JP2007231483A - Electroconductive fiber and method for producing the same - Google Patents

Electroconductive fiber and method for producing the same Download PDF

Info

Publication number
JP2007231483A
JP2007231483A JP2006057183A JP2006057183A JP2007231483A JP 2007231483 A JP2007231483 A JP 2007231483A JP 2006057183 A JP2006057183 A JP 2006057183A JP 2006057183 A JP2006057183 A JP 2006057183A JP 2007231483 A JP2007231483 A JP 2007231483A
Authority
JP
Japan
Prior art keywords
fiber
copper
conductive
copper sulfide
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006057183A
Other languages
Japanese (ja)
Inventor
Shunichiro Watabe
俊一郎 渡部
Yoshinobu Omae
好信 大前
Hideki Kamata
英樹 鎌田
Riyoukei Endou
了慶 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2006057183A priority Critical patent/JP2007231483A/en
Publication of JP2007231483A publication Critical patent/JP2007231483A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductive fiber having practically sufficient mechanical characteristics, heat resistance and electroconductive performances in combination, formable into a fabric such as paper, a nonwoven fabric, a woven fabric or a knitted fabric and excellently usable for various applications including an electrostatic charging material, a destaticizing material, a brush, a sensor, an electromagnetic wave-shielding material and an electronic material and to provide a method for producing the electroconductive fiber. <P>SOLUTION: The fiber is composed of a polyvinyl alcohol-based polymer having ≥88 mol% degree of saponification and 1,200-15,000 degree of average polymerization and has 1-50 mass% degree of swelling of the polyvinyl alcohol-based fiber. Copper sulfide is applied to the surface and contained in the interior of the polyvinyl alcohol-based fiber. The pickup and content thereof is ≥0.5 mass% based on the polyvinyl alcohol-based component. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、強度、弾性率といった実用上十分な力学物性、導電性、及び耐久性を有する導電性繊維とその製造方法に関するものである。   The present invention relates to conductive fibers having practically sufficient mechanical properties such as strength and elastic modulus, conductivity, and durability, and a method for producing the same.

従来、合成繊維に導電性を付与する方法として提案されている、カーボンブラックなどの導電性フィラーを練りこんだ導電性繊維は、コストが比較的安く、しかも量産化にも適しているため、多くの産業分野で広く使用されている。例えば、静電複写機に用いられる帯電用、除電用ブラシとして、かかる導電性繊維が広く使われているが、複写機等では定着時の加熱によって、機内の温度が高温になることから、これら用途に使用される導電繊維には長時間にわたって熱を受けても変形しないことが要求されている。   Conventionally, conductive fibers kneaded with conductive fillers such as carbon black, which have been proposed as a method for imparting conductivity to synthetic fibers, are relatively inexpensive and suitable for mass production. Widely used in industrial fields. For example, such conductive fibers are widely used as charging and static elimination brushes used in electrostatic copying machines. However, in copying machines, etc., the temperature inside the machine becomes high due to heating during fixing. Conductive fibers used for applications are required not to be deformed even when subjected to heat for a long time.

ポリエステル系繊維、ポリアミド系繊維、アクリル系繊維、溶融紡糸によって得られるポリオレフィン系繊維などの大部分の汎用合成繊維は、耐熱性や高温下での形態安定性が不十分であることから、かかる用途においては導電性の再生セルロース系繊維が広く使用されている(特許文献1〜4参照)。しかしながら導電性セルロース繊維は力学物性が低いために、帯電用ブラシや除電用ブラシを製造する段階での取り扱い性や、長時間使用する場合の耐久性など、更なる高性能化要求に対して十分対応できなくなっている。   Most general-purpose synthetic fibers such as polyester fibers, polyamide fibers, acrylic fibers, and polyolefin fibers obtained by melt spinning have insufficient heat resistance and high form stability at high temperatures. In Japan, conductive regenerated cellulosic fibers are widely used (see Patent Documents 1 to 4). However, because conductive cellulose fibers have low mechanical properties, they are sufficient to meet the demands for higher performance such as handling at the stage of manufacturing charging brushes and static elimination brushes and durability for long-term use. It is no longer available.

一方、耐熱性、及び機械的性能に優れたポリビニルアルコール(以下、PVAと称す)系繊維を導電性繊維としてこれらの用途に用いることも提案されている(特許文献5参照)。しかし、この導電性PVA系繊維は、50μm程度の多量の導電性フィラーをあらかじめ紡糸原液に添加させるため、原液中でのフィラーの凝集や沈降などが起こり、製造工程の安定性は低下するばかりでなく、得られた糸の延伸性などが導電性フィラー無添加系に比べて著しく劣ってしまい、その結果、導電性は付与できても、繊維の強度、弾性率などの機械的性質の低下を招くなどの問題があった。これに対して、工程性、品位の問題を改善した導電性PVA系繊維として、原液に仕込むカーボンブラックなどの導電性フィラーの平均粒径を小さくすること、及びポリオキシアルキレン系などのノニオン系分散剤を併用し、原液中での凝集、沈降を防ぐことが提案されている(特許文献6参照)。この場合、導電性フィラーの粒子径は1μm程度まで小さくすることができ、粒子の表面積を増加させて導電性を付与する観点からは望ましいが、やはり、所望の導電性を得るためには、数10%以上の添加が必要となり、原液での凝集や延伸性の低下などの問題を抱えていた。   On the other hand, it has also been proposed to use a polyvinyl alcohol (hereinafter referred to as PVA) fiber excellent in heat resistance and mechanical performance as a conductive fiber for these applications (see Patent Document 5). However, in this conductive PVA fiber, since a large amount of conductive filler of about 50 μm is added to the spinning stock solution in advance, the filler is agglomerated or settled in the stock solution, and the stability of the production process is reduced. As a result, the stretchability of the obtained yarn is remarkably inferior to that of the conductive filler-free system, and as a result, even if conductivity can be imparted, the mechanical properties such as fiber strength and elastic modulus are reduced. There were problems such as inviting. On the other hand, as conductive PVA fibers with improved processability and quality problems, reducing the average particle size of conductive fillers such as carbon black charged in the stock solution, and nonionic dispersions such as polyoxyalkylenes It has been proposed to use an agent together to prevent aggregation and sedimentation in the stock solution (see Patent Document 6). In this case, the particle diameter of the conductive filler can be reduced to about 1 μm, which is desirable from the viewpoint of imparting conductivity by increasing the surface area of the particle. Addition of 10% or more was necessary, and had problems such as aggregation in the stock solution and deterioration of stretchability.

また、近年、携帯電話や電子機器の飛躍的な普及に伴い、それらから漏洩する電磁波の人体への影響、または他電子機器への誤動作などの問題が取り沙汰されている。それを遮蔽する電磁波遮蔽材として、導電性布帛がよく用いられるが、この用途では、より高い導電性能が必要であり、先述した導電性フィラーの練り込み繊維などでは遮蔽性能を発現させることはできない。一般的には、軽量で柔軟性のある合成繊維からなる布帛表面に、金属被膜を形成させることが広く知られており、真空蒸着法、スパッタリング法、無電解メッキ法などによって達成できる。しかしながら、このような方法で形成された金属被膜は、耐摩耗性や耐候性、長期の使用による化学的変化による物性低下などの問題があり一層の改善が求められている。更には、これらの方法による導電化処理は、非常にコスト高になり実使用に制限がかかるものであった。   In recent years, with the rapid spread of mobile phones and electronic devices, problems such as the influence of electromagnetic waves leaking from them on the human body or malfunctions of other electronic devices have been investigated. A conductive fabric is often used as an electromagnetic wave shielding material for shielding it. However, in this application, higher conductive performance is necessary, and the above-described conductive filler kneaded fiber cannot exhibit the shielding performance. . In general, it is widely known that a metal film is formed on the surface of a fabric made of a lightweight and flexible synthetic fiber, which can be achieved by a vacuum deposition method, a sputtering method, an electroless plating method, or the like. However, the metal film formed by such a method has problems such as wear resistance, weather resistance, and deterioration of physical properties due to chemical changes due to long-term use, and further improvement is required. Furthermore, the conductive treatment by these methods is very expensive and restricts practical use.

このような高い導電性能を付与する方法としては、上記に示したような導電性フィラーを原液または原料の段階から仕込む方法とは別に、ポリアクリロニトリル系繊維で知られているように、塩化第二銅などの銅化合物を繊維表面に吸着させた後、これを硫化物で還元処理することにより、繊維自体の表面に導電性を示す硫化銅薄厚層を形成させる技術が広く提案されている(特許文献7及び8参照)。これらの方法で得られる導電性繊維は、繊維の表面に存在するシアノ基やメルカプトン基の銅イオン捕捉基を介して硫化銅が繊維に対して5〜15質量%程度結合されたもので、繊維表面に薄厚の表面層を有するものであり、高い導電性能を示すものとなる。しかしながら、これらの繊維は、100nm程度の極薄い表面の硫化銅層のみで導電性能を発現させるものであり、それ故、耐久性が不十分であり、また、繊維表面に所望の量の硫化銅を付着させるには、高温、長時間の処理が必要になり、更には、上記のシアノ基やメルカプトン基などは、一価の銅イオン捕捉能に優れており、工程中にて二価の銅塩をわざわざ一価の銅イオンに還元する必要があるなど、コストが高くなるなどの問題を抱えていた。   As a method for imparting such a high conductive performance, as known in the polyacrylonitrile fiber, apart from the method in which the conductive filler as shown above is charged from the stock solution or raw material stage, a second chloride chloride is used. A technology has been widely proposed in which a copper compound such as copper is adsorbed on the fiber surface and then reduced with sulfide to form a copper sulfide thin layer showing conductivity on the surface of the fiber itself (patent) References 7 and 8). The conductive fiber obtained by these methods is one in which copper sulfide is bonded to the fiber by about 5 to 15% by mass via a copper ion capturing group of a cyano group or mercapton group present on the surface of the fiber. It has a thin surface layer on the fiber surface and exhibits high electrical conductivity. However, these fibers exhibit electrical conductivity only with a copper sulfide layer having a very thin surface of about 100 nm, and therefore have insufficient durability, and a desired amount of copper sulfide on the fiber surface. In order to adhere, it is necessary to process at a high temperature for a long time. Furthermore, the cyano group and mercapton group described above are excellent in monovalent copper ion scavenging ability. There was a problem that the cost was high, for example, it was necessary to reduce the copper salt to monovalent copper ions.

