KR102406888B1 - Manufacturing method of nano carbon fiber protective clothing and protective clothing thereof - Google Patents

Manufacturing method of nano carbon fiber protective clothing and protective clothing thereof Download PDF

Info

Publication number
KR102406888B1
KR102406888B1 KR1020210180672A KR20210180672A KR102406888B1 KR 102406888 B1 KR102406888 B1 KR 102406888B1 KR 1020210180672 A KR1020210180672 A KR 1020210180672A KR 20210180672 A KR20210180672 A KR 20210180672A KR 102406888 B1 KR102406888 B1 KR 102406888B1
Authority
KR
South Korea
Prior art keywords
nano
carbon fiber
protective clothing
filter
carbonized
Prior art date
Application number
KR1020210180672A
Other languages
Korean (ko)
Inventor
김영미
장경수
Original Assignee
주식회사 서현어패럴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 서현어패럴 filed Critical 주식회사 서현어패럴
Priority to KR1020210180672A priority Critical patent/KR102406888B1/en
Application granted granted Critical
Publication of KR102406888B1 publication Critical patent/KR102406888B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2065Carbonaceous material the material being fibrous
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic Table; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0457Specific fire retardant or heat resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0464Impregnants
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

본 발명의 나노탄소섬유 방호복 제조방법은 전구체로 PAN, 용액으로 DMF를 사용하여 방사용액을 제조하는 단계; 상기 방사용액을 전기방사하여 나노섬유필터를 형성하는 단계; 상기 나노섬유필터를 공기 분위기 하 180~200℃ 영역에서 실시하는 안정화 단계; 안정화된 상기 나노섬유필터를 질소 분위기 하 400~1000℃ 영역에서 실시하는 탄화 단계;로 이루어지는 나노탄소섬유필터를 형성하는 단계;
상기 나노탄소섬유필터를 기능성 나노재료에 침지하여 상기 나노탄소섬유필터에 상기 기능성 나노재료를 부착시키는 단계를 포함하여 구성하되, 상기 기능성 나노재료는 미역 탄화분말, 토르말린 탄화분말, Al2O3인 것을 특징으로 한다.
본 발명의 나노탄소섬유 방호복 제조방법으로 제조된 나노탄소섬유 방호복은 적외선을 차단하고, 내마모성과 내열성을 가지며, 항균, 항바이러스 및 방진드기 효과가 있다.
The nano-carbon fiber protective clothing manufacturing method of the present invention comprises the steps of preparing a spinning solution using PAN as a precursor and DMF as a solution; forming a nanofiber filter by electrospinning the spinning solution; stabilizing the nanofiber filter in an air atmosphere at 180-200°C; Forming a nano-carbon fiber filter comprising; carbonization step of performing the stabilized nano-fiber filter in a 400 ~ 1000 ℃ region under a nitrogen atmosphere;
Constructed by immersing the nano-carbon fiber filter in a functional nano material to attach the functional nano material to the nano-carbon fiber filter, wherein the functional nano material is seaweed carbonized powder, tourmaline carbonized powder, Al 2 O 3 characterized in that
The nano-carbon fiber protective clothing manufactured by the manufacturing method of the nano-carbon fiber protective clothing of the present invention blocks infrared rays, has abrasion resistance and heat resistance, and has antibacterial, antiviral and anti-mite effects.

Description

나노탄소섬유 방호복 제조방법 및 그 방호복{Manufacturing method of nano carbon fiber protective clothing and protective clothing thereof}Manufacturing method of nano carbon fiber protective clothing and protective clothing thereof

본 발명은 나노탄소섬유 방호복 제조방법 및 그 방호복에 관한 것이다. The present invention relates to a method for manufacturing a nano-carbon fiber protective clothing and to the protective clothing.

더욱 상세하게는 본 발명은 나노탄소섬유의 직경을 작게 형성함으로서 항바이러스를 갖고, 나노탄소섬유 자체가 항균성과 원적외선 효과를 갖도록 하는 것이다. 또한 본 발명은 적외선을 차단하고, 내마모성과 내열성을 가지며, 항균, 항바이러스를 위한 나노탄소섬유 방호복 제조방법과 그 방호복에 관한 기술이다.More specifically, the present invention is to have antiviral properties by forming a small diameter of the nano-carbon fibers, and to have the nano-carbon fibers themselves have antibacterial and far-infrared effects. In addition, the present invention blocks infrared rays, has abrasion resistance and heat resistance, and relates to a method for manufacturing a nano carbon fiber protective clothing for antibacterial and antiviral, and a technology related to the protective clothing.

본 발명의 배경기술로 대한민국 등록특허 10-1683475"기능성 나노섬유 필터의 제조방법 및 이에 의해 제조된 기능성 나노섬유 필터"(이하 "종래기술"이라 한다)는 기능성 나노섬유 필터의 제조방법 및 이에 의해 제조된 기능성 나노섬유 필터에 관한 것이다.As a background technology of the present invention, Republic of Korea Patent Registration 10-1683475 "Method for manufacturing a functional nanofiber filter and a functional nanofiber filter manufactured thereby" (hereinafter referred to as "prior art") is a method for manufacturing a functional nanofiber filter and thereby It relates to the manufactured functional nanofiber filter.

종래기술은 폴리설폰계 고분자에 유기용매를 첨가하여 방사용액을 제조하고, 상기 방사용액을 전기방사하여 나노섬유 필터를 형성한 다음, 기능성 나노재료 분산용매에 상기 나노섬유 필터를 침지한 후 건조시켜, 상기 나노섬유 필터에 상기 기능성 나노재료를 부착시키는 공정을 수행하여 기능성 나노섬유 필터를 제조할 수 있다. 이와 같이, 나노섬유 표면에 기능성을 가진 나노재료를 용이하게 부착시킬 수 있어, 다양한 기능을 갖는 나노섬유 필터를 제조할 수 있다. In the prior art, a spinning solution is prepared by adding an organic solvent to a polysulfone-based polymer, and the nanofiber filter is formed by electrospinning the spinning solution, and then the nanofiber filter is immersed in a functional nanomaterial dispersion solvent and then dried. , it is possible to manufacture a functional nanofiber filter by performing a process of attaching the functional nanomaterial to the nanofiber filter. In this way, it is possible to easily attach a functional nanomaterial to the surface of the nanofiber, thereby manufacturing a nanofiber filter having various functions.

또한, 전기방사법을 이용하여 나노섬유 필터를 제조함에 따라, 박막 두께 및 공극의 크기를 용이하게 조절할 수 있어, 높은 공극률 및 우수한 기계적 강도를 가질 수 있다. 아울러, 은(Ag) 나노재료를 부착시키는 경우 항균기능을 가질 수 있어, 미생물에 의한 필터 오염 문제를 개선할 수 있고, 에너지 및 필터 소비량을 저감시킬 수 있다. 청구항 1은 폴리설폰계 고분자를 유기용매에 첨가하여 방사용액을 제조하는 단계; 상기 방사용액을 전기방사하여 나노섬유 필터를 형성하는 단계; 및In addition, as the nanofiber filter is manufactured by using the electrospinning method, the thickness of the thin film and the size of the pores can be easily controlled, so that it can have a high porosity and excellent mechanical strength. In addition, when silver (Ag) nanomaterial is attached, it can have an antibacterial function, so it is possible to improve the filter contamination problem by microorganisms, and reduce energy and filter consumption. The method according to claim 1, comprising the steps of: preparing a spinning solution by adding a polysulfone-based polymer to an organic solvent; forming a nanofiber filter by electrospinning the spinning solution; and

기능성 나노재료 분산용매에 상기 전기방사된 나노섬유 필터를 침지한 후 건조시켜, 상기 전기방사된 나노섬유 필터의 고체화(solidification)됨에 따라 상기 나노섬유 필터의 표면에 상기 기능성 나노재료를 부착시키는 단계를 포함하는 것을 특징으로 하는 기능성 나노섬유 필터의 제조방법이다.After immersing the electrospun nanofiber filter in a functional nanomaterial dispersion solvent and drying, attaching the functional nanomaterial to the surface of the nanofiber filter as the electrospun nanofiber filter is solidified. It is a method of manufacturing a functional nanofiber filter, characterized in that it comprises.

