperature of 300 to 400 ° C. and has a large thermal effect, are absorbed.

本発明は、上記の知見に基づいてなされたものであり、その課題は、身体に装着している時には常に有効な荷電粒子及び赤外線を一層高い効率で放射し得る健康医療器具を提供することにある。   The present invention has been made on the basis of the above-mentioned findings, and the problem is to provide a health care device that can emit charged particles and infrared rays that are always effective when worn on the body with higher efficiency. is there.

本発明は、前記課題を解決するために、衝撃波により合成されたSP3構造を有する炭素粒子(以下、単に「SP3構造炭素粒子」という場合がある。)を、健康医療器具を構成する金属バンド又は非金属バンドの人体接触面側に配置したことを特徴とする(請求項1)。
このように配置された健康医療器具を人体に装着して使用する場合は、その人体接触面では、体温による加熱効果と健康医療器具を構成する金属又は非金属による冷却効果とで、粒子間に温度差が生じ、健康医療器具として装着している時は常に効率の高い赤外線と荷電粒子放出効果が持続する。
In order to solve the above-mentioned problem, the present invention uses a metal band constituting a health medical device or a carbon particle having an SP3 structure synthesized by a shock wave (hereinafter, simply referred to as “SP3 structure carbon particle”). The non-metallic band is disposed on the human body contact surface side (Claim 1).
When the health care device arranged in this way is used on the human body, the human body contact surface has a heating effect due to body temperature and a cooling effect due to the metal or nonmetal constituting the health care device. Due to temperature differences, high-efficiency infrared and charged particle emission effects are always maintained when worn as a health care device.

SP3構造炭素粒子を健康医療器具に備えるには、そのSP3構造炭素粒子をエポキシ樹脂又は低融点ガラス粉末等と混合して、健康医療器具を構成する金属又は非金属の人体接触部分にコーティングし加熱硬化するか、SP3構造炭素粒子を布又は繊維に混入又は付着させてもよい(請求項2)。他の使用方法として、磁性材料の表面に樹脂又はガラスと混合してコーティングするか又は混合粉末として一体成型された製品は、赤外線、荷電粒子及び磁力線の複合効果が期待できる(請求項3−4)。   In order to prepare SP3 structure carbon particles in a health care device, the SP3 structure carbon particles are mixed with an epoxy resin or a low-melting glass powder, and coated on a metal or non-metal human contact portion constituting the health care device and heated. It may be cured, or SP3-structured carbon particles may be mixed or adhered to the cloth or fiber (claim 2). As another method of use, a product obtained by coating the surface of a magnetic material with resin or glass and coating or integrally molding it as a mixed powder can be expected to have a combined effect of infrared rays, charged particles, and lines of magnetic force. ).

SP3構造炭素粒子を得る方法は、具体例の一つとして、密閉容器の中で高性能CB爆薬を爆発させて、200万気圧と数千度の温度を瞬時に発生させ、SP3構造炭素粒子を合成するか、又はカーボン微粉末及びCu粉末等を容器に入れ、上部にセットされた爆薬を点火することにより、同様の圧力温度を粉末混合品にかけてカーボンの結晶構造を変えた後、金属粉を酸で溶かしてSP3構造炭素粒子を得る。その粒子は、製造後の冷却過程で、表面がSP2構造を有する炭素膜で覆われる場合があるが、そのSP2構造の炭素膜は必要に応じて加温濃硝酸又は加温超臨界水等で除去する。(非特許文献1、2参照)。本発明には、SP2構造の炭素膜は必ずしも必要ではない。
大澤映二 Japan Nanonet Bulletin P108 06.03.08 住友石炭鉱業kk クラスター技術研究会 06.03.27
As a specific example, the method for obtaining the SP3-structured carbon particles is to explode a high-performance CB explosive in a sealed container to instantaneously generate a temperature of 2 million atmospheres and several thousand degrees, and the SP3-structured carbon particles are obtained. After synthesizing or putting carbon fine powder and Cu powder into a container and igniting the explosive set on the top, the same pressure temperature is applied to the powder mixture to change the crystal structure of the carbon, and then the metal powder is added. Dissolve with acid to obtain SP3 structure carbon particles. The particles may be covered with a carbon film having an SP2 structure in the cooling process after production. The carbon film having the SP2 structure may be heated with heated concentrated nitric acid or heated supercritical water as necessary. Remove. (See Non-Patent Documents 1 and 2). In the present invention, a carbon film having an SP2 structure is not necessarily required.
Eiji Osawa Japan Nanonet Bulletin P108 06.03.08 Sumitomo Coal Mining KK Cluster Technology Study Group 06.03.27