上記課題である導電性、耐久性の改良を目的に、硫化銅粒子を繊維内部にまで浸透させる方法として、硫化染料含有高分子材料を用いて、該高分子中で硫化染料を介して硫化銅が結合されている繊維が提案されている(特許文献9参照)。また、その実施例では具体的に導電性PVA繊維が提案されている。この方法では、硫化染料を含有する高分子材料を得る工程と、この硫化染料高分子材料に硫化銅を結合させて導電性高分子材料を得る工程によって初めて達成されるものであるが、湿熱処理などを幾つも設定する必要があり工程が複雑になることに加えて、この処理中にPVA系繊維が膨潤してしまい、導電性が付与できても、力学物性が低下してしまい、布帛を製造することができないなどの問題を抱えていた。また、硫化銅粒子を繊維内部にまで浸透させるためには硫化染料を用いらなければならず、コスト高になるなどの問題も抱えていた。   For the purpose of improving conductivity and durability, which are the above-mentioned problems, as a method of infiltrating the copper sulfide particles into the inside of the fiber, using a sulfur dye-containing polymer material, copper sulfide is passed through the sulfide dye in the polymer. Has been proposed (see Patent Document 9). Moreover, in the Example, the electroconductive PVA fiber is specifically proposed. This method is achieved for the first time by a step of obtaining a polymer material containing a sulfur dye and a step of obtaining a conductive polymer material by bonding copper sulfide to the sulfur dye polymer material. In addition to the complexity of the process, the PVA fiber swells during this treatment, and even if conductivity can be imparted, the mechanical properties deteriorate, We had problems such as being unable to manufacture. Further, in order to infiltrate the copper sulfide particles into the inside of the fiber, a sulfur dye must be used, which causes problems such as high cost.

また、アミド基や水酸基を有する高分子材料に導電性を付与する方法も提案されている(特許文献10参照)。この方法は、銅塩と緩和な硫化能を有する還元剤の混合水溶液中に高温、長時間、成形体を浸漬することにより、成形体の内部にまで導電性を示す硫化銅層を形成せしめようとするものであるが、実質的には、成形体のごく表面近傍にしか硫化銅層は存在せず、それ故、得られる導電性能も低いものであった。すなわち、水溶液中の銅塩と硫化還元剤を直接、高温で長時間反応させるため、生成する硫化銅粒子は大きく成長してしまい、成形体内部での分散粒子径は大きくならざるをえず、内部導電というよりはむしろ表面導電層が主体であった。このため、導電性能は低いばかりでなく、耐久性にも劣るものであり、更にはコストが高くなるなどの問題も抱えていた。これらの事より、PVA系繊維の本来の強度、弾性率などの力学的性質に加えて、繊維自体が高い導電性能を兼備するPVA系繊維の開発と、それを安価に製造する方法の提案が望まれている。   A method of imparting conductivity to a polymer material having an amide group or a hydroxyl group has also been proposed (see Patent Document 10). In this method, by immersing the molded body in a mixed aqueous solution of a copper salt and a reducing agent having a mild sulfidizing ability for a long time at a high temperature, a conductive copper sulfide layer is formed even inside the molded body. However, substantially, the copper sulfide layer is present only in the vicinity of the very surface of the molded body, and therefore, the obtained conductive performance is low. In other words, since the copper salt and the sulfide reducing agent in the aqueous solution are directly reacted at a high temperature for a long time, the produced copper sulfide particles grow large, and the dispersed particle size inside the molded body must be large. Rather than internal conductivity, the surface conductive layer was the main component. For this reason, the conductive performance is not only low but also inferior in durability, and further has a problem of high cost. From these facts, in addition to the mechanical properties such as the original strength and elastic modulus of the PVA fiber, the development of a PVA fiber in which the fiber itself has high conductive performance and a method for producing it at low cost have been proposed. It is desired.

特開昭63−249185号公報JP-A-63-249185 特開平4−289876号公報Japanese Patent Laid-Open No. 4-289766 特開平4−289877号公報Japanese Patent Laid-Open No. 4-289877 特公平1−29887号公報Japanese Patent Publication No. 1-229887 特開昭52−144422号公報JP-A-52-144422 特開2002−212829号公報Japanese Patent Laid-Open No. 2002-212829 特開昭57−21570号公報JP 57-21570 A 特開昭59−108043号公報JP 59-108043 A 特開平7−179769号公報JP-A-7-179769 特開昭59−132507号公報JP 59-132507 A

本発明の目的は、強度、弾性率等の力学物性などの性能を損なうことがなく、優れた導電性、及びその耐久性が付与された導電性繊維とその製造方法を提供することである。   An object of the present invention is to provide a conductive fiber having excellent conductivity and durability without impairing performance such as mechanical properties such as strength and elastic modulus, and a method for producing the same.

本発明者等は上記した導電性繊維を得るべく鋭意検討を重ねた結果、特定のPVA系ポリマーを使用することによって、特別に高価な設備を必要とせず、通常の繊維製造工程中において、銅イオンを含む化合物が溶解された浴と、硫化物イオンを含む化合物が溶解された浴を通して、繊維の表面及び内部に各々の化合物を付着及び含有せしめ、銅を硫化させて硫化銅を生成させることで、力学物性と優れた導電性を兼備した導電性繊維を安価に製造できることを見出した。   As a result of intensive studies to obtain the above-described conductive fibers, the present inventors use a specific PVA-based polymer, so that no specially expensive equipment is required, and in the normal fiber manufacturing process, copper is used. Each compound is adhered and contained on the surface and inside of the fiber through a bath in which a compound containing ions is dissolved and a bath in which a compound containing sulfide ions is dissolved, and copper is sulfided to form copper sulfide. Thus, it has been found that conductive fibers having both mechanical properties and excellent conductivity can be produced at low cost.

すなわち本発明は、ケン化度が88モル%以上、平均重合度が1200〜15000のPVA系ポリマーからなる繊維であって、該PVA系繊維の膨潤度が1〜50質量%であり、且つ該PVA系繊維の表面、または表面及び内部に、PVA系成分に対して0.5〜50質量%の硫化銅が付着、または付着及び含有されていることを特徴とする導電性繊維であり、好ましくは体積固有抵抗値が1.0×10−3〜1.0×10Ω・cmであることを特徴とする上記の導電性繊維に関するものである。 That is, the present invention is a fiber composed of a PVA polymer having a saponification degree of 88 mol% or more and an average polymerization degree of 1200 to 15000, and the swelling degree of the PVA fiber is 1 to 50% by mass, and It is a conductive fiber characterized in that 0.5 to 50% by mass of copper sulfide is attached to, or attached to and contained in, the surface of the PVA fiber, or the surface and the inside thereof, preferably Relates to the above-mentioned conductive fiber, characterized in that the volume resistivity value is 1.0 × 10 −3 to 1.0 × 10 8 Ω · cm.

また本発明は、PVA系繊維を、銅イオンを含む化合物(A)が10〜400g/Lの濃度で溶解された20〜80℃の浴に30秒〜10分間通した後、硫化物イオンを含む化合物(B)が1〜100g/Lの濃度で溶解された20〜80℃の浴に10秒〜5分間通して、該繊維の表面、または表面及び内部に硫化銅を生成させることを特徴とする上記の導電性繊維の製造方法に関するものである。   In the present invention, the PVA fiber is passed through a 20 to 80 ° C. bath in which the compound (A) containing copper ions is dissolved at a concentration of 10 to 400 g / L for 30 seconds to 10 minutes, and then the sulfide ions are added. Passing through a bath at 20 to 80 ° C. in which the compound (B) contained is dissolved at a concentration of 1 to 100 g / L for 10 seconds to 5 minutes, copper sulfide is generated on the surface of the fiber or on the surface and inside thereof. The above relates to a method for producing the conductive fiber.

本発明によれば、強度、弾性率などの力学的特性と共に、優れた導電性を兼備した導電性繊維を提供することが可能である。また本発明の導電性繊維は、特別な工程を必要とせず、通常のPVA系繊維製造工程で達成可能であり、安価に製造することができ、紙、不織布、織物、編物などの布帛とすることが可能であって、帯電材、除電材、ブラシ、センサー、電磁波シールド材、電子材料をはじめとして多くの用途に極めて有用である。   According to the present invention, it is possible to provide a conductive fiber having excellent electrical conductivity as well as mechanical properties such as strength and elastic modulus. In addition, the conductive fiber of the present invention does not require a special process, can be achieved by a normal PVA fiber manufacturing process, can be manufactured at low cost, and is made into a fabric such as paper, nonwoven fabric, woven fabric, and knitted fabric. It is extremely useful for many applications including charging materials, static elimination materials, brushes, sensors, electromagnetic shielding materials, and electronic materials.

以下、本発明について具体的に説明する。まず本発明の導電性繊維を構成するPVA系ポリマーについて説明する。本発明に用いるPVA系ポリマーのケン化度は得られる繊維の力学物性の点から、88モル%以上である必要がある。PVA系ポリマーのケン化度が88モル%よりも低い場合、得られる繊維の機械的特性や工程通過性、製造コストなどの面で好ましくないことから、より好ましくは96モル%以上である。   Hereinafter, the present invention will be specifically described. First, the PVA polymer constituting the conductive fiber of the present invention will be described. The saponification degree of the PVA polymer used in the present invention needs to be 88 mol% or more from the viewpoint of the mechanical properties of the resulting fiber. When the degree of saponification of the PVA-based polymer is lower than 88 mol%, it is not preferable in terms of mechanical properties, process passability, production cost, and the like of the obtained fiber, and is more preferably 96 mol% or more.