종래기술은 폴리설폰(polysulfone)계 고분자를 이용하며, 전기방사 인가전압(8~13kV) 및 용액의 농도(폴리설폰계 고분자의 농도는 유기용매에 대하여 25 내지 40중량%) 등에 한계가 있어, 본 발명과 같이 나노탄소섬유의 직경(300nm 이하)에 이르지 못하는 문제점이 있다. 이와 같은 문제점으로 인해 방호복과 같은 경우 바이러스 등이 침투할 우려가 발생한다.The prior art uses a polysulfone-based polymer, and there are limitations such as the applied voltage (8-13 kV) and the concentration of the solution (the concentration of the polysulfone-based polymer is 25 to 40% by weight with respect to the organic solvent). As in the present invention, there is a problem in that the diameter of the nano-carbon fiber (300 nm or less) cannot be reached. Due to such a problem, there is a risk that a virus or the like may penetrate in the case of a protective suit.

대한민국 등록특허공보 제10-1683475호Republic of Korea Patent Publication No. 10-1683475

본 발명의 목적은 나노탄소섬유의 직경이 300nm 이하가 되도록 제조하는 나노탄소섬유 방호복 제조방법과 그 방호복을 제공하는 데에 있다.It is an object of the present invention to provide a method for manufacturing a nano-carbon fiber protective clothing for manufacturing such that the diameter of the nano-carbon fiber is 300 nm or less, and the protective clothing.

본 발명의 또 다른 목적은 적외선을 차단하고, 내마모성과 내열성을 가지며, 항균, 항바이러스, 방진드기를 위한 원적외선 방사 나노탄소섬유 방호복 제조방법으로 제조된 방호복을 제공하는 데에 있다.Another object of the present invention is to block infrared rays, have abrasion resistance and heat resistance, and provide a protective suit manufactured by a manufacturing method of far-infrared radiation emitting nano carbon fiber protective clothing for antibacterial, antiviral, and mite-proof.

본 발명의 나노탄소섬유 방호복 제조방법은 전구체로 PAN, 용액으로 DMF를 사용하여 방사용액을 제조하는 단계; 상기 방사용액을 전기방사하여 나노섬유필터를 형성하는 단계; 상기 나노섬유필터를 공기 분위기 하 180~200℃ 영역에서 실시하는 안정화 단계; 안정화된 상기 나노섬유필터를 질소 분위기 하 400~1000℃ 영역에서 실시하는 탄화 단계;로 이루어지는 나노탄소섬유필터를 형성하는 단계; The nano-carbon fiber protective clothing manufacturing method of the present invention comprises the steps of: preparing a spinning solution using PAN as a precursor and DMF as a solution; forming a nanofiber filter by electrospinning the spinning solution; stabilizing the nanofiber filter in an air atmosphere at 180-200°C; Forming a nano-carbon fiber filter comprising a; carbonization step of carrying out the stabilized nano-fiber filter in the region of 400 ~ 1000 ℃ under a nitrogen atmosphere;

상기 나노탄소섬유필터를 기능성 나노재료에 침지하여 상기 나노탄소섬유필터에 상기 기능성 나노재료를 부착시키는 단계를 포함하여 구성하되, 상기 기능성 나노재료는 미역 탄화분말, 토르말린 탄화분말, Al2O3인 것을 특징으로 한다.Constructed by immersing the nano-carbon fiber filter in a functional nano material to attach the functional nano material to the nano-carbon fiber filter, wherein the functional nano material is seaweed carbonized powder, tourmaline carbonized powder, Al 2 O 3 characterized in that

또한 나노탄소섬유 방호복 제조방법은 상기 방사용액을 전기방사하여 나노섬유필터를 형성하는 단계에서 전기방사 수행시, 인가되는 전압은 16kV이고; 상기 전구체로 PAN, 용액으로 DMF를 사용하여 방사용액을 제조하는 단계에서 상기 PAN의 농 In addition, in the nano-carbon fiber protective clothing manufacturing method, when the electrospinning is performed in the step of forming a nanofiber filter by electrospinning the spinning solution, the applied voltage is 16 kV; Concentration of the PAN in the step of preparing a spinning solution using PAN as the precursor and DMF as a solution

도는 5wt%인 것을 특징으로 한다.The degree is characterized in that it is 5 wt%.

또한 나노탄소섬유 방호복 제조방법에 있어서, 상기 미역 탄화분말과, 상기 토르말린 탄화분말과, 상기 Al2O3의 중량비는 각각 1:1:1인 것을 특징으로 하고;In addition, in the nano-carbon fiber protective clothing manufacturing method, the weight ratio of the carbonized seaweed powder, the carbonized tourmaline powder, and the Al 2 O 3 is 1:1:1, respectively;

상기 미역 탄화분말과, 상기 토르말린 탄화분말은 각각 0.7μm인 것을 특징으로 한다. 또한 나노탄소섬유 방호복 제조방법으로 제조된 나노탄소섬유 방호복. The carbonized seaweed powder and the carbonized tourmaline powder are each 0.7 μm. In addition, nano carbon fiber protective clothing manufactured by the manufacturing method of nano carbon fiber protective clothing.

본 발명의 나노탄소섬유 방호복 제조방법으로 제조된 나노탄소섬유 방호복은 나노탄소섬유의 직경을 300nm 이하가 되도록 함으로서 항바이러스 효과가 있다.The nano-carbon fiber protective clothing manufactured by the nano-carbon fiber protective clothing manufacturing method of the present invention has an antiviral effect by making the diameter of the nano-carbon fiber to be 300 nm or less.

또한 본 발명의 나노탄소섬유 방호복은 적외선을 차단하고, 내마모성과 내열성을 가지며, 항균, 항바이러스 및 방진드기 효과가 있다.In addition, the nano-carbon fiber protective clothing of the present invention blocks infrared rays, has abrasion resistance and heat resistance, and has antibacterial, antiviral and anti-mite effects.

도 1은 탈의 30분 경과 속옷의 원적외선 가공으로 인한 피부 온도 차이를
비교하는 사진이다.
도 2는 탄소나노섬유의 합성과정을 나타내는 흐름도이다.
도 3은 PAN 전구체 안정화 과정에 대한 화학식이다,
도 4는 안정화된 나노섬유의 탄화 과정에 대한 화학식이다.
도 5는 알루미나 나노탄소섬유 단면 표면사진이다.
도 6은 PAN의 농도에 따른 탄소나노섬유의 평균 직경 그래프이다.
도 7은 인가전압에 따른 탄소나노섬유의 평균 직경 그래프이다.
1 is a skin temperature difference due to far-infrared processing of underwear after 30 minutes of undressing.
It's a comparison picture.
2 is a flowchart showing the synthesis process of carbon nanofibers.
3 is a chemical formula for the PAN precursor stabilization process;
4 is a chemical formula for the carbonization process of the stabilized nanofiber.
5 is a cross-sectional surface photograph of alumina nano carbon fibers.
6 is a graph showing the average diameter of carbon nanofibers according to the concentration of PAN.
7 is a graph showing the average diameter of carbon nanofibers according to an applied voltage.

이하, 도면을 참고하여 본 발명의 실시예를 상세히 설명한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

도 1은 탈의 30분 경과 속옷의 원적외선 가공으로 인한 피부 온도 차이를 비교하는 사진이고, 도 2는 탄소나노섬유의 합성과정을 나타내는 흐름도이다.1 is a photograph comparing the skin temperature difference due to far-infrared processing of underwear after 30 minutes of undressing, and FIG. 2 is a flowchart showing the synthesis process of carbon nanofibers.

