JP2007233283A - Reflection-type diffraction grating - Google Patents

Reflection-type diffraction grating Download PDF

Info

Publication number
JP2007233283A
JP2007233283A JP2006058091A JP2006058091A JP2007233283A JP 2007233283 A JP2007233283 A JP 2007233283A JP 2006058091 A JP2006058091 A JP 2006058091A JP 2006058091 A JP2006058091 A JP 2006058091A JP 2007233283 A JP2007233283 A JP 2007233283A
Authority
JP
Japan
Prior art keywords
diffraction grating
substrate
replica
grating
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006058091A
Other languages
Japanese (ja)
Other versions
JP2007233283A5 (en
JP5066815B2 (en
Inventor
Tetsuya Nagano
哲也 長野
Atsushi Daimon
淳 大門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006058091A priority Critical patent/JP5066815B2/en
Publication of JP2007233283A publication Critical patent/JP2007233283A/en
Publication of JP2007233283A5 publication Critical patent/JP2007233283A5/ja
Application granted granted Critical
Publication of JP5066815B2 publication Critical patent/JP5066815B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflection-type diffraction grating which reduces stray light caused by light infiltrating the inside of a substrate. <P>SOLUTION: An aluminum thin film 33 is formed by vapor deposition on the grating surface of a diffraction grating 20, which serves as a parent mold, and then a grating groove pattern of the diffraction grating 20 is reverse transferred on the surface of a replica substrate 31, together with the aluminum thin film 33, to form a replica diffraction grating 30. In this case, at least the back surface 31b (surface opposite to a surface on which the grating groove pattern is transferred) of the replica substrate 31 is made rough. Accordingly, even if there is an area which is not coated with the aluminum thin film 33, in a part of the grating surface of the replica diffraction grating, the reflectivity of light which intrudes into the inside of the substrate 31 from the area and is made incident into the back surface 31b is decreased to reduce stray light. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、反射型回折格子に関する。   The present invention relates to a reflective diffraction grating.

分光器等に使用される反射型回折格子は、格子面で反射した光の回折を利用して波長分散を行う光学素子である。このような反射型回折格子は、一般的に、表面に多数の溝を形成したガラス等の透光性基板の表面にアルミニウムなどの金属を蒸着することで製造される。   A reflection type diffraction grating used in a spectroscope or the like is an optical element that performs wavelength dispersion using diffraction of light reflected by a grating surface. Such a reflective diffraction grating is generally manufactured by evaporating a metal such as aluminum on the surface of a translucent substrate such as glass having a number of grooves formed on the surface.

しかし、このような反射型回折格子は、前記溝の形状によっては格子面上に金属薄膜が蒸着されない部分が生じる場合がある。例えば、ルールド型(機械刻線型)の回折格子では、断面鋸歯状の溝の頂角がほぼ直角であるため、蒸着により溝の全面を金属薄膜で均一に被覆することができる。一方、同じく断面鋸歯状の溝を有するブレーズドホログラフィック型の回折格子の場合、ホログラフィック露光を利用してフォトレジストの正弦半波状の溝を形成した後、イオンビームエッチング加工により基板上に鋸歯状の溝を形成する過程で、該溝の頂角が鋭角となる場合がある。この場合、その後の蒸着工程において、溝の一部が陰となり、金属薄膜で被覆されない領域が生じることがある。   However, such a reflective diffraction grating may have a portion where a metal thin film is not deposited on the grating surface depending on the shape of the groove. For example, in a ruled type (mechanical engraved type) diffraction grating, since the apex angle of the groove having a sawtooth cross section is almost a right angle, the entire surface of the groove can be uniformly coated with a metal thin film by vapor deposition. On the other hand, in the case of a blazed holographic type diffraction grating having a sawtooth groove in cross section, a sine half wave groove of photoresist is formed using holographic exposure, and then sawtooth is formed on the substrate by ion beam etching. In the process of forming the groove, the apex angle of the groove may become an acute angle. In this case, in the subsequent vapor deposition process, a part of the groove may be shaded, and a region not covered with the metal thin film may be generated.

