JP2007232637A - Method and instrument for measuring film thickness of paint film on cylindrical base - Google Patents

Method and instrument for measuring film thickness of paint film on cylindrical base Download PDF

Info

Publication number
JP2007232637A
JP2007232637A JP2006056475A JP2006056475A JP2007232637A JP 2007232637 A JP2007232637 A JP 2007232637A JP 2006056475 A JP2006056475 A JP 2006056475A JP 2006056475 A JP2006056475 A JP 2006056475A JP 2007232637 A JP2007232637 A JP 2007232637A
Authority
JP
Japan
Prior art keywords
coating film
measuring
cylindrical substrate
cross
circle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006056475A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kawai
康裕 川井
Kyoichi Teramoto
杏一 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006056475A priority Critical patent/JP2007232637A/en
Publication of JP2007232637A publication Critical patent/JP2007232637A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a load applied onto a base due to measurement, and to make an individual measured value very accurate, when measuring a thickness of a paint film or a coating film applied onto the cylindrical base. <P>SOLUTION: This method calculates a distance between a reference point and a circumference, based on changes due to rotation of the cylindrical base in distances of three or more of points settled on the circumference of a cross-sectional circle with respect to the reference point, set within the cross-sectional circle on a cylindrical base outer face orthogonal to an axis of the cylindrical base outer face, using a measuring means capable of measuring a displacement of the cylindrical base outer face, and specifies a shape of the cross-sectional circle of the cylindrical base outer face, the circular center thereof, the circularity thereof and an outer diameter value thereof. The method calculates also distances between one or more of points, different from the three points, on the same cross-section as the above cross-sectional circle and on an outer surface of the paint film or the coating film, and the reference point, using a measuring means capable of measuring a displacement of a paint or coating film outer face, and measures the thickness of the paint or coating film, based on the shape of the cylindrical base outer face. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は円筒状基体上に設けられた塗膜又は被膜を有する円筒体上の塗膜又は被膜の厚みを測定する方法に関する。特には、精度良く塗布又は被覆された薄膜の厚みの測定に寄与する技術である。   The present invention relates to a method for measuring the thickness of a coating film or coating on a cylindrical body having a coating film or coating provided on a cylindrical substrate. In particular, it is a technique that contributes to the measurement of the thickness of a thin film coated or coated with high accuracy.

従来、電子写真方式の複写機、レーザービームプリンター、ファクシミリ、印刷機等の画像形成装置における電子写真感光ドラムは、形状寸法が所定の精度に仕上げられた円筒部材を用いて、その表面に感光膜を施すことによって製造される。しかし前記感光膜の膜厚に場所によって凹凸が生じているか、又は基準となる感光膜の膜厚そのものが予め設定された所望膜厚に対して過度に厚く又は薄く形成されてしまうことがある。その場合、画像形成装置の画像に欠陥が生じる。従って、精度の高い画像形成装置を得るためには、前記感光膜の膜厚が正しく且つフラットであることが求められる。   Conventionally, an electrophotographic photosensitive drum in an image forming apparatus such as an electrophotographic copying machine, a laser beam printer, a facsimile machine, or a printing machine uses a cylindrical member whose shape dimension is finished with a predetermined accuracy, and a photosensitive film on the surface thereof. It is manufactured by applying. However, the film thickness of the photosensitive film may be uneven depending on the location, or the film thickness of the reference photosensitive film itself may be excessively thick or thin with respect to a predetermined desired film thickness. In that case, a defect occurs in the image of the image forming apparatus. Therefore, in order to obtain an image forming apparatus with high accuracy, it is required that the film thickness of the photosensitive film is correct and flat.

こうした電子写真感光ドラムを製造する工程においても、その塗布精度を保証することを目的とした高精度な測定機能が必要である。そして電子写真感光ドラムに用いる基体の材料はアルミニウム合金等に代表される金属によるものが一般的である。その基体上に形成された塗膜の膜厚測定方法としては、測定対象となる部分の塗膜表面に渦電流を用いた変位測定子を当接させた状態で金属である基体表面までの距離を測定することによって塗膜の厚みを測定する方法が用いられる。このとき、測定対象である塗膜の材質は一般的に樹脂を主体とするものが大半であるが、感光体としての機能上、微量ながらも金属を含有するものも用いられる。これについて前記渦電流を用いた変位測定方法においては、その測定に対して塗膜中に含まれる金属の影響が避け得ないことがある。しかしながらこの影響は、それが極めて微小であることと、金属の塗膜を形成する材料としての含有比率が一定であれば、電子写真感光体としての機能を保証する上で塗膜の厚みを計測する手段としてなんら問題にはならない。   Even in the process of manufacturing such an electrophotographic photosensitive drum, a high-accuracy measuring function for the purpose of guaranteeing the coating accuracy is required. The base material used for the electrophotographic photosensitive drum is generally made of a metal typified by an aluminum alloy or the like. As a method for measuring the film thickness of the coating film formed on the substrate, the distance to the substrate surface which is a metal in a state where a displacement measuring element using eddy current is in contact with the coating film surface of the portion to be measured A method of measuring the thickness of the coating film by measuring the thickness is used. At this time, the material of the coating film to be measured is generally mostly composed of resin. However, in terms of the function as a photoreceptor, a material containing a small amount of metal is also used. In this regard, in the displacement measuring method using the eddy current, the influence of the metal contained in the coating film is unavoidable for the measurement. However, if this effect is extremely small and the content ratio as a material for forming a metal coating film is constant, the thickness of the coating film is measured to guarantee the function as an electrophotographic photosensitive member. There is no problem as a means to do.

しかし前記の一般的な渦電流を用いた膜厚測定方法では次のことが必要となる。即ち、渦電流の検知距離が測定対象となる塗膜の厚み、即ち基体である金属体の外表面から塗膜の外表面までの距離と同一になるようにするため、測定子を前記塗膜の外表面に当接させて位置決めすることである。このとき、当接によって塗膜表面にその痕跡が残ることはほぼ避けられない。従って、一般的にはこうした測定においては生産品自体を測定することは望めず、予め用意した膜厚測定のためのサンプルワークを用いて測定する必要がある。加えて当接に不可欠な当接圧力によって少なからず塗膜の変形が発生することも避けられない。更には塗膜の強度が非常に低い状態での測定においては、当接圧力をいくら抑えたとしても、塗膜の膜厚を正確に測定することが困難な場合も発生する。   However, the film thickness measurement method using the general eddy current requires the following. That is, in order to make the detection distance of the eddy current equal to the thickness of the coating film to be measured, that is, the distance from the outer surface of the metal body that is the substrate to the outer surface of the coating film, It is to abut on the outer surface of and position. At this time, it is almost inevitable that the trace remains on the surface of the coating film due to the contact. Therefore, in general, in such measurement, it is impossible to measure the product itself, and it is necessary to perform measurement using a sample work for film thickness measurement prepared in advance. In addition, it is inevitable that the coating film deforms due to the contact pressure essential for contact. Furthermore, in the measurement in a state where the strength of the coating film is very low, it may be difficult to accurately measure the thickness of the coating film, no matter how much the contact pressure is suppressed.

こうした場合、電子写真感光ドラムが円筒体の場合は、円筒体が不動の一点を中心として回転出来るようにその両端を何らかのチャッキングやその他の手段で正確に把持する。及び測定対象の塗膜が存在するのと同一断面上に、前記渦電流測定子と、非接触にて物体の外表面までの距離を測定可能な変位計測手段(例えばレーザー変位計など)を、同一断面円内の前記不動の回転中心に向けて固定する。そして、円筒体を前記二つの測定手段の挟角分だけ回転させて、それぞれが同一の点を計測した両距離の差を算出することによって、塗膜の膜厚を測定することは可能である。   In such a case, when the electrophotographic photosensitive drum is a cylindrical body, both ends thereof are accurately gripped by some chucking or other means so that the cylindrical body can rotate around a fixed point. And a displacement measuring means (for example, a laser displacement meter) capable of measuring the distance to the outer surface of the object in a non-contact manner on the same cross section where the coating film to be measured exists, It fixes toward the said fixed rotation center in the same cross-sectional circle. And it is possible to measure the film thickness of the coating film by rotating the cylindrical body by the included angle of the two measuring means and calculating the difference between the two distances when the same point is measured. .

しかしながら、近年では前記電子写真感光ドラムの高精度化に向けた要求から、より多くの、或いは全ての生産品の膜厚を高精度に測定することが必要となっている。また、製造工程においてより高い生産能力が求められていることから、前記のように高精度に円筒を回転させるような両端把持方法を用いるのは困難と言わざるを得ない。 However, in recent years, due to the demand for higher accuracy of the electrophotographic photosensitive drum, it is necessary to measure the film thickness of more or all products with high accuracy. Further, since higher production capacity is required in the manufacturing process, it must be said that it is difficult to use a both-end gripping method in which the cylinder is rotated with high accuracy as described above.

本発明は、こうした問題に鑑み、円筒状基体上に設けられた塗膜又は被膜を有する円筒体上の塗膜又は被膜の厚みの測定においてかかる負荷が少なく、個々の測定値が極めて正確にすることを主たる目的として成される。   In view of these problems, the present invention reduces the load in measuring the thickness of a coating film or coating on a cylindrical body having a coating film or coating provided on a cylindrical substrate, and makes each measurement value extremely accurate. The main purpose is that.