도 3은 PAN 전구체 안정화 과정에 대한 화학식이고, 도 4는 안정화된 나노섬유의 탄화 과정에 대한 화학식이다. 도 5는 알루미나 나노탄소섬유 단면 표면사진이고, 도 6은 PAN의 농도에 따른 탄소나노섬유의 평균 직경 그래프이다.Figure 3 is a chemical formula for the PAN precursor stabilization process, Figure 4 is a chemical formula for the carbonization process of the stabilized nanofiber. 5 is a cross-sectional surface photograph of alumina nano-carbon fibers, and FIG. 6 is a graph of the average diameter of carbon nano-fibers according to the concentration of PAN.

도 7은 인가전압에 따른 탄소나노섬유의 평균 직경 그래프이다.7 is a graph showing the average diameter of carbon nanofibers according to an applied voltage.

원적외선은 일종의 눈에 보이지 않는 태양 빛으로 전자파의 일종이다. Far-infrared rays are a kind of invisible light from the sun and are a kind of electromagnetic wave.

태양 광선은 가시광선과 비가시광선으로 나누어진다. 이중 적외선은 비가시광선에 속하며 근적외선, 중적외선, 원적외선으로 분류된다. 태양에너지는 적외선(49%), 가시광선(40%), 감마선/X선/자외선(11%), 원적외선 (1.5%)으로 구성되어 있다. 약 0.75 ~ 1,000μm 범위의 적외선 중에서 4 ~ 1,000μm 범위의 파장으로 매우 긴 파장에 속하는 원적외선은 1.5% 정도로 아주 적은 양이지만, 생물의 체내에서 결합적, 합성적으로 작용하기 때문에 육성 광선이라고도 한다. The sun's rays are divided into visible and invisible rays. Infrared rays belong to invisible rays and are classified into near-infrared rays, mid-infrared rays, and far-infrared rays. Solar energy is composed of infrared rays (49%), visible rays (40%), gamma rays/X-rays/ultraviolet rays (11%), and far-infrared rays (1.5%). Among the infrared rays in the range of about 0.75 to 1,000 μm, far infrared rays belonging to the very long wavelength range of 4 to 1,000 μm are only 1.5% in a very small amount, but they are called upbringing rays because they act synthetically and synthetically in the body of living things.

원적외선은 생물에 흡수되기 쉬우며 인체에 대해서는 생리활성 작용과 성장촉진 작용 등이 있는 인체에 유익한 광선으로 알려져 있다.Far-infrared rays are easily absorbed by living things and are known to be beneficial to the human body as they have physiologically active and growth-promoting effects.

일반적으로 물체가 원적외선을 방사하기 위해서는 외부로부터 어떠한 형태로든지 에너지 공급이 필요하지만, 자연적으로 방사하는 물질도 있다. 대부분은 외부로부터의 에너지 공급원에 따라 상온 세라믹 섬유 제품에는 태양광 등 가시광선을 흡수해서 원적외선으로 변환하는 것, 인체에서 발생되는 열을 세라믹이 흡수하여 원적외선을 재방사하는 것, 주위의 물체로부터 방사되는 원적외선과 열을 세라믹이 흡수해서 원적외선을 재방사하는 것으로 구분 되어있다. In general, in order for an object to radiate far-infrared rays, energy supply from the outside is required in any form, but there are materials that radiate naturally. In most cases, depending on the energy source from the outside, room temperature ceramic fiber products absorb visible light such as sunlight and convert it into far-infrared rays, the ceramic absorbs heat generated in the human body and re-radiates far-infrared rays, and radiates from surrounding objects. It is divided into far-infrared rays and heat that ceramic absorbs and re-radiates far-infrared rays.

원적외선은 플라스틱, 의류, 주택, 식품 공업, 건축 자재, 농업 및 원예, 축산, 화학 공업, 정수 산업, 건강유지 장비 등 많은 분야에서 이용되고 있다. Far-infrared rays are used in many fields such as plastics, clothing, housing, food industry, building materials, agriculture and horticulture, livestock, chemical industry, water purification industry, and health maintenance equipment.

원적외선의 생체작용 효과는 혈액순환을 촉진하여 신진 대사를 활발하게 한다고 알려져 있으며, 원적외선이 인체에 미치는 대표적인 작용은 다음과 같다. The biological effect of far-infrared rays is known to promote blood circulation and activate metabolism. Representative effects of far-infrared rays on the human body are as follows.

(1) 온열작용으로서 체온조절을 통한 적정 체온 유지 기능, (2) 성장촉진작용으로서 미성장 어린이나 청소년들의 성장 촉진기능, (3) 이온작용으로서 체내의 칼슘과 철분 영양의 균형을 이루어 뼈를 튼튼하게 하는 기능, (4) 건습작용으로서 체온을 유지할 수 있는 최적정 수분 유지 기능, (5) 중화작용으로서 체내의 노폐물 제거, 땀 냄새 중화 기능, (6) 공명작용으로서 인체의 지방질 단백질 탄수화물의 영양을 분해 기능 등이 있다.(1) The function of maintaining proper body temperature through body temperature regulation as a warming action, (2) The function of promoting growth of immature children and adolescents as a growth promoting action, (3) The function of balancing calcium and iron nutrition in the body as an ion action Strengthening function, (4) optimal moisture retention function to maintain body temperature as a dry and wet action, (5) body waste removal and sweat odor neutralization function as a neutralizing action, (6) a resonance action of the body’s lipid protein and carbohydrate It has the ability to break down nutrients.

기타, 원적외선 효과로서 냉증, 요통 등의 효과 외에 (-)이온 효과에 의한 생리 활성화와 항균, 소취, 난연 효과 등을 들 수 있다. In addition to effects such as poor circulation and low back pain, examples of the far-infrared effect include physiological activation and antibacterial, deodorizing, and flame retardant effects due to the negative (-) ion effect.

원적외선이란 전자파의 일종이지만 인체에 해가 없고 신체 내부에 침투해 원적외선에 의해 혈액순환을 원활하게 도와 신체를 따뜻하게 하는 유용한 전자파이다. 원적외선 섬유의복을 착용한 인체 부분 보온효과를 실험한 결과, 착용하고 있는 부분은 물론 손목 등 닿지 않았던 부분까지 체온이 1.25도 상승한 결과도 보고되고 있다. 이와 같이 원적외선 물질(방사체)는 원적외선을 방사함으로서 세포내의 분자운동을 활발하게 하여 뛰어난 보온력으로 신진대사를 활발하게 한다. Far-infrared radiation is a kind of electromagnetic wave, but it is harmless to the human body, and it is a useful electromagnetic wave that penetrates the inside of the body and warms the body by helping blood circulation smoothly by far-infrared radiation. As a result of testing the effect of warming the body part wearing far-infrared fiber clothing, it is reported that the body temperature increased by 1.25 degrees not only in the worn part, but also in the part that was not touched, such as the wrist. In this way, the far-infrared material (emitter) emits far-infrared rays to activate molecular movement within the cell, thereby activating the metabolism with excellent thermal insulation power.

도 1은 원적외선 미가공섬유와 원적외선 가공섬유의 방사율을 측정한 것으로서 탈의 후 30분 경과시 피부의 온도를 나타낸 것이다.1 shows the emissivity of the far-infrared unprocessed fiber and the far-infrared processed fiber, and shows the skin temperature when 30 minutes have elapsed after undressing.

도 1(a)은 원적외선 미가공섬유 탈의 후 30분 경과를 나타내고, 도 1(b)은 원적외선 가공섬유 탈의 후 30분 경과를 나타낸 것이다.Figure 1 (a) shows the lapse of 30 minutes after taking off the far-infrared unprocessed fiber, and Figure 1 (b) shows the lapse of 30 minutes after taking off the far-infrared processed fiber.