また、従来より、大量生産による低コスト化を図り、且つ性能のばらつきを小さくするために、上記のような手順で製造された回折格子を母型とし、これを元にした樹脂成形品であるレプリカ回折格子が製造されている(例えば、特許文献1を参照)。該レプリカ回折格子の製造においては、まず、母型となる回折格子上に金属薄膜層を形成し、別途用意した基板と該回折格子とをエポキシ樹脂等の接着剤を介して貼り合わせた後、剥離することにより、該基板上に母型の格子溝パターンが反転接着されたネガ型を作製する。次に、このネガ型を母型として同様の手順によりガラス等の所望の基板(これをレプリカ基板と呼ぶ)上に該ネガ型の格子溝パターンを転写することでレプリカ回折格子を作製する。このとき、レプリカ基板としては、一般的にフロートガラスが用いられており、ネガ型とレプリカ基板とを接着剤で貼り合わせる際に接着面に入った泡を視認しやすくするため、レプリカ基板の裏面(格子溝パターンが転写されない側の面)はフロートガラスの光沢面がそのまま用いられている。   In addition, in order to reduce the cost by mass production and to reduce the variation in performance, a resin molded product based on the diffraction grating manufactured by the above procedure is used as a matrix. A replica diffraction grating is manufactured (see, for example, Patent Document 1). In the production of the replica diffraction grating, first, a metal thin film layer is formed on a diffraction grating to be a matrix, and a separately prepared substrate and the diffraction grating are bonded together via an adhesive such as an epoxy resin, By peeling, a negative mold in which the matrix groove pattern of the mother mold is reversely bonded to the substrate is produced. Next, a replica diffraction grating is manufactured by transferring the negative type grating groove pattern onto a desired substrate such as glass (referred to as a replica substrate) by the same procedure using the negative type as a mother die. At this time, float glass is generally used as a replica substrate, and the back surface of the replica substrate is used to make it easier to visually recognize bubbles that have entered the adhesive surface when the negative mold and the replica substrate are bonded together with an adhesive. The glossy surface of float glass is used as it is (the surface on the side where the grating groove pattern is not transferred).

特開2005-157118号公報JP 2005-157118 A

上記のように、反射型回折格子の格子面に金属薄膜42で被覆されていない領域43が存在する場合、該格子面に光を照射した際に、入射光の一部が当該領域43から基板41の内部に侵入する(図4)。このようにして基板41内に侵入した光(図中の「透過光」)は、該基板41の裏面41aで反射され、再び金属薄膜42のない領域から回折格子の表面へと出射し迷光の原因となる。   As described above, when there is a region 43 that is not covered with the metal thin film 42 on the grating surface of the reflective diffraction grating, when the grating surface is irradiated with light, a part of the incident light is transferred from the region 43 to the substrate. It penetrates into the inside of 41 (FIG. 4). The light that has entered the substrate 41 in this way ("transmitted light" in the figure) is reflected by the back surface 41a of the substrate 41 and is emitted again from the region without the metal thin film 42 to the surface of the diffraction grating. Cause.

そこで、本発明が解決しようとする課題は、基板内部に侵入した光に起因する迷光を低減することのできる反射型回折格子を提供することである。   Therefore, the problem to be solved by the present invention is to provide a reflection type diffraction grating capable of reducing stray light caused by light entering the inside of the substrate.

上記課題を解決するために成された本発明に係る反射型回折格子は、透光性基板の一方の面に金属薄膜で被覆された格子溝パターンを有する反射型回折格子において、該基板の他方の面を粗面としたことを特徴としている。   The reflection type diffraction grating according to the present invention, which has been made to solve the above-mentioned problems, is a reflection type diffraction grating having a grating groove pattern coated with a metal thin film on one surface of a translucent substrate. It is characterized by the rough surface.

なお、本発明の反射型回折格子は、更に、前記透光性基板の周面も粗面とすることが望ましい。   In the reflective diffraction grating of the present invention, it is preferable that the peripheral surface of the translucent substrate is also a rough surface.

上記構成を有する本発明の回折格子によれば、基板の裏面(すなわち、格子溝パターンが形成されない側の面)が粗面(いわゆるスリ面)化されていることから、上記金属膜で被覆されていない領域から基板内部に侵入して当該裏面に入射する光の反射率を抑えると共に、全体に散乱させ、迷光を低減することができる。また、上記金属被膜を透過して基板内部に僅かに侵入する光に対しても、このような光が基板の裏面で反射するのを防止し、迷光の発生を抑えることができる。   According to the diffraction grating of the present invention having the above-described configuration, the back surface of the substrate (that is, the surface on which the grating groove pattern is not formed) is roughened (so-called a ground surface), and thus is covered with the metal film. It is possible to reduce the reflectance of light that enters the inside of the substrate from an area that is not present and enters the back surface, and scatters the entire surface to reduce stray light. Further, even for light that penetrates the metal coating and slightly enters the inside of the substrate, it is possible to prevent such light from being reflected on the back surface of the substrate and to suppress generation of stray light.