衝撃波法で得られた炭素粉末は、粒子製造工程中の不純物特に爆薬の中に含まれる窒素を含み、N型半導体になり易い。また、爆発時の圧力により粒子内部の歪等の影響で固体バンド構造が乱れ、0.2−0.4eVの不純物レベルを持つため、電気伝導性がある。また、粉末が特種なSP3構造を有するため、赤外線放射能及び荷電粒子放出能が従来品のトルマリン等に比較して5−10倍大きいことを、本発明者は見出した。通常の単結晶ダイヤモンドは、禁制帯幅5.5eVで、常温では比抵抗が10E16Ωとほぼ完全な絶縁体であるが、本発明で使用する半導体SP3構造炭素粒子は、製造条件により比抵抗が10Ω−10E10Ω位の値を得ることが可能である。絶縁体に近く、比抵抗が大きいダイヤは、不純物レベルの密度が低いため、体温程度の加熱では電荷がバンド幅を超えて励起されにくいので、荷電粒子放出効果は少くなく、したがって、励起される荷電粒子がバレンス帯に落ちる時放出される放射光も少ない。   The carbon powder obtained by the shock wave method contains impurities included in the particle manufacturing process, particularly nitrogen contained in the explosive, and is likely to be an N-type semiconductor. In addition, the solid band structure is disturbed by the influence of the strain inside the particle due to the pressure at the time of explosion, and has an impurity level of 0.2-0.4 eV, and therefore has electrical conductivity. Further, since the powder has a special SP3 structure, the present inventor has found that the infrared radiation ability and the charged particle emission ability are 5 to 10 times greater than those of conventional tourmaline and the like. Ordinary single crystal diamond has a forbidden band width of 5.5 eV and a specific resistance of 10E16Ω at room temperature, which is a nearly perfect insulator. However, the semiconductor SP3 structure carbon particles used in the present invention have a specific resistance of 10Ω depending on the manufacturing conditions. A value on the order of −10E10Ω can be obtained. A diamond that is close to an insulator and has a large specific resistance has a low impurity level density, so that the charge is not easily excited beyond the bandwidth when heated to about body temperature. Less emitted light is emitted when charged particles fall into the valence band.

さらに、半導体熱電素子、磁石又は圧電焦電材料から構成される健康医療器具部品の人体接触面に、SP3構造炭素粒子を樹脂等混合品の形でコーティングするか又はSP3構造炭素粒子を前記材料粉末と混合して一体成型した複合磁石を配置することが好ましい(請求項3−4)。具体的には、酸化物又は希土類磁石に穴をあけ、中心部に粒子を埋め込むか、又は磁力線を出す金属健康医療器具表面に有機又は無機結合材との混合品をコーティングするか又は複合溶射等でコーティングする方法が提案できる。場合によっては、磁石材料の表面に本発明の材料をコーティングしても良い。
これにより、荷電粒子浸透効果に加えて、赤外線及び磁力線の相乗作用を利用して身体に対する健康医療効果をより向上させることができる。
Furthermore, SP3 structure carbon particles are coated in the form of a mixture such as resin on the human body contact surface of a health care device component composed of a semiconductor thermoelectric element, magnet, or piezoelectric pyroelectric material, or SP3 structure carbon particles are coated with the material powder. It is preferable to arrange a composite magnet that is mixed with and integrally molded (claim 3-4). Specifically, a hole is made in an oxide or rare earth magnet, a particle is embedded in the center, or a metal health medical device surface that emits a magnetic field line is coated with a mixture with an organic or inorganic binder, or composite spraying, etc. A coating method can be proposed. In some cases, the surface of the magnet material may be coated with the material of the present invention.
Thereby, in addition to the charged particle penetration effect, it is possible to further improve the health care effect on the body by utilizing the synergistic action of infrared rays and magnetic lines of force.