本発明で用いるPVA系ポリマーの重合度は得られる繊維の機械的特性や寸法安定性等を考慮すると30℃水溶液の粘度から求めた平均重合度が1200〜15000のものを使用する必要がある。高重合度のポリマーを用いると、強度、耐湿熱性等の点で優れるので好ましいが、ポリマー製造コストや繊維化コストなどの観点から、より好ましくは、平均重合度が1500〜5000である。平均重合度が1200未満では得られた繊維の強度、耐湿熱性が極めて低く、実用的ではない。   The degree of polymerization of the PVA polymer used in the present invention should be one having an average degree of polymerization of 1200 to 15000 determined from the viscosity of a 30 ° C. aqueous solution in consideration of the mechanical properties and dimensional stability of the resulting fiber. The use of a polymer having a high degree of polymerization is preferred because it is excellent in terms of strength, heat and moist heat resistance, etc., but from the viewpoint of polymer production cost and fiberization cost, the average degree of polymerization is more preferably 1500 to 5000. When the average degree of polymerization is less than 1200, the strength and heat-and-moisture resistance of the obtained fiber are extremely low, which is not practical.

また本発明の繊維を形成するPVA系ポリマーは、ビニルアルコールユニットを主成分とするものであれば特に限定されず、本発明の効果を損なわない限り、所望により他の構成単位を有していても構わない。このような構造単位としては、例えば、エチレン、プロピレン、ブチレン等のオレフィン類、アクリル酸、及びその塩とアクリル酸メチルなどのアクリル酸エステル、メタクリル酸、及びその塩、メタクリル酸メチル等のメタクリル酸エステル類、アクリルアミド、N−メチルアクリルアミド等のアクリルアミド誘導体、メタクリルアミド、N−メチロールメタクリルアミド等のメタクリルアミド誘導体、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド等のN−ビニルアミド類、ポリアルキレンオキシドを側鎖に有するアリルエーテル類、メチルビニルエーテル等のビニルエーテル類、アクリロニトリル等のニトリル類、塩化ビニル等のハロゲン化ビニル、マレイン酸、及びその塩またはその無水物やそのエステル等の不飽和ジカルボン酸等がある。このような変性ユニットの導入法は共重合による方法でも、後反応による方法でもよい。しかしながら、本発明の目的とする繊維を得るためにはビニルアルコール単位が88モル%以上のポリマーがより好適に使用される。もちろん本発明の効果を損なわない範囲であれば、目的に応じてポリマー中に酸化防止剤、凍結防止剤、pH調整剤、隠蔽剤、着色剤、油剤、特殊機能剤などの添加剤が含まれていてもよい。   The PVA polymer forming the fiber of the present invention is not particularly limited as long as it has a vinyl alcohol unit as a main component, and may have other structural units as desired as long as the effects of the present invention are not impaired. It doesn't matter. Examples of such a structural unit include olefins such as ethylene, propylene, and butylene, acrylic acid, and salts thereof and acrylic esters such as methyl acrylate, methacrylic acid, and salts thereof, and methacrylic acid such as methyl methacrylate. Esters, acrylamide derivatives such as acrylamide and N-methylacrylamide, methacrylamide derivatives such as methacrylamide and N-methylolmethacrylamide, N-vinylamides such as N-vinylpyrrolidone, N-vinylformamide and N-vinylacetamide, poly Allyl ethers having an alkylene oxide in the side chain, vinyl ethers such as methyl vinyl ether, nitriles such as acrylonitrile, vinyl halides such as vinyl chloride, maleic acid, salts thereof, anhydrides thereof, and esters thereof And the like unsaturated dicarboxylic acids and the like. Such a modified unit may be introduced by copolymerization or post-reaction. However, in order to obtain the target fiber of the present invention, a polymer having a vinyl alcohol unit of 88 mol% or more is more preferably used. Of course, as long as the effects of the present invention are not impaired, additives such as antioxidants, antifreeze agents, pH adjusters, masking agents, colorants, oil agents, and special functional agents are included in the polymer depending on the purpose. It may be.

本発明の繊維は上記PVA系ポリマーから得られる繊維であって、且つ膨潤度が1〜50質量%である必要がある。これは、後に硫化銅を生成する工程において、膨潤度が1質量%未満の繊維では、目標とする導電性能を得るためには高濃度、高温、長時間の処理が必要となり、生産性がダウンし、コストアップを招く。逆に膨潤度が50質量%を超える繊維では、硫化銅の生成は容易であるが、得られた導電性繊維の強度、耐湿熱性等の点で満足されない。よって、より好ましくは膨潤度が2〜40質量%、さらには3〜30質量%であることが望ましい。なお、本発明でいう膨潤度は後述する方法で測定される。
また、生成する硫化銅の平均粒子径が500nm以下であることが望ましく、さらには50nm以下であることが望ましい。特に硫化銅が、繊維内部に微細に分散されていることが望ましい。硫化銅の付着量・含有量は0.5〜50質量%であることが必要であり、1〜40質量%であることが好ましい。硫化銅の付着量・含有量が0.5質量%未満では目標とする導電性能が得られなかったり、バラツキが大きいといった問題が発生するため好ましくない。また硫化銅の付着量・含有量が50質量%を超えると、導電化処理回数を増やしたり、浴中滞留時間を長くするなどの方法が必要となるため、生産性がダウンし、且つ必要以上の硫化銅を含有させることによって、コストが上がるという問題が生じる。なお、本発明でいう付着量とは、繊維表面に存在する硫化銅量を指し、含有量とは繊維内部に存在する硫化銅量をいう。
The fiber of the present invention is a fiber obtained from the PVA polymer, and the degree of swelling needs to be 1 to 50% by mass. This is because in the process of producing copper sulfide later, fibers with a degree of swelling of less than 1% by mass require high concentration, high temperature, and long-time treatment in order to obtain the target conductive performance, resulting in decreased productivity. And cost increases. On the other hand, in the case of fibers having a degree of swelling exceeding 50% by mass, copper sulfide can be easily produced, but it is not satisfactory in terms of the strength and heat and heat resistance of the obtained conductive fibers. Therefore, the degree of swelling is more preferably 2 to 40% by mass, and further preferably 3 to 30% by mass. In addition, the swelling degree said by this invention is measured by the method mentioned later.
Further, the average particle diameter of the produced copper sulfide is preferably 500 nm or less, and more preferably 50 nm or less. In particular, it is desirable that copper sulfide is finely dispersed inside the fiber. The adhesion amount / content of copper sulfide is required to be 0.5 to 50% by mass, and preferably 1 to 40% by mass. If the adhesion amount / content of copper sulfide is less than 0.5% by mass, the target conductive performance cannot be obtained, and problems such as large variations occur. Also, if the amount of copper sulfide deposited and contained exceeds 50% by mass, methods such as increasing the number of times of conducting treatment or increasing the residence time in the bath are required, resulting in decreased productivity and more than necessary. Including this copper sulfide causes a problem that the cost increases. In addition, the adhesion amount as used in this invention refers to the amount of copper sulfide which exists in the fiber surface, and content refers to the amount of copper sulfide which exists in a fiber inside.

本発明のPVA系繊維の体積固有抵抗値は1×10−3〜1×10Ω・cmであることが好ましい。体積固有抵抗値が1×10Ω・cmより高い場合、もはや導電性繊維とは言えず、半導体材料として使用できない。より好ましくは、1×10−3Ω・cm〜1×10Ω・cmの範囲である。本発明のPVA系繊維の体積固有抵抗値は、後述するが、硫化銅の導入量などによって適宜コントロールできる。 The volume specific resistance value of the PVA fiber of the present invention is preferably 1 × 10 −3 to 1 × 10 8 Ω · cm. When the volume resistivity value is higher than 1 × 10 8 Ω · cm, it is no longer a conductive fiber and cannot be used as a semiconductor material. More preferably, it is in the range of 1 × 10 −3 Ω · cm to 1 × 10 7 Ω · cm. As will be described later, the volume specific resistance value of the PVA fiber of the present invention can be appropriately controlled by the amount of copper sulfide introduced.

一般にPVA系ポリマーはその水酸基を介して銅などの金属イオンと強く配位結合することが知られている〔例えば、Polymer、Vol37,No.14、3097、(1996)参照〕。本発明ではこのPVA系ポリマー独自の挙動に着目し、硫化銅を繊維表面、及び内部に、付着・含有させることを試み、種々検討の結果、PVA分子鎖と銅イオンで形成された錯体ブロックは、その大きさが数オングストロームであることから、硫化銅ナノ微粒子構成ユニットとなり得ることを発見した。さらに検討を重ね、特定のPVA系ポリマーを使用し、所定の膨潤度の繊維とすることで、繊維の力学物性にも優位であり、優れた導電性能を兼備した導電性繊維が得られること見出し、遂に本発明を完成したものである。   In general, it is known that a PVA polymer is strongly coordinated with a metal ion such as copper via its hydroxyl group [see, for example, Polymer, Vol. 14, 3097, (1996)]. In the present invention, paying attention to the unique behavior of this PVA polymer, we tried to attach and contain copper sulfide on the fiber surface and inside, and as a result of various studies, the complex block formed of PVA molecular chains and copper ions is Therefore, it was discovered that it can be a unit composed of copper sulfide nanoparticles because its size is several angstroms. Further investigations and finding that using a specific PVA-based polymer and having a fiber with a predetermined swelling degree is superior in the mechanical properties of the fiber, and that conductive fibers having excellent electrical conductivity can be obtained. Finally, the present invention has been completed.

次に本発明で使用する銅イオンを含有する化合物としては、可溶であるものであれば特に限定はなく、酢酸銅、蟻酸銅、硝酸銅、くえん酸銅、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、沃化第一銅、沃化第二銅などが用いられる。かかる銅イオンは一価でも二価でもよく、特に限定されるものではない。一価の銅イオンを含有する化合物を用いる場合は、その溶解性を向上させる目的で、塩酸、ヨウ化カリウム、アンモニア等を併用しても構わない。これらの中でも、溶液状態でPVA系ポリマーと配位結合し易いものがより望ましく、その観点からは、銅イオンを含む化合物は、酢酸銅や蟻酸銅、硝酸銅などが好適に用いられる。   Next, the compound containing copper ions used in the present invention is not particularly limited as long as it is soluble, and includes copper acetate, copper formate, copper nitrate, copper citrate, cuprous chloride, and second chloride. Copper, cuprous bromide, cupric bromide, cuprous iodide, cupric iodide and the like are used. Such copper ions may be monovalent or divalent and are not particularly limited. When a compound containing monovalent copper ions is used, hydrochloric acid, potassium iodide, ammonia or the like may be used in combination for the purpose of improving the solubility. Among these, those that are easily coordinated with a PVA polymer in a solution state are more desirable. From this viewpoint, copper acetate, copper formate, copper nitrate, and the like are preferably used as the compound containing copper ions.