また更に、前記基板の周面を粗面化した場合、基板内部に侵入し周面で反射する光に起因した迷光を防ぐこともでき、より高い迷光低減効果を達成することができる。   Furthermore, when the peripheral surface of the substrate is roughened, stray light caused by light that enters the substrate and reflects off the peripheral surface can be prevented, and a higher stray light reduction effect can be achieved.

従って、本発明によれば、溝形状が鋭敏なことから発生する迷光を低減することができるため、ルールド型よりも溝の周期性が高いホログラフィック型回折格子の特徴を損なうことのない高効率且つ低迷光な回折格子を提供することができる。このため、本発明の回折格子は、特に、ラマン分光などの微弱な光を取り扱うアプリケーションに好適に用いることができる。また、回折格子の裏面を従来の光沢面から粗面にすることで容易に実現できるため、低廉なコストで優れた性能の回折格子を提供することが可能となる。   Therefore, according to the present invention, since stray light generated due to the sharp groove shape can be reduced, high efficiency without impairing the characteristics of the holographic diffraction grating having a groove periodicity higher than that of the ruled type. In addition, a low stray light diffraction grating can be provided. For this reason, the diffraction grating of the present invention can be suitably used particularly for applications that handle weak light such as Raman spectroscopy. In addition, since the rear surface of the diffraction grating can be easily realized by changing the conventional glossy surface to a rough surface, it is possible to provide a diffraction grating with excellent performance at a low cost.

以下、実施例を用いて本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described using embodiments.

図1は、本実施例に係るレプリカ回折格子の母型となるマスター回折格子の作製工程を示し、図2は、該マスター回折格子からネガ回折格子を作製する工程を、図3は、該ネガ回折格子からレプリカ回折格子を作製する工程を示す。   FIG. 1 shows a manufacturing process of a master diffraction grating as a matrix of a replica diffraction grating according to the present embodiment, FIG. 2 shows a process of manufacturing a negative diffraction grating from the master diffraction grating, and FIG. The process of producing a replica diffraction grating from a diffraction grating is shown.

<マスター回折格子の作製工程>
まず、BK7光学ガラスから成る基板11(約60mm×60mm×11.3mm)を光学研磨した後、超音波洗浄によって表面を清浄する。なお、基板11は光学研磨が可能であってフォトレジストを塗布することが可能であればその種類を問わないが、上記BK7以外に、例えば、パイレックス(登録商標)ガラス、石英ガラス等を用いることができる。次に、基板11の表面にフォトレジスト層12を形成する(図1(a))。フォトレジストは、ホログラフィック露光が可能なものであればいかなるものであってもよく、例えばMP1800シリーズ(シプレイ社製)や、OFPR5000(東京応化社製)等を利用することができる。本実施例ではMP1805を3000rpmで40秒間スピンコートした後、コンベクション・オーブンで90℃、30分間ベーキングし、厚さ0.3μmのフォトレジスト層12とする。
<Manufacturing process of master diffraction grating>
First, the substrate 11 (about 60 mm × 60 mm × 11.3 mm) made of BK7 optical glass is optically polished, and then the surface is cleaned by ultrasonic cleaning. The substrate 11 may be of any type as long as it can be optically polished and can be coated with a photoresist. For example, in addition to the BK7, Pyrex (registered trademark) glass, quartz glass, or the like is used. Can do. Next, a photoresist layer 12 is formed on the surface of the substrate 11 (FIG. 1A). Any photoresist can be used as long as it can perform holographic exposure. For example, MP1800 series (manufactured by Shipley Co., Ltd.), OFPR5000 (manufactured by Tokyo Ohka Co., Ltd.), or the like can be used. In this embodiment, MP1805 is spin-coated at 3000 rpm for 40 seconds and then baked in a convection oven at 90 ° C. for 30 minutes to form a photoresist layer 12 having a thickness of 0.3 μm.

上記基板11をホログラフィック露光装置(例えば、特開平06-034807を参照)にセットし、He−Cdレーザ(λ=441.6nm)の2光束干渉によるホログラフィック露光によって、フォトレジスト層12に1200本/mmの密度の干渉縞を露光する。その後、専用現像液MP303A(シプレイ社製)で現像した後、純水リンスを順次行うことにより、回折格子パターンが形成されたレジストパターン12を作製できる。このとき、2光束干渉の干渉縞の強度分布は正弦波状であるため、露光時間と現像時間を適切に制御することにより基板11の表面に正弦半波状のフォトレジスト12の回折格子パターンを作製することができる(図1(b))。本実施例では、該正弦半波状回折格子パターンの溝深さを0.1μmとする。   The substrate 11 is set in a holographic exposure apparatus (for example, see Japanese Patent Laid-Open No. 06-034807), and 1200 is applied to the photoresist layer 12 by holographic exposure by two-beam interference of a He—Cd laser (λ = 441.6 nm). An interference fringe with a density of 1 book / mm is exposed. Then, after developing with exclusive developing solution MP303A (made by Shipley Co., Ltd.), the resist pattern 12 in which the diffraction grating pattern was formed is producible by performing pure water rinse sequentially. At this time, since the intensity distribution of the interference fringes of the two-beam interference is sinusoidal, the diffraction grating pattern of the sinusoidal half-wave photoresist 12 is produced on the surface of the substrate 11 by appropriately controlling the exposure time and the development time. (FIG. 1 (b)). In the present embodiment, the groove depth of the sine half-wave diffraction grating pattern is 0.1 μm.