また、加工性のよい外部磁場400G以下の半硬質磁性材料又は布に磁石粉を練りこんだバンド(帯)状の健康医療器具を構成し、そのバンドの表面にSP3構造炭素粒子を付着させて使用してもよい(請求項5)。通常の磁性体を使用した400−1500G磁界を発生する健康医療器具は、強磁場であるため、腕や心臓ペースメーカーに影響を与える人体部には使用できないが、この請求項の健康医療器具は、腕や心臓ペースメーカーに影響を与える人体部にも使用できる。   In addition, a band-shaped health medical device in which magnet powder is kneaded into a semi-hard magnetic material or cloth having an external magnetic field of 400 G or less with good workability is formed, and SP3-structured carbon particles are adhered to the surface of the band. It may be used (Claim 5). A health medical device that generates a 400-1500G magnetic field using a normal magnetic material is a strong magnetic field, and thus cannot be used for a human body part that affects an arm or a cardiac pacemaker. It can also be used on the human body that affects the arm and heart pacemaker.

請求項1の発明によれば、SP3構造を有する炭素粒子の体温による励起荷電粒子及び健康医療器具の人体接触面側と外気接触面側の温度差により発生する電界に基づく荷電粒子浸透効果及び赤外線放射効果を利用するため、この健康医療器具の装着時には常に電荷及び赤外線放射の効果が期待できる。従って、人体温度上昇効果が従来品に比較して大きい。   According to the first aspect of the present invention, the charged charged particle penetration effect based on the electric field generated by the excited charged particles due to the body temperature of the carbon particles having the SP3 structure and the temperature difference between the human body contact surface side and the outside air contact surface side of the health care device and infrared rays Since the radiation effect is used, the effect of charge and infrared radiation can be expected at all times when the health care device is worn. Accordingly, the effect of increasing the human body temperature is greater than that of the conventional product.

請求項2の発明によれば、SP3構造炭素粒子を繊維に混入させ又は付着させて使用するか、樹脂又はガラスボンド材に混入して健康医療器具の表面に付着し硬化処理して使用出来るので、使用形状の自由度が大きい。   According to the invention of claim 2, SP3 structure carbon particles can be used by mixing or adhering to the fiber, or can be used by mixing with resin or glass bond material and adhering to the surface of the health care device and curing treatment. The degree of freedom in the shape of use is great.

請求項3の発明によれば、SP3構造炭素粒子が健康医療器具の表面にコーティングして使用されるため、炭素粉末の必要量が少なくて済み、コストメリットが大きい。   According to the invention of claim 3, since the SP3-structured carbon particles are used by coating the surface of the health care device, the required amount of carbon powder is small, and the cost merit is large.

請求項4の発明によれば、SP3構造炭素粒子を磁性材料粉末及び圧電焦電材料粉末と混合し、樹脂又はガラスボンド材で一体成型できるため、量産性が上がる。また、電荷浸透効果に加えて磁力線及び赤外線の相乗効果が期待でき、人体に対する効果が一層向上する。   According to the invention of claim 4, SP3 structure carbon particles can be mixed with magnetic material powder and piezoelectric pyroelectric material powder and integrally molded with resin or glass bond material, so that mass productivity is improved. Moreover, in addition to the charge penetration effect, a synergistic effect of magnetic field lines and infrared rays can be expected, and the effect on the human body is further improved.