PVA繊維中で配位した銅イオンを硫化する硫化剤としては、硫化物イオンを放出し得る化合物が用いられ、例えば、硫化ナトリウム、第二チオン酸ナトリウム、チオ硫酸ナトリウム、亜硫酸水素ナトリウム、ピロ硫酸ナトリウム、硫化水素、チオ尿素、チオアセトアミド等が挙げられる。これらの中でもコスト、入手し易さ、低腐食性の点で、硫化物イオンを含む化合物としては、硫化ナトリウムが好適である。   As the sulfiding agent for sulfiding copper ions coordinated in the PVA fiber, compounds capable of releasing sulfide ions are used. For example, sodium sulfide, sodium dithionate, sodium thiosulfate, sodium hydrogen sulfite, pyrosulfuric acid Sodium, hydrogen sulfide, thiourea, thioacetamide and the like can be mentioned. Among these, sodium sulfide is preferable as the compound containing sulfide ions from the viewpoint of cost, availability, and low corrosivity.

このように、従来の導電性繊維とは異なり、繊維表面及び内部に硫化銅粒子を分散させ、粒子間距離を著しく小さくすることで、これに通電させた時の電流量を高めることができ、導電性に優れた繊維を得ることができる。また、粒子径が小さいことから、これを延伸する場合も何ら問題なく、さらに繊維表層部にのみ硫化銅粒子を均一分散させているため、繊維内層部にて力学物性を保持することが可能となり、硫化銅を含有していないPVA系繊維と同等の延伸倍率と力学物性を発現させることができる。   Thus, unlike conventional conductive fibers, copper sulfide particles are dispersed on the fiber surface and inside, and the distance between particles is remarkably reduced, so that the amount of current when energized can be increased, A fiber excellent in conductivity can be obtained. In addition, since the particle diameter is small, there is no problem when stretching this, and since the copper sulfide particles are uniformly dispersed only in the fiber surface layer part, it becomes possible to maintain mechanical properties in the fiber inner layer part. Moreover, the draw ratio and mechanical physical property equivalent to the PVA type fiber which does not contain copper sulfide can be expressed.

本発明により得られる導電性繊維の繊度は特に限定されず、例えば0.1〜10000dtex、好ましくは1〜1000dtexの繊度の繊維が広く使用できる。繊維の繊度はノズル径や延伸倍率により適宜調整すればよい。   The fineness of the conductive fiber obtained by the present invention is not particularly limited. For example, fibers having a fineness of 0.1 to 10000 dtex, preferably 1 to 1000 dtex can be widely used. What is necessary is just to adjust the fineness of a fiber suitably with a nozzle diameter or a draw ratio.

次に本発明の導電性繊維の製造方法について説明する。本発明においては、PVA系ポリマーを水あるいは有機溶剤に溶解した紡糸原液を用いて後述する方法で繊維を製造することにより、繊維表面、及び内部に平均粒子径が500nm以下の硫化銅粒子が分散した、力学物性、及び導電性能に優れた繊維を効率良く安価に製造することができる。紡糸原液を構成する溶媒としては、例えば水、ジメチルスルホキシド(以下、DMSOと略記)、ジメチルアセトアミド、ジメチルホルムアミド、N−メチルピロリドンなどの極性溶媒やグリセリン、エチレングリコールなどの多価アルコール類、及びこれらとロダン塩、塩化リチウム、塩化カルシウム、塩化亜鉛などの膨潤性金属塩の混合物、さらにはこれら溶媒同士、あるいはこれら溶媒と水との混合物などが挙げられるが、これらの中でも、とりわけ水やDMSOがコスト、回収性等の工程通過性の点で最も好適である。   Next, the manufacturing method of the conductive fiber of this invention is demonstrated. In the present invention, copper sulfide particles having an average particle diameter of 500 nm or less are dispersed on the fiber surface and inside by producing fibers by a method described later using a spinning solution in which a PVA polymer is dissolved in water or an organic solvent. Thus, it is possible to efficiently and inexpensively manufacture fibers excellent in mechanical properties and conductive performance. Examples of the solvent constituting the spinning dope include polar solvents such as water, dimethyl sulfoxide (hereinafter abbreviated as DMSO), dimethylacetamide, dimethylformamide, N-methylpyrrolidone, polyhydric alcohols such as glycerin and ethylene glycol, and the like. And a mixture of swellable metal salts such as rhodan salts, lithium chloride, calcium chloride, zinc chloride and the like, or a mixture of these solvents, or a mixture of these solvents and water. Among these, water and DMSO are particularly preferable. Most suitable in terms of process passability such as cost and recoverability.

紡糸原液中のポリマー濃度は組成、重合度、溶媒によって異なるが、8〜60質量%の範囲であることが好ましい。紡糸原液の吐出時の液温は、紡糸原液が分解、着色しない範囲であることが好ましく、具体的には50〜200℃とすることが好ましい。また、本発明の効果を損なわない範囲であれば、紡糸原液にはPVA系ポリマー以外にも、目的に応じて、難燃剤、酸化防止剤、凍結防止剤、pH調整剤、隠蔽剤、着色剤、油剤、特殊機能剤などの添加剤などが含まれていてもよい。更にこれらは、一種類または二種類以上のものを併用して使用しても構わない。   The polymer concentration in the spinning dope varies depending on the composition, polymerization degree, and solvent, but is preferably in the range of 8 to 60% by mass. The liquid temperature at the time of discharging the spinning dope is preferably in a range in which the spinning dope is not decomposed or colored, and specifically 50 to 200 ° C. is preferable. Moreover, as long as the effect of the present invention is not impaired, the spinning dope includes a flame retardant, an antioxidant, an antifreezing agent, a pH adjuster, a concealing agent, and a colorant in addition to the PVA polymer. In addition, additives such as oil agents and special functional agents may be included. Furthermore, these may be used alone or in combination of two or more.

かかる紡糸原液をノズルから吐出して湿式紡糸、乾湿式紡糸あるいは乾式紡糸を行えばよく、PVA系ポリマーに対して固化能を有する固化液あるいは、気体中に吐出すればよい。なお、湿式紡糸とは、紡糸ノズルから直接固化浴に紡糸原液を吐出する方法のことであり、乾湿式紡糸とは、紡糸ノズルから一旦任意の距離の空気中あるいは不活性ガス中に紡糸原液を吐出し、その後に固化浴に導入する方法のことである。また、乾式紡糸とは、空気中あるいは不活性ガス中に紡糸原液を吐出する方法のことである。これらの紡糸方法の中でも、本発明の導電性繊維には、湿式紡糸にて得られるPVA系繊維が好適であり、特に得られた繊維がスキン/コア構造となっており、コア部分よりスキン部分の方が配向結晶化が促進されている繊維を用いればなお良い。このような繊維を用いれば、コア部分の非晶部へより積極的に銅イオンの配位が起こり、硫化銅が生成され、取り込まれた硫化銅はスキン部分で外部へ流出されないようにカバーされるためである。   Such a spinning stock solution may be discharged from a nozzle to perform wet spinning, dry wet spinning, or dry spinning, and may be discharged into a solidified liquid or a gas having a solidifying ability for a PVA polymer. Wet spinning is a method in which a spinning stock solution is discharged directly from a spinning nozzle to a solidification bath, and dry-wet spinning is a method in which spinning stock solution is once discharged into air or inert gas at an arbitrary distance from the spinning nozzle. It is a method of discharging and then introducing into the solidification bath. Dry spinning is a method of discharging a spinning solution into air or an inert gas. Among these spinning methods, PVA fibers obtained by wet spinning are suitable for the conductive fibers of the present invention, and the obtained fibers have a skin / core structure. It is more preferable to use a fiber in which oriented crystallization is promoted. If such a fiber is used, copper ions are more coordinated to the amorphous part of the core part, copper sulfide is generated, and the incorporated copper sulfide is covered so as not to flow out to the outside at the skin part. Because.

本発明において、湿式紡糸、または乾湿式紡糸の際に用いる固化浴は、原液溶媒が有機溶媒の場合と水の場合では異なる。有機溶媒を用いた原液の場合には、得られる繊維強度等の点から固化浴溶媒と原液溶媒からなる混合液であることが好ましく、固化溶媒としては特に制限はないが、例えばメタノール、エタノール、プロパノ−ル、ブタノールなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類等のPVA系ポリマーに対して固化能を有する有機溶媒を用いることができる。これらの中でも低腐食性及び溶剤回収の点でメタノールとDMSOとの組合せが好ましい。一方、紡糸原液が水溶液の場合、固化浴を構成する固化溶媒としては、芒硝、硫酸アンモニウム、炭酸ナトリウム等のPVA系ポリマーに対して固化能を有する無機塩類や苛性ソーダの水溶液を用いることができる。また、PVA系ポリマーと共に、ホウ酸などを加えた水溶液をアルカリ性固化浴中にゲル化紡糸することもできる。   In the present invention, the solidification bath used in wet spinning or dry wet spinning differs depending on whether the stock solution solvent is an organic solvent or water. In the case of a stock solution using an organic solvent, it is preferably a mixed solution composed of a solidification bath solvent and a stock solution solvent from the viewpoint of fiber strength and the like obtained, and the solidification solvent is not particularly limited, but for example, methanol, ethanol, An organic solvent capable of solidifying PVA-based polymers such as alcohols such as propanol and butanol, and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone can be used. Among these, a combination of methanol and DMSO is preferable in terms of low corrosivity and solvent recovery. On the other hand, when the spinning dope is an aqueous solution, an aqueous solution of inorganic salts or caustic soda having a solidifying ability with respect to PVA-based polymers such as sodium sulfate, ammonium sulfate, and sodium carbonate can be used as the solidifying solvent constituting the solidifying bath. Further, an aqueous solution to which boric acid or the like is added together with the PVA polymer can be gel-spun in an alkaline solidification bath.