次に、上記基板11に対し、レジストパターン形成面の斜め上方且つレジストパターン12の格子溝の配列方向に対し垂直な方向からイオンビームを照射することで、反応性イオンビームエッチングを行う。このとき、エッチングガスとして、CF及びArの混合ガスを使用し、その混合比をAr/(CF+Ar)=60%、ガス圧を2×10−2Paとする。BK7ガラス基板11に断面鋸歯状の回折格子パターンが徐々に形成されていき、レジスト12が消滅して、レジスト回折格子溝パターン12が完全にガラス基板11に転写刻線されるまで、約20分間エッチングを行う(図1(c))。これによりブレーズ角(格子溝の傾き角)が7.6°のガラス回折格子パターンを作製し、エッチング終了後、格子溝が刻線された基板11を洗浄して、真空蒸着法により格子溝の表面に膜厚約0.2μmのアルミニウム薄膜13を形成する(図1(d))。以上のような各工程により、マスター回折格子10が完成する。 Next, reactive ion beam etching is performed by irradiating the substrate 11 with an ion beam obliquely above the resist pattern forming surface and in a direction perpendicular to the arrangement direction of the lattice grooves of the resist pattern 12. At this time, a mixed gas of CF 4 and Ar is used as an etching gas, the mixing ratio is Ar / (CF 4 + Ar) = 60%, and the gas pressure is 2 × 10 −2 Pa. A diffraction grating pattern having a sawtooth cross-section is gradually formed on the BK7 glass substrate 11 until the resist 12 disappears and the resist diffraction grating groove pattern 12 is completely transferred to the glass substrate 11 for about 20 minutes. Etching is performed (FIG. 1C). As a result, a glass diffraction grating pattern having a blaze angle (grid groove inclination angle) of 7.6 ° is prepared. After the etching, the substrate 11 on which the grating grooves are engraved is washed, and the lattice grooves are formed by vacuum deposition. An aluminum thin film 13 having a film thickness of about 0.2 μm is formed on the surface (FIG. 1D). The master diffraction grating 10 is completed through the above steps.

<ネガ回折格子の作製工程>
以上の工程により完成したマスター回折格子10にシリコングリース等の離型剤を蒸着して離型剤層14を形成し(図2(a))、その後に、真空蒸着によってアルミニウム薄膜23を形成する(図2(b))。このアルミニウム薄膜23は後にネガ回折格子の格子面を被覆するものであり、ここでは膜厚を約0.2μmとする。次いで、ネガ用基板21となるフロートガラス板(約60mm×60mm×11.3mm)を洗浄し、接着剤(熱硬化型エポキシ樹脂)22を略均一厚に塗布する(図2(c))。そして、この接着剤22を介してネガ用基板21と先の図2(b)の状態にあるマスター回折格子10とを貼り合わせ、適度な圧力で押しつける。それによって、接着剤22はアルミニウム薄膜23の断面鋸歯形状の溝を埋めるように広がる(図2(d))。
<Negative diffraction grating fabrication process>
A release agent such as silicon grease is deposited on the master diffraction grating 10 completed through the above steps to form a release agent layer 14 (FIG. 2A), and then an aluminum thin film 23 is formed by vacuum deposition. (FIG. 2 (b)). This aluminum thin film 23 will later cover the grating surface of the negative diffraction grating, and here the film thickness is about 0.2 μm. Next, a float glass plate (about 60 mm × 60 mm × 11.3 mm) to be the negative substrate 21 is washed, and an adhesive (thermosetting epoxy resin) 22 is applied in a substantially uniform thickness (FIG. 2C). Then, the negative substrate 21 and the master diffraction grating 10 in the state shown in FIG. 2B are bonded to each other through the adhesive 22 and pressed with an appropriate pressure. As a result, the adhesive 22 spreads so as to fill a groove having a sawtooth cross section in the aluminum thin film 23 (FIG. 2D).