請求項5の発明によれば、健康医療器具を構成する400G以下の外部磁場を放射する、例えば腕輪、指輪等の磁性金属バンド又は磁石粉末を練り込んだバンドに使用しても相乗効果が期待でき、使用場所の制限がなくなる。これはSP3構造炭素粒子の特殊な半導体構造による赤外線放射能及び電荷浸透効果が大きいためでもある。   According to the invention of claim 5, a synergistic effect is expected even if it is used for a magnetic metal band such as a bracelet or a ring, or a band kneaded with magnetic powder, which radiates an external magnetic field of 400G or less constituting a health care device. Yes, there is no restriction on the place of use. This is also because the infrared radiation and charge penetration effect due to the special semiconductor structure of the SP3 structure carbon particles is large.

本発明の一実施の形態として、SP3構造炭素粒子を樹脂又はガラスボンド剤と混合し、液状になった半製品を健康医療器具を構成する金属帯に開けた穴に注入し、加熱硬化させた。他の実施の形態として、康医療器具に使用される磁石等の表面に、前記半製品をコーティングし加熱硬化させた。いずれの場合も、人体温による励起キャリア及びキャリアの温度差による電界を発生させるため、SP3構造炭素粒子を使用した素子を人体に密着するように、康医療器具の人体接触面に配置した。これにより、持続的な赤外線及び荷電粒子浸透効果が得られた。すなわち、赤外線放射効果及び荷電粒子浸透効果が従来品よりも高められた。   As one embodiment of the present invention, SP3-structured carbon particles are mixed with a resin or glass bond agent, and a liquid semi-finished product is injected into a hole formed in a metal band constituting a health care device and cured by heating. . As another embodiment, the semi-finished product was coated on a surface of a magnet or the like used in a medical device and cured by heating. In either case, in order to generate an electric field due to the temperature difference between the excited carrier and the carrier due to the human body temperature, an element using SP3 structure carbon particles was placed on the human body contact surface of the medical device so as to be in close contact with the human body. This provided a sustained infrared and charged particle penetration effect. That is, the infrared radiation effect and the charged particle penetration effect were enhanced as compared with the conventional product.

コーティングする場合、バインダーを使用しない混合溶射技術の使用も考えられる。磁力線との複合効果を必要としない場合は、布表面に接着材と混合してコーティングするか又は布等を構成する繊維に混入し又は付着させて使用しても良い。   In the case of coating, it is also possible to use a mixed spray technique without using a binder. When the combined effect with the magnetic field lines is not required, the surface of the cloth may be mixed with an adhesive and coated, or may be mixed with or attached to the fibers constituting the cloth.

絶縁体の赤外線輻射材料としては、トルマリン、黒水晶等が従来から使用されているが、CB火薬等の爆発力で作成される炭素粒子の使用が最も好ましい。この炭素粒子は、通常、中心核がSP3半導体構造で、その表面がSP2構造に近い薄いグラファイトライク層で覆われた複合構造の粒子として製造され、用途に応じて表面のSP2膜は溶解除去される。本発明の用途ではSP2グラファイト層は発生する荷電粒子をショートするので必要とされない。   As the infrared radiation material for the insulator, tourmaline, black quartz and the like have been conventionally used, but the use of carbon particles produced by an explosive force such as CB explosive is most preferable. These carbon particles are usually manufactured as particles of a composite structure in which the core is an SP3 semiconductor structure and the surface is covered with a thin graphite-like layer close to the SP2 structure, and the surface SP2 film is dissolved and removed depending on the application. The In the application of the present invention, the SP2 graphite layer is not required because it short-circuits the generated charged particles.

製造工程中で、爆薬中の窒素成分が不純物として入り、半導体としてのバンド構造の禁制帯に0.1−0.4eVの低エネルギー差をもつ不純物レベルができる特殊な構造をもっているため、人体加温に有効な波長で赤外線輻射能が大きく、加熱による荷電粒子発生効果も大きい。   During the manufacturing process, the nitrogen component in the explosive enters as an impurity, and the band structure as a semiconductor has a special structure that can produce an impurity level with a low energy difference of 0.1-0.4 eV in the forbidden band. Infrared radiation is large at a wavelength effective for temperature, and the effect of generating charged particles by heating is also large.