원적외선 미가공섬유와 원적외선 가공섬유의 방사율을 측정하면, 원적외선의 흡수 및 재방출 특성이 가공된 섬유에서 명확하게 개선됨을 알 수 있다. 도 1에 도시된 바와 같이 실제 피부 온도 측정에 의해 검증되었으며, 이는 원적외선 가공섬유를 사용한 것이 피부 온도가 높다는 것을 나타낸다.When the emissivity of the far-infrared unprocessed fiber and the far-infrared processed fiber is measured, it can be seen that the absorption and re-emitting properties of the far-infrared radiation are clearly improved in the processed fiber. As shown in FIG. 1 , it was verified by measuring the actual skin temperature, which indicates that the use of far-infrared processed fibers has a high skin temperature.

원적외선 방사체로서는 천연 광석 또는 세라믹과 같은 희토류 금속 산화물과의 배합물을 섬유에 도입한 것이 발표되어 있다. As a far-infrared emitter, it has been reported that a blend with a rare earth metal oxide such as natural ore or ceramic is introduced into a fiber.

천연광석 및 세라믹은 음이온, 원적외선 효과 등에 의해 생리대사 작용이 촉진되며 항바이러스작용, 항균, 항곰팡이, 방취, 방진드기 기능이 있다.(이흥구, "항균제품의 시장적 배경과 수요동향", 기술논단, 한국 원적외선 협회보, 제9호, 35-36pp.) 금속산화물 세라믹스에서 세라믹스 그 자체는 항균활성을 갖는다. 이들 재료는 Al2O3, MgO, CaO, ZnO 등이다. 이들 재료는 빛을 조사하지 않아도 항균활성효과가 있고, 상온에서 생리 생체적인 효과가 있다. 이들 재료는 기능성 나노재료로서 이용된다.Natural ores and ceramics promote physiological metabolism by negative ions and far-infrared rays, and have antiviral, antibacterial, antifungal, deodorizing, and anti-mite functions. Nondan, Journal of Far Infrared Ray Association of Korea, No. 9, 35-36 pp.) In metal oxide ceramics, the ceramics themselves have antibacterial activity. These materials are Al 2 O 3 , MgO, CaO, ZnO, and the like. These materials have antibacterial activity even without irradiating light, and have physiological and biological effects at room temperature. These materials are used as functional nanomaterials.

또 다른 원적외선을 방출하는 재료로서 미역을 연소시켜 만든 탄화분말이 있다. 본 발명의 실시예에서 사용하는 미역을 연소시켜 만든 탄화분말은 0.7μm을 사용하며, 기능성 나노재료로서 이용된다.Another material that emits far-infrared rays is carbonized powder made by burning seaweed. The carbonized powder made by burning seaweed used in the embodiment of the present invention uses 0.7 μm and is used as a functional nanomaterial.

이것은 체온 부근인 35℃에서 인체에 유효한 원적외선을 방출하여 혈행 촉진에 의하여 신체가 편안하게 되고, 자연 치유력을 이끌어 내게 된다. It emits far-infrared rays effective to the human body at 35°C, which is close to body temperature, and promotes blood circulation, making the body comfortable and leading to natural healing.

탄화분말나노탄소섬유는 미역 탄화분말을 분쇄하여 합성 가공하거나 면과 울, 그 외 섬유와 혼방해 가공한다. 미역 탄화분말이 포함된 나노탄소섬유는 직접 섬유 내에 복합시키기 때문에 세탁전후의 효과가 동일한 반영구적이다. Carbonized powder nano carbon fiber is processed by pulverizing carbonized seaweed powder and synthetically processing it or mixing it with cotton, wool, and other fibers. Because the nano-carbon fiber containing seaweed carbonized powder is directly compounded into the fiber, the effect before and after washing is the same semi-permanent.

또 다른 원적외선 방사물질로서 토르말린(電氣石, Tourmaline)이 있다. 토르말린은 광물의 결정구조상 우라늄과 같은 천연방사성핵종이 거의 포함되어 있지 않다. 본래의 토르말린은 방사선과는 무관한 물질이다(자료출처: 한국원자력안전기술원). 토르말린은 일명 전기석이라 불리는데 마그마가 고온 고압에서 결정체를 이루면서 생성된 광물이다.Another far-infrared emitting material is tourmaline. Tourmaline contains almost no natural radionuclides such as uranium due to the crystal structure of the mineral. The original tourmaline is a material that has nothing to do with radiation (source: Korea Atomic Energy Research Institute). Tourmaline, also called tourmaline, is a mineral formed when magma crystallizes at high temperature and pressure.

이 광물은 다양한 색을 가지고 있기 때문에 많은 사람들의 호기심 대상이 되었으며 색을 가장 다양하게 나타내는 보석 중의 하나였다. 토르말린이 고급 보석으로서의 쓰임새에서 벗어나게 된 것은 브라질의 토르말린 광산에서 일하는 광부들의 기관지계의 병이 많은 다른 광산과 달리 병자가 극히 적었다는 사실과 햇볕에 따뜻해진 토르말린 결정이 가벼운 것을 끌어당기거나 밀어내는 반응을 보이면서 이에 대한 규명 연구가 활발해지면서 부터이다.Because this mineral has a variety of colors, it has attracted many people's curiosity and is one of the most versatile gemstones. The reason that tourmaline ceased to be used as a fine gemstone was the fact that, unlike other mines, where the bronchial system of miners working in the tourmaline mines in Brazil were very few, the reaction of tourmaline crystals warmed in the sun to attract or repel light ones. This has been the case since the active research on this.

이에 많은 과학자들이 토르말린에 대한 연구를 시작하였고, 1880년 노벨 물리학상을 수상했던 퀴리부부 중 남편 피에르 퀴리와 형 쟈크 퀴리에 의해 드러났다. 이들은 토르말린 결정에는 끊임없이 0.06mA의 미약전류가 흐른다는 사실을 발견하였는데 이 미약전류가 인간의 신체에 가장 적합한 전류이다.Accordingly, many scientists began to study tourmaline, and it was revealed by her husband Pierre Curie and her brother Jacques Curie among the Curie couples who were awarded the Nobel Prize in Physics in 1880. They discovered that a small current of 0.06 mA constantly flows through the tourmaline crystal, and this weak current is the most suitable current for the human body.

토르말린은 영구적 전기특성을 가지고 있으며, 지구상에 존재하는 광물 중에서 유일하게 영구적인 전기 특성을 가지고 있어 극성 결정체라고도 불려진다. Tourmaline has permanent electrical properties and is the only permanent electrical property among minerals existing on Earth, so it is also called a polar crystal.

토르말린에서 생성되는 음이온과 미약전류(0.06mA), 원적외선은 건강과 환경을 위해 세계적인 대학과 연구소에서 활발하게 연구가 진행되고 있는 물질이다.Anions, weak currents (0.06mA), and far-infrared rays generated from tourmaline are substances that are being actively studied in world-class universities and research institutes for health and the environment.

토르말린의 화학식은 다음과 같다.The chemical formula of tourmaline is as follows.