これを、70℃で24時間保持することにより接着剤22を硬化させた後、離型剤層14を境にしてネガ用基板21をマスター回折格子10から引き剥がす。すると、断面鋸歯形状に成形されたアルミニウム薄膜23が、接着剤22を介してネガ用基板21に接着した状態で剥離する(図2(e))。これによって、マスター回折格子10の格子溝を反転転写した格子溝を備えた、ネガ回折格子20が得られる。   This is held at 70 ° C. for 24 hours to cure the adhesive 22, and then the negative substrate 21 is peeled off from the master diffraction grating 10 with the release agent layer 14 as a boundary. Then, the aluminum thin film 23 formed into a sawtooth shape in cross section is peeled off in a state of being bonded to the negative substrate 21 via the adhesive 22 (FIG. 2 (e)). As a result, a negative diffraction grating 20 having a grating groove obtained by reversing and transferring the grating groove of the master diffraction grating 10 is obtained.

<レプリカ回折格子の作製工程>
まず、レプリカ回折格子の基板(レプリカ基板)31となるフロートガラス板(約60mm×60mm×11.3mm)を用意し(図3(c))、メッシュサイズが#600〜#1000の砥粒を使用した砂かけ加工により該基板の表面(格子溝パターンが転写される側の面)31a及び側面(周面)31cの全体を粗面とする(図3(d))。このとき、これらの面の中心線平均粗さが4μm〜20μmとなるようにすることが望ましい。なお、レプリカ基板を粗面化処理する方法は、このような砂かけ加工に限定されるものではなく、例えば、ブラスト加工や薬液処理などいかなる手法を用いてもよい。
<Replica diffraction grating manufacturing process>
First, a float glass plate (about 60 mm × 60 mm × 11.3 mm) serving as a replica diffraction grating substrate (replica substrate) 31 is prepared (FIG. 3C), and abrasive grains having a mesh size of # 600 to # 1000 are prepared. The entire surface (surface on which the lattice groove pattern is transferred) 31a and side surface (circumferential surface) 31c of the substrate is roughened by the sanding process used (FIG. 3D). At this time, it is desirable that the center line average roughness of these surfaces be 4 μm to 20 μm. Note that the method of roughening the replica substrate is not limited to such sanding, and any method such as blasting or chemical treatment may be used.

次に、上述のネガ回折格子20を母型としてレプリカ回折格子30を作製する。その手順は上述したネガ回折格子20の作製時と同様であり、ネガ回折格子20の格子溝表面に離型剤層24とアルミニウム薄膜33とを形成し(図3(a)、(b))、接着剤32を挟んで上記図3(d)の状態のレプリカ基板31を貼り付ける(図3(e)、(f))。そして、接着剤32が硬化した後にメッシュサイズが#600〜#1000の砥粒を使用した砂かけ加工により裏面31bの全体を粗面とする(図3(g))。このとき、裏面31bの中心線平均粗さが4μm〜20μmとなるようにすることが望ましい。その後、離型剤層24を境にネガ回折格子20からレプリカ基板31を引き剥がす。それによって、ネガ回折格子20の格子溝パターンが接着剤32に反転転写され、その表面をアルミニウム薄膜33が被覆し、図3(h)に示すようなレプリカ回折格子30ができあがる。これにより、理想的には、このレプリカ回折格子30の回折格子溝の形状はマスター回折格子10のそれと同一になる。   Next, the replica diffraction grating 30 is manufactured using the negative diffraction grating 20 described above as a matrix. The procedure is the same as that for producing the negative diffraction grating 20 described above, and the release agent layer 24 and the aluminum thin film 33 are formed on the surface of the grating groove of the negative diffraction grating 20 (FIGS. 3A and 3B). Then, the replica substrate 31 in the state of FIG. 3D is pasted with the adhesive 32 interposed therebetween (FIGS. 3E and 3F). Then, after the adhesive 32 is cured, the entire back surface 31b is roughened by sanding using abrasive grains having a mesh size of # 600 to # 1000 (FIG. 3 (g)). At this time, it is desirable that the center line average roughness of the back surface 31b be 4 μm to 20 μm. Thereafter, the replica substrate 31 is peeled off from the negative diffraction grating 20 with the release agent layer 24 as a boundary. As a result, the grating groove pattern of the negative diffraction grating 20 is inverted and transferred to the adhesive 32, and the surface thereof is covered with the aluminum thin film 33, so that a replica diffraction grating 30 as shown in FIG. Thereby, ideally, the shape of the diffraction grating groove of the replica diffraction grating 30 is the same as that of the master diffraction grating 10.