SP3構造炭素粒子と、SP3構造及びSP2構造を有する複合炭素粒子と、通常の健康医療器具に使用されているトルマリン等の3者の赤外線輻射能の特性を図1に示す。エポキシ樹脂に10wt%のSP3炭素粒子を混合したもの(実施例)と、エポキシ樹脂に50wt%のトルマリンを混合したもの(比較例1)と、エポキシ樹脂に10wt%のSP3及びSP2構造を有する複合炭素粒子を混合したもの(比較例2)とを、それぞれ150℃で加熱凝固したサンプルを40℃の環境で赤外線分光放射能を測定した。   FIG. 1 shows the characteristics of the infrared radiation ability of three members such as SP3 structure carbon particles, composite carbon particles having SP3 structure and SP2 structure, and tourmaline used in normal health care devices. An epoxy resin mixed with 10 wt% SP3 carbon particles (Example), an epoxy resin mixed with 50 wt% tourmaline (Comparative Example 1), and an epoxy resin having 10 wt% SP3 and SP2 structures Infrared spectral radioactivity was measured in a 40 ° C. environment for samples obtained by heating and coagulating carbon particles (Comparative Example 2) at 150 ° C.

実施例は、エポキシ樹脂に対する配合量が比較例1の5分の1にもかかわらず、200−400℃に加熱された物体から、主として4−10μmの赤外線放射量が大きい。また、SP3構造のみを有する炭素粒子を用いる本発明品は、炭素粒子の表面がボンド樹脂で被覆されているため、分光放射率が比較例2に比し、3%程度しか向上していないが、用いられるカップリング剤の種類によっては、より高い分光放射率が得られることが期待できる。   Although the compounding amount with respect to an epoxy resin is 1/5 of the comparative example 1, an Example has a large infrared radiation amount of 4-10 micrometers mainly from the object heated to 200-400 degreeC. Moreover, since the surface of the carbon particle of the present invention using carbon particles having only the SP3 structure is coated with a bond resin, the spectral emissivity is improved only by about 3% as compared with Comparative Example 2. Depending on the type of coupling agent used, higher spectral emissivity can be expected.

図2に体温付近での加熱により発生するキャリアによる抵抗変化を示す。測定方法は、炭素粒子を5mmφX5mmtにプレス成型し、Cu電極及び熱電対を付け、電気ヒーターで加温しながら抵抗及び温度を測定した。温度23−48℃で電気抵抗値は半分になった。これば、荷電粒子が加熱により2倍になったことを示す。電気抵抗変化の温度係数から計算される活性化エネルギーは、0.37eVであり、炭素粒子が半導体特性を有していることを示す。半導体赤外線輻射材料としては、波長100μmの赤外線放射能の大きく、熱電素子としても性能指数の大きいGe,InSb等と併用しても、一層の効果が期待できる。   FIG. 2 shows a change in resistance due to carriers generated by heating near the body temperature. The measurement method was to press-mold carbon particles to 5 mmφX5 mmt, attach a Cu electrode and a thermocouple, and measure resistance and temperature while heating with an electric heater. The electrical resistance value was halved at a temperature of 23-48 ° C. This indicates that the charged particles are doubled by heating. The activation energy calculated from the temperature coefficient of electrical resistance change is 0.37 eV, indicating that the carbon particles have semiconductor properties. As a semiconductor infrared radiation material, even if Ge, InSb, etc., which have a large infrared radiation with a wavelength of 100 μm and have a high performance index as a thermoelectric element, can be expected to have further effects.