화학식: XY3Z6B3Si6O27(OH)₃(OH;F) Formula: XY3Z6B3Si6O 27 (OH)₃(OH;F)

X= Na, Ca, Y= Mg, Mn, Fe, Li, AlX= Na, Ca, Y= Mg, Mn, Fe, Li, Al

Z= Al, Fe, Cr, Mg (Na,Ca)(Mg,Li,Al,Fe2+,Fe3+)3(Al,Mg,Cr)6B3Si6(OH,O,F)4 Z= Al, Fe, Cr, Mg (Na,Ca)(Mg,Li,Al,Fe 2+ ,Fe 3+ ) 3 (Al,Mg,Cr) 6 B 3 Si 6 (OH,O,F) 4

토르말린은 마그네슘(Mg), 철분(Fe), 붕산(B), 규소(Si), 칼슘(Ca)이 주요성분으로 되어 있다. Mg(마그네슘)은 세포의 활성화, 심장강화, 신경계에 유효하고, Fe(철분)은 혈액관계, 항균성이 좋고, B(붕산)은 성장과 발육을 촉진, 피부나 점막관계에 유효하며, Si(규소)는 피부를 내면으로부터 강화하고 신장, 간장, 췌장, 위장에 좋은 영향을 주며, Ca(칼슘)은 뼈의 발육을 촉진하는 작용 등이 있다. 토르말린의 특성별 효능은 미약전류, 원적외선 방사, 음이온 발생, 항균·탈취효과 등의 특성 및 효능을 가지고 있다.Tourmaline is mainly composed of magnesium (Mg), iron (Fe), boric acid (B), silicon (Si), and calcium (Ca). Mg (magnesium) is effective for cell activation, heart strengthening, and nervous system, Fe (iron) has good blood and antibacterial properties, B (boric acid) promotes growth and development, and is effective for skin and mucous membranes, and Si ( Silicon) strengthens the skin from the inside and has a good effect on the kidneys, liver, pancreas, and stomach, and Ca (calcium) promotes bone growth. Efficacy by characteristics of tourmaline has characteristics and efficacy such as weak current, far-infrared radiation, anion generation, antibacterial and deodorizing effect.

본 발명에서 사용하는 토르말린 탄화분말은 0.7μm을 사용한다. The carbonized tourmaline powder used in the present invention is 0.7 μm.

나노탄소섬유의 특징은 가볍고 뛰어난 기계적 성질, 탄소질에서 오는 뛰어난 전도성, 내열성, 저열 팽창률, 화학적 안정성, 고열 전도성 등을 지니고 있어 여러 용도로 활용되고 있다. The characteristics of nano-carbon fibers are light weight and excellent mechanical properties, excellent conductivity from carbonaceous material, heat resistance, low thermal expansion rate, chemical stability, high thermal conductivity, etc., so they are used for various purposes.

철에 비해 무게가 5분의 1수준이지만 강도는 10배 정도 강해 항공과 우주, 에너지, 토목, 전자, 스포츠, 의류, 섬유 등 광범위하게 사용되고 있다. It weighs one-fifth that of iron, but is ten times stronger than steel, so it is widely used in aviation, space, energy, civil engineering, electronics, sports, clothing, and textiles.

강철보다 가볍고 강도도 훨씬 뛰어난 나노탄소섬유의 개발에 따라 그 복합소재로 점점 대체되고 있다. 무게가 줄어들면 자동차 연비도 향상되고, 탄소 배출량을 줄일 수 있어 친환경 소재로도 주목받고 있다.With the development of nano-carbon fibers that are lighter than steel and have much higher strength, they are increasingly being replaced by composite materials. When the weight is reduced, the fuel efficiency of automobiles is improved and carbon emissions can be reduced, so it is attracting attention as an eco-friendly material.

자동차뿐만 아니라 건축자재와 전자제품, 스포츠 용품, 섬유 등 우리 생활에서 광범위하게 사용되고 있다. It is widely used in our daily life, not only in automobiles, but also in building materials, electronic products, sporting goods, and textiles.

나노탄소섬유는 탄소 원자들은 섬유 길이 방향을 따라 육각 고리 결정의 형태로 붙어 있는데, 이러한 분자배열 구조가 강한 물리적인 속성을 갖게 한다. 한 가닥의 실은 수천 가닥의 나노탄소섬유로 이뤄져 있으며, 세라믹이나, 플라스틱, 유리 등과 결합했을 때 높은 강도의 복합재료가 만들어진다. 나노탄소섬유의 밀도는 강철보다 낮기 때문에 무게는 가벼우면서도 강한 특징을 갖는다. In nanocarbon fibers, carbon atoms are attached in the form of hexagonal ring crystals along the length of the fiber, and this molecular arrangement has strong physical properties. A single thread is made up of thousands of nanocarbon fibers, and when combined with ceramics, plastics, glass, etc., a high-strength composite material is created. Because the density of nano-carbon fibers is lower than that of steel, they are light in weight and strong.

도 2는 나노탄소섬유의 합성과정으로서 전기방사법을 이용하여 나노탄소섬유를 만드는 과정을 도식화 한 것이다. FIG. 2 is a schematic view illustrating a process of making nano-carbon fibers by using an electrospinning method as a synthesis process of nano-carbon fibers.

Step 1은 전구체로 PAN, 용액으로 디메틸포름아마이드(dimethylformamide, 이하, "DMF" 라 한다)를 사용한다.Step 1 uses PAN as a precursor and dimethylformamide (hereinafter, referred to as "DMF") as a solution.

DMF 용액에 대하여 PAN 5wt%를 녹여 방사용액으로 한다.Dissolve 5 wt% of PAN in the DMF solution and use it as a spinning solution.

농도 5wt%로 하는 이유는, 도 6 PAN의 농도에 따른 나노탄소섬유의 평균 직경에 나타낸 바와 같이, 5wt%일 때 가장 나노탄소섬유의 평균 직경(223nm)이 작게 형성이 되기 때문이다. 농도를 10wt% 이하로 하는 것이 바람직하며 그 이상의 농도로 하였을 경우 나노탄소섬유의 평균 직경이 급격히 커지게 된다. 나노탄소섬유의 평균 직경이 가장 작게 형성된 농도는 5wt%가 가장 작으며, 다음으로 10wt%, 8wt% 순서이다.The reason for the concentration of 5wt% is that, as shown in the average diameter of the nanocarbon fibers according to the concentration of PAN in FIG. 6, when the concentration is 5wt%, the average diameter (223nm) of the nanocarbon fibers is the smallest. It is preferable that the concentration be 10 wt% or less, and when the concentration is higher than that, the average diameter of the nano-carbon fibers increases rapidly. The concentration in which the average diameter of the nano-carbon fibers is the smallest is 5wt%, followed by 10wt% and 8wt% in the order.

방사용액을 장착한 후 전자방사기로 방사용액 유속 17.0μl/min에서 전압을 16kV를 인가하며, 방사주사기와 수집기 사이의 거리는 15cm로 한다. 평평한 수집기 위에 알루미늄 막을 놓고 그 위에 나노탄소섬유 필터를 제작한다. After installing the spinning solution, apply a voltage of 16 kV at a flow rate of 17.0 μl/min with an electronic spinning device, and the distance between the spinning syringe and the collector should be 15 cm. Place an aluminum membrane on a flat collector and fabricate a nano-carbon fiber filter on it.

본 발명의 나노탄소섬유 방호복 제조방법은 다음 공정으로 이루어진다. The nano-carbon fiber protective clothing manufacturing method of the present invention consists of the following steps.

(1) 제1단계 (1) Step 1

첫 번째 단계로 탄소 전구체를 용해하여 준비한 뒤 전기방사법을 이용하여 고분자 나노섬유를 제조한다. 제조된 고분자 나노섬유를 이용하여 안정화 과정과 탄화과정을 통해 나노탄소섬유를 얻을 수 있다. 전기방사 용액에 첨가되는 탄소 전구체는 최종적으로 얻어지는 나노탄소섬유의 물성을 결론짓는 가장 중요한 요소 중 하나로 polyacrylonitrile (PAN), pitch, cellulose, poly(vinyl alcohol) (PVA), polyimide (PI), poly(amic acid)(PAA), polybenzimidazole (PBI), poly(p-xylenetetrahydrothiophenium chloride) (PXTC) 등이 이용될 수 있다. As a first step, a polymer nanofiber is prepared by dissolving a carbon precursor and then using an electrospinning method. Using the prepared polymer nanofibers, nanocarbon fibers can be obtained through stabilization and carbonization processes. The carbon precursor added to the electrospinning solution is one of the most important factors in determining the properties of the finally obtained nanocarbon fiber, polyacrylonitrile (PAN), pitch, cellulose, poly(vinyl alcohol) (PVA), polyimide (PI), poly( amic acid) (PAA), polybenzimidazole (PBI), poly(p-xylenetetrahydrothiophenium chloride) (PXTC), etc. may be used.