本実施例のレプリカ回折格子の効果を確認するため、上記実施例の工程に従ってレプリカ回折格子を作製すると共に、比較例として、表面側(格子溝パターンが形成される側)のみを粗面化し、その他の面は光沢面のままとしたレプリカ基板を使用し、それ以外の点では上記実施例と同様にして作製したレプリカ回折格子を用意し、これらのレプリカ回折格子に対して波長1.5μmの光を入射角−70°で照射した。その結果、本実施例のレプリカ回折格子では、比較例のレプリカ回折格子に比べて大幅な迷光の低減が確認された。   In order to confirm the effect of the replica diffraction grating of the present embodiment, the replica diffraction grating is manufactured according to the steps of the above embodiment, and as a comparative example, only the surface side (side on which the grating groove pattern is formed) is roughened, The other surface is a replica substrate that remains a glossy surface, and other than that, replica diffraction gratings manufactured in the same manner as in the above embodiment are prepared, and the wavelength of 1.5 μm with respect to these replica diffraction gratings is prepared. Light was irradiated at an incident angle of -70 °. As a result, in the replica diffraction grating of this example, a significant reduction in stray light was confirmed compared to the replica diffraction grating of the comparative example.

以上、実施例を用いて本発明に係る反射型回折格子を実施するための最良の形態について説明したが、上記実施例に記載の数値や材料などは単に一例であって、本発明はこれに限定されるものではない。また、それ以外の点についても、本発明の趣旨の範囲で適宜に変更や修正を行えることは明らかである。   As described above, the best mode for carrying out the reflective diffraction grating according to the present invention has been described using examples. However, the numerical values and materials described in the above examples are merely examples, and the present invention is not limited thereto. It is not limited. In addition, it is apparent that other points can be appropriately changed or modified within the scope of the gist of the present invention.

例えば、上記レプリカ基板は必ずしも全面(表面、裏面及び側面)を粗面とする必要はなく、少なくとも裏面が粗面であればよい。   For example, the replica substrate is not necessarily required to have a rough surface on the entire surface (front surface, back surface, and side surface), and at least the back surface may be a rough surface.

また、本発明は、上記実施例のようにマスター回折格子から格子溝パターンを転写することによって作製されるレプリカ型の回折格子に限らず、ホログラフィック露光及びイオンビームエッチング等の手法により基板上に格子溝を直接形成することによって作製される、いわゆるオリジナル型の回折格子にも同様に適用することができる。この場合、予め基板の少なくとも裏面側を粗面化処理しておき、上記マスター回折格子の作製工程と同様の手順によって格子溝及び金属薄膜層の形成を行う。   In addition, the present invention is not limited to a replica type diffraction grating produced by transferring a grating groove pattern from a master diffraction grating as in the above-described embodiment, and is applied to a substrate by a technique such as holographic exposure and ion beam etching The present invention can be similarly applied to a so-called original type diffraction grating manufactured by directly forming a grating groove. In this case, at least the back surface side of the substrate is roughened in advance, and the grating grooves and the metal thin film layer are formed by the same procedure as in the master diffraction grating manufacturing process.

更に、本発明の反射型回折格子は、図1〜3に示すような平面状の格子面を有するいわゆる平面回折格子のほか、曲面状の格子面を有するいわゆる凹面回折格子にも同様に適用することができる。   Furthermore, the reflection type diffraction grating of the present invention is similarly applied to a so-called concave diffraction grating having a curved grating surface in addition to a so-called planar diffraction grating having a planar grating surface as shown in FIGS. be able to.

本発明の一実施例に係るレプリカ回折格子の作製における、マスター回折格子の作製工程を説明する概略図。Schematic explaining the manufacturing process of a master diffraction grating in preparation of the replica diffraction grating which concerns on one Example of this invention. 同実施例のレプリカ回折格子の作製工程において、上記マスター回折格子からネガ回折格子を作製する工程を説明する概略図。Schematic explaining the process of producing a negative diffraction grating from the said master diffraction grating in the production process of the replica diffraction grating of the Example. 同実施例のレプリカ回折格子の作製工程において、上記ネガ回折格子からレプリカ回折格子を作製する工程を説明する概略図。Schematic explaining the process of producing a replica diffraction grating from the said negative diffraction grating in the production process of the replica diffraction grating of the Example. 従来の反射型回折格子の問題点を説明する図。The figure explaining the problem of the conventional reflection type diffraction grating.