次に固化された原糸から紡糸原液の溶媒を抽出除去するために、抽出浴を通過させるが、抽出時に同時に原糸を湿延伸することが、乾燥時の繊維間膠着抑制及び得られる繊維の力学物性を向上させるうえで好ましい。その際の湿延伸倍率としては2〜10倍であることが工程性、生産性の点で好ましい。抽出溶媒としては固化溶媒単独あるいは原液溶媒と固化溶媒の混合液を用いることができる。   Next, in order to extract and remove the solvent of the spinning dope from the solidified yarn, it is passed through an extraction bath. It is preferable for improving mechanical properties. In that case, the wet draw ratio is preferably 2 to 10 times in terms of processability and productivity. As the extraction solvent, a solidified solvent alone or a mixed solution of a stock solvent and a solidified solvent can be used.

湿延伸後、乾燥し、更に場合によっては乾熱延伸、熱処理を施す。このための延伸条件は、一般的には100℃以上の温度、好ましくは150℃〜260℃の温度で行うのがよく、3倍以上の全延伸倍率、好ましくは5〜25倍の全延伸倍率で延伸すると、繊維の結晶化度と配向度が高くなり、繊維の力学物性が著しく向上するので好ましい。温度が100℃未満の場合、繊維の白化が生じ、そのため力学物性の低下をもたらす。また260℃を越えると繊維の部分的な融解が生じ、この場合においても力学物性の低下をもたらすので好ましくない。なお、ここでいう延伸倍率とは、先述した乾燥前の固化浴中での湿延伸と乾燥後の延伸倍率の積である。例えば、湿延伸を3倍とし、その後の乾熱延伸を2倍とした場合の全延伸倍率は6倍となる。   After wet stretching, the film is dried, and in some cases, dry heat stretching and heat treatment are performed. The stretching conditions for this are generally 100 ° C or higher, preferably 150 ° C to 260 ° C, and the total stretching ratio is 3 times or more, preferably 5 to 25 times. Is preferred because the fiber crystallinity and orientation become high and the mechanical properties of the fiber are remarkably improved. When the temperature is less than 100 ° C., whitening of the fiber occurs, which leads to a decrease in mechanical properties. On the other hand, if the temperature exceeds 260 ° C., partial melting of the fiber occurs, and in this case, mechanical properties are deteriorated, which is not preferable. In addition, the draw ratio here is the product of the wet draw in the solidification bath before drying described above and the draw ratio after drying. For example, when the wet stretching is 3 times and the subsequent dry heat stretching is 2 times, the total stretching ratio is 6 times.

本発明の目的とする導電性繊維を得るためには、上記の湿延伸後の膨潤状態の繊維、若しくは乾燥または延伸後の繊維を、銅イオンを含む化合物を溶解した浴を通過させて該化合物を繊維内部にまで含有させる。特にこの場合、繊維内部にまで銅イオンを含む化合物の均一浸透させ、銅イオンをPVA系ポリマーの水酸基と配位結合を形成せしめるためには、繊維は浴溶媒により膨潤していることが望ましく、そのためには浴に用いる溶媒はメタノール等のアルコール類や水、塩類あるいはこれらの混合物であることが好ましい。その時の浴溶媒による繊維の膨潤度は1質量%以上であることが好ましい。なお、膨潤度調整のため、繊維を先ず所定の浴に浸漬し、その後、銅イオンを放出する化合物が溶解された浴に浸漬する事が望ましい場合もある。膨潤度が1質量%未満の場合、繊維内部への硫化銅を生成させることが困難となる。一方で、膨潤度が大きくなりすぎた場合、浴へのPVA系ポリマーの溶出などが起こり、工程通過性の面で好ましくない。以上のことから、銅イオンを含む化合物が溶解された浴での膨潤度は2〜40質量%であることがより好ましく、3〜30質量%であることがさらに好ましい。   In order to obtain the conductive fiber which is the object of the present invention, the above-mentioned swollen fiber after wet drawing or the fiber after drying or drawing is passed through a bath in which a compound containing copper ions is dissolved. To the inside of the fiber. In particular, in this case, in order to uniformly infiltrate the compound containing copper ions into the inside of the fiber and form a coordinate bond with the hydroxyl group of the PVA polymer, the fiber is desirably swollen by a bath solvent, For this purpose, the solvent used in the bath is preferably alcohols such as methanol, water, salts or a mixture thereof. The swelling degree of the fiber by the bath solvent at that time is preferably 1% by mass or more. In order to adjust the degree of swelling, it may be desirable to first immerse the fibers in a predetermined bath and then immerse them in a bath in which a compound that releases copper ions is dissolved. When the degree of swelling is less than 1% by mass, it is difficult to produce copper sulfide inside the fiber. On the other hand, when the degree of swelling becomes too large, elution of the PVA polymer into the bath occurs, which is not preferable in terms of process passability. From the above, the degree of swelling in a bath in which a compound containing copper ions is dissolved is more preferably 2 to 40% by mass, and further preferably 3 to 30% by mass.

本発明の導電性繊維は、先述したように、硫化銅の導入量などにより、体積固有抵抗値を適宜コントロール可能である。銅イオンを含む化合物の浴への溶解量は要求される導電性能に応じて適宜設定すればよいが、10〜400g/Lの範囲であることが好ましい。添加量が10g/L未満の場合、所望の物性が得られず、また400g/Lを越える場合は、ローラーへの付着など、工程性不良をもたらすので好ましくない。より好ましくは20〜100g/Lである。前記したように、所定の膨潤状態にある場合、銅イオンが溶解された浴に繊維が通過した時点で、銅イオンを含む化合物の繊維内部への含浸は起こるので、浴での滞留時間については特に制限されないが、繊維内部にまで銅イオンを含有させ、PVA系ポリマーと配位結合を十分にせしめるためには、浴での滞留時間は30秒以上、好ましくは60秒以上であることが望ましい。   As described above, the volume resistivity of the conductive fiber of the present invention can be appropriately controlled by the amount of copper sulfide introduced. The amount of the compound containing copper ions dissolved in the bath may be appropriately set according to the required conductivity performance, but is preferably in the range of 10 to 400 g / L. When the addition amount is less than 10 g / L, desired physical properties cannot be obtained, and when it exceeds 400 g / L, it is not preferable because it causes poor processability such as adhesion to a roller. More preferably, it is 20-100 g / L. As described above, when the fibers are passed through the bath in which the copper ions are dissolved in the predetermined swelling state, impregnation of the compound containing copper ions into the fibers occurs. Although not particularly limited, it is desirable that the residence time in the bath is 30 seconds or more, preferably 60 seconds or more in order to contain copper ions even inside the fiber and make the coordination bond with the PVA polymer sufficiently. .

次にPVA系繊維の繊維表面に付着、または表面及び内部に付着・含有している銅イオンを硫化処理する目的で、硫化物イオンを含む化合物を溶解した浴を通過させる必要がある。その場合、硫化物イオンを含む化合物の浴への添加量は銅イオンの導入量によって必要に応じて適宜設定すればよいが、1〜100g/Lの範囲であることが好ましい。添加量が1g/L未満の場合、繊維内部の銅イオンまで還元処理が進まない可能性があるので好ましくない。また100g/Lを超える場合は、PVA系繊維内部に含有される銅イオンを硫化処理するに十分な量ではあるが、回収系や臭気問題など工程性の面であまり好ましくない。
繊維内部に含有された銅イオンを硫化する反応は、特に硫化能の大きい化合物を用いた場合は瞬時に起こることから、この場合の滞留時間には特に制限はないが、繊維内部の銅イオンを十分硫化処理するためには、滞留時間は10秒以上であることが望ましい。
銅イオンが溶解された浴と硫化物イオンを含む化合物を溶解した浴を通過させる順番についてはどちらが先になっても得られた導電性繊維、若しくは布帛の導電性能はほとんど変わらない。
Next, it is necessary to pass through a bath in which a compound containing sulfide ions is dissolved for the purpose of sulfiding copper ions adhering to the surface of the PVA fibers or adhering to / containing the surface and inside. In that case, the amount of the compound containing sulfide ions added to the bath may be appropriately set depending on the amount of copper ions introduced, but is preferably in the range of 1 to 100 g / L. When the addition amount is less than 1 g / L, the reduction treatment may not proceed to the copper ions inside the fiber, which is not preferable. Moreover, when it exceeds 100 g / L, although it is a quantity sufficient for carrying out the sulfidation process of the copper ion contained inside a PVA-type fiber, it is not much preferable in terms of process property, such as a recovery system and an odor problem.
The reaction to sulfidize copper ions contained in the fiber occurs instantaneously when a compound having a high sulfiding ability is used.Therefore, the residence time in this case is not particularly limited. In order to sufficiently sulfidize, the residence time is desirably 10 seconds or longer.
As for the order of passing through the bath in which the copper ions are dissolved and the bath in which the compound containing sulfide ions is dissolved, the conductive performance of the obtained conductive fiber or fabric is almost the same.

本発明の導電性繊維の導電性能を高める為には、上記の銅イオンを繊維表面に付着、または表面及び内部に付着・含有させる工程と、銅イオンを硫化処理する工程を繰り返し通し、繊維表面に付着、または繊維の表面及び内部の硫化銅付着量・含有量を高めることが効果的である。具体的には上記処理を少なくとも2回以上繰り返すことで、効果的に繊維表面及び内部に硫化銅を生成させ、導電性能を高めることができる。但し、繊維表面及び内部に硫化銅を生成したものに対して延伸を行うと、硫化銅粒子間距離が増加するためか、導電性が低下する傾向があるので好ましくない。   In order to enhance the conductive performance of the conductive fiber of the present invention, the copper surface is repeatedly adhered to the fiber surface, or the step of attaching and containing the copper ion on the surface and the inside, and the step of sulfidizing the copper ion, and the fiber surface It is effective to increase the adhesion amount / content of copper sulfide adhering to or on the surface and inside of the fiber. Specifically, by repeating the above treatment at least twice or more, copper sulfide can be effectively generated on the fiber surface and inside, and the conductive performance can be enhanced. However, it is not preferable to stretch the fiber surface and the inside of which copper sulfide is generated because the distance between the copper sulfide particles increases or the conductivity tends to decrease.