PAN은 전기방사성이 매우 우수하며, 탄화 수율이 50% 이상으로 높고, 높은 융점을 지니기 때문에 다른 탄소 전구체에 비하여 고성능 나노탄소섬유 제조에 주로 사용된다.PAN has excellent electrospinning properties, has a high carbonization yield of 50% or more, and has a high melting point, so it is mainly used for manufacturing high-performance nano-carbon fibers compared to other carbon precursors.

이에 반해, pitch로 제조된 나노탄소섬유는 PAN 전구체를 이용했을 때 보다 탄화 후 높은 결정성, 우수한 인장 탄성률, 높은 전기 전도성를 보이지만, 정제 및 용융화에 대한 어려움과 낮은 전기방사성으로 인해 pitch를 탄소 전구체로 단독으로 사용하기에는 어려움이 있다. On the other hand, pitch-made nanocarbon fibers show higher crystallinity, excellent tensile modulus, and higher electrical conductivity after carbonization than when using a PAN precursor, but due to difficulties in refining and melting and low electrospinning properties, the pitch is lower than that of the carbon precursor. It is difficult to use alone.

따라서 pitch를 PAN 기반 전기방사 용액에 첨가하여 나노탄소섬유의 성능을 향상시키는 것도 가능하다. PAN 전구체를 이용하여 전기방사된 고분자 섬유를 고기능 나노탄소섬유로 제조하기 위해서는 두 단계의 공정이 필수적이다. Therefore, it is also possible to improve the performance of nanocarbon fibers by adding pitch to the PAN-based electrospinning solution. In order to manufacture electrospun polymer fibers using PAN precursors into high-functioning nano-carbon fibers, a two-step process is essential.

(2) 제2단계 : 16kV 인가 하에서의 전기방사 단계이다. (2) Second step: Electrospinning under 16kV application.

인가전압을 16kV로 하는 이유는, 도 7 인가전압에 따른 나노탄소섬유의 평균 직경에 나타낸 바와 같이, 16kV일 때 가장 나노탄소섬유의 평균 직경이 300nm 이하로 가장 작게 형성되기 때문이다. The reason why the applied voltage is 16 kV is because, as shown in the average diameter of the nano-carbon fibers according to the applied voltage in FIG. 7, when the applied voltage is 16 kV, the average diameter of the nano-carbon fibers is the smallest at 300 nm or less.

제3단계: 공기 분위기 하 180~200℃ 영역에서 실시하는 안정화 단계(공기 중 산화)이다. Third step: This is a stabilization step (oxidation in air) carried out in the region of 180 ~ 200 ℃ under an air atmosphere.

제4단계: 질소 분위기 하 400~1000℃ 영역에서 실시하는 탄화 단계이다.Step 4: This is a carbonization step carried out in the 400 ~ 1000 ℃ region under a nitrogen atmosphere.

제5단계: 기능성 나노재료에 침지시킨 후 건조시킴으로서 기능성 나노탄소섬유가 제조된다. 기능성 나노재료로서는 다양한 재료들이 있지만 본 발명에서는 미역 탄화분말, 토르말린 탄화분말, Al2O3을 사용한다.Step 5: After being immersed in the functional nanomaterial, the functional nanocarbon fiber is manufactured by drying. There are various materials as functional nanomaterials, but in the present invention, carbonized seaweed powder, tourmaline carbonized powder, and Al 2 O 3 are used.

도 3은 PAN 전구체 나노섬유의 안정화 과정을 나타낸 화학식이다. 산화 분위기하에서 진행되는 안정화 단계에서는 고리화(cyclization) 반응과 탈수소화(dehydrogenation) 반응이 진행되어 내열성을 갖는 사다리 구조를 형성하고 이를 통해서 고온에서 나노섬유가 용융 되는 것을 방지하는 단계이다. 3 is a chemical formula showing the stabilization process of the PAN precursor nanofiber. In the stabilization step carried out in an oxidizing atmosphere, a cyclization reaction and a dehydrogenation reaction proceed to form a ladder structure having heat resistance, thereby preventing the nanofibers from melting at a high temperature.

이러한 안정화 단계 후에는 흰색의 PAN 고분자 나노섬유가 갈색을 띄게 된다. 안정화 단계는 불활성 분위기에서는 진행이 되지 않기 때문에 산화 분위기에서 진행 되어야 한다. 공기분위기에서 180~200℃까지 1℃/min으로 승온시킨 후, 1h을 유지시켜 안정화시킨다.After this stabilization step, the white PAN polymer nanofibers turn brown. Since the stabilization step does not proceed in an inert atmosphere, it must be carried out in an oxidizing atmosphere. After raising the temperature at 1°C/min to 180-200°C in an air atmosphere, it is maintained for 1 h to stabilize.

안정화 단계가 종료되면 이어지는 단계로 불활성 분위기 하에서 400~1000℃영역에서 실시하는 탄화 단계를 실시한다. After the stabilization step is completed, the carbonization step carried out in the 400 ~ 1000 ℃ region under an inert atmosphere is performed as a subsequent step.

도 4는 안정화된 나노섬유의 탄화 단계 과정을 나타낸 화학식이다. Figure 4 is a chemical formula showing the carbonization step process of the stabilized nanofiber.

불활성 분위기 하에서 진행되는 탄화 단계에서는 고온에서 방향족 고리가 성장하고 중합이 진행되며 이 과정에서 탄소의 질량함량이 90% 이상으로 전환된다. 탄화 과정을 자세히 보면 2 단계로 나눌 수 있다. 첫 번째 단계는 열분해 과정으로 400~600℃까지의 영역이다. 이 영역에서는 고분자 고리가 불안정하고 물질 전달 속도가 느리다. In the carbonization step carried out under an inert atmosphere, an aromatic ring grows and polymerization proceeds at a high temperature, and in this process, the mass content of carbon is converted to 90% or more. If you look closely at the carbonization process, it can be divided into two stages. The first stage is a pyrolysis process in the region of 400-600 °C. In this region, the polymer ring is unstable and the mass transfer rate is slow.

두 번째 단계는 600℃ 이상 최종 탄화온도 영역으로 고분자 고리가 구조적으로 안정화 되어 최종적인 고순도의 탄소를 형성한다. 또한, 800℃ 이상의 온도로 가열하면 N2, HCN 기체의 증가 및 CH4, CO, CO2 가스가 발생하여 탄소 고리의 수가 증가함으로 고강도의 나노탄소섬유를 제조할 수 있다. The second stage is the final carbonization temperature range of 600°C or higher, where the polymer ring is structurally stabilized to form the final high-purity carbon. In addition, when heated to a temperature of 800 ° C. or higher, N2, HCN gas increases, and CH4, CO, CO2 gas is generated to increase the number of carbon rings, thereby manufacturing high-strength nano-carbon fibers.

탄화 과정 중 불활성 분위기는 주로 99.99%의 질소가스를 이용하여 유지하며, 이는 탄성률과 인장강도를 향상시킨다. 질소 가스를 55 mL/min의 양으로 공급하면서 온도를 상승시킨다. HCl 증기를 이용할 경우에는 탄소 획득 수율을 향상시킬 수 있지만 장비를 부식시키는 단점이 있다.During the carbonization process, an inert atmosphere is mainly maintained using 99.99% nitrogen gas, which improves the elastic modulus and tensile strength. The temperature is raised while supplying nitrogen gas in an amount of 55 mL/min. The use of HCl vapor can improve the yield of carbon acquisition, but has the disadvantage of corrosive equipment.

[실시예][Example]

도 5은 알루미나 나노탄소섬유 단면 표면사진을 나타낸다.Figure 5 shows a photograph of the cross-sectional surface of the alumina nano-carbon fiber.