即ち本発明は、円筒状基体の外表面の断面円の形状を特定し、且つ前記円筒状基体上に設けられた塗膜又は被膜の厚みを測定する方法であって、前記円筒状基体外表面の変位が測定可能な測定手段を用いて、前記円筒状基体外表面の軸に対して直交する前記円筒状基体外表面の断面円内に設定した、被測定円筒である円筒状基体の回転軸と前記断面円が交わる点である基準点に対する前記断面円の円周上に定められた3つ以上の点の距離の前記円筒状基体の回転による変化に基づいて、前記基準点と前記円周上の点との距離を算出して前記円筒状基体外表面の断面円の形状を特定し、且つ前記塗膜又は被膜外表面の変位が測定可能な測定手段を用いて、前記3つ以上の点とは別の、前記断面円と同一の断面上且つ前記塗膜又は被膜の外表面上の1つ以上の点と前記基準点との距離を算出し、前記円筒状基体外表面の断面円の形状をもとに前記塗膜又は被膜の厚みを測定することを特徴とする、円筒状基体の外表面の断面円の形状を特定し、且つ前記円筒状基体上に設けられた塗膜又は被膜の厚みの測定方法を提供する。   That is, the present invention is a method for specifying the shape of a cross-sectional circle on the outer surface of a cylindrical substrate and measuring the thickness of a coating film or a film provided on the cylindrical substrate, the outer surface of the cylindrical substrate The rotation axis of the cylindrical substrate that is the cylinder to be measured is set within the cross-sectional circle of the outer surface of the cylindrical substrate perpendicular to the axis of the outer surface of the cylindrical substrate using a measuring means capable of measuring the displacement of the cylindrical substrate. And the reference point and the circumference based on the change of the distance of three or more points defined on the circumference of the cross-sectional circle with respect to the reference point, which is a point where the cross-sectional circle intersects with the rotation of the cylindrical substrate The distance from the upper point is calculated to specify the shape of the cross-sectional circle of the outer surface of the cylindrical substrate, and using the measuring means capable of measuring the displacement of the coating film or the outer surface of the coating, the three or more On the same cross-section as the cross-sectional circle and on the outer surface of the coating film or coating, apart from the point A cylindrical substrate characterized in that a distance between one or more points and the reference point is calculated, and the thickness of the coating film or coating film is measured based on the shape of a cross-sectional circle on the outer surface of the cylindrical substrate. A method for measuring the thickness of the coating film or the coating film provided on the cylindrical substrate is specified.

従来の測定方法の殆どが、より高い測定精度を得ることを目的として、測定子を塗膜表面に当接させてしまうか、測定基準位置として円筒中心の機械的限定の正確さを追求することに負荷を要している。本発明で提供する方法では、この円筒中心が回転によって移動してしまうような仮想中心即ち浮動中心であることを前提として捉えて機械的に限定することがない。そして、測定に従って順次測定子より得られる数値の変遷を元にこの浮動中心の位置を追跡して理論的に捕捉、限定し、これを基準とした基体の形状と塗膜の外表面形状を求めることを主たる特徴とする。従って、この方法によれば前記の円筒中心を正確に限定する必要が無いことから、かかる負荷を軽減することが出来る。また極めて簡便に、且つ高い精度を伴って前記円筒状基体上に設けられた塗膜又は被膜を有する円筒体の前記塗膜又は被膜の厚みを測定することが可能である。   Most of the conventional measuring methods either make the probe contact with the surface of the coating film in order to obtain higher measurement accuracy, or pursue the accuracy of mechanical limitation at the center of the cylinder as the measurement reference position. The load is required. In the method provided by the present invention, there is no mechanical limitation on the assumption that the center of the cylinder is a virtual center that is moved by rotation, that is, a floating center. Then, the position of the floating center is tracked and theoretically captured and limited based on the transition of numerical values obtained sequentially from the probe according to the measurement, and the shape of the substrate and the outer surface shape of the coating film are obtained based on this. This is the main feature. Therefore, according to this method, since it is not necessary to accurately limit the center of the cylinder, such a load can be reduced. In addition, it is possible to measure the thickness of the coating film or coating film of a cylindrical body having a coating film or coating film provided on the cylindrical substrate with high accuracy and extremely simply.

加えて、本発明で提供する方法では、上に設けられた塗膜又は被膜を有する円筒体の前記塗膜又は被膜の厚みを測定するにあたって回転させる方法が限定されない。従って、両端部を開放させたまま、或いはフランジ等の部品を装着した状態での測定が可能である。本測定方法を用いた測定機構を生産ライン中に搭載しても搬送手段との干渉などの問題が発生しずらく、非常に簡便且つ高精度な測定が可能である。   In addition, in the method provided by the present invention, the method of rotating the cylindrical body having the coating film or coating provided thereon for measuring the thickness of the coating film or coating is not limited. Therefore, it is possible to perform measurement with both ends open or with a component such as a flange attached. Even if a measuring mechanism using this measuring method is mounted in the production line, problems such as interference with the conveying means are unlikely to occur, and very simple and highly accurate measurement is possible.

以下の説明は本発明において用いる方法の一例であって、同様の効果は他の形態をもってしても得られる。また、以下の説明に用いる図3(a)、図3(b)、及び図4(a)から図5(a)では、説明の便宜上S1を鉛直方向の頂点に配置して示した。
本実施態様に係る円筒体状基体の表面の塗膜の膜厚の測定に用いる装置の一例を図2に示す。まず、表面に塗膜7を備える円筒状基体1を回転可能な円筒受け治具である2つのコロ(円筒受け治具)6上に塗膜7の外表面を当接させて載置する。当前記測定装置をガイドレール4及びボールねじ5によって円筒状基体1の円筒の回転軸に平行に往復可能に設けられた取り付け台2及び支持台3に、円筒状基体1の回転軸と直角を成す同一断面上に位置させる。そして、前記測定装置は前記円筒状基体1の回転軸と該回転軸と直角を成す断面とが交わる点である測定基準点Oに向けられる。及びそれは測定基準点Oを中心として互いに所定の角度θを挟んで扇状に配置して取り付け台2に固定された4個のセンサー(変位を検出するためのセンサー。以下同じ)S1,S2,S3、及びS4を有する。4個のセンサーS1、S2、S3、S4と2つのコロ6の回転中心は、共に同一の機械に固定されており、互いの位置は常に変化しない。
The following explanation is an example of the method used in the present invention, and the same effect can be obtained with other forms. 3A, FIG. 3B, and FIG. 4A to FIG. 5A used for the following description, S1 is arranged at the apex in the vertical direction for convenience of description.
An example of an apparatus used for measuring the thickness of the coating film on the surface of the cylindrical substrate according to this embodiment is shown in FIG. First, the cylindrical substrate 1 having the coating film 7 on the surface is placed on two rollers (cylindrical receiving jig) 6, which are rotatable cylindrical receiving jigs, in contact with the outer surface of the coating film 7. The measuring device is mounted on a mounting base 2 and a supporting base 3 which are provided so as to be able to reciprocate in parallel with the rotational axis of the cylindrical body 1 by means of the guide rail 4 and the ball screw 5. It is located on the same cross section. The measuring device is directed to the measurement reference point O 0 , which is a point where the rotation axis of the cylindrical substrate 1 and a cross section perpendicular to the rotation axis intersect. And four sensors (sensors for detecting displacement; the same applies hereinafter) S1, S2, which are arranged in a fan shape with a predetermined angle θ between each other around the measurement reference point O 0 and fixed to the mounting base 2. S3 and S4. The rotation centers of the four sensors S1, S2, S3, S4 and the two rollers 6 are all fixed to the same machine, and their positions do not always change.