一方で、硫化銅粒子を予め原液から仕込んだ場合には、原液中での硫化銅粒子の分散不良や、凝集、沈降などが起こり、繊維化工程、その後の延伸性が低下し、結果として結晶化度が低く、ある程度の導電性は付与できても、機械的特性の低い繊維しか得られない。また、あらかじめ銅イオンを配位させたPVA系ポリマーを原料として使用した場合は、銅の配位による溶液粘度の上昇や、固化性が悪化するなど、工程性が悪化することに加えて、得られる繊維の力学物性は低いものとなる。   On the other hand, when copper sulfide particles are charged from the stock solution in advance, poor dispersion, aggregation, sedimentation, etc. of the copper sulfide particles in the stock solution occur, and the fiberizing process and subsequent stretchability are reduced, resulting in crystals. Even if the degree of conversion is low and a certain degree of conductivity can be imparted, only fibers with low mechanical properties can be obtained. In addition, when a PVA polymer in which copper ions are coordinated in advance is used as a raw material, in addition to deterioration in processability such as increase in solution viscosity due to copper coordination and deterioration in solidification properties, The mechanical properties of the resulting fibers are low.

このようにして得られた繊維表面、または繊維表面及び内部に硫化銅粒子を導入された原糸、若しくは延伸糸に、熱処理を施し繊維物性を向上させることで、本発明の導電性繊維を製造することができる。このための熱処理条件は、一般的には100℃以上の温度、好ましくは150℃〜260℃の温度で行うのがよい。温度が100℃未満の場合、繊維物性の向上効果が不十分である。また260℃を越えると繊維の部分的な融解が生じ、この場合においても機械的物性の低下をもたらすので好ましくない。   The conductive fiber of the present invention is manufactured by heat-treating the fiber surface obtained in this way, or the original yarn or copper yarn containing copper sulfide particles introduced into the fiber surface and the inside to improve the physical properties of the fiber. can do. The heat treatment conditions for this are generally 100 ° C or higher, preferably 150 ° C to 260 ° C. When the temperature is less than 100 ° C., the effect of improving the fiber properties is insufficient. On the other hand, if the temperature exceeds 260 ° C., partial melting of the fiber occurs, and in this case, mechanical properties are deteriorated, which is not preferable.

本発明の導電性繊維は、例えばステープルファイバー、ショートカットファイバー、フィラメントヤーン、紡績糸、紐状物、ロープ、布帛などのあらゆる繊維形態において優れた導電性能を示すので、センサーや電磁波シールド材などの用途に用いることができる。その際の繊維の断面形状に関しても特に制限はなく、円形、中空、あるいは星型等異型断面であっても構わない。なかでも、本発明による導電性繊維は、導電性、柔軟性にすぐれているので、導電性布帛として有利に用いることができる。例えば、本発明による導電性繊維を50質量%以上、好ましくは、80質量%以上、特に、90質量%以上含む布帛とすることによって、高度に導電性能を示す導電性繊維製品を得ることができる。この時、併用しうる繊維として特に限定はないが、硫化銅粒子を含有しないPVA系繊維や、ポリエステル系繊維、ポリアミド系繊維、セルロース系繊維等を挙げることができる。また、先にPVA系繊維をステープルファイバー、ショートカットファイバー、フィラメントヤーン、紡績糸、紐状物、ロープ、布帛などのあらゆる繊維形態としておいてから導電化処理を行うことでも、同様に高度に導電性能を示す導電性繊維製品を得ることができる。   The conductive fiber of the present invention exhibits excellent conductive performance in all fiber forms such as staple fiber, shortcut fiber, filament yarn, spun yarn, string, rope, fabric, etc. Can be used. The cross-sectional shape of the fiber at that time is not particularly limited, and may be circular, hollow, or a different cross-section such as a star shape. Especially, since the electroconductive fiber by this invention is excellent in electroconductivity and a softness | flexibility, it can be advantageously used as an electroconductive cloth. For example, a conductive fiber product exhibiting highly conductive performance can be obtained by using a fabric containing 50% by mass or more, preferably 80% by mass or more, particularly 90% by mass or more of the conductive fiber according to the present invention. . At this time, although there is no limitation in particular as a fiber which can be used together, PVA type fiber which does not contain copper sulfide particles, polyester type fiber, polyamide type fiber, cellulose type fiber, etc. can be mentioned. In addition, the PVA fiber can be made into various fiber forms such as staple fiber, shortcut fiber, filament yarn, spun yarn, string-like material, rope, fabric, etc., and then conductive treatment can be performed to achieve a high degree of conductivity. The conductive fiber product which shows can be obtained.

本発明の繊維は、力学物性、耐熱性に加えて、柔軟性、導電性に優れることから、フィラメントや紡績糸、更には紙、不織布、織物、編物などの布帛とすることが可能であり、産業資材用、衣料用、医療用等あらゆる用途に好適に使用でき、例えば、帯電材、除電材、ブラシ、センサー、電磁波シールド材、電子材料をはじめとして多くの用途に極めて有用である。   The fibers of the present invention are excellent in flexibility and electrical conductivity in addition to mechanical properties and heat resistance, and thus can be used as fabrics such as filaments and spun yarns, and further paper, nonwoven fabrics, woven fabrics, knitted fabrics, It can be suitably used for various applications such as industrial materials, clothing, and medical use, and is extremely useful for many applications including, for example, charging materials, neutralizing materials, brushes, sensors, electromagnetic shielding materials, and electronic materials.

以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何等限定されるものではない。なお以下の実施例において、繊維表面、及び内部の硫化銅粒子の量、存在形態及び粒子径、膨潤度、体積固有抵抗値、電磁波シールド特性、および引張強度は下記の方法により測定したものを示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by this Example. In the following Examples, the amount, presence form and particle diameter, swelling degree, volume resistivity, electromagnetic wave shielding property, and tensile strength of the copper sulfide particles inside and on the fiber surface are those measured by the following methods. .

[繊維表面、及び内部の硫化銅粒子の定量測定 質量%]
繊維中の硫化銅粒子の定量測定は、ジャーレルアッシュ社製ICP発光分析装置IRIS−APを用いて行った。
[Quantitative measurement by mass of copper sulfide particles on the fiber surface and inside]
The quantitative measurement of the copper sulfide particles in the fiber was performed using an ICP emission analyzer IRIS-AP manufactured by Jarrel Ash.

[繊維表面、及び内部の硫化銅粒子の存在形態、及び平均粒子径 nm]
繊維中の硫化銅粒子の存在形態は、(株)日立製作所製H−800NA透過型電子顕微鏡(TEM)を用いて行った。繊維断面の写真から任意に100個の硫化銅粒子を選び、その大きを夫々実測し、その平均値を平均粒子径とした。
[Fiber surface and internal copper sulfide particles, and average particle diameter nm]
The presence form of the copper sulfide particles in the fiber was performed using an H-800NA transmission electron microscope (TEM) manufactured by Hitachi, Ltd. 100 copper sulfide particles were arbitrarily selected from the photograph of the fiber cross section, their sizes were measured, and the average value was taken as the average particle diameter.

[膨潤度 質量%]
繊維を1cm程度にカットし、30℃の水に30分浸漬した。その後、繊維を濾取し、3000rpmの回転数の遠心分離機で10分間遠心脱水を行い、重量(A)を測定した。脱水を行なった繊維を90℃の乾燥機で4時間放置し、完全に乾燥させ重量(B)を測定した。膨潤度は下記の式にて算出した。
膨潤度(質量%)={重量(A)− 重量(B)}/ 重量(B)×100
[Swelling percentage by mass]
The fiber was cut to about 1 cm and immersed in water at 30 ° C. for 30 minutes. Thereafter, the fibers were collected by filtration, subjected to centrifugal dehydration for 10 minutes with a centrifuge at a rotation speed of 3000 rpm, and the weight (A) was measured. The dehydrated fiber was left in a dryer at 90 ° C. for 4 hours, completely dried, and the weight (B) was measured. The degree of swelling was calculated by the following formula.
Swelling degree (mass%) = {weight (A) −weight (B)} / weight (B) × 100

[繊維の導電性(体積固有抵抗値)測定 Ω・cm]
PVA繊維を温度105℃で1時間かけて乾燥させ、その後、温度20℃、湿度30%の条件下で24時間以上放置させて調湿した。この繊維に対して、長さ2cmの単繊維試験片を採取し、該試験片の両端間に、横河ヒューレットパッカード社製の抵抗値測定機「MULTIMETER」を使用して、10Vの電圧をかけてその抵抗値(Ω)を測定した。そして、体積固有抵抗値(ρ)(Ω・cm)=R×(S/L)により、各試験片の体積固有抵抗値を求め、これを25試料片について行い、その平均値を試料の体積固有抵抗値とした。なお、Rは試験片の抵抗値(Ω)、Sは断面積(cm)、及びLは長さ(2cm)を示す。ここで、試験片の断面積は、繊維を顕微鏡下で観察することにより算出した。
[Measurement of fiber conductivity (volume resistivity) Ω · cm]
The PVA fiber was dried at a temperature of 105 ° C. for 1 hour, and then allowed to stand for 24 hours or more under conditions of a temperature of 20 ° C. and a humidity of 30% to adjust the humidity. For this fiber, a single fiber test piece having a length of 2 cm was collected, and a voltage of 10 V was applied between both ends of the test piece using a resistance measuring device “MULTITIMETER” manufactured by Yokogawa Hewlett-Packard Company. The resistance value (Ω) was measured. Then, the volume specific resistance value (ρ) (Ω · cm) = R × (S / L) is used to obtain the volume specific resistance value of each test piece, and this is performed for 25 sample pieces, and the average value is obtained as the volume of the sample. The specific resistance value was used. Here, R represents the resistance value (Ω) of the test piece, S represents the cross-sectional area (cm 2 ), and L represents the length (2 cm). Here, the cross-sectional area of the test piece was calculated by observing the fiber under a microscope.

[電磁波シールド測定 dB]
電磁波シールド特性の測定は、関西電子工業振興センター法(KEC法)に従い、行った。測定温度は24℃、測定周波数は10〜1000MHz、電波発信部と受信部との距離は5mmで行い、n=5の平均値を採用した。100MHzでの電磁波シールド特性(dB)を比較する事で、効果の有無を判断した。なお、20dBとは入射電磁波の90%を遮蔽することを意味しており、40dBとは99%の遮蔽、60dBとは99.9%の遮蔽材料であることを意味する。
[Electromagnetic shield measurement dB]
The measurement of electromagnetic shielding characteristics was performed according to the Kansai Electronics Industry Promotion Center method (KEC method). The measurement temperature was 24 ° C., the measurement frequency was 10 to 1000 MHz, the distance between the radio wave transmission part and the reception part was 5 mm, and an average value of n = 5 was adopted. The presence or absence of the effect was determined by comparing the electromagnetic wave shielding characteristics (dB) at 100 MHz. 20 dB means that 90% of the incident electromagnetic wave is shielded, 40 dB means 99% shielding, and 60 dB means 99.9% shielding material.

[繊維強度 cN/dtex]
JIS L1013に準じて、予め調湿されたヤーンを試長20cm、初荷重0.25cN/dtex及び引張速度50%/分の条件で測定し、n=20の平均値を採用した。また繊維繊度(dtex)は質量法により求めた。
[Fiber strength cN / dtex]
In accordance with JIS L1013, a yarn conditioned in advance was measured under the conditions of a test length of 20 cm, an initial load of 0.25 cN / dtex and a tensile speed of 50% / min, and an average value of n = 20 was adopted. The fiber fineness (dtex) was determined by a mass method.

[実施例1]
(1)粘度平均重合度1700、ケン化度99.9モル%のPVAをPVA濃度15.8質量%となるように水に投入し、90℃にて窒素雰囲気下で加熱溶解した。得られた紡糸原液を、孔径0.10mm、ホール数4000のノズルを通して飽和芒硝水溶液からなる凝固浴中に湿式紡糸した。
(2)さらに、得られた繊維を水中で4倍に湿延伸した後、235℃にて2倍の乾熱延伸(全延伸倍率として8倍)を実施し、その後、ホルマリン28g/L、硫酸240g/L、芒硝130g/L、75℃の浴に30分浸漬することでホルマール化してPVA系繊維を得た。このPVA系繊維を和光純薬(株)製の硝酸銅を230g/L溶解した75℃の水溶液浴中に滞留時間が5分になるように導糸し、引き続き、和光純薬(株)製の硫化ナトリウムを50g/L溶解した25℃の水浴に滞留時間が2分間になるように導糸した。この処理を4回繰り返した後、100℃の熱風で乾燥して得られた繊維の性能評価結果を表1に示す。
(3)得られた繊維において繊維の表面、及び内部の硫化銅粒子の付着量・含有量は7.8質量%であった。参考として、TEM写真を図1に示す。繊維物性は単糸繊度1.9dtex、繊維の強度は5.1cN/dtexであり、体積固有抵抗値は1.4×10Ω・cmであった。さらに繊維の外観は良好で糸斑等はなく、十分な力学物性と導電性を有するものであった。
[Example 1]
(1) PVA having a viscosity average polymerization degree of 1700 and a saponification degree of 99.9 mol% was added to water so as to have a PVA concentration of 15.8% by mass, and heated and dissolved in a nitrogen atmosphere at 90 ° C. The obtained spinning dope was wet-spun into a coagulation bath made of a saturated sodium sulfate aqueous solution through a nozzle having a hole diameter of 0.10 mm and a hole number of 4000.
(2) Further, the obtained fiber was wet-stretched 4 times in water and then subjected to dry heat stretching 2 times at 235 ° C. (8 times as the total stretching ratio). Thereafter, formalin 28 g / L, sulfuric acid It was formalized by being immersed in a bath of 240 g / L, sodium sulfate 130 g / L, and 75 ° C. for 30 minutes to obtain a PVA fiber. This PVA fiber was introduced into a 75 ° C. aqueous solution in which 230 g / L of copper nitrate manufactured by Wako Pure Chemical Industries, Ltd. was dissolved so that the residence time was 5 minutes, and subsequently manufactured by Wako Pure Chemical Industries, Ltd. Was introduced into a 25 ° C. water bath in which 50 g / L of sodium sulfide was dissolved so that the residence time was 2 minutes. Table 1 shows the performance evaluation results of the fibers obtained by repeating this treatment four times and then drying with hot air at 100 ° C.
(3) In the obtained fiber, the adhesion amount / content of copper sulfide particles on the surface and inside of the fiber was 7.8% by mass. As a reference, a TEM photograph is shown in FIG. The fiber physical properties were a single yarn fineness of 1.9 dtex, the strength of the fiber was 5.1 cN / dtex, and the volume resistivity was 1.4 × 10 0 Ω · cm. Furthermore, the appearance of the fiber was good, there were no yarn spots and the like, and it had sufficient mechanical properties and conductivity.

[実施例2]
(1)実施例1で得たPVA系繊維に捲縮を施した後、44mmにカットし、紡績してC40/1の紡績糸とした。この紡績糸を実施例1と同様な方法によって6回の導電化処理を実施した。
(2)得られた紡績糸において繊維の表面、及び内部の硫化銅粒子の付着量・含有量は9.5質量%、強度は2.2cN/dtexであり、体積固有抵抗値は3.1×10Ω・cmであった。さらに繊維の外観は良好で糸斑等はなく、十分な力学物性と導電性を有するものであった。
[Example 2]
(1) After crimping the PVA fiber obtained in Example 1, it was cut into 44 mm and spun to obtain a C40 / 1 spun yarn. This spun yarn was subjected to conductive treatment six times by the same method as in Example 1.
(2) In the obtained spun yarn, the adhesion amount / content of copper sulfide particles on the fiber surface and inside was 9.5% by mass, the strength was 2.2 cN / dtex, and the volume resistivity was 3.1. × 10 0 Ω · cm. Furthermore, the appearance of the fiber was good, there were no yarn spots and the like, and it had sufficient mechanical properties and conductivity.

[実施例3]
(1)実施例2で得たC40/1のPVA紡績糸を用いて、経20本/cm、緯15本/cmの平織りの布帛とした。
(2)このPVA繊維を用いた平織りの布帛を実施例1と同様な方法によって6回の導電化処理を実施した。得られた布帛の性能評価結果を表1に示す。得られた布帛においてにおいて繊維の表面、及び内部の硫化銅粒子の付着量・含有量繊維中の硫化銅粒子の含有量は9.9質量%であり、体積固有抵抗値は8.9×10‐1Ω・cm、100MHzでの電磁波シールド性能は31dBであった。
[Example 3]
(1) The C40 / 1 PVA spun yarn obtained in Example 2 was used to make a plain weave fabric with a warp of 20 / cm and a weft of 15 / cm.
(2) The plain weave fabric using this PVA fiber was subjected to conductive treatment six times by the same method as in Example 1. The performance evaluation results of the obtained fabric are shown in Table 1. In the obtained fabric, the amount and the content of copper sulfide particles on the fiber surface and inside the copper sulfide particles were 9.9% by mass, and the volume resistivity value was 8.9 × 10. The electromagnetic wave shielding performance at −1 Ω · cm and 100 MHz was 31 dB.

[比較例1]
硝酸銅が溶解された浴、及び硫化ナトリウムが溶解された浴を通過させない以外は、実施例1と同様な方法にて繊維を得た。得られた繊維の性能評価を表1に示す。繊維物性は単糸繊度1.7dtex、繊維の強度は5.5cN/dtexであり、体積固有抵抗値は5.9×1012Ω・cmで導電性能に劣るものであった。
[Comparative Example 1]
Fibers were obtained in the same manner as in Example 1 except that the bath was not passed through a bath in which copper nitrate was dissolved and a bath in which sodium sulfide was dissolved. The performance evaluation of the obtained fiber is shown in Table 1. The fiber physical properties were a single yarn fineness of 1.7 dtex, the strength of the fiber was 5.5 cN / dtex, and the volume resistivity was 5.9 × 10 12 Ω · cm, which was inferior in the conductive performance.

[比較例2]
硝酸銅が溶解された浴は通したが、硫化ナトリウムが溶解された浴を通過させない以外は、実施例1と同様な方法にて繊維を得た。得られた繊維の性能評価を表1に示す。この繊維の単糸繊度は1.8dtex、繊維の強度は5.2cN/dtexであり、体積固有抵抗値は4.8×1012Ω・cmであり、導電性能に劣るものであった。
[Comparative Example 2]
Fibers were obtained in the same manner as in Example 1 except that the bath in which copper nitrate was dissolved was passed but the bath in which sodium sulfide was dissolved was not passed. The performance evaluation of the obtained fiber is shown in Table 1. The single yarn fineness of this fiber was 1.8 dtex, the strength of the fiber was 5.2 cN / dtex, the volume resistivity was 4.8 × 10 12 Ω · cm, and the conductive performance was inferior.

[比較例3]
和光純薬(株)製の硝酸銅を230g/L溶解した水溶液と、和光純薬(株)製の硫化ナトリウムを50g/L溶解した水溶液を混合し、2次粒子径が10nmの硫化銅粒子を析出させた。これを水で十分洗浄後、80℃で乾燥したものを、PVAに対して30質量%となるように原液に添加する、いわゆる原液添加にて比較例1と同様の方法で繊維を得た。得られた繊維の性能評価を表1に示す。繊維物性は単糸繊度2.2dtex、繊維の強度は3.0cN/dtexであり、得られた繊維中の硫化銅粒子の含有量は29.2質量%であったが、体積固有抵抗値は1.1×1010Ω・cmであり、導電性能に劣るものであった。また、繊維内部で硫化銅粒子の凝集が見られ、製糸工程性も不良であり、短時間で紡糸フィルターが昇圧する等の問題が生じた。
[Comparative Example 3]
An aqueous solution prepared by dissolving 230 g / L of copper nitrate manufactured by Wako Pure Chemical Industries, Ltd. and an aqueous solution prepared by dissolving 50 g / L of sodium sulfide manufactured by Wako Pure Chemical Industries, Ltd. are mixed to produce copper sulfide particles having a secondary particle size of 10 nm. Was precipitated. This was sufficiently washed with water and dried at 80 ° C., and then added to the stock solution so as to be 30% by mass with respect to PVA, so that fibers were obtained in the same manner as in Comparative Example 1 by so-called stock solution addition. The performance evaluation of the obtained fiber is shown in Table 1. The fiber properties were a single yarn fineness of 2.2 dtex, the fiber strength was 3.0 cN / dtex, and the content of copper sulfide particles in the obtained fiber was 29.2% by mass. It was 1.1 × 10 10 Ω · cm, which was inferior in conductive performance. In addition, aggregation of copper sulfide particles was observed inside the fiber, the spinning processability was poor, and problems such as pressurization of the spinning filter occurred in a short time.