도 5(a)는 블랙알루미나 파우더를 나타낸 것이고, 도 5(b)는 블랙알루미나 파우더의 확대 사진을 나타낸 것이며, 도 5(c)는 알루미나 나노탄소섬유 단면 표면사진을 나타낸 것이다. Figure 5 (a) shows a black alumina powder, Figure 5 (b) shows an enlarged photograph of the black alumina powder, Figure 5 (c) shows a cross-sectional surface photograph of alumina nano-carbon fibers.

산화알루미늄(Al2O3)은 기능성 나노재료로서 이용된다. 금속산화물 세라믹스에서 세라믹스 그 자체는 항균활성을 가지며, 그 재료 중 산화알루미늄(Al2O3)은 금속과 산소 사이의 반응으로 생성되는 금속 산화물이다. 그것은 수산화물이 물과 반응 할 때 수산화물을 형성하기 쉽도록 하기 때문에 염기성 산화물로도 알려져 있다. 이것은 주기율표의 IIIA 계열에 속한 알루미늄이 마지막 에너지 준위의 전자를 방출하는 경향이 있기 때문이다. 이러한 경향은 금속 특성과 낮은 전기 음성도 (Pauling scale에서 1.61)에 기인하며, 전기 전도성을 부여하고 이를 양이온으로 전환시킨다.Aluminum oxide (Al 2 O 3 ) is used as a functional nanomaterial. In metal oxide ceramics, ceramics themselves have antibacterial activity, and aluminum oxide (Al 2 O 3 ) among its materials is a metal oxide generated by a reaction between metal and oxygen. It is also known as a basic oxide because it makes it easy to form hydroxide when it reacts with water. This is because aluminum, which belongs to the IIIA series of the periodic table, tends to emit electrons from the last energy level. This tendency is due to the metallic properties and low electronegativity (1.61 on Pauling scale), which imparts electrical conductivity and converts it into positive ions.

대조적으로 산소는 비금속이며 전기 음성도가 높기 때문에 전기 음성도가 더 높다 (Pauling 척도에서 3.44). 그러므로 그것은 전자의 수용에 의해 마지막 수준의 전자 에너지를 안정화시키는 경향이 있어 음이온이 된다.In contrast, oxygen is more electronegative because it is a non-metal and is highly electronegative (3.44 on the Pauling scale). Therefore, it tends to stabilize the last level of electron energy by accepting electrons and thus becomes an anion.

다음 [표 1]은 본 발명에서 사용되는 Al2O3의 성분표를 나타낸다.The following [Table 1] shows the component table of Al 2 O 3 used in the present invention.

본 발명에서 사용되는 Al2O3의 성분표는 다음과 같다.The component table of Al 2 O 3 used in the present invention is as follows.

Mean particle size, μmMean particle size, μm 0.40.4 Specific surface area, mSpecific surface area, m 22 /g/g 7.547.54 Composition, %Composition, % Al2O3 Al 2 O 3 99.8%99.8% Na2ONa 2 O 0.03%0.03% SiO2 SiO 2 0.04%0.04% Fe2O3 Fe 2 O 3 0.01%0.01% Ignition lossIgnition loss 0.3%0.3%

나노탄소섬유로 형성된 결합은 강한 결합력을 가지며, 이는 커런덤 (corundum) 또는 에머리 (emery)와 같은 산소 형성 화합물과 혼합되어 매우 저항력이 높고 연마성 화합물에 이용한다. 알루미늄 산화물(Aluminum Oxide, Al2O3)은 알루미나(Alumina)라고 하며 분자량이 101.96g/mol, 비중이 3.965g/cm3이며, 용융점이 2072℃인 백색 분말이다. 알루미늄 산화물은 우수한 전기 절연성(1×1014~1×1015 Ωcm)을 가지며 높은 기계적 강도(300~630 MPa), 압축 강도(2,000~4,000 MPa), 높은 경도(15~19 GPa)를 가지며 열전도율이 높고(20~30 W/mk), 높은 내부식성 및 내마모성을 가진다. Bonds formed of nano-carbon fibers have a strong bonding force, which is mixed with oxygen-forming compounds such as corundum or emery, and is very resistant and used for abrasive compounds. Aluminum oxide (Aluminum Oxide, Al 2 O 3 ) is called alumina and is a white powder with a molecular weight of 101.96 g/mol, a specific gravity of 3.965 g/cm 3 , and a melting point of 2072 ° C. Aluminum oxide has excellent electrical insulation (1×10 14 to 1×10 15 Ωcm), high mechanical strength (300 to 630 MPa), compressive strength (2,000 to 4,000 MPa), high hardness (15 to 19 GPa), and thermal conductivity It has high (20~30 W/mk), high corrosion resistance and wear resistance.

알루미나 나노탄소섬유는 세라믹 섬유 중에서도 특히 내마모성과 내열성이 우수한 섬유로서 직경이 약 10㎛로 다결정 구조이고 입자의 사이즈는 150~600㎚이다. 특히 기공도가 낮은 것이 특징(최대 9%)이며 표면이 매끄럽다. 알루미나 세라믹 나노탄소섬유는 내열성(>1000도)과 내화학성 그리고 내부식성이 우수하고, 금속대비 경량성이 우수하며 인장강도(>2,000MPa)와 모듈러스(200GPa)가 뛰어나다.Alumina nano-carbon fiber is a fiber with excellent abrasion resistance and heat resistance among ceramic fibers. It has a polycrystalline structure with a diameter of about 10 μm and a particle size of 150 to 600 nm. In particular, it is characterized by low porosity (up to 9%) and has a smooth surface. Alumina ceramic nanocarbon fiber has excellent heat resistance (>1000 degrees), chemical resistance and corrosion resistance, light weight compared to metal, and has excellent tensile strength (>2,000 MPa) and modulus (200 GPa).

특히, 알루미늄 산화물로 형성된 나노탄소섬유는 전자파의 일종인 적외선을 반사시키므로 열을 차단하는 효과가 있다. In particular, the nano-carbon fiber formed of aluminum oxide reflects infrared rays, which is a kind of electromagnetic wave, and thus has an effect of blocking heat.

상기 실시예에 미역 탄화분말, 토르말린, 천연광석 및 세라믹, Al2O3, MgO, CaO, ZnO 등을 기능성 나노재료로서 사용할 수 있다.In the above embodiment, seaweed carbonized powder, tourmaline, natural ore and ceramics, Al 2 O 3 , MgO, CaO, ZnO, etc. may be used as functional nanomaterials.

또한, 상기 실시예에 기능성 나노재료로서 미역 탄화분말과, 토르말린 탄화분말과, Al2O3의 중량비가 각각 1:1:1인 것을 특징으로 하는 나노탄소섬유 방호복을 제조할 수 있다.In addition, as a functional nanomaterial in the above embodiment, the carbonized seaweed powder, the carbonized tourmaline powder, and the Al 2 O 3 weight ratio of each of 1:1:1 can be manufactured.

본 발명의 나노탄소섬유 방호복 제조방법 및 그 방호복은 나노탄소섬유의 직경을 작게 형성함으로서 항바이러스를 갖도록 하는 것이다.The nano-carbon fiber protective clothing manufacturing method and the protective clothing of the present invention are to have an anti-virus by forming the nano-carbon fiber diameter to be small.