また、Oは前記4つのセンサーの検知軸が互いにほぼ交わる点で、機械基準に準じて常に移動しない測定基準位置である。それと同時に、測定に従って真円ではない円筒状基体1がコロ6上を塗膜7の外表面を当接させて回転するにつれて移動する仮想中心即ち浮動中心Oの始点でもある。(以降On=0と記す。nは断面円の円周形状を算出するために要する数であり、例えば、均等にθ°間隔で上記距離を求めて断面円の円周形状を算出する場合には、n=360°/θ°となる。図1に示すフローチャートでは、表記の便宜上、OnをO´として表示する。)Oの位置は、Oが円筒状基体1の被測定断面円の真の中心と一致しておらず、且つ塗膜7の外表面が真円形状でない限り、円筒状基体1の被測定断面円が測定に伴って回転するに従って順次移動する。これを仮想中心即ち回転により移動してもよい浮動中心として捉えている。しかし、Oと円筒状基体1の被測定断面円上の各点との間の距離は常に変化しない。即ち、図8に示すように、浮動中心の始点を基準点として、円筒を所定角度(θ°)で回転させると浮動中心は始点から移動する。更に再度回転させると浮動中心は更に移動し、順次回転させ、最終的に360度の円筒の回転により、浮動中心は図示するような浮動中心の軌跡をとることとなる。よって、本発明の測定方法は、測定基準位置を機械的に限定することがない。そして測定に従って順次測定子より得られる数値の変遷を元にこの浮動中心の位置を測定円筒が一刻み毎に回転するたびに追跡して理論的に捕捉し、該浮動中心と測定対象たる円の円周上の点との距離を算出する。
また、本明細書において使用する、「回転軸」、「軸」、及びそれらと交わる「点」は、例えば数学的に用いるような太さを持たない直線や面積をもたない点を指すのではない。それらは図2に示すように、被測定円筒は自身の外周面を基準として回転するので、少なくとも被測定円筒が真円筒でないか、或いはコロ6に当接する外周面が真円形状でない限り、回転軸や点は、ある範囲を持っている。以下に、その範囲を示す数値について説明する。回転軸の範囲は、測定される断面円の最小自乗中心を中心として、ΔLを半径とする円を範囲として示したとき、好ましくは次のことを満足する。下記式且つΔL´<d2・10−3を満たし、更に好ましくは、下記式且つΔL´<d2・10−4を満たし、
最も好ましくは、下記式且つΔL´<d2・10−5を満たす。
O 0 is a measurement reference position where the detection axes of the four sensors almost intersect with each other and do not always move according to the machine reference. At the same time, it is also the virtual center or the start of the floating center O n moves as the cylindrical substrate 1 is not a perfect circle is rotated by contacting the outer surface of the coating film 7 on the roller 6 in accordance with the measurement. (Hereinafter referred to as On = 0. n is a number required to calculate the circumferential shape of the cross-sectional circle. For example, the circumferential shape of the cross-sectional circle is calculated by obtaining the above distances evenly at intervals of θ °. the, in the flowchart shown in the n = 360 ° / θ °. FIG. 1, for convenience of notation, Show on the O'.) the position of the O n is O n is the measured cross-section of the cylindrical substrate 1 As long as the circle does not coincide with the true center of the circle and the outer surface of the coating film 7 does not have a perfect circle shape, the cross-sectional circle to be measured of the cylindrical substrate 1 moves sequentially as it rotates with the measurement. This is regarded as a virtual center, that is, a floating center that may be moved by rotation. However, the distance between each point on the measured cross-section yen O n and the cylindrical substrate 1 does not always change. That is, as shown in FIG. 8, when the cylinder is rotated at a predetermined angle (θ °) with the starting point of the floating center as a reference point, the floating center moves from the starting point. When the rotation is further rotated, the floating center is further moved and sequentially rotated. Finally, the floating center takes a locus of the floating center as shown in the figure by rotation of the 360 ° cylinder. Therefore, the measurement method of the present invention does not mechanically limit the measurement reference position. The position of this floating center is tracked every time the measuring cylinder rotates every step based on the change in the numerical value obtained from the probe sequentially according to the measurement, and is theoretically captured. Calculate the distance to a point on the circumference.
In addition, as used in this specification, “rotation axis”, “axis”, and “point” intersecting with them refer to a straight line having no thickness or an area having no area as used mathematically, for example. is not. As shown in FIG. 2, since the cylinder to be measured rotates with respect to its outer peripheral surface, it is rotated unless at least the cylinder to be measured is a true cylinder or the outer peripheral surface abutting on the roller 6 is not a perfect circle. Axes and points have a certain range. Below, the numerical value which shows the range is demonstrated. The range of the rotation axis preferably satisfies the following when a circle having a radius of ΔL is shown as a range centering on the least square center of the cross-sectional circle to be measured. Formula and DerutaL' met <d2 · 10 -3, more preferably satisfies the following formula and ΔL'<d2 · 10 -4,
Most preferably, the following formula and ΔL ′ <d2 · 10 −5 are satisfied.

例えば、最も好ましい場合の回転軸の範囲は、d2=50.00mmかつT=0.05mmとした場合には、ΔL´<0.0005mm、ΔL<0.274mmとなり、計算による回転軸の範囲はφ0.548mmとなる。   For example, the most preferable range of the rotation axis is ΔL ′ <0.0005 mm and ΔL <0.274 mm when d2 = 50.00 mm and T = 0.05 mm, and the calculated rotation axis range is φ0.548 mm.

またΔLの現実性として、このような精度でのセンサーの位置決めは、現代の機械加工技術の水準(当業界での一般的な限界は、d2=50mmのときΔL≒0.002mm程度)からすれば、なんら問題なく可能な範囲でもある。   Moreover, as the reality of ΔL, the sensor positioning with such accuracy is far from the level of modern machining technology (the general limit in this industry is ΔL≈0.002 mm when d2 = 50 mm). It's also possible without any problems.

塗膜7の膜厚を測定するに際し、これを備える円筒状基体1の、軸と直交する断面の円の形状の測定方法について述べる。ここでは、円筒状基体1の1測定あたりの回転角度θ°を30°とした。従って円周上の測定点は図4(a)に示す通り1から12の12点となる。そして本測定方法では、いったん前記浮動中心の始点O(On=0)と円筒状基体1の被測定断面円の円周上の各点1から12との距離を算出し、円筒状基体1の被測定断面円の形状を特定する。更に同様に塗膜7の外周円形状を捉えて、最終的に膜厚を得ることになる。
次より膜厚の測定方法を順次説明する。なお、図1は次より述べる膜厚の測定方法に関するフローチャートであり、膜厚を算出する工程は該フローチャートに従って遂行される。
In measuring the film thickness of the coating film 7, a method for measuring the shape of a circle of a cross section perpendicular to the axis of the cylindrical substrate 1 provided with the same will be described. Here, the rotation angle θ ° per measurement of the cylindrical substrate 1 was set to 30 °. Thus the measurement point on the circumference is 12 points as 1 0-12 0 shown in Figure 4 (a). And in this measurement method, once calculated the distance between the floating center of the origin O 0 (O n = 0) and each point 1 0-12 0 on the circumference of the measured cross section circle of the cylindrical substrate 1, a cylindrical The shape of the cross-sectional circle to be measured of the substrate 1 is specified. Similarly, the outer peripheral circular shape of the coating film 7 is captured, and the film thickness is finally obtained.
Next, the method for measuring the film thickness will be described sequentially. FIG. 1 is a flowchart relating to the film thickness measuring method described below, and the step of calculating the film thickness is performed according to the flowchart.

第一段階として、図3(a)に示すように、外径値が既知であり且つ断面が真円形状である基準円筒8を用いて、前記基準円筒8の断面の円中心を前記測定基準点OとしてセンサーS1、S2、S3及びS4からOまでの距離を限定する。これに際して、先ず、基準円筒8を前記2つのコロ6上に載置して、センサーS1から前記基準円筒8の外表面までの距離を測定し、ΔS1とする。基準円筒8は外径値が既知であることから、その半径値、即ち円中心Oから基準円筒8の外表面までの距離をd2とすれば、センサーS1からOまでの距離LS1は下記式で得られる。 As a first step, as shown in FIG. 3A, a reference cylinder 8 whose outer diameter value is known and whose cross section is a perfect circle is used, and the circle center of the cross section of the reference cylinder 8 is used as the measurement standard. As the point O 0 , the distance from the sensors S 1, S 2, S 3 and S 4 to O 0 is limited. At this time, first, the reference cylinder 8 is placed on the two rollers 6, and the distance from the sensor S1 to the outer surface of the reference cylinder 8 is measured to obtain ΔS1. Since the outer diameter value of the reference cylinder 8 is known, if the radius value, that is, the distance from the circle center O 0 to the outer surface of the reference cylinder 8 is d2, the distance LS1 from the sensor S1 to O 0 is Is obtained by the formula.

L1S = ΔS1 + d2   L1S = ΔS1 + d2

同様に、センサーS2及びS3についても図4(b)に示すようなLS2及びLS3を求める。   Similarly, LS2 and LS3 as shown in FIG. 4B are obtained for the sensors S2 and S3.

このとき、センサーS1、S2、S3のいずれの検知軸も前記測定基準位置Oを通過することなく、且つ3つの検知軸が互いに1点で交わっていないとき、この検知軸に対する測定基準位置Oの位置のズレは前記LS1、LS2,LS3の値に誤差を生じる。しかしながらその誤差は極めて小さく、これについてLS1を例として図3(b)を用いて説明する。基準円筒8の断面円の円中心である測定基準位置OとセンサーS1の検知軸までの最小距離、即ちセンサーS1の、検知軸に直交する方向での位置決め誤差距離をΔLとする。また前記検知軸と平行且つ測定基準位置Oを通過する軸が円周と交わる点と測定基準位置Oとの距離、即ち基準円筒8断面の半径距離をd2とする。そのとき、LS1に与える誤差ΔL´は下記式で得られる。 At this time, when any of the detection axes of the sensors S1, S2, and S3 does not pass the measurement reference position O 0 and the three detection axes do not intersect at one point, the measurement reference position O with respect to the detection axis. Deviation of the 0 position causes an error in the values of LS1, LS2, and LS3. However, the error is extremely small, and this will be described using LS1 as an example with reference to FIG. Let ΔL be the minimum distance between the measurement reference position O 0 , which is the center of the cross-sectional circle of the reference cylinder 8, and the detection axis of the sensor S 1, that is, the positioning error distance of the sensor S 1 in the direction orthogonal to the detection axis. The distance between the point where the axis parallel to the detection axis and passing through the measurement reference position O 0 intersects the circumference and the measurement reference position O 0 , that is, the radial distance of the cross section of the reference cylinder 8 is d2. At that time, the error ΔL ′ given to LS1 is obtained by the following equation.

結果、ΔL´は非常に小さくなる。一例として、センサーS1を現在の比較的に容易な機械加工方法の範囲で位置決め加工した際に想定される位置ずれ誤差、即ち前記ΔLを挙げる。それは、大きくてもせいぜい±3.0μm程度であって、このとき基準円筒8の外径が100mmであった場合、ΔL´は数式1より約9.0×10−5μmとなる。この数値が、一般的に高精度とされるセンサーの測定再現性がほぼ0.1μmであることを考慮すれば、測定結果に与える影響は極めて小さいと言える。 As a result, ΔL ′ becomes very small. As an example, the positional deviation error assumed when the sensor S1 is positioned within the range of the current relatively easy machining method, that is, ΔL is given. At most, it is about ± 3.0 μm, and when the outer diameter of the reference cylinder 8 is 100 mm at this time, ΔL ′ is about 9.0 × 10 −5 μm from Equation 1. Considering that this value is generally 0.1 μm in measurement reproducibility of a sensor that is generally regarded as highly accurate, it can be said that the influence on the measurement result is extremely small.

加えて、測定子の位置決め加工によって生じる誤差は、前記の位置決め誤差とは別に角度誤差についても言及されるべきである。これについては、いったん前記位置決め誤差と分離して、センサーS1の検知軸に対する角度誤差のみに由来する前記ΔLは、下記式で与えられる。   In addition, the error caused by the positioning process of the probe should be referred to as the angle error in addition to the positioning error. With respect to this, once separated from the positioning error, the ΔL derived only from the angle error with respect to the detection axis of the sensor S1 is given by the following equation.

ΔL = ΔS1・tanθ   ΔL = ΔS1 · tanθ

例えば分解能1μm程度の触芯式センサー等を用いて加工し位置決めした場合に想定される角度誤差は一般に±14秒(3.9×10−3°)程度である。また、センサーS1と基準円筒8の外表面までの距離ΔS1が1.0mm程度のときは、ΔLが0.068μmとなる。このとき基準円筒8の外径が100mmであった場合、ΔL´は数式1より約4.6×10−8μmであり、誤差として極めて小さいと言える。 For example, the angle error assumed when processing and positioning using a touch sensor with a resolution of about 1 μm is generally about ± 14 seconds (3.9 × 10 −3 ). When the distance ΔS1 between the sensor S1 and the outer surface of the reference cylinder 8 is about 1.0 mm, ΔL is 0.068 μm. At this time, when the outer diameter of the reference cylinder 8 is 100 mm, ΔL ′ is about 4.6 × 10 −8 μm from Equation 1, and it can be said that the error is extremely small.

従ってセンサーS1は、これまで述べた範囲の測定系においては自身の検知軸が基準円筒8の断面円の円中心を通過していなくとも、前記円中心を測定基準位置Oとして測定を行うことが出来る。また、以上のことからLS2,LS3についても同様に扱うことが出来る。更に加えて述べれば、前記浮動中心Oの移動距離はあくまで前記LS1、LS2、LS3の数値によって算出されるものであって、前記ΔLの距離に影響を受けるものではない。 Therefore, in the measurement system in the range described so far, the sensor S1 performs measurement using the circle center as the measurement reference position O 0 even if its detection axis does not pass through the circle center of the cross-sectional circle of the reference cylinder 8. I can do it. From the above, LS2 and LS3 can be handled in the same manner. Stated further added, the moving distance of the floating center O n is an intended to be calculated only by the numerical of the LS1, LS2, LS3, not affected by the distance of the [Delta] L.

続いて前記2つのコロ6上に円筒状基体1を載置し、センサーS1から円筒状基体1の外表面までの距離を測定し、S1とする。このときLS1が既知であることから、LS1からS1を減算して前記1を算出し、同様に、12及び11を測定、算出する。 Followed by placing the cylindrical substrate 1 on the two rollers 6, the distance from the sensor S1 to the outer surface of the cylindrical substrate 1 were measured, and S1 0. Since this time LS1 is known, LS1 after subtracting S1 0 calculates the 1 0, similarly, measuring 12 0 and 11 0, is calculated.

第二段階として、円筒状基体1を右方向に30°回転させる。すると第一段階での円筒状基体1の円周上の測定点1、12及び11は、図4(b)に示すように、各々1、12、11に移動する。またセンサーS1、S2及びS3は、各々円筒状基体1の円周上の点2、1及び12と測定基準点Oとの距離を測定可能となる。このとき、浮動中心On=0が、円筒状基体1の被測定断面円の真の中心と一致していない且つ塗膜7の外周形状が真円形状でないことを前提として、OはOn=1に移動する。この時点では、浮動中心On=0と円筒状基体1の円周上の点2との距離は不明である。次いで、センサーS1、S2及びS3を用いて、各々円筒状基体1の円周上の点2、1及び12と測定基準点Oとの距離L2、L1及びL12を測定する。 As a second step, the cylindrical substrate 1 is rotated 30 ° in the right direction. Then measuring points 1 0 on the circumference of the cylindrical substrate 1 in the first stage, 12 0 and 11 0, as shown in FIG. 4 (b), it moves each 1 1, 12 1, 11 1. The sensors S1, S2 and S3 can measure the distances between the points 2 1 , 1 1 and 12 1 on the circumference of the cylindrical substrate 1 and the measurement reference point O 0 . At this time, assuming that the floating center O n = 0 is, and the outer peripheral shape of the coating film 7 does not coincide with the true center of the measured cross section circle of the cylindrical substrate 1 is not a perfect circle, O n is O Move to n = 1 . At this point, the floating center O n = 0 and the distance between the point 2 1 on the circumference of the cylindrical substrate 1 is unknown. Next, using the sensors S1, S2 and S3, distances L2 1 , L1 1 and L12 1 between the points 2 1 , 1 1 and 12 1 on the circumference of the cylindrical substrate 1 and the measurement reference point O 0 are measured. To do.

ここで、回転による各距離の変化から浮動中心Oの現在位置On=1の位置を求める。L1、L12は既知であることから、センサーS2及びS3の各検知軸上におけるOn=0からOn=1への移動距離ΔL1、ΔL12が求まる。 Here, determine the position of the current position O n = 1 floating center O n from the change in the distance by the rotation. L1 0, since L12 0 is known, the moving distance .DELTA.L1 1 from O n = 0 to O n = 1 on the detection axis of the sensor S2 and S3, ΔL12 1 is obtained.

ΔL1=L1−L1・・・(1)
ΔL12=L12−L12・・・(2)
ΔL1 1 = L1 1 −L1 0 (1)
ΔL12 1 = L12 1 −L12 0 (2)

以降、この2つの距離を用いてセンサーS1の検知軸上での浮動中心On=1の移動距離ΔL2を求める。そして、L2とΔL2の差をとることで、浮動中心On=0と円周上の点2との距離が求まる。即ち、図5(b)に示すようにΔL1をaとし、センサーS1の検知軸と浮動中心On=1の最短距離即ちセンサーS1の検知軸をy軸とする直交座標で表すところの浮動中心On=1のx軸成分での移動距離をbとする。そして、aとbをそれぞれ図5(b)に示すr及びr´を用いて表せば、
r´・sinθ+r=a ・・・(3)
r´+r・sinθ=b ・・・(4)
r´=(b−a・sinθ)/(cosθ) ・・・(5)
r=a−sinθ・[(b−a・sinθ)/(cosθ)] ・・・(6)
更に、図5(b)より、ΔL2=r・cosθであることから、
ΔL2=a・cosθ−tanθ(b−a・sinθ) ・・・(7)
ここで、図5(a)より、
ΔL12−b・sin(θ+θ)=ΔL2・cos(θ+θ) ・・・(8)
ΔL2=[ΔL12−b・sin(θ+θ)]/[cos(θ+θ)] ・・・(9)
a・cosθ−tanθ・(b−a・sinθ
=[ΔL12−b・sin(θ+θ)]/[cos(θ+θ)] ・・(10)
b=[a(cosθ+sinθ・tanθ)・cos(θ+θ)−ΔL12]/[tanθ・cos(θ+θ)−sin(θ+θ)] ・・・(11)
従って、ΔL2は、以下の2つの式に含まれる引数、即ちセンサーの互いの挟角と測定値によって求めることが可能である。数式(7)より、
ΔL2=ΔL1・cosθ−tanθ(b−ΔL1・sinθ) ・・・(12)
b=[ΔL1・(cosθ+sinθ・tanθ)・cos(θ+θ)−ΔL12]/[tanθ・cos(θ+θ)−sin(θ+θ)] ・・・(13)
上記(12)(13)式を用いて求められたΔL2から、L2=L2−ΔL2として、L2を得る。
Thereafter, using these two distances, a moving distance ΔL2 1 of the floating center On = 1 on the detection axis of the sensor S1 is obtained. Then, by taking the difference between L2 1 and [Delta] L2 1, the distance between the floating center O n = 0 and the point 2 0 on the circumference is obtained. That is, the .DELTA.L1 1 as shown in FIG. 5 (b) is a, float sensing axis of the detection axis and the floating center O n = 1 of the shortest distance or sensor S1 of the sensor S1 in place represented by orthogonal coordinates to y-axis Let b be the movement distance in the x-axis component of the center On = 1 . And if a and b are expressed using r and r ′ shown in FIG.
r ′ · sin θ 1 + r = a (3)
r ′ + r · sin θ 1 = b (4)
r ′ = (b−a · sin θ 1 ) / (cos 2 θ 1 ) (5)
r = a−sin θ 1 · [(b−a · sin θ 1 ) / (cos 2 θ 1 )] (6)
Furthermore, from FIG. 5B, since ΔL2 1 = r · cos θ 1 ,
ΔL2 1 = a · cosθ 1 -tanθ 1 (b-a · sinθ 1) ··· (7)
Here, from FIG.
ΔL12 1 −b · sin (θ 1 + θ 2 ) = ΔL2 1 · cos (θ 1 + θ 2 ) (8)
ΔL2 1 = [ΔL12 1 −b · sin (θ 1 + θ 2 )] / [cos (θ 1 + θ 2 )] (9)
a · cosθ 1 -tanθ 1 · ( b-a · sinθ 1)
= [ΔL12 1 −b · sin (θ 1 + θ 2 )] / [cos (θ 1 + θ 2 )] (10)
b = [a (cos θ 1 + sin θ 1 · tan θ 1 ) · cos (θ 1 + θ 2 ) −ΔL12 1 ] / [tan θ 1 · cos (θ 1 + θ 2 ) −sin (θ 1 + θ 2 )] ( 11)
Therefore, ΔL2 1 can be obtained from the arguments included in the following two expressions, that is, the included angle of the sensor and the measured value. From Equation (7)
ΔL2 1 = ΔL1 1 · cosθ 1 -tanθ 1 (b-ΔL1 1 · sinθ 1) ··· (12)
b = [ΔL1 1 · (cos θ 1 + sin θ 1 · tan θ 1 ) · cos (θ 1 + θ 2 ) −ΔL12 1 ] / [tan θ 1 · cos (θ 1 + θ 2 ) −sin (θ 1 + θ 2 )]・ (13)
From [Delta] L2 1 determined using the above (12) (13), as L2 0 = L2 1 -ΔL2 1, to obtain the L2 0.

第三段階として、更に円筒状基体1を右方向に30°回転させる。すると、上記第二段階に於ける円筒状基体1の円周上の測定点2、1、12は、各々2、1、12に移動する。またセンサーS1、S2、S3は、各々円筒状基体1の円周上の点3、2及び1と測定基準点Oとの距離を測定可能となる。また浮動中心On=1は、更にOn=2に移動する。次いで、センサーS1〜S3を用いて、各々円筒状基体1の円周上の点3、2及び1とOとの間の距離を測定する。これらの測定値を用いて、上記と同様の方法にて浮動中心On=2のOn=0からの移動距離を算出する。更にその計算結果を用いて、センサーS1の測定軸(y軸)上におけるOn=2のOn=0からの移動距離(ΔL3)を求める。そこから浮動中心On=0と円筒状基体1の円周上の点3との距離を求める。以降、同様に円筒状基体1を30°ずつ回転させ、浮動中心On=0と円筒状基体1の円周上の点4、5、6、7、8、9及び10各々との距離L4、L5、L6、L7、L8、L9及びL10を求める。このとき、L11、L12、についても同様な方法を用いて算出すれば、より高い精度の測定結果を得ることが出来る。 As a third step, the cylindrical substrate 1 is further rotated 30 ° to the right. Then, the measurement points 2 1 , 1 1 , 12 1 on the circumference of the cylindrical substrate 1 in the second stage move to 2 2 , 1 2 , 12 2 , respectively. The sensors S1, S2, S3 is enabled each measure the distance between the point 3 2, 2 2 and 1 2 and the measurement reference point O 0 on the circumference of the cylindrical substrate 1. Further, the floating center On = 1 moves further to On = 2 . Then, by using the sensor S1 to S3, respectively measure the distance between points 3 2, 2 2 and 1 2 and O 0 on the circumference of the cylindrical substrate 1. Using these measured values, the moving distance from On = 0 of floating center On = 2 is calculated in the same manner as described above. Further, using the calculation result, a moving distance (ΔL3 2 ) from On = 0 of On = 2 on the measurement axis (y-axis) of the sensor S1 is obtained. Determining the distance between the floating center O n = 0 and the point 3 0 on the circumference of the cylindrical substrate 1 therefrom. Thereafter, likewise the cylindrical substrate 1 is rotated by 30 °, the floating center O n = 0 and the point 4 0 on the circumference of the cylindrical substrate 1, 5 0, 6 0, 7 0, 8 0, 9 0, and 10 0 distance between each L4 0, L5 0, L6 0 , L7 0, L8 0, obtains the L9 0 and L10 0. At this time, if L11 0 and L12 0 are also calculated using the same method, a measurement result with higher accuracy can be obtained.

最後に、塗膜7の膜厚を求めるにあたり、これまで求めた浮動中心Oの、センサーS4の検知軸上での移動距離を求める。ここでは、浮動中心On=1を用いて述べる。図6のようにセンサーS1の検知軸を直交座標系のY軸とかさねて示す。その場合、センサーS4の検知軸は、X軸との挟角θは90°+θ、浮動中心Oとの挟角をθ、OとOの距離をΔL1としたとき、浮動中心OのセンサーS4の検知軸上での移動距離をΔLは、下記式で得られる。 Finally, when seeking a thickness of the coating film 7, the floating center O n obtained until now, determining the moving distance on the detection axis of the sensor S4. Here, the floating center On = 1 will be used. As shown in FIG. 6, the detection axis of the sensor S <b> 1 is shown so as to overlap the Y axis of the orthogonal coordinate system. In that case, the detection axis of the sensor S4 is included angle theta t is 90 ° + θ 1 of an X-axis, when the .DELTA.L1 1 the distance an included angle theta f, O 0 and O n the floating center O 1, the moving distance [Delta] L t on the detection axis of the sensor S4 in the floating center O n is obtained by the following equation.

ΔL=ΔL1・cos(θ−θ)・・・(14) ΔL t = ΔL1 1 · cos (θ t −θ f ) (14)

そして塗膜7の膜厚は、このΔLを用いて前述と同様に塗膜7の外周形状を求め、既に明らかな円筒状基体1の被測定断面の寸法形状を減算することによって算出することが出来る。 Then, the film thickness of the coating film 7 is calculated by obtaining the outer peripheral shape of the coating film 7 in the same manner as described above using this ΔL t and subtracting the dimension shape of the measured cross section of the cylindrical substrate 1 that has already been apparent. I can do it.

ここで、先に述べたように浮動中心Oは円筒状基体1が回転するに従ってその位置を移動する点であることから、必ずしも常にセンサーの検知軸上に存在することは望めず、この検知軸に対する浮動中心Oの位置のズレは測定誤差を生じる。しかしながらその誤差は次のようになる。まず浮動中心Oと前記検知軸までの最小距離をΔL、検知軸上の円筒状基体1の円周と測定基準位置Oとの距離をL、検知軸と平行且つ浮動中心Oを通過する軸が円筒状基体1の円周と交わる点と測定基準位置Oとの距離をLとする。そのとき、検知距離に与える誤差ΔL´は下記式で得られる。 Here, since the floating center O n as previously described in that moving the position according to the cylindrical body 1 is rotated, not be expected always to always be present on the sensor detection axis, the detection deviation of the position of the floating center O n with respect to the axis produces a measurement error. However, the error is as follows. First the minimum distance between the floating center O n until the sensing axis [Delta] L, L 1 the distance between the circumference and the measurement reference position O 0 of the cylindrical substrate 1 on detection axis, parallel and floating center O n the sensing axis Let L 2 be the distance between the point at which the passing axis intersects the circumference of the cylindrical substrate 1 and the measurement reference position O 0 . At that time, the error ΔL ′ given to the detection distance is obtained by the following equation.

結果、ΔL´は非常に小さくなる。一例として、平均半径が50mmであって真円度が100μm程度の円を測定対象とした場合、浮動中心Oの移動距離は50μm程度生じることが想定され、ΔL´は、約0.025μmとなる。この数値は、誤差として測定値に対して5×10−5%、浮動中心Oの移動距離に対しても0.05%である。一般的に高精度とされるセンサーの測定再現性がほぼ0.1μmであることを考慮すれば、測定結果に与える影響は極めて小さいと言える。 As a result, ΔL ′ becomes very small. As an example, if the roundness average radius of a 50mm has a circle of about 100μm measured, the moving distance of the floating center O n is assumed to occur about 50 [mu] m, DerutaL' is about 0.025μm Become. This number, 5 × 10 -5% with respect to the measurement value as an error, it is 0.05% with respect to the moving distance of the floating center O n. Considering that the measurement reproducibility of a sensor that is generally regarded as highly accurate is approximately 0.1 μm, it can be said that the influence on the measurement result is extremely small.

加えて、円筒状基体1を測定に従って回転させるときに生じることが予想される、回転角度に起因する誤差について次に言及する。回転誤差角度をθ°、検知軸上の円筒状基体1の円周と測定基準位置Oとの距離をL、測定基準位置Oで検知軸と前記回転誤差角度を挟んで交差する軸上の、測定基準位置Oから円筒状基体1の円周までの距離をLとする。検知距離に与える誤差ΔL´は下記式で与えられる。 In addition, the error due to the rotation angle, which is expected to occur when the cylindrical substrate 1 is rotated according to the measurement, will be described next. The rotation error angle is θ °, the distance between the circumference of the cylindrical substrate 1 on the detection axis and the measurement reference position O 0 is L 1 , and the axis that intersects the detection axis and the rotation error angle at the measurement reference position O 0. The upper distance from the measurement reference position O 0 to the circumference of the cylindrical substrate 1 is L 2 . The error ΔL ′ given to the detection distance is given by the following equation.

結果、ΔL´は非常に小さくなる。一例として、測定対象円の平均半径が50mmであって、回転誤差が0.1°生じた場合のΔL´は、約0.076μmとなる。この数値は、誤差として測定値に対して1.5×10−4%である。この誤差は前記の一般的なセンサーの測定再現性に加えて、一般的且つ安価な回転機構の停止精度がその再現性としてほぼ0.04°程度を十分期待出来ることを考慮すれば、測定結果に与える影響は極めて小さいと言える。 As a result, ΔL ′ becomes very small. As an example, ΔL ′ when the average radius of the measurement target circle is 50 mm and the rotation error is 0.1 ° is about 0.076 μm. This numerical value is 1.5 × 10 −4 % with respect to the measured value as an error. In addition to the measurement reproducibility of the above-mentioned general sensor, this error is a measurement result when considering that the stop accuracy of a general and inexpensive rotation mechanism can be expected to be approximately 0.04 °. It can be said that the effects on the

以上述べた測定方法は、円筒状基体1の被測定断面円筒の外径、内径、及び長さによってその機能が影響を受ける度合いが小さいことから、例えば外径においては、φ5mm程度の非常に細いものから数メートルに至るものにまで用いることが出来る。更に、円筒状基体1の被測定断面円筒が自身の長さや重量に対して非常に細いか、又は材質として軟らかいか、或いは非常に薄肉である等の理由から、測定中に重力の影響を受けて撓む等の弾性変形を生じて測定結果に影響を与える可能性が有る。そのときは、円筒状基体1の被測定断面円筒の回転軸を重力その他の外的作用方向に対して平行に近づけて測定を行うことが有効である。   In the measuring method described above, since the function is less affected by the outer diameter, inner diameter, and length of the cross-section cylinder to be measured of the cylindrical substrate 1, for example, the outer diameter is very thin, about φ5 mm. It can be used for anything from one to several meters. Furthermore, because the cross-sectional cylinder to be measured of the cylindrical substrate 1 is very thin with respect to its length and weight, is soft as a material, or is very thin, it is affected by gravity during measurement. This may cause elastic deformation such as bending and affect measurement results. In that case, it is effective to perform the measurement by bringing the rotation axis of the cross-sectional cylinder to be measured of the cylindrical substrate 1 close to parallel to the direction of gravity or other external action.

また、各回転軸と直角を成す断面の円周形状の測定にあたって円筒状基体1の被測定断面円筒を回転させる際、各測定位置において回転を停止させることなくセンサーによる測定を行うことも、測定時間の短縮において有効である。   Further, when rotating the cross-section cylinder of the cylindrical substrate 1 in measuring the circumferential shape of the cross section perpendicular to each rotation axis, measurement by a sensor can be performed without stopping the rotation at each measurement position. It is effective in shortening the time.

更には、センサーを固定する前記取り付け台を複数台使用して、同時に複数の回転軸と直角を成す断面の円周形状を測定することによって、より少ない回転数、特には1回転のみでの測定を行うことも非常に有効である。
変位が測定可能なセンサーは、角度θを挟んで配置されたAとBの2つのセンサーと、角度θを挟んで配置された、A´とB´の2つのセンサーの4つのセンサーとからなる。且つ、前記円筒状基体上に設けられた塗膜又は被膜の変位が測定可能なセンサーが、前記4つのいずれかのセンサーと前記θの正の整数倍の角度を挟んで配置されることによって、よりデータ数の多く、かつ測定精度の高い測定を行うことが出来る。このとき、AとA´又はBとB´の挟角の角度が前記θの正の整数倍であれば、より好ましい。
Furthermore, by using a plurality of mounting bases for fixing the sensor and measuring the circumferential shape of a cross section perpendicular to a plurality of rotation axes at the same time, measurement with a smaller number of rotations, particularly only one rotation, is possible. It is also very effective to do.
The sensor capable of measuring the displacement is composed of two sensors A and B arranged with the angle θ interposed therebetween, and four sensors of two sensors A ′ and B ′ arranged with the angle θ interposed therebetween. . And, the coating film provided on the cylindrical substrate or a sensor capable of measuring the displacement of the coating is arranged with any one of the four sensors and an angle that is a positive integer multiple of θ, It is possible to perform measurement with a larger number of data and higher measurement accuracy. At this time, it is more preferable that the included angle between A and A ′ or B and B ′ is a positive integer multiple of θ.

次に本発明を実施例により具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

円筒状基体として予め一般的な切削加工を施された、加工設定外径がφ84.0mm、内径がφ78.0mm、長さ360.0mmのA3003アルミニウム合金製円筒状基体を準備した。次に、下記式1で示されるアミン化合物9質量部、   A cylindrical substrate made of A3003 aluminum alloy, which had been subjected to a general cutting process in advance as a cylindrical substrate and had a processing set outer diameter of φ84.0 mm, an inner diameter of φ78.0 mm, and a length of 360.0 mm, was prepared. Next, 9 parts by mass of an amine compound represented by the following formula 1,

下記式2で示されるアミン化合物1質量部と、 1 part by mass of an amine compound represented by the following formula 2,

下記式3及び4で示される両ポリアリレート樹脂をそれぞれ7対3の割合で共重合させて作成した結着樹脂10質量部 10 parts by mass of a binder resin prepared by copolymerizing both polyarylate resins represented by the following formulas 3 and 4 at a ratio of 7 to 3, respectively.

をモノクロロベンゼンに溶解して塗布液を作成した。そして、この塗布液を前記アルミニウム合金製円筒状基体に浸漬塗布法で塗布した。 Was dissolved in monochlorobenzene to prepare a coating solution. And this coating liquid was apply | coated to the said aluminum alloy cylindrical base | substrate by the dip coating method.

これを被測定円筒状基体サンプルとした。同時に基準円筒として、円筒の一端から回転軸方向に80mmの位置の真円度が0.20μm、平均外径値が84.000mmであることと前記塗膜を備えない以外は被測定円筒状基体と同様なアルミニウム合金製円筒を準備した。なお、基準円筒の形状測定に際しては、真円度測定器(商品名:ラウンドテストRA−H5000AH;株式会社ミツトヨ社製)を用いた。   This was used as a cylindrical substrate sample to be measured. At the same time, as a reference cylinder, the roundness at a position of 80 mm from one end of the cylinder in the direction of the rotation axis is 0.20 μm, the average outer diameter value is 84.000 mm, and the measured cylindrical substrate except that the coating film is not provided The same aluminum alloy cylinder was prepared. In measuring the shape of the reference cylinder, a roundness measuring device (trade name: Round Test RA-H5000AH; manufactured by Mitutoyo Corporation) was used.

基準円筒を、図7に示す様に、3つの渦電流式センサーS0、S45、S90及び正反射型レーザー式センサーTを次のように載置した。各センサーの測定軸が、前記円筒の軸に直交する方向の断面の円内の所定の点においてほぼ交わり、且つその点を中心として、それぞれ互いに挟角として45°を挟んで扇状に配置した円筒体測定器の円筒受け治具上に位置される。上記4つのセンサーは、円筒状基体の被測定断面円の一端から回転軸方向に80mmの位置に配置した。渦電流式センサーはKAMAN社製渦電流式センサー、正反射型レーザー式センサーはキーエンス社製CCDレーザー変位センサLK010をそれぞれ使用した。このときの各センサーの検出値は、ΔS0=448μm、ΔS45=273μm、ΔS90=296μm、ΔT=321μmとなった。このとき各センサーから前記測定基準位置Oまでの距離を、LS0=42.448mm、LS45=42.273mm、LS90=42.296mm、LT=42.321mmとした。 As shown in FIG. 7, three eddy current sensors S0, S45, S90 and a regular reflection type laser sensor T were mounted on the reference cylinder as follows. A cylinder in which the measurement axes of the sensors substantially intersect at a predetermined point in a circle in a cross section perpendicular to the axis of the cylinder, and are arranged in a fan shape with the angle of 45 ° between each point. Located on the cylindrical receiving jig of the body measuring instrument. The four sensors were arranged at a position of 80 mm in the rotation axis direction from one end of the cross-sectional circle to be measured of the cylindrical substrate. The eddy current sensor used was an eddy current sensor manufactured by KAMAN, and the regular reflection type laser sensor used was a CCD laser displacement sensor LK010 manufactured by Keyence Corporation. The detection values of each sensor at this time were ΔS0 = 448 μm, ΔS45 = 273 μm, ΔS90 = 296 μm, and ΔT = 321 μm. At this time, the distance from each sensor to the measurement reference position O 0 was LS0 = 42.448 mm, LS45 = 42.273 mm, LS90 = 42.296 mm, and LT = 42.321 mm.

次に、受け冶具上の基準円筒を前記被測定円筒状基体と交換し、回転駆動伝達機にて一測定回数あたり45°ずつ回転させて測定を計8回行った。そして得られた検出値を、センサーごとに前記LS0,LS45,LS90及びLTから減算し、各測定ポイントから測定基準位置Oまでの距離を求めた。これをセンサーS0,S45,S90については表1に、センサーTについては表3にそれぞれ示す。なお、表1から表3中の寸法単位は、全てmmとして記した。 Next, the reference cylinder on the receiving jig was replaced with the cylindrical substrate to be measured, and the measurement was performed a total of 8 times by rotating 45 ° per measurement with a rotary drive transmission. And a detection value obtained, the subtracted from LS0, LS45, LS90 and LT for each sensor, to determine the distance from each measurement point to the measurement reference position O 0. This is shown in Table 1 for sensors S0, S45, and S90, and in Table 3 for sensor T. In addition, all the dimensional units in Tables 1 to 3 are shown as mm.

以降、実施例で使用する表の枠中では、測定開始時点でS0位置における測定を0°とし、円筒状基体の被測定断面円筒の回転に従ってS0に到達する円周表面上の被測定位置に順次45°を加算して与える。   Thereafter, in the table frame used in the examples, the measurement at the S0 position is set to 0 ° at the start of measurement, and the measurement position on the circumferential surface reaches S0 according to the rotation of the cross-section cylinder of the cylindrical substrate. Add 45 ° sequentially to give.

前記浮動中心の移動距離を求めるにあたり、センサーS45、及びS90の検知軸上における各移動距離を、前記式(1)、(2)を用いて算出する。このとき各軸上での移動距離は、S45の検知軸上ではS45の測定値と45°回転前のS0の測定値との差、S90の検知軸上ではS90の測定値と45°回転前のS45の測定値との差としてそれぞれ算出する。以上を表1に示す。   In obtaining the movement distance of the floating center, the movement distances on the detection axes of the sensors S45 and S90 are calculated using the equations (1) and (2). At this time, the movement distance on each axis is the difference between the measured value of S45 and the measured value of S0 before 45 ° rotation on the detection axis of S45, and the measured value of S90 and before 45 ° rotation on the detection axis of S90. Are calculated as differences from the measured values of S45. The above is shown in Table 1.

次に、前記式(13)を用いて、直交座標位置におけるΔxを求め、続いてΔyとして、前記式(12)を用いて算出した。ここでΔx及びΔyは、直交座標位置で示すところの浮動中心Oの移動距離である。続いて、このΔyをS0の測定値から減算することによって、S0位置の真値、即ち浮動中心Oを基準とした円筒状基体の被測定断面円筒表面までの距離を求めた。以上を表2に示す。 Next, Δx at the orthogonal coordinate position was obtained using the equation (13), and then Δy was calculated using the equation (12). Here Δx and Δy are the moving distance of the floating center O n where indicated by orthogonal coordinates. Then, by subtracting this Δy from the measured values of S0, it was determined the distance to the true value, i.e. the measured cross-section cylindrical surface relative to the floating center O n cylindrical substrate of S0 position. The above is shown in Table 2.

最後に塗膜の膜厚を求めるにあたり、これまで求めた浮動中心Oの、センサーTの検知軸上での移動距離を前記式(14)を用いてΔLtとして求めた。ここでは、センサーTの検知軸と前記X軸との挟角θは135°として与えた。このΔLを用いて前述と同様にTの真値を求め、既に求められているS0の真値との差を求めて膜厚値を得る。なお、TとS0との位置関係から、本実施例ではS0はTよりも回転方向に対して45°位相を遅らせた数値、即ち回転回数が1回分後の真値を用いて減算した。以上を表3に示す。 Finally Upon obtaining the film thickness of the coating was determined floating center O n obtained so far, the movement distance on the detection axis of the sensor T as ΔLt using the equation (14). Here, included angle theta t between the detection axis of the sensor T and the X axis is given as 135 °. Using this ΔL t , the true value of T is obtained in the same manner as described above, and the difference from the already obtained true value of S0 is obtained to obtain the film thickness value. From the positional relationship between T and S0, in this embodiment, S0 is subtracted using a numerical value obtained by delaying the phase by 45 ° with respect to the rotation direction from T, that is, a true value after one rotation. The above is shown in Table 3.

本発明により円筒状基体上の塗膜又は被膜の膜厚の測定が容易になり、本発明は精度の良い塗膜形成に寄与する技術として利用が期待される。   The present invention facilitates the measurement of the film thickness of a coating film or a film on a cylindrical substrate, and the present invention is expected to be used as a technique that contributes to the formation of a highly accurate coating film.

測定フローチャートMeasurement flowchart 測定機概略図Measuring machine schematic (a)基準円筒とセンサーとの位置を示す図、(b)センサーの位置決め誤差を示す図(A) The figure which shows the position of a reference | standard cylinder and a sensor, (b) The figure which shows the positioning error of a sensor (a)測定位置説明図、(b)浮動中心の移動に関する説明図(A) Measurement position explanatory diagram, (b) Explanatory diagram regarding movement of floating center (a)浮動中心位置の算出に関する説明図(1)、(b)浮動中心位置の算出に関する説明図(2)(A) Explanatory diagram regarding calculation of floating center position (1), (b) Explanatory diagram regarding calculation of floating center position (2) 浮動中心Oの、センサーS4の検知軸上での移動距離Floating center O n, the movement distance on the detection axis of the sensor S4 実施例1のセンサー位置を示す図The figure which shows the sensor position of Example 1. 浮動中心の軌跡を示す図Diagram showing the locus of the floating center

符号の説明Explanation of symbols

1 円筒状基体
2 センサー取り付け台
3 支持台
4 ガイドレール
5 ボールねじ
6 円筒受け治具
7 塗膜
8 基準円筒
S1 センサーS1
S2 センサーS2
S3 センサーS3
S4 センサーS4
S0、S45、S90 渦電流式センサー
T 正反射型レーザー式変位測定センサー
DESCRIPTION OF SYMBOLS 1 Cylindrical base | substrate 2 Sensor mounting stand 3 Support stand 4 Guide rail 5 Ball screw 6 Cylindrical receiving jig 7 Coating film 8 Standard cylinder S1 Sensor S1
S2 sensor S2
S3 sensor S3
S4 sensor S4
S0, S45, S90 Eddy current type sensor T Regular reflection type laser displacement measurement sensor

Claims (5)

円筒状基体の外表面の断面円の形状、円中心、真円度、外径値を特定し、且つ前記円筒状基体上に設けられた塗膜又は被膜の厚み及び塗膜又は被膜の外表面の断面円の形状、円中心、真円度、外径値を特定して測定する方法であって、
前記円筒状基体外表面の変位が測定可能な測定手段を用いて、前記円筒状基体外表面の軸に対して直交する前記円筒状基体外表面の断面円内に設定した基準点に対する前記断面円の円周上に定められた3つ以上の点の距離の前記円筒状基体の回転による変化に基づいて、前記基準点と前記円周上の点との距離を算出して前記円筒状基体外表面の断面円の形状、円中心、真円度、外径値を特定し、
且つ、前記塗膜又は被膜外表面の変位が測定可能な測定手段を用いて、前記3つ以上の点とは別の、前記断面円と同一の断面上且つ前記塗膜又は被膜の外表面上の1つ以上の点と前記基準点との距離を算出し、前記円筒状基体外表面の断面円の形状をもとに前記塗膜又は被膜の厚みを測定することを特徴とする、
円筒状基体の外表面の断面円の形状、円中心、真円度、外径値を特定し、且つ前記円筒状基体上に設けられた塗膜又は被膜の厚み及び塗膜又は被膜の外表面の断面円の形状、円中心、真円度、外径値の測定方法。
The shape of the cross-sectional circle, the center of the circle, the roundness, and the outer diameter value of the outer surface of the cylindrical substrate are specified, and the thickness of the coating film or coating film provided on the cylindrical substrate and the outer surface of the coating film or coating film Is a method of measuring by specifying the shape of the cross-sectional circle, the center of the circle, the roundness, the outer diameter value,
The cross-sectional circle with respect to a reference point set in the cross-sectional circle of the cylindrical substrate outer surface orthogonal to the axis of the cylindrical substrate outer surface using a measuring means capable of measuring the displacement of the cylindrical substrate outer surface And calculating the distance between the reference point and the point on the circumference based on the change of the distance between three or more points determined on the circumference of the cylinder by the rotation of the cylindrical base. Identify the cross-sectional circle shape, center of circle, roundness, outer diameter value of the surface,
And, using a measuring means capable of measuring the displacement of the outer surface of the coating film or coating, on the same cross section as the sectional circle and on the outer surface of the coating film or coating, apart from the three or more points. Calculating the distance between one or more points and the reference point, and measuring the thickness of the coating film or film based on the shape of the cross-sectional circle of the outer surface of the cylindrical substrate,
The shape of the cross-sectional circle, the center of the circle, the roundness, and the outer diameter value of the outer surface of the cylindrical substrate are specified, and the thickness of the coating film or coating film provided on the cylindrical substrate and the outer surface of the coating film or coating film Of measuring cross-sectional circle shape, circle center, roundness, and outer diameter value.
請求項1に記載の円筒状基体を回転する円筒受け治具に載置し、前記円筒体の略回転軸に平行に往復可能に設けられた取り付け台に、センサー(変位を検出するためのセンサー。以下同じ)が前記円筒体の前記略回転軸と直角を成す同一断面上に取り付けられており、
前記センサーは、前記略回転軸と前記断面とが交わる点である測定基準点(O)に向けられ、且つOを中心として互いに角度θで扇状に配置して取り付け台に固定された3個以上あるm個の前記円筒状基体外表面の変位を測定するするセンサーS(S1、S2・・・Sm)と、前記塗膜又は被膜の外表面の変位を測定するセンサーTとであり、
前記m個のセンサーSによって測定された前記センサーSから前記円筒状基体の中心点までのn(断面円の円周形状を算出するために要する数であって、均等にθ°間隔で上記距離を求めて断面円の円周形状を算出する場合には、n=360°/θ°)個の距離データLS(LS1、LS1・・・LSm)及び前記センサーTから前記円筒状基体の中心点までのn個の距離データLT(LT、LT・・・LT)より、前記円筒状基体の断面円形状と円中心と真円度と外径値、及び前記円筒状基体上に設けられた塗膜又は被膜の厚みΔLT(LT、LT・・・LT)を求めることを特徴とする、請求項1に記載の測定方法。
The cylindrical base body according to claim 1 is placed on a rotating cylindrical receiving jig, and a sensor (sensor for detecting displacement) is mounted on a mounting base that is reciprocally movable in parallel with a substantially rotational axis of the cylindrical body. The same applies hereinafter) is mounted on the same cross section perpendicular to the rotation axis of the cylindrical body,
The sensor is directed to a measurement reference point (O 0 ), which is a point where the substantially rotational axis and the cross section intersect, and is arranged in a fan shape at an angle θ around O 0 and fixed to a mounting base 3 A sensor S (S1, S2,... Sm) for measuring the displacement of the outer surface of the cylindrical substrate of m or more, and a sensor T for measuring the displacement of the outer surface of the coating film or coating,
N from the sensors S measured by the m sensors S to the center point of the cylindrical substrate (the number required to calculate the circumferential shape of the cross-sectional circle, and the distance is evenly spaced by θ °) To calculate the circumferential shape of the cross-sectional circle, n = 360 ° / θ °) distance data LS (LS1 1 , LS1 2 ... LSm n ) and the sensor T to the cylindrical base body From the n pieces of distance data LT (LT 1 , LT 2 ... LT n ) to the center point, the cross-sectional circular shape, the circle center, the roundness, the outer diameter value of the cylindrical substrate, and the cylindrical substrate The measuring method according to claim 1 , wherein a thickness ΔLT (LT 1 , LT 2 ... LT n ) of a coating film or a film provided on the surface is obtained.
前記円筒状基体が渦電流を用いた変位測定が可能な材料からなり、且つ前記円筒状基体上に設けられた塗膜又は被膜が前記渦電流を用いた変位測定が不可能な材料からなることを特徴とする、請求項1又は2に記載の測定方法。   The cylindrical substrate is made of a material capable of measuring displacement using eddy current, and the coating film or coating provided on the cylindrical substrate is made of a material that cannot measure displacement using the eddy current. The measuring method according to claim 1 or 2, characterized by the above. 前記円筒状基体外表面の変位が測定可能な変位測定手段が、角度θを挟んで配置されたAとBの2つのセンサーと、角度θを挟んで配置された、A´とB´の2つのセンサーの4つのセンサーからなり、且つ、前記円筒状基体上に設けられた塗膜又は被膜の変位が測定可能な変位測定手段が、前記4つのいずれかのセンサーと前記θの正の整数倍の角度を挟んで配置されることを特徴とする、請求項1−3に記載の測定方法。   The displacement measuring means capable of measuring the displacement of the outer surface of the cylindrical substrate has two sensors A and B arranged with an angle θ interposed therebetween, and two of A ′ and B ′ arranged with an angle θ interposed therebetween. Displacement measuring means comprising four sensors of the four sensors and capable of measuring the displacement of the coating film or coating provided on the cylindrical substrate is a positive integer multiple of the four sensors and θ. The measurement method according to claim 1, wherein the measurement method is arranged with an angle of ≦ 5. 円筒状基体の外表面の断面円の形状、円中心、真円度、外径値を特定し、且つ前記円筒状基体上に設けられた塗膜又は被膜の厚み及び塗膜又は被膜の外表面の断面円の形状、円中心、真円度、外径値を測定する装置であって、
前記円筒状基体を保持する保持手段、
前記円筒状基体外表面の変位が測定可能な測定手段、
前記塗膜又は被膜外表面の変位が測定可能な測定手段、及び
前記測定手段を支持する支持手段
とを備えており、
前記円筒状基体外表面の変位が測定可能な測定手段は、前記円筒状基体外表面の軸に対して直交する前記円筒状基体外表面の断面円内に設定した基準点に対する前記断面円の円周上に定められた3つ以上の点の距離の前記円筒状基体の回転による変化に基づいて、前記基準点と前記円周上の点との距離を算出して前記円筒状基体外表面の断面円の形状を特定し、
前記塗膜又は被膜外表面の変位が測定可能な測定手段は、前記3つ以上の点とは別の、前記断面円と同一の断面上且つ前記塗膜又は被膜の外表面上の1つ以上の点と前記基準点との距離を算出し、前記円筒状基体外表面の断面円の形状をもとに前記塗膜又は被膜の厚みを測定することを特徴とする、
円筒状基体の外表面の断面円の形状、円中心、真円度、外径値を特定し、且つ前記円筒状基体上に設けられた塗膜又は被膜の厚み及び塗膜又は被膜の外表面の断面円の形状、円中心、真円度、外径値を測定する装置。
The shape of the cross-sectional circle, the center of the circle, the roundness, and the outer diameter value of the outer surface of the cylindrical substrate are specified, and the thickness of the coating film or coating film provided on the cylindrical substrate and the outer surface of the coating film or coating film A device for measuring the shape of the cross-sectional circle, the center of the circle, the roundness, the outer diameter value,
Holding means for holding the cylindrical substrate;
Measuring means capable of measuring displacement of the outer surface of the cylindrical substrate;
Measuring means capable of measuring the displacement of the coating film or the outer surface of the film, and a supporting means for supporting the measuring means,
The measuring means capable of measuring the displacement of the outer surface of the cylindrical substrate is a circle of the sectional circle with respect to a reference point set in a sectional circle of the outer surface of the cylindrical substrate orthogonal to the axis of the outer surface of the cylindrical substrate. A distance between the reference point and a point on the circumference is calculated based on a change in the distance between three or more points determined on the circumference due to the rotation of the cylindrical base, and the outer surface of the cylindrical base is calculated. Identify the shape of the cross-sectional circle,
The measuring means capable of measuring the displacement of the coating film or the outer surface of the coating is one or more on the same cross section as the sectional circle and on the outer surface of the coating film or the coating, apart from the three or more points. Calculating the distance between the point and the reference point, and measuring the thickness of the coating film or film based on the shape of the cross-sectional circle of the cylindrical substrate outer surface,
The shape of the cross-sectional circle, the center of the circle, the roundness, and the outer diameter value of the outer surface of the cylindrical substrate are specified, and the thickness of the coating film or coating film provided on the cylindrical substrate and the outer surface of the coating film or coating film For measuring the cross-sectional circle shape, circle center, roundness, and outer diameter value.
JP2006056475A 2006-03-02 2006-03-02 Method and instrument for measuring film thickness of paint film on cylindrical base Withdrawn JP2007232637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056475A JP2007232637A (en) 2006-03-02 2006-03-02 Method and instrument for measuring film thickness of paint film on cylindrical base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056475A JP2007232637A (en) 2006-03-02 2006-03-02 Method and instrument for measuring film thickness of paint film on cylindrical base

Publications (1)

Publication Number Publication Date
JP2007232637A true JP2007232637A (en) 2007-09-13

Family

ID=38553347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056475A Withdrawn JP2007232637A (en) 2006-03-02 2006-03-02 Method and instrument for measuring film thickness of paint film on cylindrical base

Country Status (1)

Country Link
JP (1) JP2007232637A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263940A (en) * 2005-09-02 2007-10-11 キヤノン株式会社 Cylindrical measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263940A (en) * 2005-09-02 2007-10-11 キヤノン株式会社 Cylindrical measurement method
JP4557940B2 (en) * 2005-09-02 2010-10-06 キヤノン株式会社 Method for measuring the shape of a cross-sectional circle perpendicular to the axis of the cylinder to be measured, and method for measuring the cylindrical shape of the cylinder to be measured

Similar Documents

Publication Publication Date Title
EP1992909B1 (en) Circular shape measurement method, cylindrical shape measurement method, and cylindrical shape measurement apparatus
US7328125B2 (en) Measuring method of cylindrical body
JP5024555B2 (en) Wafer alignment method and apparatus
JP5265029B2 (en) Roundness measuring device and tip terminal pass / fail judgment method
WO2006025603A1 (en) Method for measuring circular shape, and method and device for measuring cylindrical shape
JP2007071852A (en) Apparatus and method for measuring deep hole
CN112539714B (en) Eccentricity detection method, processing method and detection equipment
US10656537B2 (en) Method for detecting the position of a mask holder on a measuring table
JPH01195309A (en) Measuring instrument for cylindrical body
CN114739344A (en) Roundness error online measurement method and system
CN114485510B (en) Hole site measuring method and measuring device thereof
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
JP2017161252A (en) Surface shape measuring method, and surface shape measuring device
JP4897951B2 (en) Tubular deflection measurement method and apparatus
JP2005101455A (en) Positioning apparatus
US6085430A (en) Apparatus and method for measuring eccentricity between two circular members
JP4557940B2 (en) Method for measuring the shape of a cross-sectional circle perpendicular to the axis of the cylinder to be measured, and method for measuring the cylindrical shape of the cylinder to be measured
JP2006266910A (en) Measuring method and measuring device for cylindrical shape
JP2007232637A (en) Method and instrument for measuring film thickness of paint film on cylindrical base
CN117260389A (en) Multi-sensor fusion-driven large-scale deep hole part shape error in-situ measurement system
JPH06147879A (en) Measuring method of cylindrical profile
JP2817728B2 (en) Coating device
JPH06258182A (en) Method and apparatus for measuring eccentricity of aspherical lens
JP2010253604A (en) Scanning motion error measuring method
CN106601647B (en) Coating machine for semiconductor and center testing and correcting method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512