[比較例4]
(1)市販のナイロン6繊維を、和光純薬(株)製の酢酸銅を230g/L溶解した25℃の水浴に滞留時間が2分になるように導糸し、引き続き、和光純薬(株)製の硫化ナトリウムを50g/L溶解した25℃の水浴に滞留時間が2分になるように導糸した。これを、2回繰り返した後、120℃の熱風で乾燥し、繊維を得た。
(2)得られた繊維は、硫化銅量は0.45質量%であり、表面にのみ1μm程度の硫化銅粒子が、大きな塊上に付着して入る状態であった。繊維の強度は3.5cN/dtexであったが、体積固有抵抗値は4.0×1010Ω・cmであった。
[Comparative Example 4]
(1) A commercially available nylon 6 fiber was introduced into a 25 ° C. water bath in which 230 g / L of copper acetate manufactured by Wako Pure Chemical Industries, Ltd. was dissolved so that the residence time was 2 minutes. Yarn was introduced into a 25 ° C. water bath in which 50 g / L of sodium sulfide manufactured by the company was dissolved so that the residence time was 2 minutes. This was repeated twice, followed by drying with hot air at 120 ° C. to obtain a fiber.
(2) The amount of copper sulfide in the obtained fiber was 0.45% by mass, and copper sulfide particles of about 1 μm were attached to the large lump only on the surface. The strength of the fiber was 3.5 cN / dtex, but the volume resistivity value was 4.0 × 10 10 Ω · cm.

[比較例5]
比較例4で得られたナイロン6繊維を、経20本/cm、緯15本/cmにて平織りの布帛とした。得られた布帛の電磁波シールド性能は、3dBであり電磁波シールド性能の劣るものであった。
[Comparative Example 5]
The nylon 6 fiber obtained in Comparative Example 4 was made into a plain weave fabric at a warp of 20 / cm and a weft of 15 / cm. The obtained cloth had an electromagnetic wave shielding performance of 3 dB, which was inferior in the electromagnetic wave shielding performance.

Figure 2007231483
Figure 2007231483

表1、図1の結果から明らかなように、本発明の導電性繊維は、繊維表面、及び内部に硫化銅が付着、及び含有されており、力学物性に加えて、優れた導電性を兼ね備えている。一方、繊維中における硫化微銅粒子の含有量が少ない場合や、硫化銅粒子を原液から仕込んだ場合は、本発明の繊維のように、力学物性と導電性の両特性を兼備することはできない。   As is apparent from the results of Table 1 and FIG. 1, the conductive fiber of the present invention has copper sulfide attached and contained on the fiber surface and inside, and has excellent conductivity in addition to mechanical properties. ing. On the other hand, when the content of fine copper sulfide particles in the fiber is small, or when the copper sulfide particles are charged from the stock solution, it is impossible to combine both mechanical properties and electrical conductivity properties as in the case of the fiber of the present invention. .

本発明によれば、従来技術では達成することができなかった力学特性と優れた導電性を兼備した導電性繊維を提供することができる。また本発明の導電性繊維は特別に高価な工程を必要とせず、通常の紡糸、延伸工程で安価に製造可能である。さらに本発明の導電性繊維は、紙、不織布、織物、編物などの布帛とすることが可能であり、帯電材、除電材、ブラシ、センサー、電磁波シールド材、電子材料をはじめとして多くの用途に期待される。   ADVANTAGE OF THE INVENTION According to this invention, the electroconductive fiber which has the mechanical characteristics which were not able to be achieved with the prior art, and the outstanding electroconductivity can be provided. Further, the conductive fiber of the present invention does not require a particularly expensive process, and can be produced at low cost by ordinary spinning and drawing processes. Furthermore, the conductive fiber of the present invention can be made into a fabric such as paper, non-woven fabric, woven fabric, and knitted fabric, and is used in many applications including a charging material, a static eliminating material, a brush, a sensor, an electromagnetic shielding material, and an electronic material. Be expected.

本発明の導電性繊維において、その表面、及び内部に硫化銅粒子が付着・含有されている状態を示す顕微鏡写真。In the conductive fiber of this invention, the microscope picture which shows the state in which the copper sulfide particle has adhered and contained in the surface and the inside.

Claims (3)

ケン化度が88モル%以上、平均重合度が1200〜15000のポリビニルアルコール系ポリマーからなる繊維であって、該ポリビニルアルコール系繊維の膨潤度が1〜50質量%であり、且つ該ポリビニルアルコール系繊維の表面、または表面及び内部に、ポリビニルアルコール系成分に対して0.5〜50質量%の硫化銅が付着、または付着及び含有されていることを特徴とする導電性繊維。   A fiber comprising a polyvinyl alcohol polymer having a saponification degree of 88 mol% or more and an average polymerization degree of 1200 to 15000, wherein the polyvinyl alcohol fiber has a swelling degree of 1 to 50% by mass, and the polyvinyl alcohol system A conductive fiber, characterized in that 0.5 to 50% by mass of copper sulfide is attached to, attached to, or contained on the surface of the fiber, or on the surface and inside thereof. 体積固有抵抗値が1.0×10−3〜1.0×10Ω・cmであることを特徴とする請求項1記載の導電性繊維。 2. The conductive fiber according to claim 1, wherein the volume resistivity value is 1.0 × 10 −3 to 1.0 × 10 8 Ω · cm. ポリビニルアルコール系繊維を、銅イオンを含む化合物(A)が10〜400g/Lの濃度で溶解された20〜80℃の浴に30秒〜10分間通した後、硫化物イオンを含む化合物(B)が1〜100g/Lの濃度で溶解された20〜80℃の浴に10秒〜5分間通して、該繊維の表面、または表面及び内部に硫化銅を生成させることを特徴とする請求項1または2記載の導電性繊維の製造方法。
The polyvinyl alcohol fiber was passed through a 20 to 80 ° C. bath in which a compound (A) containing copper ions was dissolved at a concentration of 10 to 400 g / L for 30 seconds to 10 minutes, and then a compound containing sulfide ions (B ) Is passed through a bath at 20 to 80 ° C. dissolved at a concentration of 1 to 100 g / L for 10 seconds to 5 minutes to form copper sulfide on the surface of the fiber or on the surface and inside thereof. 3. A method for producing a conductive fiber according to 1 or 2.
JP2006057183A 2006-03-03 2006-03-03 Electroconductive fiber and method for producing the same Pending JP2007231483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057183A JP2007231483A (en) 2006-03-03 2006-03-03 Electroconductive fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057183A JP2007231483A (en) 2006-03-03 2006-03-03 Electroconductive fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007231483A true JP2007231483A (en) 2007-09-13

Family

ID=38552358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057183A Pending JP2007231483A (en) 2006-03-03 2006-03-03 Electroconductive fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007231483A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005554A (en) * 2012-06-21 2014-01-16 Nippon Nozzle Co Ltd Method for producing functional materials
JP2016169450A (en) * 2015-03-12 2016-09-23 日本バイリーン株式会社 Electric conductive fiber sheet, gas diffusion electrode, membrane-electrode conjugate, solid polymer fuel cell and manufacturing method of electric conductive fiber sheet
CN112088254A (en) * 2018-06-29 2020-12-15 舍弗勒技术股份两合公司 Rolling bearing with integrated current elimination

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005554A (en) * 2012-06-21 2014-01-16 Nippon Nozzle Co Ltd Method for producing functional materials
JP2016169450A (en) * 2015-03-12 2016-09-23 日本バイリーン株式会社 Electric conductive fiber sheet, gas diffusion electrode, membrane-electrode conjugate, solid polymer fuel cell and manufacturing method of electric conductive fiber sheet
CN112088254A (en) * 2018-06-29 2020-12-15 舍弗勒技术股份两合公司 Rolling bearing with integrated current elimination
US11384793B2 (en) 2018-06-29 2022-07-12 Schaeffler Technologies AG & Co. KG Rolling bearings having an integrated current-removal function

Similar Documents

Publication Publication Date Title
KR101028984B1 (en) Conductive polyvinyl alcohol fiber
Xue et al. Electrically conductive yarns based on PVA/carbon nanotubes
JP7110703B2 (en) Graphene-coated fiber, conductive multifilament, conductive fabric and method for producing graphene-coated fiber
JP2005264419A (en) Conductive polyvinyl alcohol fiber
JP2007231483A (en) Electroconductive fiber and method for producing the same
JP6087533B2 (en) Heat resistant organic fiber
CN112853521A (en) Production method of anti-static POY (polyester pre-oriented yarn)
CN113832572B (en) Wave-absorbing composite large fiber and preparation method and application thereof
JP6095159B2 (en) Method for producing conductive cellulose fiber material
JP5131930B2 (en) Conductive polymer fiber and method for producing the same
JP2007131977A (en) Conductive polyvinyl alcohol-based fiber
JP2007231482A (en) Polyvinyl alcohol-based fiber having both of electroconductivity and flame retardancy and method for producing the same
JP2007119950A (en) Conductive polyvinyl alcohol-based fiber
CN105714404A (en) Preparation method of cuprous sulfide/PET (polyethylene terephthalate) composite conductive fiber
JP2007239144A (en) Electroconductive polyvinyl alcohol-based fiber
CN105714399A (en) Preparation method of light-colored CuI/PAN (polyacrylonitrile) composite conductive fiber
JP4830406B2 (en) Conductive fiber
JP2013253817A (en) Radiation shielding fiber and fabric
JP2007221018A (en) Electromagnetic wave shielding material
JP4772538B2 (en) Polyvinyl alcohol fiber and method for producing the same
JP2005232609A (en) Method for producing para type wholly aromatic polyamide fiber
JP2008007661A (en) Method for producing functional polymer molded product
DE2739179A1 (en) Metallising synthetic polymer esp. acrylonitrile! fibre - by depositing metal on fibre of high porosity
CN115354410B (en) Polyimide fiber, and preparation method and application thereof
KR20100123315A (en) Aramid fiber and method for manufacturing the same