또한, 본 발명은 나노탄소섬유 자체가 항균성과 원적외선 효과를 갖도록 하는 것이며, 적외선을 차단하고, 내마모성과 내열성을 가지며, 항균, 항바이러스, 방진드기를 위한 나노탄소섬유 방호복 제조방법과 그 방호복을 제공하는 기술로서 산업상 이용가능성이 있다.In addition, the present invention is to make the nano-carbon fiber itself have antibacterial and far-infrared effects, blocks infrared rays, has abrasion resistance and heat resistance, and provides a method for manufacturing nano-carbon fiber protective clothing for antibacterial, anti-viral, and mite-proof, and a protective suit It has industrial applicability as a technology to

Claims (6)

나노탄소섬유 방호복 제조방법에 있어서,
전구체로 PAN, 용액으로 DMF를 사용하여 방사용액을 제조하는 단계;
상기 방사용액을 전기방사하여 나노섬유필터를 형성하는 단계;
상기 나노섬유필터를 공기 분위기 하 180~200℃까지 1℃/min으로 승온시킨 후, 1h을 유지시켜 안정화 단계;
안정화된 상기 나노섬유필터를 질소 가스 55 mL/min으로 공급하면서 불활성 분위기 하 400~1000℃ 영역에서 실시하는 탄화 단계;
로 이루어지는 나노탄소섬유필터를 형성하는 단계;
상기 나노탄소섬유필터를 기능성 나노재료에 침지하여 상기 나노탄소섬유필터에 상기 기능성 나노재료를 부착시키는 단계를 포함하여 구성하되,
상기 방사용액을 전기방사하여 나노섬유필터를 형성하는 단계에서 전기방사 수행시, 방사용액 유속 17.0μl/min에서 인가되는 전압은 16kV으로 하고, 방사주사기와 수집기 사이의 거리는 15cm로 하는 것을 특징으로 하며,
상기 전구체로 PAN, 용액으로 DMF를 사용하여 방사용액을 제조하는 단계에서 상기 나노탄소섬유의 평균 직경이 223nm이 되도록 상기 PAN의 농도를 5wt%하는 것을 특징으로 하며,
상기 기능성 나노재료는 미역 탄화분말, 토르말린 탄화분말, Al2O3이며, 상기 미역 탄화분말과, 상기 토르말린 탄화분말과, 상기 Al2O3의 중량비는 각각 1:1:1인 것을 특징으로 하고, 상기 미역 탄화분말과, 상기 토르말린 탄화분말은 각각 0.7μm인 것을 특징으로 하는 나노탄소섬유 방호복 제조방법.
In the manufacturing method of nano carbon fiber protective clothing,
Preparing a spinning solution using PAN as a precursor and DMF as a solution;
forming a nanofiber filter by electrospinning the spinning solution;
After heating the nanofiber filter to 180 ~ 200 ℃ in an air atmosphere at 1 ℃ / min, stabilizing step by maintaining 1 h;
Carbonization step carried out in the region of 400 ~ 1000 ℃ under an inert atmosphere while supplying the stabilized nanofiber filter at 55 mL / min of nitrogen gas;
Forming a nano-carbon fiber filter consisting of;
By immersing the nano-carbon fiber filter in a functional nano-material, comprising the step of attaching the functional nano-material to the nano-carbon fiber filter,
When electrospinning is performed in the step of forming the nanofiber filter by electrospinning the spinning solution, the voltage applied at the spinning solution flow rate of 17.0 μl / min is 16 kV, and the distance between the spinning syringe and the collector is 15 cm, characterized in that ,
In the step of preparing a spinning solution using PAN as the precursor and DMF as a solution, the concentration of the PAN is 5 wt% so that the average diameter of the nano-carbon fibers is 223 nm,
The functional nanomaterial is carbonized seaweed powder, carbonized tourmaline powder, and Al 2 O 3 , and the weight ratio of the carbonized seaweed powder, the carbonized tourmaline powder, and the Al 2 O 3 is 1:1:1, respectively, characterized in that , The carbonized seaweed powder and the carbonized tourmaline powder are each 0.7 μm.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020210180672A 2021-12-16 2021-12-16 Manufacturing method of nano carbon fiber protective clothing and protective clothing thereof KR102406888B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210180672A KR102406888B1 (en) 2021-12-16 2021-12-16 Manufacturing method of nano carbon fiber protective clothing and protective clothing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210180672A KR102406888B1 (en) 2021-12-16 2021-12-16 Manufacturing method of nano carbon fiber protective clothing and protective clothing thereof

Publications (1)

Publication Number Publication Date
KR102406888B1 true KR102406888B1 (en) 2022-06-23

Family

ID=82221981

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210180672A KR102406888B1 (en) 2021-12-16 2021-12-16 Manufacturing method of nano carbon fiber protective clothing and protective clothing thereof

Country Status (1)

Country Link
KR (1) KR102406888B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100079470A (en) * 2008-12-31 2010-07-08 전남대학교산학협력단 Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and tio2,sio2 sol solutions used for thermo stable photo catalyst
CN103469399A (en) * 2013-08-21 2013-12-25 昆山铁牛衬衫厂 Tencel blended yarn
KR101683475B1 (en) 2015-07-08 2016-12-07 광주과학기술원 Method of fabricating functional nanofiber filter and functional nanofiber filter manufactured thereby
CN112874076A (en) * 2021-01-26 2021-06-01 咸宁优维科技有限公司 Nanofiber medical protective clothing material and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100079470A (en) * 2008-12-31 2010-07-08 전남대학교산학협력단 Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and tio2,sio2 sol solutions used for thermo stable photo catalyst
CN103469399A (en) * 2013-08-21 2013-12-25 昆山铁牛衬衫厂 Tencel blended yarn
KR101683475B1 (en) 2015-07-08 2016-12-07 광주과학기술원 Method of fabricating functional nanofiber filter and functional nanofiber filter manufactured thereby
CN112874076A (en) * 2021-01-26 2021-06-01 咸宁优维科技有限公司 Nanofiber medical protective clothing material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN103060938B (en) Method for manufacturing functional viscose fibers
Wang et al. Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template
KR20130006133A (en) Method for producing fiber and fabric with heating, heat-retaining and heat storage function
CN108866816A (en) A kind of bacteriostatic non-woven cloth and its preparation method and application
CN106986625A (en) A kind of preparation method of graphene/hydroxyapatite composite ceramic material
KR102406888B1 (en) Manufacturing method of nano carbon fiber protective clothing and protective clothing thereof
KR102404225B1 (en) The manufacturing method of nano carbon fiber vehicle seat and vehicle seat thereof
CN102965756B (en) Method for producing health-care polyprophylene bulked continuous filament
CN102605624B (en) Multifunctional textile fabric finishing agent and preparation and after-finishing methods thereof
KR102406893B1 (en) The manufacturing method of nano carbon fiber shoe heel pad and the pad therof
KR101463522B1 (en) Method for Manufacturing Heat-Radiation Textile
CN110846894A (en) Preparation method of high-performance flexible bulletproof material with electromagnetic shielding and ultraviolet ray resistance
CN102733042A (en) Infrared anion healthcare fabric
Hsieh et al. Decoration of zinc oxide nanoparticles onto carbon fibers as composite filaments for infrared heaters
Li et al. Investigation of antibacterial properties of nano-ZnO assembled cotton fibers
CN111228490B (en) Preparation method of calcium-phosphorus composite porous carbon nanofiber photothermal reagent
KR20150001506A (en) Preparation method of planar heating sheet with improved emission property of far-infrared radiation and negative ions, and planar heating sheet prepared by the same
Hu et al. In Situ Synthesis of Cuprous Oxide/Cellulose Nanofibers Gel and Antibacterial Properties.
KR101381744B1 (en) Manufacturing method of conductive and heat-storing textile and a textile thereof
KR101456261B1 (en) Natural fiber-based carbon fiber and process for preparing thereof
CN108479696A (en) A kind of preparation method of the carbon-fiber film of the N doping containing tin nanoparticles
KR102654557B1 (en) Method for manufacturing functional fabric for golf wear and functional fabric manufactured thereby
CN221437413U (en) Antibacterial cool sense surface fabric of graphite alkene
Liu et al. Motion‐Activating Pliable Carbon Nanofiber for Smart Mechanosensitive Sensing and Antibacterial Protection
CN115246646B (en) Method for preparing silicon carbide nanowires by using renewable resources or wastes as carbon

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
GRNT Written decision to grant
X701 Decision to grant (after re-examination)