符号の説明Explanation of symbols

10…マスター回折格子
11…基板
12…フォトレジスト
13…アルミニウム薄膜
14…離型剤層
20…ネガ回折格子
21…ネガ用基板
22…接着剤
23…アルミニウム薄膜
24…離型剤層
30…レプリカ回折格子
31…レプリカ基板
32…接着剤
33…アルミニウム薄膜
DESCRIPTION OF SYMBOLS 10 ... Master diffraction grating 11 ... Substrate 12 ... Photoresist 13 ... Aluminum thin film 14 ... Release agent layer 20 ... Negative diffraction grating 21 ... Negative substrate 22 ... Adhesive 23 ... Aluminum thin film 24 ... Release agent layer 30 ... Replica diffraction Lattice 31 ... Replica substrate 32 ... Adhesive 33 ... Aluminum thin film

Claims (5)

透光性基板の一方の面に金属薄膜で被覆された格子溝パターンを有する反射型回折格子において、該基板の他方の面を粗面としたことを特徴とする反射型回折格子。   A reflective diffraction grating having a grating groove pattern coated on one surface of a translucent substrate with a metal thin film, wherein the other surface of the substrate is a rough surface. 上記反射型回折格子が、母型となる回折格子の格子溝パターンを透光性レプリカ基板の一方の面に転写して成るレプリカ回折格子であって、前記レプリカ基板の他方の面を粗面としたことを特徴とする請求項1に記載の反射型光学素子。   The reflective diffraction grating is a replica diffraction grating formed by transferring a grating groove pattern of a diffraction grating serving as a master to one surface of a translucent replica substrate, and the other surface of the replica substrate is a rough surface. The reflective optical element according to claim 1, wherein the optical element is a reflective optical element. 更に、上記基板又はレプリカ基板の周面を粗面としたことを特徴とする請求項1又は2に記載の反射型回折格子。   The reflective diffraction grating according to claim 1 or 2, wherein the peripheral surface of the substrate or the replica substrate is a rough surface. 上記粗面の中心線平均粗さが4μm〜20μmであることを特徴とする請求項1〜3のいずれかに記載の反射型回折格子。   The reflection type diffraction grating according to claim 1, wherein a center line average roughness of the rough surface is 4 μm to 20 μm. 母型となる回折格子の格子溝パターンを透光性レプリカ基板の一方の面に転写することによりレプリカ回折格子を製造する方法において、
a) 母型となる回折格子の格子面に離型剤層を介して金属薄膜層を形成する工程と、
b) 前記レプリカ基板の少なくとも前記格子溝パターンが転写されない側の面を粗面化する工程と、
c) 前記金属薄膜層と前記レプリカ基板とを接着剤を介して密着させた後に前記離型剤層を境に両者を剥離させる工程と、
を有することを特徴とするレプリカ回折格子の製造方法。
In a method of manufacturing a replica diffraction grating by transferring a grating groove pattern of a diffraction grating to be a master mold to one surface of a translucent replica substrate,
a) forming a metal thin film layer on a grating surface of a diffraction grating to be a matrix via a release agent layer;
b) roughening at least the surface of the replica substrate on which the lattice groove pattern is not transferred;
c) a step of separating the metal thin film layer and the replica substrate from each other with the release agent layer as a boundary after adhering the replica substrate through an adhesive;
A method of manufacturing a replica diffraction grating, comprising:
JP2006058091A 2006-03-03 2006-03-03 Reflective diffraction grating Expired - Fee Related JP5066815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006058091A JP5066815B2 (en) 2006-03-03 2006-03-03 Reflective diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006058091A JP5066815B2 (en) 2006-03-03 2006-03-03 Reflective diffraction grating

Publications (3)

Publication Number Publication Date
JP2007233283A true JP2007233283A (en) 2007-09-13
JP2007233283A5 JP2007233283A5 (en) 2008-07-31
JP5066815B2 JP5066815B2 (en) 2012-11-07

Family

ID=38553902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058091A Expired - Fee Related JP5066815B2 (en) 2006-03-03 2006-03-03 Reflective diffraction grating

Country Status (1)

Country Link
JP (1) JP5066815B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092687A (en) * 2007-10-03 2009-04-30 Shimadzu Corp Replica diffraction grating
JP2009151062A (en) * 2007-12-20 2009-07-09 Asti Corp Method for manufacturing plastic fine structure and plastic fine structure
US7933188B2 (en) 2007-10-22 2011-04-26 Hitachi Media Electronics Co., Ltd. Optical pickup
JP2016533520A (en) * 2013-09-29 2016-10-27 グラジュエート スクール アット シェンチェン、 ツィングワ ユニバーシティー Method for manufacturing blazed concave diffraction grating