衝撃波法により爆発成型されるSP3構造を有する炭素粒子は、その製法に起因して粒子サイズが100nmから3nmと細かく、単位重量当りの比表面積が大きいので、表面エネルギーの人体への影響度が大きく、健康医療器具に適用すると、その効果が期待できる。また、使用される爆薬に起因する窒素を不純物として含み易く、N型半導体特性を示し、電気伝導度も10−10E15と幅広くとれ、電荷移動度及びキャリア濃度も原則として絶縁体であるトルマリ等圧電焦電材料に比較して大きいので、赤外線輻射能荷電粒子放射能も大きく、健康医療器具としてその効果が大きい。   Carbon particles having an SP3 structure explosively molded by the shock wave method have a particle size as small as 100 nm to 3 nm due to the production method and a large specific surface area per unit weight, so that the influence of surface energy on the human body is large. When applied to a health care device, the effect can be expected. Moreover, it is easy to contain nitrogen resulting from the explosive used as an impurity, exhibits N-type semiconductor characteristics, has a wide electric conductivity of 10-10E15, and has a charge mobility and carrier concentration as a principle, such as a piezoelectric element such as Tolmarie. Since it is large compared to pyroelectric materials, it also has a large infrared radiation charged particle radioactivity, which is highly effective as a health care device.

次に、SP3構造とSP2構造含有割合が異なる複合炭素粒子を用いた健康医療器具を使用した場合の体温の温度上昇効果を測定し、比較した。SP3構造とSP2構造の含有割合が9対1の場合の温度上昇効果を1とした場合、測定結果は、次に示す通りであった。
SP3 SP2 温度上昇比 製造元
9 1 1 国内S社製
7 3 0.6 ロシア製
5 5 0.4 中国製
SP3とSP2の割合は、製造元による本質的なものはなく、SP2の除去工程によるものである。
Next, the temperature rise effect of body temperature when using a medical device using composite carbon particles having different SP3 structure and SP2 structure content ratios was measured and compared. When the temperature increase effect when the content ratio of the SP3 structure and the SP2 structure is 9 to 1, the measurement result is as follows.
SP3 SP2 Temperature rise ratio Manufacturer
9 1 1 Made by domestic S company
7 3 0.6 Made in Russia
5 5 0.4 Made in China The ratio of SP3 and SP2 is not essential by the manufacturer, but is due to the removal process of SP2.

[実施例]
純チタン及び150Gの放射磁場を有する磁性ステンレス金属腕輪の人体接触面側に3mmφX1.8mmtの穴20個を開け、トルマリン50wt%を含むエポキシ樹脂混合物を穴に注入したもの、及びSP3炭素粒子10wt%を含むエポキシ樹脂混合物を穴に注入したものを、それぞれ150℃で一時間乾燥して、健康医療器具を作り、それぞれを腕に装着して15分後の温度上昇をサーモグラフで測定した。
[Example]
20 holes of 3 mmφ × 1.8 mmt were made on the human body contact surface side of a pure stainless steel and magnetic stainless steel bracelet having a radiation magnetic field of 150 G, and an epoxy resin mixture containing 50 wt% tourmaline was injected into the holes, and 10 wt% of SP3 carbon particles. Each of the epoxy resin mixtures containing was poured into holes and dried at 150 ° C. for 1 hour to make health care devices. Each was attached to the arm, and the temperature rise after 15 minutes was measured with a thermograph.

[測定結果]
健康医療器具 トルマリン(50wt%) SP3炭素粒子(10wt%)
純チタン腕輪 0.2℃ 0.6℃
磁性ステンレス腕輪 0.3℃ 1.0℃
[Measurement result]
Health care equipment Tourmaline (50wt%) SP3 carbon particles (10wt%)
Pure titanium bracelet 0.2 ℃ 0.6 ℃
Magnetic stainless steel bracelet 0.3 ℃ 1.0 ℃

以上の体温上昇測定結果より、本発明に係るSP3構造炭素粒子の人体に対する加温効果が優れていることがわかる。特に弱磁場と併用した時の効果が大きい。また、衝撃波で合成されたSP3構造及びSP2構造を有する複合炭素粒子からグラファイト(SP2構造)を超臨界水で除去する場合は完全に除去されるが、濃硝酸で酸化してグラファイトを除去する際は、重量にして1%程度のSP2構造が残る。しかし、SP2構造が僅かに存在する物でも、SP2構造除去処理をしていない複合炭素粒子を用いる健康医療器具よりも格段に赤外線加熱効果及び荷電粒子浸透効果が優れている。従って、本発明は、SP2構造を必須要件とはしないが、若干残っている物を用いる場合も、本発明の特許請求の範囲に属する。   From the above body temperature rise measurement results, it can be seen that the effect of heating the SP3 structure carbon particles according to the present invention on the human body is excellent. The effect is particularly great when used in combination with a weak magnetic field. In addition, when removing graphite (SP2 structure) with supercritical water from composite carbon particles having SP3 structure and SP2 structure synthesized by shock wave, it is completely removed, but when oxidizing graphite with concentrated nitric acid to remove graphite. Leaves about 1% SP2 structure by weight. However, even if the SP2 structure is slightly present, the infrared heating effect and the charged particle permeation effect are far superior to health care devices using composite carbon particles that have not been subjected to the SP2 structure removal treatment. Therefore, although the present invention does not make the SP2 structure an essential requirement, a case where a slightly remaining material is used also falls within the scope of the claims of the present invention.

本発明の爆発による衝撃波を利用して作成された炭素を主成分とするSP3構造を有する半導体粒子の体温加熱による赤外線加熱効果及び荷電粒子浸透効果を利用した健康医療器具又は磁力線との人体に対する複合作用を利用した健康医療器具は、繊維として一般の保温衣類としても、また、ネックレス、腕輪、指輪、足輪、肌着、靴下、腹巻、シーツ、枕及び寝具等の必要とされる形状に成型して人体に使用する以外に、動物用医療器具としても応用できる。特に、従来は効果がないとされた400G以下の磁場との併用効果が大きいので、磁性体の使用が禁止されている電子医療器具、例えば心臓ペースメーカーの近くでも、使用可能であるので、産業上有用である。愛玩動物は、人体より体温が高いものが多いので、特に有効であると思われる。   The compound for the human body with the medical device or the magnetic field line using the infrared heating effect by the body temperature heating and the charged particle permeation effect of the semiconductor particles having the SP3 structure mainly composed of carbon prepared by using the shock wave by the explosion of the present invention Health-care devices that use the action are molded into the required shape, such as general warm clothing as fibers, and necklaces, bracelets, rings, ankles, underwear, socks, abdomen, sheets, pillows, and bedding. In addition to being used for the human body, it can also be applied as an animal medical device. In particular, since the combined effect with a magnetic field of 400 G or less, which has been considered ineffective in the past, is great, it can be used even in the vicinity of an electronic medical device in which the use of a magnetic material is prohibited, such as a cardiac pacemaker. Useful. Because many pet animals have a higher body temperature than the human body, they seem to be particularly effective.

SP3構造炭素粒子その他の赤外線分光放射特性図。SP3 structure carbon particles and other infrared spectral radiation characteristics. SP3構造炭素粒子の電気抵抗温度特性図。The electrical resistance temperature characteristic figure of SP3 structure carbon particle.

Claims (5)

衝撃波で合成されたSP3構造を有する炭素粒子を、健康医療器具を構成する金属バンド又は非金属バンドの人体接触面側に配置したことを特徴とする健康医療器具。   A health care device characterized in that carbon particles having an SP3 structure synthesized by a shock wave are arranged on a human body contact surface side of a metal band or a non-metal band constituting the health care device. 衝撃波で合成されたSP3構造を有する炭素粒子は、樹脂、高分子ポリマー繊維又はガラスとの混合体とされ、又は繊維表面に付着させてあることを特徴とする請求項1記載の健康医療器具。   The medical device according to claim 1, wherein the carbon particles having an SP3 structure synthesized by a shock wave are mixed with a resin, a high polymer fiber, or glass, or are attached to a fiber surface. 衝撃波で合成されたSP3構造を有する炭素粒子は、磁石、半導体熱電素子又は圧電焦電素子の表面にコーティングしてあることを特徴とする請求項1記載の健康医療器具。   The medical device according to claim 1, wherein carbon particles having an SP3 structure synthesized by a shock wave are coated on a surface of a magnet, a semiconductor thermoelectric element, or a piezoelectric pyroelectric element. 衝撃波で合成されたSP3構造を有する炭素粒子は、磁石材料、圧電焦電材料及び半導体材料粉末と混合し成型してあることを特徴とする請求項1記載の健康医療器具。   The medical device according to claim 1, wherein the carbon particles having an SP3 structure synthesized by a shock wave are mixed and molded with a magnet material, a piezoelectric pyroelectric material and a semiconductor material powder. 磁性金属部材又は布に磁石紛を付着させた複合材から構成された、外部磁束密度400G以下の磁界を発生するバンドの内周側に、請求項2−4のいずれか1項に記載の衝撃波で合成されたSP3構造を有する炭素粒子を備えたことを特徴とする健康医療器具。   The shock wave according to any one of claims 2 to 4, on the inner peripheral side of a band that generates a magnetic field having an external magnetic flux density of 400G or less, which is made of a composite material in which magnetic powder is adhered to a magnetic metal member or cloth. A medical device characterized by comprising carbon particles having an SP3 structure synthesized in 1.
JP2006310049A 2006-09-06 2006-11-16 Healthcare device Pending JP2008125528A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006310049A JP2008125528A (en) 2006-11-16 2006-11-16 Healthcare device
US11/765,164 US20080057320A1 (en) 2006-09-06 2007-06-19 Healthcare device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006310049A JP2008125528A (en) 2006-11-16 2006-11-16 Healthcare device

Publications (1)

Publication Number Publication Date
JP2008125528A true JP2008125528A (en) 2008-06-05

Family

ID=39551988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006310049A Pending JP2008125528A (en) 2006-09-06 2006-11-16 Healthcare device

Country Status (1)

Country Link
JP (1) JP2008125528A (en)

Similar Documents

Publication Publication Date Title
CN107048546B (en) A kind of production method with spontaneous hot and interior both effectiveness waistband and waistband heat generating components
JP5282203B2 (en) Functional fibers and functional fiber products
JP6846514B2 (en) Carbon felt heating device and its manufacturing method
JP2008106392A (en) Functional fiber, and finished article and molded article including the functional fiber
JP2009096880A (en) Functional element and functional product radiating infrared ray and charged particle
US20080057320A1 (en) Healthcare device
JP2008125528A (en) Healthcare device
JP2008086714A (en) Healthcare device
US20170312539A1 (en) Therapeutic Device Using Far-infrared Radiation
JP2008136735A (en) Healthcare device
Wang et al. Synthesis of vertical graphene nanowalls on substrates by PECVD as effective EMI shielding materials
JP2008183090A (en) Charge particle generator and health medical appliance using it
US20080319518A1 (en) Charged particle generator and functional fabric having a charged particle emission function
JP2011083436A (en) Health-care patch sheet, and method of manufacturing the same
JP3214413U (en) Functional jewelry
KR102406888B1 (en) Manufacturing method of nano carbon fiber protective clothing and protective clothing thereof
JP2007215942A (en) Healthy medical instrument
Hui et al. Ultrathin Black Phosphorus Nanosheets for Efficient Singlet Oxygen Generation
JP2007236581A (en) Health care instrument
JP6115838B2 (en) Conductive material
KR101494743B1 (en) Panties manufacturing method and the panties thereof
JPH01190367A (en) Wearables
US469796A (en) Galvanic electric plaster
Yinben et al. Fluoroalkylsilane-Modified Textile-Based Personal Energy Management Device for Multifunctional Wearable Applications
JP2007260000A (en) Health care instrument

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080905

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080905