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414913A (en) * 1987-07-08 1989-01-19 Nec Corp Controller for gas composition
JPH06222207A (en) * 1993-01-26 1994-08-12 Dainippon Printing Co Ltd Optical sheet, surface light source, and display device
JPH07261010A (en) * 1994-03-18 1995-10-13 Shimadzu Corp Replica diffraction grating
JPH09145936A (en) * 1995-11-20 1997-06-06 Sutaaraito Kogyo Kk Panel for surface light source
JPH10133023A (en) * 1996-10-30 1998-05-22 Mitsubishi Chem Corp Surface light source device
JPH11202112A (en) * 1998-01-19 1999-07-30 Dainippon Printing Co Ltd Diffraction optical element
JP2000039581A (en) * 1998-07-22 2000-02-08 Asahi Glass Co Ltd Information display device
JP2002357706A (en) * 2001-06-01 2002-12-13 Keiwa Inc Optical sheet and back light unit using the same
JP2003233736A (en) * 2002-02-08 2003-08-22 Konfootokukku Kk Candy ordering device, order entry method, and candy
JP2005142569A (en) * 2003-11-06 2005-06-02 Asml Netherlands Bv Optical element, lithographic equipment having such optical element, and device manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414913A (en) * 1987-07-08 1989-01-19 Nec Corp Controller for gas composition
JPH06222207A (en) * 1993-01-26 1994-08-12 Dainippon Printing Co Ltd Optical sheet, surface light source, and display device
JPH07261010A (en) * 1994-03-18 1995-10-13 Shimadzu Corp Replica diffraction grating
JPH09145936A (en) * 1995-11-20 1997-06-06 Sutaaraito Kogyo Kk Panel for surface light source
JPH10133023A (en) * 1996-10-30 1998-05-22 Mitsubishi Chem Corp Surface light source device
JPH11202112A (en) * 1998-01-19 1999-07-30 Dainippon Printing Co Ltd Diffraction optical element
JP2000039581A (en) * 1998-07-22 2000-02-08 Asahi Glass Co Ltd Information display device
JP2002357706A (en) * 2001-06-01 2002-12-13 Keiwa Inc Optical sheet and back light unit using the same
JP2003233736A (en) * 2002-02-08 2003-08-22 Konfootokukku Kk Candy ordering device, order entry method, and candy
JP2005142569A (en) * 2003-11-06 2005-06-02 Asml Netherlands Bv Optical element, lithographic equipment having such optical element, and device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092687A (en) * 2007-10-03 2009-04-30 Shimadzu Corp Replica diffraction grating
US7933188B2 (en) 2007-10-22 2011-04-26 Hitachi Media Electronics Co., Ltd. Optical pickup
JP2009151062A (en) * 2007-12-20 2009-07-09 Asti Corp Method for manufacturing plastic fine structure and plastic fine structure
JP2016533520A (en) * 2013-09-29 2016-10-27 グラジュエート スクール アット シェンチェン、 ツィングワ ユニバーシティー Method for manufacturing blazed concave diffraction grating

Also Published As

Publication number Publication date
JP5066815B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
US7455957B2 (en) Blazed holographic grating, method for producing the same and replica grating
JP2920164B2 (en) Reflective overcoat for replica gratings
JP4873015B2 (en) Manufacturing method of blazed diffraction grating
JP4999556B2 (en) Manufacturing method of optical element having fine irregularities on surface
Priambodo et al. Fabrication and characterization of high-quality waveguide-mode resonant optical filters
KR101095681B1 (en) Photomask for extreme ultraviolet lithography and method for fabricating the same
US7129028B2 (en) Method of forming holographic grating
JP2007523468A (en) Method and apparatus for forming a three-dimensional nanoscale structure
JP2006201540A (en) Wire-grid polarizing plate and manufacturing method thereof
JP5066815B2 (en) Reflective diffraction grating
JP5658484B2 (en) Reflective wave plate
JP5965698B2 (en) Diffraction grating and manufacturing method thereof
WO1999038040A1 (en) Phase mask for manufacturing diffraction grating, and method of manufacture
JP3877444B2 (en) Diffraction grating
JP4507928B2 (en) Holographic grating manufacturing method
JP2006330221A (en) Polarizer
US20090267245A1 (en) Transmission Type Optical Element
JP2002040220A (en) Diffraction grating
US20060077554A1 (en) Diffraction gratings for electromagnetic radiation, and a method of production
JP4183526B2 (en) Surface microstructure optical element
JP2004268331A (en) Mold for molding optical element and method for manufacturing mold
JP2006098428A (en) Replica diffraction grating
JP5303889B2 (en) Replica diffraction grating
JPH09274425A (en) Hologram element and its production
JP2007264476A (en) Method for forming periodical structure pattern and interference exposure apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5066815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees