JP6095159B2 - Method for producing conductive cellulose fiber material - Google Patents

Method for producing conductive cellulose fiber material Download PDF

Info

Publication number
JP6095159B2
JP6095159B2 JP2013039080A JP2013039080A JP6095159B2 JP 6095159 B2 JP6095159 B2 JP 6095159B2 JP 2013039080 A JP2013039080 A JP 2013039080A JP 2013039080 A JP2013039080 A JP 2013039080A JP 6095159 B2 JP6095159 B2 JP 6095159B2
Authority
JP
Japan
Prior art keywords
fiber material
conductive
liter
copper
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013039080A
Other languages
Japanese (ja)
Other versions
JP2014167187A (en
Inventor
島田 直樹
直樹 島田
信男 小形
信男 小形
幸治 中根
幸治 中根
新司 山口
新司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Fukui
Original Assignee
University of Fukui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Fukui filed Critical University of Fukui
Priority to JP2013039080A priority Critical patent/JP6095159B2/en
Publication of JP2014167187A publication Critical patent/JP2014167187A/en
Application granted granted Critical
Publication of JP6095159B2 publication Critical patent/JP6095159B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、セルロース系繊維材料に対して導電性を付与する導電性セルロース系繊維材料の製造方法に関する。   The present invention relates to a method for producing a conductive cellulose fiber material that imparts conductivity to a cellulose fiber material.

従来より、繊維に導電性を付与する方法として、アセチレンカーボンブラック等の導電性フィラーを繊維に練りこんで導電性繊維を製造する方法が提案されている。こうした導電性繊維の製造方法は、コストが比較的安く、しかも量産化にも適しているため、多くの産業分野で広く使用されている。例えば、静電複写機に用いられる帯電用、除電用ブラシとして、このような導電性繊維が広く実用化されている。   Conventionally, as a method for imparting conductivity to a fiber, a method for producing a conductive fiber by kneading a conductive filler such as acetylene carbon black into the fiber has been proposed. Such a method for producing a conductive fiber is widely used in many industrial fields because it is relatively inexpensive and suitable for mass production. For example, such conductive fibers have been widely put into practical use as charging and neutralizing brushes used in electrostatic copying machines.

従来のブラシ式帯電装置のブラシに用いる原糸としては、導電性カーボンブラックを再生セルロースに均一分散した導電性再生セルロース系繊維(例えば、特許文献1及び2参照)が使用されている。こうした導電性再生セルロース系繊維は、導電性カーボン粒子の連鎖による電気導通性能に限界があり、帯電防止性能レベルの102Ω・cm以下の体積固有抵抗に至らない基本的な問題点があった。さらに、添加したカーボン微粒子はその粒子径をいかに小さくしても2次凝集を防ぐことは極めて困難であったので、繊維製糸性が悪く、凝集状態のカーボンが再生セルロースの環境による性能変化に対して敏感に影響を受ける欠点を有していた。また、紡糸練り込みの場合、カーボンブラックを高濃度に均一分散させる必要があるが、数μm〜数十μmのカーボン等の導電性フィラー紡糸原液中でフィラーの凝集や沈降のため均一な分散は実質的に難しい。そのため、繊維が脆く、ブラシとしての機械的物性に劣ることなどの問題点があった。また、マトリックス高分子がナイロンやポリエステル、オレフィン等の合成高分子の熱可塑性樹脂材料の場合、複写機等では定着時の加熱によって内部の温度が高温になることから、これら用途に使用される導電性繊維には長時間にわたって熱を受けても変形しないことが要求されている。そのため、耐熱性を有するセルロースは重要な高分子材料であった。 As the raw yarn used for the brush of the conventional brush-type charging device, conductive regenerated cellulose fibers in which conductive carbon black is uniformly dispersed in regenerated cellulose (for example, see Patent Documents 1 and 2) are used. Such a conductive regenerated cellulose fiber has a basic problem that it has a limit in electric conduction performance due to a chain of conductive carbon particles and does not reach a volume specific resistance of 10 2 Ω · cm or less, which is an antistatic performance level. . Furthermore, it was extremely difficult to prevent secondary agglomeration of the added carbon fine particles no matter how small the particle size, so that the fiber spinning was poor, and the agglomerated carbon was not suitable for the performance change due to the environment of regenerated cellulose. Have the disadvantage of being sensitively affected. In the case of spinning kneading, it is necessary to uniformly disperse carbon black at a high concentration. However, uniform dispersion due to aggregation and sedimentation of filler in a conductive filler spinning solution such as carbon of several μm to several tens of μm Practically difficult. As a result, the fibers are brittle and have poor mechanical properties as a brush. In addition, when the matrix polymer is a synthetic polymer thermoplastic resin such as nylon, polyester, or olefin, the internal temperature becomes high due to heating during fixing in a copying machine, etc. It is required that the synthetic fiber does not deform even when subjected to heat for a long time. For this reason, cellulose having heat resistance has been an important polymer material.

また、近年、携帯電話や電子機器の飛躍的な普及に伴い、これらの機器から漏洩する電磁波の人体への影響や他の電子機器への誤動作等の問題が取り沙汰されている。こうした電磁波を遮蔽する遮蔽材として導電性布帛が用いられている。遮蔽材として用いる場合には、より高い導電性能が必要であり、体積固有抵抗が102Ω・cm以下とはならない導電性フィラーの練り込み繊維等は電磁波の遮蔽性能を発現させることはできない。 In recent years, with the rapid spread of mobile phones and electronic devices, problems such as the influence of electromagnetic waves leaking from these devices on the human body and malfunctions of other electronic devices have been addressed. A conductive fabric is used as a shielding material for shielding such electromagnetic waves. When used as a shielding material, higher conductivity performance is required, and a kneaded fiber or the like of a conductive filler whose volume resistivity does not become 10 2 Ω · cm or less cannot exhibit electromagnetic wave shielding performance.

軽量で柔軟性のある合成繊維からなる布帛表面に金属被膜を形成させて導電性を付与することが広く知られており、真空蒸着法、スパッタリング法、無電解メッキ法等によって金属被膜を形成することが可能である。しかしながら、このような方法で作られた金属被膜は、耐摩耗性や耐候性、長期使用に伴う化学的変化による物性劣化といった問題があり、こうした問題に対する一層の改善が求められている。   It is widely known that a metal coating is formed on the surface of a lightweight and flexible synthetic fiber to impart conductivity, and the metal coating is formed by vacuum deposition, sputtering, electroless plating, or the like. It is possible. However, the metal film produced by such a method has problems such as wear resistance, weather resistance, and deterioration of physical properties due to chemical changes associated with long-term use, and further improvement for such problems is demanded.

アクリル系繊維の導電性付与方法として、塩化第二銅などの銅化合物を繊維表面に吸着させた後、これを硫化物で還元処理することにより、繊維表面に導電性を示す硫化銅薄膜層を形成させる技術が知られている(例えば特許文献3及び4参照)。こうした導電性付与方法では、繊維の表面に存在するシアノ基やメルカプトン基の銅イオン捕捉基を介して硫化銅が繊維に対して5〜15質量%程度結合されており、繊維表面に導電性を有する薄膜層が形成されることで10-1Ω・cm以下の高い導電性能を示すようになる。しかしながら、得られた導電性繊維は100nm程度の極めて薄い表面の硫化銅層のみで、メッキ層や蒸着膜と同様に、耐摩耗性や耐候性、長期使用に伴う摩耗や化学的変化に対する耐久性に問題があった。さらに、繊維の表面に存在するシアノ基やメルカプトン基等は一価の銅イオン捕捉能に優れているため、処理工程中において二価の銅塩をわざわざ一価の銅イオンに還元する必要性があり、その分コストが高くなる問題もある。以上のように、アクリル系繊維に対する従来の導電性付与方法は、コスト負担が大きく実用化を図る上で制約が大きいという課題がある。 As a method for imparting conductivity to acrylic fibers, after a copper compound such as cupric chloride is adsorbed on the fiber surface, this is reduced with sulfide to form a copper sulfide thin film layer showing conductivity on the fiber surface. A technique for forming the layer is known (see, for example, Patent Documents 3 and 4). In such a conductivity imparting method, copper sulfide is bonded to the fiber by about 5 to 15% by mass via a copper ion capturing group such as a cyano group or a mercapton group existing on the surface of the fiber. When a thin film layer having a thickness of 10 is formed, high conductive performance of 10 −1 Ω · cm or less is exhibited. However, the obtained conductive fiber is only a copper sulfide layer with a very thin surface of about 100 nm. Like the plating layer and vapor deposition film, the abrasion resistance and weather resistance, and the durability against wear and chemical changes associated with long-term use. There was a problem. Furthermore, cyano groups and mercapton groups present on the surface of the fiber are excellent in monovalent copper ion scavenging ability, so it is necessary to reduce divalent copper salts to monovalent copper ions during the treatment process. There is also a problem that the cost increases accordingly. As described above, the conventional method for imparting electrical conductivity to acrylic fibers has a problem that the cost burden is large and there is a great limitation in achieving practical use.

上述のカーボンフィラー練り込み繊維は、技術的には中程度の導電性(102Ω・cm〜1010Ω・cm)のものしか得られず、化学メッキや金属メッキ繊維では高い導電性(10-2〜10-6Ω・cm)を有するものしか得られない。そのため、面状発熱体、ストリーマ(火花放電)の発生しない電磁波遮蔽材、センサー類といった製品に要求されている約102Ω・cm〜10-2Ω・cmの繊維材料を得ることは困難であった。 The above-mentioned carbon filler-kneaded fibers are technically only moderately conductive (10 2 Ω · cm to 10 10 Ω · cm), and chemical plating and metal-plated fibers have high conductivity (10 Only those having −2 to 10 −6 Ω · cm) can be obtained. Therefore, it is difficult to obtain a fiber material of about 10 2 Ω · cm to 10 −2 Ω · cm, which is required for products such as planar heating elements, electromagnetic shielding materials that do not generate streamers (spark discharge), and sensors. there were.

近年、CNT(カーボンナノチューブ)分散液をバインダー等に配合して糸条や布帛にコーティングする方法が提案されている。CNTは凝集力が非常に強く、高分子中に練り込み分散させることは、カーボン微粒子よりさらに困難であるため、分散液に配合する方法が採用されている(例えば、特許文献5参照)。性能的には、体積固有抵抗が1.0×10-2Ω・cm〜1.0×102Ω・cmとなる。こうした体積固有抵抗の範囲の繊維材料は、金属電線代替発熱体、ストリーマの発生しない帯電防止用導電性繊維材料、非鉄金属製導電性繊維による電磁波遮蔽材、またはスマートテキスタイル等の電気信号回路用導電繊維材料といった用途に好適である。しかしながら、CNTを使用する場合、CNT等のナノ材料を使用する場合の安全性が十分確立されておらず、実用化には至っていないのが現状である。その点、上述した硫化銅を用いる導電性付与方法は、CNTを用いる導電性付与方法に比べて安全性に対するリスクは小さい。 In recent years, a method of coating a yarn or fabric by blending a CNT (carbon nanotube) dispersion with a binder or the like has been proposed. Since CNT has a very strong cohesive force and it is more difficult to knead and disperse it in a polymer than carbon fine particles, a method of blending into a dispersion is employed (for example, see Patent Document 5). In terms of performance, the volume resistivity is 1.0 × 10 −2 Ω · cm to 1.0 × 10 2 Ω · cm. Fiber materials in this volume resistivity range include metal wire substitute heating elements, conductive fiber materials for anti-static that do not generate streamers, electromagnetic wave shielding materials made of non-ferrous metal conductive fibers, or conductive materials for electrical signal circuits such as smart textiles. Suitable for applications such as fiber materials. However, in the case of using CNTs, the safety at the time of using nanomaterials such as CNTs has not been sufficiently established and has not yet been put into practical use. In that respect, the conductivity imparting method using copper sulfide described above has a smaller risk to safety than the conductivity imparting method using CNT.

最近では,硫化銅ナノ微粒子を繊維中に微細に分散させ,導電性に優れたPVA(ポリビニルアルコール)系繊維を作製する方法も提案されている(例えば、特許文献6から8参照)。この方法によれば、体積固有抵抗が1.0×10-3〜1.0×108Ω・cmの値を示す導電性繊維を製造することが可能であるが、PVA系繊維内部で形成される硫化銅粒子は粒子径が認識できる形状であり、微粒子が析出できるのはPVAの重合度や結晶化度の低いものだけであるため、ほぼ形状の類似した微粒子しか形成することができなかった。そのため、結晶化度の低いPVA系繊維では、熱水中で溶解したり、縮んだりするといった問題がある。 Recently, a method for producing PVA (polyvinyl alcohol) -based fibers having excellent conductivity by finely dispersing copper sulfide nanoparticles in the fibers has been proposed (see, for example, Patent Documents 6 to 8). According to this method, it is possible to produce a conductive fiber having a volume resistivity of 1.0 × 10 −3 to 1.0 × 10 8 Ω · cm, but it is formed inside the PVA fiber. The resulting copper sulfide particles have a shape with a recognizable particle diameter, and since only fine particles with a low degree of polymerization or crystallinity of PVA can be precipitated, only fine particles having almost similar shapes can be formed. It was. Therefore, the PVA fiber having a low crystallinity has a problem of being dissolved or contracted in hot water.

特開2000−160427号公報JP 2000-160427 A 特開平9−49116号公報JP-A-9-49116 特開昭57−21570号公報JP 57-21570 A 特開昭59−108043号公報JP 59-108043 A 特開2007−39623号公報JP 2007-39623 A 特開2005−264419号公報JP 2005-264419 A 特開2007−131977号公報Japanese Patent Laid-Open No. 2007-131977 特開2007−119950号公報Japanese Patent Application Laid-Open No. 2007-119950

本発明者らは、PVAより分子鎖間の水素結合力が強いセルロース系高分子材料を用い、繊維結晶構造が形成されたセルロース系高分子材料を原料とし、アルカリ膨潤下で硫化銅微粒子を析出形成することで、セルロース系高分子材料の結晶構造に基づいて、これらの微粒子が内部に不定形粒子として形成されるとともに繊維表面の外周部分には棒状微粒子が形成されることを知得した。   The present inventors use a cellulose polymer material having a hydrogen bond strength between molecular chains stronger than that of PVA, using a cellulose polymer material having a fiber crystal structure as a raw material, and depositing copper sulfide fine particles under alkali swelling. Based on the crystal structure of the cellulosic polymer material, it was found that these fine particles are formed as amorphous particles inside and rod-shaped fine particles are formed on the outer peripheral portion of the fiber surface.

そこで、本発明は、上述した従来技術の課題に鑑み、セルロース系繊維材料に導電性を付与して耐久性を有する導電性セルロース系繊維材料を製造することのできる製造方法を提供することを目的とする。   Then, in view of the subject of the prior art mentioned above, this invention aims at providing the manufacturing method which can provide electroconductivity to a cellulose fiber material, and can manufacture the electroconductive cellulose fiber material which has durability. And

本発明に係る導電性セルロース系繊維材料の製造方法は、アルカリ金属水酸化物を含む水溶液によりセルロース系繊維材料を膨潤率20質量%〜300質量%で膨潤させる膨潤工程と、銅イオンを含む化合物を濃度5g/リットル〜70g/リットルで溶解させた水溶液によりセルロース系繊維材料の外周部及び内部に銅イオンを含浸させる含浸工程と、硫化物イオンを含む化合物を濃度5g/リットル〜120g/リットルで溶解させた水溶液によりセルロース系繊維材料に含浸させた銅イオンを硫化還元させてセルロース系繊維材料の外周部に長さ200nm以下の棒状の硫化銅からなる微粒子及び内部に平均粒子径50nm以下の不定形の硫化銅からなる微粒子を生成させる硫化還元工程とを含む。さらに、前記膨潤工程は、前記含浸工程と並行して行われる。さらに、前記含浸工程は、水溶液に濃度0g/リットル〜70g/リットルのカルボン酸が含まれている。 The method for producing a conductive cellulose fiber material according to the present invention includes a swelling step of swelling a cellulose fiber material with an aqueous solution containing an alkali metal hydroxide at a swelling rate of 20% by mass to 300% by mass, and a compound containing copper ions. Impregnation step of impregnating the outer periphery and inside of the cellulosic fiber material with copper ions with an aqueous solution in which a concentration of 5 g / liter to 70 g / liter is dissolved, and a compound containing sulfide ions at a concentration of 5 g / liter to 120 g / liter Copper ions impregnated into the cellulosic fiber material are sulfidized and reduced with the dissolved aqueous solution, and fine particles comprising rod-shaped copper sulfide having a length of 200 nm or less on the outer peripheral portion of the cellulosic fiber material and non-particles having an average particle diameter of 50 nm or less inside. And a sulfidation-reduction step for producing fine particles made of regular copper sulfide. Further, the swelling step is performed in parallel with the impregnation step. Further, in the impregnation step, a carboxylic acid having a concentration of 0 g / liter to 70 g / liter is contained in the aqueous solution.

本発明によれば、導電性が付与された耐熱性及び耐熱水性を有する導電性セルロース系繊維材料を得ることができ、繊維材料の体積固有抵抗値を容易に調整することが可能となる。   According to the present invention, a conductive cellulose fiber material having heat resistance and hot water resistance imparted with conductivity can be obtained, and the volume specific resistance value of the fiber material can be easily adjusted.

実施例1で得られた導電性セルロース系繊維材料の繊維表面をSEMで撮影した写真である。It is the photograph which image | photographed the fiber surface of the electroconductive cellulose fiber material obtained in Example 1 with SEM. 実施例1で得られた導電性セルロース系繊維材料の繊維断面をTEMで撮影した写真である。It is the photograph which image | photographed the fiber cross section of the electroconductive cellulose fiber material obtained in Example 1 with TEM. 実施例4で得られた導電性セルロース系繊維材料の繊維表面をSEMで撮影した写真である。It is the photograph which image | photographed the fiber surface of the electroconductive cellulose fiber material obtained in Example 4 with SEM. 実施例4で得られた導電性セルロース系繊維材料の繊維断面をTEMで撮影した写真である。It is the photograph which image | photographed the fiber cross section of the electroconductive cellulose fiber material obtained in Example 4 with TEM. 実施例1から実施例10で得られた酢酸銅及び硫化ナトリウムの濃度の組み合せを変化させた場合の導電性糸に関する体積固有抵抗値および酢酸銅(II)一水和物の濃度を変化させた場合の導電性糸に関する体積固有抵抗値を示すグラフである。When the combination of the concentrations of copper acetate and sodium sulfide obtained in Examples 1 to 10 was changed, the volume resistivity value and the concentration of copper (II) acetate monohydrate for the conductive yarn were changed. It is a graph which shows the volume specific resistance value regarding the electroconductive thread | yarn in the case. 実施例12において、含浸処理及び硫化還元処理の回数並びに硫化ナトリウムの濃度の組み合せを変化させた場合の導電性糸に関する体積固有抵抗値を示すグラフである。In Example 12, it is a graph which shows the volume specific resistance value regarding an electroconductive thread | yarn when changing the combination of the frequency | count of an impregnation process and a sulfide reduction process, and the density | concentration of sodium sulfide. 実施例13から実施例17で得られたクエン酸添加濃度と導電性布帛の体積固有抵抗との関係を示すグラフである。It is a graph which shows the relationship between the citric acid addition density | concentration obtained in Example 13 to Example 17, and the volume resistivity of an electroconductive fabric. 実施例18において、通電時間(秒)と布帛の平均温度(℃)との関係を示すグラフである。In Example 18, it is a graph which shows the relationship between electricity supply time (second) and the average temperature (degreeC) of a fabric.

以下、本発明について具体的に説明する。本発明に用いるセルロース系繊維材料は、特に限定されるものではないが、得られる繊維材料の機械的特性や寸法安定性等を考慮すると、再生セルロース繊維材料、セルロースジアセテート繊維材料、セルローストリアセテート繊維材料が好適である。再生セルロース繊維材料の場合には、ビスコース・レーヨン法、銅アンモニア人絹法、NMMO(N−メチルモルホリンオキサイド)有機溶剤によるリヨセル法といった作製方法により得ることができる。   Hereinafter, the present invention will be specifically described. The cellulose fiber material used in the present invention is not particularly limited, but considering the mechanical properties and dimensional stability of the obtained fiber material, regenerated cellulose fiber material, cellulose diacetate fiber material, cellulose triacetate fiber Material is preferred. In the case of a regenerated cellulose fiber material, it can be obtained by a production method such as a viscose rayon method, a copper ammonia man-silk method, or a lyocell method using an NMMO (N-methylmorpholine oxide) organic solvent.

また、セルロース系繊維材料の形態は、後述する加工処理を行うことができる形態であればよく特に限定されないが、ステープルファイバー、ショートカットファイバーといった繊維の形態、長繊維糸や紡績糸といった糸の形態、紐状物、ロープといった長尺物の形態、紙、不織布、織物、編物といった布帛の形態が挙げられる。   Further, the form of the cellulosic fiber material is not particularly limited as long as it can be processed as described later, but the form of fibers such as staple fiber and shortcut fiber, the form of yarn such as long fiber yarn and spun yarn, Examples of the shape of a long object such as a string or rope, and the form of a fabric such as paper, nonwoven fabric, woven fabric, or knitted fabric can be given.

繊維の断面形状に関しても特に制限はなく、円形、中空、あるいは星型等異型断面であってもかまわない。繊維の繊度についても特に限定されず、例えば0.1〜10000dtex、好ましくは1〜1000dtexの繊度の繊維を使用することができる。繊維の繊度はノズル径や延伸倍率により適宜調整すればよい。   The cross-sectional shape of the fiber is not particularly limited, and may be circular, hollow, or an atypical cross section such as a star shape. The fineness of the fiber is not particularly limited, and for example, a fiber having a fineness of 0.1 to 10000 dtex, preferably 1 to 1000 dtex can be used. What is necessary is just to adjust the fineness of a fiber suitably with a nozzle diameter or a draw ratio.

一般に、セルロース系高分子は、その水酸基を介して銅などの金属イオンと強く配位結合することが知られている(例えば、Polymer、Vol37,No.14、3097、1996参照)。繊維中においてセルロース分子鎖及び銅イオンで形成された錯体ブロックは、その大きさが数オングストロームであることから、後述する硫化銅ナノ微粒子構成ユニットとなりえる。本発明では、まず銅イオンをセルロース系繊維材料の内部にまで浸透させ、セルロース系高分子の有する水酸基と配位させ、セルロース系高分子及び銅の配位結合を形成させる。こうした配位結合を形成するには、糸条や布帛の染色工程において浴溶媒で所定の膨潤状態にあるセルロース系繊維材料を、銅イオンを含有する化合物が溶解された浴中を通過させることにより、繊維材料の外周部から内部まで銅イオンを均一に浸透させ、配位させることができる。   In general, it is known that a cellulosic polymer is strongly coordinated with a metal ion such as copper via its hydroxyl group (see, for example, Polymer, Vol 37, No. 14, 3097, 1996). Since the complex block formed of cellulose molecular chains and copper ions in the fiber has a size of several angstroms, it can be a copper sulfide nanoparticle constituent unit described later. In the present invention, first, copper ions are permeated into the inside of the cellulosic fiber material and coordinated with the hydroxyl group of the cellulosic polymer to form a coordinate bond between the cellulosic polymer and copper. In order to form such a coordination bond, a cellulosic fiber material that is in a predetermined swollen state with a bath solvent in a yarn or fabric dyeing process is passed through a bath in which a compound containing copper ions is dissolved. The copper ions can be uniformly permeated from the outer periphery to the inside of the fiber material, and can be coordinated.

次に、セルロース系繊維材料の外周部及び内部においてセルロース系高分子の有する水酸基と配位結合させた銅イオンを硫化還元処理することで、硫化銅ナノ微粒子を形成させることができる。すなわち、上述した銅イオンの含浸処理に引き続き、硫化還元能力を有する硫化物イオンを含む化合物が溶解された浴中を通過させることで、セルロース系高分子と銅イオンの配位を外すことにより、硫化銅微粒子を繊維内部にまで形成させることができる。そして、こうした硫化還元処理は、特別に高価な工程を設ける必要はなく、通常の染色工程でも処理可能である。   Next, copper sulfide nanoparticles can be formed by subjecting copper ions coordinated with the hydroxyl groups of the cellulosic polymer in the outer periphery and inside of the cellulosic fiber material to a sulfide reduction treatment. That is, following the copper ion impregnation treatment described above, by passing through a bath in which a compound containing sulfide ions having sulfide reduction ability is dissolved, by removing the coordination between the cellulose polymer and the copper ions, Copper sulfide fine particles can be formed even inside the fiber. Such a sulfidation reduction treatment does not require any special expensive process, and can be carried out in a normal dyeing process.

本発明で使用する銅イオンを含む化合物としては、可溶であるものであれば特に限定されないが、酢酸銅、硝酸銅、蟻酸銅、クエン酸銅、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、沃化第一銅、沃化第二銅などが用いられる。こうした銅イオンは一価でも二価でもよく、特に限定されるものではない。一価の銅イオンを含有する化合物を用いる場合は、その溶解性を向上させる目的で、塩酸、沃化カリウム、アンモニア等を併用してもかまわない。これらの中でも、溶液状態でセルロース系高分子と配位結合し易いものがより望ましく、その観点からは、銅イオンを含む化合物は、酢酸銅や硝酸銅などが好適である。   The compound containing a copper ion used in the present invention is not particularly limited as long as it is soluble, but copper acetate, copper nitrate, copper formate, copper citrate, cuprous chloride, cupric chloride, odor Cuprous iodide, cupric bromide, cuprous iodide, cupric iodide, and the like are used. Such copper ions may be monovalent or divalent and are not particularly limited. When a compound containing monovalent copper ions is used, hydrochloric acid, potassium iodide, ammonia, or the like may be used in combination for the purpose of improving the solubility. Among these, those that are easy to coordinate with a cellulosic polymer in a solution state are more desirable, and from this viewpoint, the copper ion-containing compound is preferably copper acetate or copper nitrate.

本発明では、アルカリの存在下で銅イオンが水酸化銅として析出することを阻害するために、カルボン酸を用いることが好ましい。カルボン酸としては、蟻酸、酢酸、マロン酸、コハク酸、グルタル酸、クエン酸、酒石酸といったものが挙げられるが、これらに限定されない。これらの中でも、銅イオンと錯体を形成し、アルカリの存在下で銅イオンが水酸化銅として析出することを阻害するものがより望ましく、その観点からは、クエン酸が好適である。   In the present invention, it is preferable to use a carboxylic acid in order to inhibit copper ions from being precipitated as copper hydroxide in the presence of an alkali. Examples of the carboxylic acid include, but are not limited to, formic acid, acetic acid, malonic acid, succinic acid, glutaric acid, citric acid, and tartaric acid. Among these, those that form a complex with copper ions and inhibit the copper ions from precipitating as copper hydroxide in the presence of alkali are more desirable, and citric acid is preferred from that viewpoint.

セルロース系繊維材料の外周部及び内部において配位結合した銅イオンを硫化還元する硫化剤としては、硫化物イオンを放出し得る化合物が用いられる。こうした化合物としては、例えば、硫化ナトリウム、第二チオン酸ナトリウム、チオ硫酸ナトリウム、亜硫酸水素ナトリウム、ピロ硫酸ナトリウム、硫化水素、チオ尿素、チオアセトアミド等が挙げられる。これらの中でも、コスト、入手し易さ、低腐食性の観点から、硫化ナトリウムが好適である。   A compound capable of releasing sulfide ions is used as the sulfiding agent for sulfidation reduction of copper ions coordinated and bonded at the outer periphery and inside of the cellulosic fiber material. Examples of such compounds include sodium sulfide, sodium dithionate, sodium thiosulfate, sodium hydrogen sulfite, sodium pyrosulfate, hydrogen sulfide, thiourea, thioacetamide, and the like. Among these, sodium sulfide is preferable from the viewpoints of cost, availability, and low corrosivity.

本発明で得られる導電性セルロース系繊維材料は、従来の導電性繊維とは異なり、繊維材料の外周部及び内部に硫化銅からなる微粒子を分散析出させて微粒子の粒子間距離を著しく小さくすることで、繊維材料に通電した場合の電流量を高めることができ導電性に優れた繊維材料である。   Unlike the conventional conductive fibers, the conductive cellulose fiber material obtained in the present invention is a method in which fine particles made of copper sulfide are dispersed and precipitated on the outer periphery and inside of the fiber material to significantly reduce the distance between the particles. Thus, it is a fiber material that can increase the amount of current when the fiber material is energized and has excellent conductivity.

本発明では、導電性セルロース系繊維材料を得るために、乾燥した繊維材料又は延伸後の繊維材料に対して、アルカリ金属水酸化物を含む化合物の水溶液により膨潤処理を行う。アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム、水酸化ルビジウム等が挙げられ、価格の点から最も安価な水酸化ナトリウムを用いることが好ましい。そして、銅イオンを含む化合物及びアルカリ金属水酸化物を溶解した浴中を通過させて銅イオンを含む化合物を繊維材料の外周部及び内部に含浸させる。なお、セルロース系繊維材料に対して予めアルカリ金属水酸化物により膨潤処理を行った後銅イオンを含む化合物により含浸処理を行うようにしてもよい。   In the present invention, in order to obtain a conductive cellulose fiber material, the dried fiber material or the fiber material after stretching is subjected to a swelling treatment with an aqueous solution of a compound containing an alkali metal hydroxide. Examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium hydroxide, rubidium hydroxide and the like, and it is preferable to use sodium hydroxide which is the cheapest from the viewpoint of price. Then, the outer peripheral portion and the inside of the fiber material are impregnated with a compound containing copper ions by passing through a bath in which a compound containing copper ions and an alkali metal hydroxide are dissolved. The cellulose fiber material may be subjected to a swelling treatment with an alkali metal hydroxide in advance and then impregnated with a compound containing copper ions.

セルロース系繊維材料の外周部及び内部に銅イオンを含む化合物を均一に含浸させ、銅イオンをセルロース系高分子の水酸基と配位結合させるためには、繊維材料を浴溶媒により膨潤させることが必要である。アルカリ金属水酸化物として水酸化ナトリウムを用いる場合には、浴溶媒中の水酸化ナトリウムを3重量%〜10重量%添加することが好ましい。水酸化ナトリウムの添加量が3重量%より少ない場合には、硫化銅の析出量が少なく、所望の導電性能が得られない、といった問題があり、10重量%より多い場合には、セルロースの重合度の低下が生じ、導電性繊維の力学強度が低下する、といった問題がある。そして、水酸化ナトリウムの添加量を多くすることで、得られる導電性セルロース系繊維材料の体積固有抵抗を低下させることができる。   It is necessary to swell the fiber material with a bath solvent in order to uniformly impregnate the periphery and inside of the cellulosic fiber material with a compound containing copper ions and coordinate the copper ions to the hydroxyl groups of the cellulosic polymer. It is. When sodium hydroxide is used as the alkali metal hydroxide, it is preferable to add 3 to 10% by weight of sodium hydroxide in the bath solvent. When the amount of sodium hydroxide added is less than 3% by weight, there is a problem that the amount of copper sulfide deposited is small and the desired conductive performance cannot be obtained. There is a problem that the degree of strength is reduced and the mechanical strength of the conductive fiber is lowered. And the volume specific resistance of the electroconductive cellulose fiber material obtained can be reduced by increasing the addition amount of sodium hydroxide.

そして、アルカリ金属水酸化物を含む浴溶媒によりセルロース系繊維材料を膨潤させる場合、繊維材料の膨潤率は20質量%以上であることが好ましい。膨潤率が20質量%未満の場合、銅イオンがセルロース系高分子の水酸基と十分な配位結合を形成できず、繊維材料の内部まで硫化銅からなる微粒子を生成させることが難しくなる。一方、膨潤率が大きくなりすぎた場合、浴中へのセルロース系高分子の溶出などが起こり、工程通過性の面で好ましくない。以上のことから、銅イオンを含む化合物が溶解された浴中での膨潤率は、20質量%〜300質量%であることが好ましく、50質量%〜250質量%であることがより好ましい。なお、膨潤率の調整を行うために、繊維材料をまずアルカリ金属水酸化物を含む浴中に浸漬し、その後銅イオンを含む化合物が溶解した浴中に浸漬することもできる。   And when swelling a cellulose fiber material with the bath solvent containing an alkali metal hydroxide, it is preferable that the swelling rate of a fiber material is 20 mass% or more. When the swelling ratio is less than 20% by mass, copper ions cannot form a sufficient coordination bond with the hydroxyl group of the cellulosic polymer, and it becomes difficult to produce fine particles made of copper sulfide up to the inside of the fiber material. On the other hand, when the swelling ratio becomes too large, elution of the cellulosic polymer into the bath occurs, which is not preferable in terms of process passability. From the above, the swelling ratio in the bath in which the compound containing copper ions is dissolved is preferably 20% by mass to 300% by mass, and more preferably 50% by mass to 250% by mass. In order to adjust the swelling rate, the fiber material can be first immersed in a bath containing an alkali metal hydroxide, and then immersed in a bath in which a compound containing copper ions is dissolved.

セルロース系繊維材料に対して、上述したように、硫化銅の導入量及び繊維材料の配向度などを調整することで、セルロース系繊維材料の体積固有抵抗値を調整することができる。銅イオンを含む化合物の浴中への溶解量は、要求される導電性能に応じて適宜設定すればよいが、1g/リットル〜100g/リットルの範囲であることが好ましく、より好ましくは5g/リットル〜70g/リットルである。添加量が1g/リットル未満の場合には、所望の体積固有抵抗値を得られず、また100g/リットルより大きい場合は、処理に使用する加工ローラ等への化合物の付着といった工程上の不都合が生じるので好ましくない。   As described above, the volume specific resistance value of the cellulosic fiber material can be adjusted by adjusting the introduction amount of copper sulfide, the degree of orientation of the fiber material, and the like with respect to the cellulosic fiber material. The amount of the compound containing copper ions in the bath may be appropriately set according to the required conductivity performance, but is preferably in the range of 1 g / liter to 100 g / liter, more preferably 5 g / liter. ~ 70 g / liter. When the addition amount is less than 1 g / liter, a desired volume resistivity value cannot be obtained. When the addition amount is more than 100 g / liter, there is a problem in process such as adhesion of a compound to a processing roller or the like used for processing. Since it occurs, it is not preferable.

セルロース系繊維材料が所望の膨潤状態にある場合、銅イオンが溶解された浴中にセルロース系繊維材料を通過する際に、銅イオンを含む化合物の繊維材料への含浸が生じるので、浴中での繊維材料の滞留時間については特に制限はないが、繊維材料の内部にまで銅イオンを均一に含浸させ、セルロース系高分子及び銅イオンの配位結合を十分に生成させるためには、浴中での繊維材料の滞留時間は3秒以上、好ましくは30秒以上に設定するとよい。   When the cellulosic fiber material is in the desired swollen state, the fiber material is impregnated with a compound containing copper ions when passing through the cellulosic fiber material in a bath in which copper ions are dissolved. There is no particular restriction on the residence time of the fiber material, but in order to uniformly impregnate the copper ions even inside the fiber material and to sufficiently generate the coordination bonds of the cellulosic polymer and copper ions, The residence time of the fiber material at 3 is set to 3 seconds or more, preferably 30 seconds or more.

セルロース系繊維材料の外周部及び内部において配位結合している銅イオンを硫化還元処理するために、硫化物イオンを含む化合物を溶解した浴中に繊維材料を通過させる必要がある。その場合、硫化物イオンを含む化合物の浴中への添加量は、銅イオンの導入量によって必要に応じて適宜設定すればよいが、1g/リットル〜200g/リットルの範囲であることが好ましい。添加量が1g/リットル未満の場合、繊維材料内部の銅イオンまで還元処理が進まない可能性があるので好ましくない。また、200g/リットルより大きい場合は、セルロース系繊維材料の内部に含まれる銅イオンを還元処理するのに十分な量ではあるが、化合物の回収に手間がかかり作業時の臭気が強くなるといった工程上の点で不都合が生じるためあまり好ましくない。セルロース系繊維材料に含浸された銅イオンを硫化する反応は、特に硫化還元能の大きい化合物を用いた場合は瞬時に起こることから、浴中での繊維材料の滞留時間については特に制限はないが、繊維材料の内部にまで十分硫化還元処理を施すためには、浴中での繊維材料の滞留時間は0.1秒以上に設定することが好ましい。   In order to sulfidize and reduce copper ions coordinated at the outer periphery and inside of the cellulosic fiber material, it is necessary to pass the fiber material through a bath in which a compound containing sulfide ions is dissolved. In this case, the amount of the compound containing sulfide ions added to the bath may be appropriately set depending on the amount of copper ions introduced, but is preferably in the range of 1 g / liter to 200 g / liter. When the addition amount is less than 1 g / liter, the reduction treatment may not proceed to the copper ions inside the fiber material, which is not preferable. On the other hand, when it is larger than 200 g / liter, the amount is sufficient to reduce the copper ions contained in the cellulosic fiber material, but it takes time to recover the compound and the odor during the work becomes strong. The above point is not preferable because of inconvenience. The reaction of sulfiding copper ions impregnated in cellulosic fiber material occurs instantly, especially when a compound having a high sulfidation reduction ability is used, so there is no particular limitation on the residence time of the fiber material in the bath. In order to sufficiently perform the sulfur reduction treatment even inside the fiber material, the residence time of the fiber material in the bath is preferably set to 0.1 seconds or more.

セルロース系繊維材料の導電性能を高めるためには、銅イオンを繊維材料の外周部及び内部に含浸させる工程と、含浸した銅イオンを硫化還元処理する工程を繰り返し行い、繊維材料中の硫化銅含有量を高めることが効果的である。一旦セルロース系高分子に配位結合した銅イオンを硫化還元処理することで硫化銅からなる微粒子が生成するが、その際に、銅イオンと配位結合していた水酸基は回復し、再度銅イオンを配位可能な水酸基が存在することになる。具体的には、上述した含浸工程及び硫化還元処理工程を少なくとも2回以上繰り返すことで、効果的に繊維材料内部に硫化銅からなる微粒子を生成させ、導電性能を高めることができる。さらに、繊維材料の配向度が高いものほど、すなわち繊維材料の総延伸倍率が高いものほど、導電性能が向上するようになる。こうした配向度及び導電性能の関係については、その理由が現段階では明らかではないが、繊維材料の配向度が高いほど、硫化銅からなる微粒子が繊維軸方向に沿って生成し、微粒子間の距離が一層小さくなるためと考えられる。ここで、繊維材料の配向度は、銅イオンを含浸させた後の配向度を指す。繊維材料中に硫化銅からなる微粒子を生成した後に延伸を行うと、導電性能が低下する傾向があるので好ましくない。これは、延伸により繊維材料中の微粒子の粒子間距離が増加するためであると考えられる。   In order to enhance the conductive performance of the cellulosic fiber material, repeat the steps of impregnating the copper material with the outer periphery and the inside of the fiber material and the step of sulfidation reduction treatment of the impregnated copper ion to contain copper sulfide It is effective to increase the amount. Once the copper ions coordinated to the cellulosic polymer are subjected to sulfidation reduction, fine particles made of copper sulfide are produced. At that time, the hydroxyl groups that have been coordinated to copper ions are recovered, and again the copper ions. There will be a hydroxyl group capable of coordinating. Specifically, by repeating the impregnation step and the sulfidation reduction treatment step described above at least twice, fine particles made of copper sulfide can be effectively generated inside the fiber material, and the conductive performance can be improved. Furthermore, the higher the degree of orientation of the fiber material, that is, the higher the total draw ratio of the fiber material, the better the conductive performance. The reason for this relationship between the degree of orientation and the electrical conductivity is not clear at this stage. However, the higher the degree of orientation of the fiber material, the more fine particles of copper sulfide are generated along the fiber axis direction, and the distance between the fine particles. Is considered to be even smaller. Here, the degree of orientation of the fiber material refers to the degree of orientation after impregnation with copper ions. If stretching is performed after producing fine particles of copper sulfide in the fiber material, the conductive performance tends to decrease, which is not preferable. This is considered to be because the interparticle distance of the fine particles in the fiber material is increased by stretching.

以上説明した含浸工程及び硫化還元工程により製造された導電性セルロース系繊維材料は、セルロース系繊維材料の内部に平均粒子径50nm以下の硫化銅からなる不定形微粒子が生成されるとともに繊維材料の外周部に長さ200nm以下の硫化銅からなる棒状微粒子が生成される。すなわち、導電性セルロース系繊維材料は、単に硫化銅からなる微粒子が存在するだけでなく、繊維材料の外周部に長さ200nm以下の硫化銅からなる棒状微粒子が分散析出しており、内部の不定形微粒子と外周部の棒状微粒子が相互に連なって電圧印加時に電気伝導作用を生じるようになる。そして、硫化銅からなる微粒子全体の含有量をセルロース系繊維材料の量に対して0.5質量%以上とすることで、セルロース系繊維材料に導電性を付与することができる。   The conductive cellulosic fiber material produced by the impregnation step and the sulfidation reduction step described above produces irregular fine particles made of copper sulfide having an average particle size of 50 nm or less inside the cellulosic fiber material and the outer periphery of the fiber material. Rod-shaped fine particles made of copper sulfide having a length of 200 nm or less are generated in the part. That is, in the conductive cellulose fiber material, not only fine particles made of copper sulfide are present, but rod-like fine particles made of copper sulfide having a length of 200 nm or less are dispersed and precipitated on the outer peripheral portion of the fiber material. The regular fine particles and the rod-like fine particles on the outer peripheral portion are connected to each other to produce an electric conduction action when a voltage is applied. And electroconductivity can be provided to a cellulose fiber material by making content of the whole microparticles | fine-particles which consist of copper sulfide into 0.5 mass% or more with respect to the quantity of a cellulose fiber material.

得られた導電性セルロース系繊維材料の体積固有抵抗値は、上述したように、硫化銅の導入量によって容易に調整することが可能で、1.0×10-2Ω・cm〜1.0×102Ω・cmに設定することができる。 As described above, the volume specific resistance value of the obtained conductive cellulose fiber material can be easily adjusted by the amount of introduced copper sulfide, and ranges from 1.0 × 10 −2 Ω · cm to 1.0. × 10 2 Ω · cm can be set.

導電性セルロース系繊維材料は、硫化銅からなる微粒子をセルロース系繊維材料に対して3質量%以上を含有することが好ましく、より好ましくは5質量%以上含有するものである。硫化銅からなる微粒子の含有量がセルロース系繊維材料に対して1質量%より少ないと、所望の導電性能が得られない。一方、硫化銅からなる微粒子の含有量が多くなりすぎると、導電性セルロース系繊維材料の機械的性質や耐摩耗性が不十分になることから、硫化銅からなる微粒子の含有量はセルロース系繊維材料に対して50質量%以下であることが好ましく、40質量%以下であることがより好ましい。   The conductive cellulose fiber material preferably contains 3% by mass or more, more preferably 5% by mass or more of the fine particles made of copper sulfide with respect to the cellulose fiber material. When the content of fine particles made of copper sulfide is less than 1% by mass with respect to the cellulosic fiber material, desired conductive performance cannot be obtained. On the other hand, if the content of copper sulfide fine particles increases too much, the mechanical properties and wear resistance of the conductive cellulose fiber material will be insufficient. It is preferable that it is 50 mass% or less with respect to material, and it is more preferable that it is 40 mass% or less.

硫化銅からなる微粒子は、繊維材料内部のセルロース系高分子中に平均粒子径50nm以下の不定形粒子が5個/(μm)2以上の密度で微細に分散析出するとともに繊維材料の外周部に長さ200nm以下の棒状微粒子が5個/(μm)2以上の密度で分散析出しており、不定形微粒子及び棒状微粒子が相互に連なっている。このように硫化銅からなる微粒子が分布していることにより、繊維材料中での微粒子の粒子間距離を著しく小さくすることが可能となる。例えば、同じ質量%の含有量において、粒子径が百分の一になると、粒子間距離は一万分の一にまで小さくなることが知られている。また、このような場合、粒子間の相互作用が非常に強く働き、その間に挟まれたポリマー分子は、あたかも粒子と同じような機能を示すことも知られている(例えば、中條 澄著、ナノコンポジットの世界、p22、工業調査会、2000年 参照)。したがって、製造された導電性セルロース繊維材料では、こうしたナノサイズ効果により、トンネル電流がより流れやすくなり、硫化銅からなる微粒子の量が少なくても優れた導電性能を付与することができる。 Fine particles made of copper sulfide are finely dispersed and precipitated at a density of 5 particles / (μm) 2 or more in the cellulose polymer inside the fiber material with an average particle diameter of 50 nm or less, and on the outer periphery of the fiber material. Rod-shaped fine particles having a length of 200 nm or less are dispersed and precipitated at a density of 5 / (μm) 2 or more, and irregular fine particles and rod-shaped fine particles are connected to each other. Thus, the distribution of the fine particles of copper sulfide makes it possible to significantly reduce the distance between the fine particles in the fiber material. For example, it is known that when the particle diameter becomes 1/100 in the same mass% content, the inter-particle distance is reduced to 1 / 10,000. In such a case, it is also known that the interaction between the particles works very strongly, and the polymer molecules sandwiched between them show the same function as the particles (for example, Sumio Nakajo, Nano See the world of composites, p22, Industrial Research Committee, 2000). Therefore, in the produced conductive cellulose fiber material, tunnel current is more likely to flow due to such a nano-size effect, and excellent conductive performance can be imparted even if the amount of fine particles made of copper sulfide is small.

得られた導電性セルロース系繊維材料は、導電性及び柔軟性に優れているので、面状発熱体として有利に用いることができる。例えば、導電性セルロース系繊維材料を50重量%以上、好ましくは、80重量%以上、特に、90重量%以上含む布帛を用いることで、高導電性を示すセルロース系繊維製品を得ることができる。この場合、導電性セルロース系繊維材料に併用することができる繊維材料として特に限定されないが、硫化銅からなる微粒子を含有しないセルロース系繊維材料、ポリエステル系繊維材料、ポリアミド系繊維材料を挙げることができる。   Since the obtained conductive cellulose fiber material is excellent in conductivity and flexibility, it can be advantageously used as a planar heating element. For example, by using a fabric containing 50% by weight or more, preferably 80% by weight or more, particularly 90% by weight or more of a conductive cellulose fiber material, a cellulose fiber product exhibiting high conductivity can be obtained. In this case, the fiber material that can be used in combination with the conductive cellulose fiber material is not particularly limited, and examples thereof include a cellulose fiber material, a polyester fiber material, and a polyamide fiber material that do not contain fine particles of copper sulfide. .

本発明では、長繊維糸や紡績糸、紙、不織布、織物、編物等の布帛といった様々な形態のセルロース系繊維材料に導電性を付与することが可能である。そして、得られた導電性セルロース系繊維材料は、力学的物性、耐熱性、柔軟性、導電性に優れており、産業資材用、衣料用、医療用等あらゆる用途に好適に使用できる。例えば、面状発熱布帛、帯電材、除電材、ブラシ、センサー、電磁波シールド材、電子回路用非金属電線、電子材料をはじめとして多くの用途に極めて有用である。   In the present invention, conductivity can be imparted to various forms of cellulosic fiber materials such as long fiber yarns, spun yarns, papers, nonwoven fabrics, woven fabrics, knitted fabrics, and the like. The obtained conductive cellulose fiber material is excellent in mechanical properties, heat resistance, flexibility, and conductivity, and can be suitably used for all uses such as industrial materials, clothing, and medical use. For example, it is extremely useful for many applications including planar heating fabrics, charging materials, neutralizing materials, brushes, sensors, electromagnetic wave shielding materials, non-metallic electric wires for electronic circuits, and electronic materials.

以上説明したように、本発明者らは、アルカリ金属水酸化物を含む水溶液中でセルロース系繊維材料を膨潤させ、銅イオンを含む化合物を溶解させた水溶液中でセルロース系繊維材料の外周部及び内部に銅イオンを含浸させ、含浸させた銅イオンを硫化物イオンを含む化合物を溶解させた水溶液中で硫化還元処理することにより、繊維材料内部に平均粒子径50nm以下の硫化銅からなる不定形微粒子及び繊維材料外周部に長さ200nm以下の硫化銅からなる棒状微粒子が生成することを見い出し、優れた導電性を有する導電性セルロース系繊維材料を安価に製造できることを知得した。こうした処理工程は、特別に高価な設備を必要とせず、セルロース系繊維材料の繊維製造工程や染色工程において実施することができる。なお、セルロース系繊維材料の膨潤処理、含浸処理及び硫化還元処理は、セルロース系繊維材料に対して処理液を塗布、噴霧、浸漬といった付与方法により処理することができる。塗布又は噴霧といった付与方法を使用することで、部分的に付与量を変化させれば、生成する硫化銅の量を部分的に変化させることができる。そのため、例えば面状発熱体の場合に、発熱面の抵抗分布を変化させて所望の発熱分布となるように設定することが可能となる。   As described above, the present inventors swelled the cellulosic fiber material in an aqueous solution containing an alkali metal hydroxide, and the outer periphery of the cellulosic fiber material in an aqueous solution in which a compound containing copper ions was dissolved. An indefinite shape made of copper sulfide having an average particle diameter of 50 nm or less inside the fiber material by impregnating copper ions inside and subjecting the impregnated copper ions to a sulfide reduction treatment in an aqueous solution in which a compound containing sulfide ions is dissolved. It has been found that rod-shaped fine particles made of copper sulfide having a length of 200 nm or less are formed on the outer periphery of the fine particles and the fiber material, and that it is possible to produce a conductive cellulose fiber material having excellent conductivity at low cost. Such a treatment process does not require specially expensive equipment, and can be carried out in the fiber manufacturing process and the dyeing process of the cellulosic fiber material. Note that the swelling treatment, impregnation treatment, and sulfidation reduction treatment of the cellulosic fiber material can be performed by an application method such as application, spraying, and dipping of the cellulosic fiber material. By using an application method such as coating or spraying, the amount of copper sulfide to be generated can be partially changed if the application amount is partially changed. For this reason, for example, in the case of a planar heating element, it is possible to change the resistance distribution of the heat generating surface and set the desired heat distribution.

また、浴中にセルロース系繊維材料を浸漬する場合には、アルカリ膨潤状態のセルロース系繊維材料を、銅イオンを含む化合物5g/リットル〜70g/リットル及びカルボン酸0g/リットル〜70g/リットルの濃度で溶解した浴中に通して繊維材料内部にまで銅イオンを均一に含浸させた後、銅イオンが含浸したセルロース系繊維材料を、硫化物イオンを含む化合物5g/リットル〜120g/リットルの濃度で溶解した浴中に通して銅イオンを硫化還元させることで、上述した硫化銅からなる不定形微粒子及び棒状微粒子を生成する。   When the cellulose fiber material is immersed in the bath, the cellulose fiber material in an alkali swollen state has a concentration of 5 g / liter to 70 g / liter of a compound containing copper ions and 0 g / liter to 70 g / liter of carboxylic acid. After the copper ions are uniformly impregnated into the fiber material by passing through the bath dissolved in the above, the cellulose fiber material impregnated with the copper ions is added at a concentration of 5 g / liter to 120 g / liter of the compound containing sulfide ions. By passing through a dissolved bath to reduce the copper ions by sulfidation, the above-mentioned amorphous fine particles and rod-shaped fine particles made of copper sulfide are generated.

また、得られた導電性セルロース系繊維材料は、セルロース系繊維材料と、セルロース系繊維材料の内部においてセルロース系高分子中に微細に分散析出した平均粒子径50nm以下の硫化銅からなる不定形微粒子と、セルロース系繊維材料の外周部に長さ200nm以下の硫化銅からなる棒状微粒子とからなり、不定形粒子及び棒状粒子が相互に連なって電圧印加時に電気伝導作用を生じるようになる。硫化銅からなる微粒子粒子全体の含有量は、セルロース系繊維材料に対して0.5質量%以上が好ましく、0.5質量%〜50質量%であることがより好ましい。導電性セルロース系繊維材料の体積固有抵抗値は、1.0×10-2Ω・cm〜1.0×102Ω・cmであることが好ましい。 Further, the obtained conductive cellulose fiber material is an amorphous fine particle comprising a cellulose fiber material and copper sulfide having an average particle diameter of 50 nm or less finely dispersed and precipitated in a cellulose polymer inside the cellulose fiber material. And rod-like fine particles made of copper sulfide having a length of 200 nm or less on the outer periphery of the cellulosic fiber material, and the amorphous particles and the rod-like particles are connected to each other to produce an electric conduction action when a voltage is applied. 0.5 mass% or more is preferable with respect to cellulosic fiber material, and, as for content of the microparticles | fine-particles whole which consist of copper sulfide, it is more preferable that it is 0.5 mass%-50 mass%. Volume resistivity of the conductive cellulosic fiber material is preferably 1.0 × 10 -2 Ω · cm~1.0 × 10 2 Ω · cm.

なお、硫化銅からなる微粒子を予め原液に投入しておくことも考えられるが、繊維材料の内部に微微粒子を分散させることはできず、所望の物性を発現させるには、多量の微粒子の添加が必要となる。この場合、原液中での微粒子の分散不良、凝集、沈降等が生じるため、導電特性が良好な繊維材料を得ることは困難である。また、予め銅イオンを配位させたセルロース系高分子を原料として繊維材料を製造することも考えられるが、銅の配位による溶液粘度の上昇や、固化性が悪化するなど、工程性が悪化することに加えて、得られる繊維の力学物性は低いものとならざるを得ない。   Although it is conceivable to add fine particles of copper sulfide to the stock solution in advance, it is not possible to disperse the fine particles inside the fiber material, and in order to express desired physical properties, a large amount of fine particles must be added. Is required. In this case, poor dispersion of fine particles in the stock solution, aggregation, sedimentation, and the like occur, and it is difficult to obtain a fiber material having good conductive characteristics. In addition, it is conceivable to produce fiber materials using cellulose-based polymers with copper ions coordinated in advance, but the process properties deteriorate, such as an increase in solution viscosity due to copper coordination and deterioration in solidification. In addition to this, the mechanical properties of the resulting fiber must be low.

以下、実施例に基づいて本発明をさらに詳細に説明するが、本発明は、本実施例により何ら限定されるものではない。なお、以下の実施例において、硫化銅からなる微粒子の形状や個数、セルロース系繊維材料の体積固有抵抗値及び強度は、以下の方法により測定している。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited at all by this Example. In the following Examples, the shape and number of fine particles made of copper sulfide, the volume specific resistance value and strength of the cellulosic fiber material are measured by the following methods.

[繊維材料内部に生成された微粒子の観察]
導電性セルロース系繊維材料に対して、超薄切片法及びFIB(集束イオンビーム)法を用いて繊維材料の切片を作成し、TEM(透過型電子顕微鏡)により切片の断面に表出した微粒子を観察した。超薄切片法では、切片作成時にしわ(アーティファクト)が入りやすく、FIB法では、薄膜加工中の熱ダメージにより網目構造が観察される問題点があるため、両者の切片をTEMにより観察して微粒子の形状や繊維材料の断面に表出する微粒子密度を測定した。なお、FIB法では、細く絞った集束イオンビームを試料表面に照射してエッチングすることにより、試料表面の加工を行う。薄膜試料を加工する場合には、イオンビームで薄膜試料表面から加工していき、最終的には電子線が通過する厚さ(100nm以下)まで加工して観察用の試料としている。繊維材料の断面に対するTEMの観察条件は、以下の通りに設定した。
<FIB法>
試料調製 FIB法:マイクロサンプリングシステム(日立製FB−2000A)
観察装置 透過型電子顕微鏡(日立製H−7100FA)
観察条件 加速電圧 100kV
<超薄切片法>
試料調製 超薄切片法
観察装置 透過型電子顕微鏡(日立製H−7100FA)
観察条件 加速電圧 100kV
[Observation of fine particles generated inside fiber material]
For conductive cellulose fiber material, create a slice of fiber material using ultra-thin slice method and FIB (focused ion beam) method, and use TEM (Transmission Electron Microscope) to show fine particles that appear on the cross section of the slice. Observed. In the ultrathin section method, wrinkles (artifacts) are likely to occur during section preparation. In the FIB method, there is a problem that the network structure is observed due to thermal damage during thin film processing. The density of the fine particles appearing on the shape and the cross section of the fiber material was measured. In the FIB method, the sample surface is processed by irradiating the sample surface with a finely focused ion beam and etching the sample surface. When processing a thin film sample, it is processed from the surface of the thin film sample with an ion beam, and finally processed to a thickness (100 nm or less) through which an electron beam passes to obtain a sample for observation. The TEM observation conditions for the cross section of the fiber material were set as follows.
<FIB method>
Sample preparation FIB method: Microsampling system (Hitachi FB-2000A)
Observation device Transmission electron microscope (H-7100FA manufactured by Hitachi)
Observation conditions Acceleration voltage 100kV
<Ultrathin section method>
Sample preparation Ultra-thin section observation device Transmission electron microscope (H-7100FA manufactured by Hitachi)
Observation conditions Acceleration voltage 100kV

[繊維材料の表面の観察]
SEM(走査型電子顕微鏡;KEYENCE社製の3D real view 顕微鏡VE9800)を用いて、導電性セルロース系繊維材料の表面を観察した。観察する前に、繊維材料の表面にイオンコーターを用いて金コーティングを行った。
[Observation of the surface of the fiber material]
Using SEM (scanning electron microscope; 3D real view microscope VE9800 manufactured by KEYENCE), the surface of the conductive cellulose fiber material was observed. Prior to the observation, the surface of the fiber material was coated with gold using an ion coater.

[繊維材料の導電性(体積固有抵抗値)測定 Ω・cm]
導電性セルロース系繊維材料からなる繊維5〜10本を無作為に選択してスライドガラスに並列配置し、配列した繊維の両端に銀ペーストを塗布して固定した。電極間距離を5mmに設定し、直流電源装置(TRIO PR−602A DC POWER SUPPLY)を用いて測定繊維に電圧を1〜5V印加させた。そして、設定電圧における電流値をデジタルマルチメータ(三和電気計器株式会社製)により測定した。電流測定は、設定電圧で5回測定した。そして、体積固有抵抗値(ρ)(Ω・cm)=R×(S/L)により、各繊維の体積固有抵抗値を求めた。なお、Rは試験片の抵抗値(Ω)、Sは断面積(cm2)及びLは長さ(5mm)である。ここで、繊維の断面積は、繊維を顕微鏡下で観察することにより算出した。
[Measurement of electrical conductivity (volume resistivity) of fiber material Ω · cm]
5 to 10 fibers made of a conductive cellulose fiber material were randomly selected and arranged in parallel on a slide glass, and silver paste was applied and fixed to both ends of the arranged fibers. The distance between the electrodes was set to 5 mm, and a voltage of 1 to 5 V was applied to the measurement fiber using a DC power supply (TRIO PR-602A DC POWER SUPPLY). Then, the current value at the set voltage was measured with a digital multimeter (manufactured by Sanwa Electric Meter Co., Ltd.). Current measurement was performed five times at a set voltage. And the volume resistivity value of each fiber was calculated | required by the volume resistivity value ((rho)) (ohm * cm) = Rx (S / L). Here, R is the resistance value (Ω) of the test piece, S is the cross-sectional area (cm 2 ), and L is the length (5 mm). Here, the cross-sectional area of the fiber was calculated by observing the fiber under a microscope.

[布帛の導電性(体積固有抵抗値)測定 Ω・cm]
導電性セルロース系繊維材料からなる布帛の表面を、エタノールを染みこませたウエスを用いて洗浄し、抵抗率計(三菱化学アナリテック株式会社製抵抗率計MCP−T370)により布帛の体積固有抵抗値を測定した。測定方法は、四探針法に準拠して行い、抵抗率補正係数を4.532に設定した。
[Measurement of fabric conductivity (volume resistivity) Ω · cm]
The surface of the fabric made of conductive cellulose fiber material is washed with a waste cloth soaked with ethanol, and the volume resistivity of the fabric is measured with a resistivity meter (resistivity meter MCP-T370 manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The value was measured. The measurement method was performed according to the four-probe method, and the resistivity correction coefficient was set to 4.532.

[繊維材料の強伸度測定]
導電性セルロース系繊維材料からなる繊維10本を無作為に選択し、選択した繊維を支持体にエポキシ樹脂により固定した。圧縮試験機(KATO TECH CO.,LTD製高精度圧縮試験機)を用いて、測定条件(チャック間距離20mm、引張伸び歪み検出2mm/10V、引張荷重検出100g/10V)を設定し、繊維の強伸度を測定した。
[Measurement of tensile strength of fiber materials]
Ten fibers made of a conductive cellulosic fiber material were randomly selected, and the selected fibers were fixed to the support with an epoxy resin. Using a compression tester (KATO TECH CO., LTD high precision compression tester), measurement conditions (chuck distance 20 mm, tensile elongation strain detection 2 mm / 10 V, tensile load detection 100 g / 10 V) were set, and the fiber The strength elongation was measured.

[布帛の強伸度測定]
導電性セルロース系繊維材料からなる布帛を矩形状(10mm×50mm)に切り出して測定に用いた。測定には、引張試験機(東洋ボールドウィン株式会社製テンシロン型引張り試験機UTM−III−500)を用い、測定条件(チャック間距離30mm、引張速度10mm/分)を設定して布帛の強伸度を測定した。
[Measurement of tensile strength of fabric]
A cloth made of a conductive cellulose fiber material was cut into a rectangular shape (10 mm × 50 mm) and used for measurement. For the measurement, a tensile tester (Tensilon type tensile tester UTM-III-500 manufactured by Toyo Baldwin Co., Ltd.) was used, and the measurement conditions (distance between chucks 30 mm, tensile speed 10 mm / min) were set, and the high elongation of the fabric. Was measured.

[布帛の通電による発熱量評価]
導電性セルロース系繊維材料からなる布帛を矩形状(30mm×50mm)に切り出し、電極間距離が40mmとなるように、対向する辺部に導電性ペースト(藤倉化成株式会社製導電性ペーストD−500)を塗布し、常温で24時間乾燥して電極を形成した。形成した電極に対して直流電源装置(トリオ商事株式会社製直流電源装置PR−602A)を用いて電圧15Vを印加した。電圧印加後の布帛の発熱量を評価するために、サーモグラフィ(株式会社アピステ製サーモグラフィFSV−7000E)を用いて、温度分布の経時変化を測定した。測定条件は放射率1とし、測定温度が低いため温度補正は行わなかった。
[Evaluation of heat generation by energizing fabric]
A cloth made of a conductive cellulose fiber material is cut into a rectangular shape (30 mm × 50 mm), and a conductive paste (conductive paste D-500 manufactured by Fujikura Kasei Co., Ltd.) is formed on opposite sides so that the distance between the electrodes is 40 mm. ) And dried at room temperature for 24 hours to form an electrode. A voltage of 15 V was applied to the formed electrode using a DC power supply (DC power supply PR-602A manufactured by Trio Corporation). In order to evaluate the calorific value of the fabric after voltage application, the change over time in the temperature distribution was measured using a thermography (Apiste Thermography FSV-7000E). The measurement conditions were an emissivity of 1, and the temperature was not corrected because the measurement temperature was low.

[実施例1]
(1)導電性セルロース系繊維材料からなる導電性糸の製造
キュプラ繊維からなる糸(旭化成株式会社製)に対して、酢酸銅(II)一水和物(ナカライテスク株式会社製)を濃度5g/リットル及び水酸化ナトリウム(ナカライテスク株式会社製)を濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して含浸処理を行った。含浸処理した糸を、引き続き、硫化ナトリウム九水和物(ナカライテスク株式会社製)を濃度40g/リットル及び水酸化ナトリウム(ナカライテスク株式会社製)を濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を4回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース系繊維材料からなる導電性糸を得た。
[Example 1]
(1) Production of conductive yarn made of conductive cellulose fiber material Concentration of 5 g of copper (II) acetate monohydrate (made by Nacalai Tesque) on yarn made of cupra fiber (made by Asahi Kasei Corporation) / Liter and sodium hydroxide (manufactured by Nacalai Tesque Co., Ltd.) were each dissolved at a concentration of 9% by weight and introduced into a 25 ° C. water bath so that the residence time was 120 seconds, and impregnation was performed. The impregnated yarn was subsequently dissolved in a 25 ° C. water bath in which sodium sulfide nonahydrate (manufactured by Nacalai Tesque) was dissolved at a concentration of 40 g / liter and sodium hydroxide (manufactured by Nacalai Tesque) was dissolved at a concentration of 9% by weight. A sulfidation reduction treatment was performed by introducing the yarn so that the residence time was 120 seconds. These impregnation treatment and sulfidation reduction treatment were repeated four times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive yarn made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性糸の評価
得られた導電性糸の初期弾性率、破断伸度及び破断強度は、それぞれ178.5MPa、2.7%及び94.8MPaであった。導電性糸の体積固有抵抗値は、2.8×10-1Ω・cmであった。導電性糸の繊維の外観は良好で糸斑等はなかった。図1は、SEMで撮影した繊維表面に関する写真である。図1の写真に示すように、析出した硫化銅からなる微粒子が表出しているが、スムースな繊維表面であることがわかる。この導電性糸に含まれる硫化銅の重量について、示差熱重量分析装置(島津製作所製TG/DTA同時測定装置DTG−60)を用いてDTA−TG(示差熱/熱重量)分析を行った。約600℃までDTA−TG分析を行った結果、残存重量は8重量%であった。
(2) Evaluation of conductive yarn made of conductive cellulose fiber material The initial elastic modulus, elongation at break and breaking strength of the obtained conductive yarn were 178.5 MPa, 2.7% and 94.8 MPa, respectively. It was. The volume specific resistance value of the conductive yarn was 2.8 × 10 −1 Ω · cm. The appearance of the fibers of the conductive yarn was good and there were no yarn spots. FIG. 1 is a photograph of the fiber surface taken with an SEM. As shown in the photograph in FIG. 1, the deposited fine particles of copper sulfide are exposed, but it can be seen that the surface is smooth. About the weight of the copper sulfide contained in this electroconductive thread | yarn, DTA-TG (differential heat / thermogravimetric) analysis was performed using the differential thermogravimetric analyzer (Shimadzu TG / DTA simultaneous measuring apparatus DTG-60). As a result of DTA-TG analysis up to about 600 ° C., the residual weight was 8% by weight.

図2は、TEMで撮影した導電性糸の繊維の断面に関する写真である。図2に示すように、硫化銅からなる微粒子として、繊維内部の平均粒子径50nm以下の不定形微粒子と繊維外周部の長さ200nm以下の棒状微粒子が存在して相互に連なっていることが観察された。平均粒子径50nm以下の不定形微粒子の密度は118個/(μm)2で、棒状微粒子の密度は54個/(μm)2であった。 FIG. 2 is a photograph of a cross-section of a conductive yarn fiber taken with a TEM. As shown in FIG. 2, it is observed that as fine particles made of copper sulfide, there are amorphous fine particles having an average particle diameter of 50 nm or less inside the fiber and rod-shaped fine particles having a length of the fiber outer peripheral portion of 200 nm or less, which are connected to each other. It was done. The density of amorphous fine particles having an average particle diameter of 50 nm or less was 118 particles / (μm) 2 , and the density of rod-shaped fine particles was 54 particles / (μm) 2 .

[実施例2]
(1)導電性セルロース系繊維材料からなる導電性糸の製造
実施例1と同様のキュプラ繊維からなる糸に対して、実施例1と同様の酢酸銅(II)一水和物を濃度10g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して含浸処理を行った。含浸処理した糸を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度40g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を4回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース繊維材料からなる導電性糸を得た。
[Example 2]
(1) Production of Conductive Yarn Consisting of Conductive Cellulose-Based Fiber Material A copper (II) acetate monohydrate similar to that in Example 1 was added at a concentration of 10 g / y to a yarn consisting of the same cupra fiber as in Example 1. The impregnation treatment was carried out by introducing the yarn in a 25 ° C. water bath in which the same amount of liter and sodium hydroxide as in Example 1 were dissolved at a concentration of 9% by weight so that the residence time was 120 seconds. The impregnated yarn was subsequently placed in a 25 ° C. water bath in which the same sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 40 g / liter and the same sodium hydroxide as in Example 1 was dissolved at a concentration of 9% by weight. The yarn was introduced so as to have a residence time of 120 seconds and subjected to a sulfidation reduction treatment. These impregnation treatment and sulfidation reduction treatment were repeated four times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive yarn made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性糸の評価
得られた導電性糸の初期弾性率、破断伸度及び破断強度は、それぞれ172.1MPa、2.1%及び73.1MPaであった。導電糸の体積固有抵抗値は、7.4×10-2Ω・cmであった。導電性糸に含まれる硫化銅の重量について、実施例1と同様にDTA−TG分析を約600℃まで行った結果、その残存重量は15重量%であった。また、実施例1と同様に、TEMで撮影した導電性糸の繊維断面の写真に基づいて分析したところ、繊維内部の平均粒子径50nm以下の不定形微粒子と繊維外周部の長さ200nm以下の棒状微粒子が存在して相互に連なっていることが観察された。平均粒子径50nm以下の不定形微粒子の密度は249個/(μm)2で、棒状微粒子の密度は113個/(μm)2であった。
(2) Evaluation of conductive yarn made of conductive cellulose fiber material The initial elastic modulus, elongation at break and breaking strength of the obtained conductive yarn were 172.1 MPa, 2.1% and 73.1 MPa, respectively. It was. The volume specific resistance value of the conductive yarn was 7.4 × 10 −2 Ω · cm. As a result of performing DTA-TG analysis up to about 600 ° C. in the same manner as in Example 1 with respect to the weight of copper sulfide contained in the conductive yarn, the residual weight was 15% by weight. Moreover, when analyzed based on the photograph of the fiber cross section of the conductive yarn photographed by TEM in the same manner as in Example 1, the amorphous fine particles having an average particle diameter of 50 nm or less inside the fiber and the length of the fiber outer peripheral part being 200 nm or less. It was observed that rod-shaped fine particles were present and connected to each other. The density of amorphous fine particles having an average particle diameter of 50 nm or less was 249 particles / (μm) 2 , and the density of rod-shaped fine particles was 113 particles / (μm) 2 .

[実施例3]
(1)導電性セルロース系繊維材料からなる導電性糸の製造
実施例1と同様のキュプラ繊維からなる糸に対して、実施例1と同様の酢酸銅(II)一水和物を濃度20g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して含浸処理を行った。含浸処理した糸を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度40g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を4回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース系繊維材料からなる導電性糸を得た。
[Example 3]
(1) Production of Conductive Yarn Consisting of Conductive Cellulose Fiber Material A copper (II) acetate monohydrate similar to that in Example 1 was added at a concentration of 20 g / y to a yarn consisting of the same cupra fiber as in Example 1. The impregnation treatment was carried out by introducing the yarn in a 25 ° C. water bath in which the same amount of liter and sodium hydroxide as in Example 1 were dissolved at a concentration of 9% by weight so that the residence time was 120 seconds. The impregnated yarn was subsequently placed in a 25 ° C. water bath in which the same sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 40 g / liter and the same sodium hydroxide as in Example 1 was dissolved at a concentration of 9% by weight. The yarn was introduced so as to have a residence time of 120 seconds and subjected to a sulfidation reduction treatment. These impregnation treatment and sulfidation reduction treatment were repeated four times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive yarn made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性糸の評価
得られた導電性糸の初期弾性率、破断伸度及び破断強度は、それぞれ201.8MPa、2.1%及び78.8MPaであった。導電性糸の体積固有抵抗値は、6.4×10-2Ω・cmであった。導電性糸に含まれる硫化銅の重量について、実施例1と同様のDTA−TG分析を約600℃まで行った結果、その残存重量は21重量%であった。また、実施例1と同様に、TEMで撮影した導電性糸の繊維断面の写真に基づいて分析したところ、繊維内部の平均粒子径50nm以下の不定形微粒子と繊維外周部の長さ200nm以下の棒状微粒子が存在して相互に連なっていることが観察された。平均粒子径50nm以下の不定形粒子の密度は528個/(μm)2で、棒状微粒子の密度は240個/(μm)2であった。
(2) Evaluation of conductive yarn made of conductive cellulose fiber material The initial elastic modulus, breaking elongation and breaking strength of the obtained conductive yarn were 201.8 MPa, 2.1% and 78.8 MPa, respectively. It was. The volume specific resistance value of the conductive yarn was 6.4 × 10 −2 Ω · cm. As to the weight of the copper sulfide contained in the conductive yarn, the same DTA-TG analysis as in Example 1 was performed up to about 600 ° C. As a result, the residual weight was 21% by weight. Moreover, when analyzed based on the photograph of the fiber cross section of the conductive yarn photographed by TEM in the same manner as in Example 1, the amorphous fine particles having an average particle diameter of 50 nm or less inside the fiber and the length of the fiber outer peripheral part being 200 nm or less. It was observed that rod-shaped fine particles were present and connected to each other. The density of amorphous particles having an average particle diameter of 50 nm or less was 528 particles / (μm) 2 , and the density of rod-shaped fine particles was 240 particles / (μm) 2 .

[実施例4]
(1)導電性セルロース系繊維材料からなる導電性糸の製造
実施例1と同様のキュプラ繊維からなる糸に対して、実施例1と同様の酢酸銅(II)一水和物を濃度40g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して含浸処理を行った。含浸処理した糸を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度40g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を4回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース系繊維材料からなる導電性糸を得た。
[Example 4]
(1) Production of Conductive Yarn Consisting of Conductive Cellulose-Based Fiber Material A copper (II) acetate monohydrate similar to that in Example 1 was added at a concentration of 40 g / y to the yarn consisting of the same cupra fiber as in Example 1. The impregnation treatment was carried out by introducing the yarn in a 25 ° C. water bath in which the same amount of liter and sodium hydroxide as in Example 1 were dissolved at a concentration of 9% by weight so that the residence time was 120 seconds. The impregnated yarn was subsequently placed in a 25 ° C. water bath in which the same sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 40 g / liter and the same sodium hydroxide as in Example 1 was dissolved at a concentration of 9% by weight. The yarn was introduced so as to have a residence time of 120 seconds and subjected to a sulfidation reduction treatment. These impregnation treatment and sulfidation reduction treatment were repeated four times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive yarn made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性糸の評価
得られた繊維の初期弾性率、破断伸度及び破断強度は、それぞれ218.6MPa、2.7%及び104.5MPaであった。導電性糸の体積固有抵抗値は3.4×10-1Ω・cmであった。導電性糸の繊維の外観は良好で糸斑等はなかった。図3は、SEMで撮影した繊維表面に関する写真である。図3の写真に示すように、析出した硫化銅からなる微粒子が表出しているが、スムースな繊維表面であることがわかる。この導電性糸に含まれる硫化銅の重量について、実施例1と同様のDTA−TG分析を約600℃まで行った結果、残存重量は28重量%であった。
(2) Evaluation of conductive yarn made of conductive cellulose fiber material The initial elastic modulus, breaking elongation, and breaking strength of the obtained fiber were 218.6 MPa, 2.7%, and 104.5 MPa, respectively. The volume specific resistance value of the conductive yarn was 3.4 × 10 −1 Ω · cm. The appearance of the fibers of the conductive yarn was good and there were no yarn spots. FIG. 3 is a photograph of the fiber surface taken with an SEM. As shown in the photograph in FIG. 3, the deposited fine particles of copper sulfide are exposed, but it can be seen that the surface is smooth. With respect to the weight of copper sulfide contained in the conductive yarn, the same DTA-TG analysis as in Example 1 was performed up to about 600 ° C. As a result, the remaining weight was 28% by weight.

図4は、TEMで撮影した導電性糸の繊維の断面に関する写真である。図4に示すように、硫化銅からなる微粒子として、繊維内部の平均粒子径50nm以下の不定形微粒子と繊維外周部の長さ200nm以下の棒状微粒子が形成されて相互に連なっていることが観察された。平均粒子径50nm以下の不定形微粒子の密度は743個/(μm)2で、棒状微粒子の密度は337個/(μm)2であった。 FIG. 4 is a photograph of the cross section of the conductive yarn fibers taken by TEM. As shown in FIG. 4, it was observed that amorphous fine particles having an average particle diameter of 50 nm or less inside the fiber and rod-like fine particles having a length of 200 nm or less at the outer periphery of the fiber were formed and connected to each other as the fine particles comprising copper sulfide. It was done. The density of amorphous fine particles having an average particle diameter of 50 nm or less was 743 particles / (μm) 2 , and the density of rod-shaped fine particles was 337 particles / (μm) 2 .

[実施例5]
(1)導電性セルロース系繊維材料からなる導電性糸の製造
実施例1と同様のキュプラ繊維からなる糸に対して、実施例1と同様の酢酸銅(II)一水和物を濃度5g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して含浸処理を行った。含浸処理した糸を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度5g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を4回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース系繊維材料からなる導電性糸を得た。
[Example 5]
(1) Production of Conductive Yarn Consisting of Conductive Cellulose Fiber Material A copper (II) acetate monohydrate similar to that in Example 1 was added at a concentration of 5 g / y to a yarn consisting of the same cupra fiber as in Example 1. The impregnation treatment was carried out by introducing the yarn in a 25 ° C. water bath in which the same amount of liter and sodium hydroxide as in Example 1 were dissolved at a concentration of 9% by weight so that the residence time was 120 seconds. The impregnated yarn was subsequently placed in a 25 ° C. water bath in which sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 5 g / liter and sodium hydroxide as in Example 1 was dissolved at a concentration of 9% by weight. The yarn was introduced so as to have a residence time of 120 seconds and subjected to a sulfidation reduction treatment. These impregnation treatment and sulfidation reduction treatment were repeated four times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive yarn made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性糸の評価
得られた繊維の初期弾性率、破断伸度及び破断強度は、それぞれ139.6MPa、2.7%及び82.7MPaであった。導電性糸の体積固有抵抗値は7.3×10-1Ω・cmであった。導電性糸に含まれる硫化銅の重量について、実施例1と同様のDTA−TG分析を約600℃まで行った結果、残存重量は5重量%であった。TEMで撮影した導電性糸の繊維の断面を観察したところ、硫化銅からなる微粒子として、繊維内部の平均粒子径50nm以下の不定形微粒子と繊維外周部の長さ200nm以下の棒状微粒子が形成されて相互に連なっていることが観察された。平均粒子径50nm以下の不定形微粒子の密度は78個/(μm)2で、棒状微粒子の密度は34個/(μm)2であった。
(2) Evaluation of conductive yarn made of conductive cellulose fiber material The initial elastic modulus, breaking elongation, and breaking strength of the obtained fiber were 139.6 MPa, 2.7%, and 82.7 MPa, respectively. The volume specific resistance value of the conductive yarn was 7.3 × 10 −1 Ω · cm. As to the weight of copper sulfide contained in the conductive yarn, the same DTA-TG analysis as in Example 1 was performed up to about 600 ° C. As a result, the remaining weight was 5% by weight. Observation of the cross section of the conductive yarn fiber photographed with TEM revealed that fine particles made of copper sulfide were amorphous fine particles having an average particle diameter of 50 nm or less inside the fiber and rod-shaped fine particles having a fiber outer peripheral length of 200 nm or less. It was observed that they were connected to each other. The density of amorphous fine particles having an average particle diameter of 50 nm or less was 78 particles / (μm) 2 , and the density of rod-shaped fine particles was 34 particles / (μm) 2 .

[実施例6]
(1)導電性セルロース系繊維材料からなる導電性糸の製造
実施例1と同様のキュプラ繊維からなる糸に対して、実施例1と同様の酢酸銅(II)一水和物を濃度5g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して含浸処理を行った。含浸処理した糸を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度10g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を4回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース系繊維材料からなる導電性糸を得た。
[Example 6]
(1) Production of Conductive Yarn Consisting of Conductive Cellulose Fiber Material A copper (II) acetate monohydrate similar to that in Example 1 was added at a concentration of 5 g / y to a yarn consisting of the same cupra fiber as in Example 1. The impregnation treatment was carried out by introducing the yarn in a 25 ° C. water bath in which the same amount of liter and sodium hydroxide as in Example 1 were dissolved at a concentration of 9% by weight so that the residence time was 120 seconds. The impregnated yarn was subsequently placed in a 25 ° C. water bath in which sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 10 g / liter and sodium hydroxide as in Example 1 was dissolved at a concentration of 9% by weight. The yarn was introduced so as to have a residence time of 120 seconds and subjected to a sulfidation reduction treatment. These impregnation treatment and sulfidation reduction treatment were repeated four times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive yarn made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性糸の評価
得られた繊維の初期弾性率、破断伸度及び破断強度は、それぞれ161.2MPa、2.5%及び80.5MPaであった。導電性糸の体積固有抵抗値は1.9×10-1Ω・cmであった。導電性糸に含まれる硫化銅の重量について、実施例1と同様のDTA−TG分析を約600℃まで行った結果、残存重量は12重量%であった。
(2) Evaluation of conductive yarn made of conductive cellulose fiber material The initial elastic modulus, breaking elongation, and breaking strength of the obtained fiber were 161.2 MPa, 2.5%, and 80.5 MPa, respectively. The volume specific resistance value of the conductive yarn was 1.9 × 10 −1 Ω · cm. As to the weight of copper sulfide contained in the conductive yarn, the same DTA-TG analysis as in Example 1 was performed up to about 600 ° C. As a result, the remaining weight was 12% by weight.

TEMで撮影した導電性糸の繊維の断面に関する写真を観察したところ、硫化銅からなる微粒子として、繊維内部の平均粒子径50nm以下の不定形微粒子と繊維外周部の長さ200nm以下の棒状微粒子が形成されて相互に連なっていることが観察された。平均粒子径50nm以下の不定形微粒子の密度は290個/(μm)2で、棒状微粒子の密度は133個/(μm)2であった。 As a result of observing a photograph of the cross section of the fiber of the conductive yarn photographed by TEM, as the fine particles made of copper sulfide, amorphous fine particles having an average particle diameter of 50 nm or less inside the fibers and rod-shaped fine particles having a length of the fiber outer periphery of 200 nm or less are obtained. It was observed that they were formed and connected to each other. The density of amorphous fine particles having an average particle diameter of 50 nm or less was 290 particles / (μm) 2 , and the density of rod-shaped fine particles was 133 particles / (μm) 2 .

[実施例7]
(1)導電性セルロース系繊維材料からなる導電性糸の製造
実施例1と同様のキュプラ繊維からなる糸に対して、実施例1と同様の酢酸銅(II)一水和物を濃度5g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して含浸処理を行った。含浸処理した糸を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度20g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を4回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース系繊維材料からなる導電性糸を得た。
[Example 7]
(1) Production of Conductive Yarn Consisting of Conductive Cellulose Fiber Material A copper (II) acetate monohydrate similar to that in Example 1 was added at a concentration of 5 g / y to a yarn consisting of the same cupra fiber as in Example 1. The impregnation treatment was carried out by introducing the yarn in a 25 ° C. water bath in which the same amount of liter and sodium hydroxide as in Example 1 were dissolved at a concentration of 9% by weight so that the residence time was 120 seconds. The impregnated yarn was subsequently placed in a 25 ° C. water bath in which the same sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 20 g / liter and sodium hydroxide as in Example 1 was dissolved at a concentration of 9% by weight. The yarn was introduced so as to have a residence time of 120 seconds and subjected to a sulfidation reduction treatment. These impregnation treatment and sulfidation reduction treatment were repeated four times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive yarn made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性糸の評価
得られた繊維の初期弾性率、破断伸度及び破断強度は、それぞれ144.4MPa、2.2%及び71.3MPaであった。導電性糸の体積固有抵抗値は2.1×10-1Ω・cmであった。導電性糸に含まれる硫化銅の重量について、実施例1と同様のDTA−TG分析を約600℃まで行った結果、残存重量は19重量%であった。TEMで撮影した導電性糸の繊維の断面を観察したところ、硫化銅からなる微粒子として、繊維内部の平均粒子径50nm以下の不定形微粒子と繊維外周部の長さ200nm以下の棒状微粒子が形成されて相互に連なっていることが観察された。平均粒子径50nm以下の不定形微粒子の密度は525個/(μm)2で、棒状微粒子の密度は236個/(μm)2であった。
(2) Evaluation of conductive yarn made of conductive cellulose fiber material The initial elastic modulus, elongation at break and strength at break of the obtained fiber were 144.4 MPa, 2.2% and 71.3 MPa, respectively. The volume specific resistance value of the conductive yarn was 2.1 × 10 −1 Ω · cm. As to the weight of copper sulfide contained in the conductive yarn, the same DTA-TG analysis as in Example 1 was performed up to about 600 ° C. As a result, the remaining weight was 19% by weight. Observation of the cross section of the conductive yarn fiber photographed with TEM revealed that fine particles made of copper sulfide were amorphous fine particles having an average particle diameter of 50 nm or less inside the fiber and rod-shaped fine particles having a fiber outer peripheral length of 200 nm or less. It was observed that they were connected to each other. The density of amorphous fine particles having an average particle diameter of 50 nm or less was 525 particles / (μm) 2 , and the density of rod-shaped fine particles was 236 particles / (μm) 2 .

[実施例8]
(1)導電性セルロース系繊維材料からなる導電性糸の製造
実施例1と同様のキュプラ繊維からなる糸に対して、実施例1と同様の酢酸銅(II)一水和物を濃度40g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して含浸処理を行った。含浸処理した糸を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度10g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を4回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース系繊維材料からなる導電性糸を得た。
[Example 8]
(1) Production of Conductive Yarn Consisting of Conductive Cellulose-Based Fiber Material A copper (II) acetate monohydrate similar to that in Example 1 was added at a concentration of 40 g / y to the yarn consisting of the same cupra fiber as in Example 1. The impregnation treatment was carried out by introducing the yarn in a 25 ° C. water bath in which the same amount of liter and sodium hydroxide as in Example 1 were dissolved at a concentration of 9% by weight so that the residence time was 120 seconds. The impregnated yarn was subsequently placed in a 25 ° C. water bath in which sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 10 g / liter and sodium hydroxide as in Example 1 was dissolved at a concentration of 9% by weight. The yarn was introduced so as to have a residence time of 120 seconds and subjected to a sulfidation reduction treatment. These impregnation treatment and sulfidation reduction treatment were repeated four times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive yarn made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性糸の評価
得られた繊維の初期弾性率、破断伸度及び破断強度は、それぞれ209.8MPa、3.6%及び143.8MPaであった。導電性糸の体積固有抵抗値は3.6×101Ω・cmであった。導電性糸に含まれる硫化銅の重量について、実施例1と同様のDTA−TG分析を約600℃まで行った結果、残存重量は3重量%であった。TEMで撮影した導電性糸の繊維の断面を観察したところ、硫化銅からなる微粒子として、繊維内部の平均粒子径50nm以下の不定形微粒子と繊維外周部の長さ200nm以下の棒状微粒子が形成されて相互に連なっていることが観察された。平均粒子径50nm以下の不定形微粒子の密度は68個/(μm)2で、棒状微粒子の密度は31個/(μm)2であった。
(2) Evaluation of conductive yarn made of conductive cellulose fiber material The initial elastic modulus, elongation at break and strength at break of the obtained fiber were 209.8 MPa, 3.6% and 143.8 MPa, respectively. The volume specific resistance value of the conductive yarn was 3.6 × 10 1 Ω · cm. As to the weight of copper sulfide contained in the conductive yarn, the same DTA-TG analysis as in Example 1 was performed up to about 600 ° C. As a result, the remaining weight was 3% by weight. Observation of the cross section of the conductive yarn fiber photographed with TEM revealed that fine particles made of copper sulfide were amorphous fine particles having an average particle diameter of 50 nm or less inside the fiber and rod-shaped fine particles having a fiber outer peripheral length of 200 nm or less. It was observed that they were connected to each other. The density of amorphous fine particles having an average particle diameter of 50 nm or less was 68 particles / (μm) 2 , and the density of rod-shaped fine particles was 31 particles / (μm) 2 .

[実施例9]
(1)導電性セルロース系繊維材料からなる導電性糸の製造
実施例1と同様のキュプラ繊維からなる糸に対して、実施例1と同様の酢酸銅(II)一水和物を濃度40g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して含浸処理を行った。含浸処理した糸を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度20g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を4回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース系繊維材料からなる導電性糸を得た。
[Example 9]
(1) Production of Conductive Yarn Consisting of Conductive Cellulose-Based Fiber Material A copper (II) acetate monohydrate similar to that in Example 1 was added at a concentration of 40 g / y to the yarn consisting of the same cupra fiber as in Example 1. The impregnation treatment was carried out by introducing the yarn in a 25 ° C. water bath in which the same amount of liter and sodium hydroxide as in Example 1 were dissolved at a concentration of 9% by weight so that the residence time was 120 seconds. The impregnated yarn was subsequently placed in a 25 ° C. water bath in which the same sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 20 g / liter and sodium hydroxide as in Example 1 was dissolved at a concentration of 9% by weight. The yarn was introduced so as to have a residence time of 120 seconds and subjected to a sulfidation reduction treatment. These impregnation treatment and sulfidation reduction treatment were repeated four times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive yarn made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性糸の評価
得られた繊維の初期弾性率、破断伸度及び破断強度は、それぞれ198.1MPa、2.5%及び120.7MPaであった。導電性糸の体積固有抵抗値は2.0×100Ω・cmであった。導電性糸に含まれる硫化銅の重量について、実施例1と同様のDTA−TG分析を約600℃まで行った結果、残存重量は11重量%であった。TEMで撮影した導電性糸の繊維の断面を観察したところ、硫化銅からなる微粒子として、繊維内部の平均粒子径50nm以下の不定形微粒子と繊維外周部の長さ200nm以下の棒状微粒子が形成されて相互に連なっていることが観察された。平均粒子径50nm以下の不定形微粒子の密度は278個/(μm)2で、棒状微粒子の密度は126個/(μm)2であった。
(2) Evaluation of conductive yarn made of conductive cellulose fiber material The initial elastic modulus, breaking elongation, and breaking strength of the obtained fiber were 198.1 MPa, 2.5%, and 120.7 MPa, respectively. The volume specific resistance value of the conductive yarn was 2.0 × 10 0 Ω · cm. As to the weight of copper sulfide contained in the conductive yarn, the same DTA-TG analysis as in Example 1 was performed up to about 600 ° C. As a result, the remaining weight was 11% by weight. Observation of the cross section of the conductive yarn fiber photographed with TEM revealed that fine particles made of copper sulfide were amorphous fine particles having an average particle diameter of 50 nm or less inside the fiber and rod-shaped fine particles having a fiber outer peripheral length of 200 nm or less. It was observed that they were connected to each other. The density of amorphous fine particles having an average particle diameter of 50 nm or less was 278 particles / (μm) 2 , and the density of rod-shaped fine particles was 126 particles / (μm) 2 .

[実施例10]
(1)導電性セルロース系繊維材料からなる導電性糸の製造
実施例1と同様のキュプラ繊維からなる糸に対して、実施例1と同様の酢酸銅(II)一水和物を濃度40g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して含浸処理を行った。含浸処理した糸を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度80g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を4回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース系繊維材料からなる導電性糸を得た。
[Example 10]
(1) Production of Conductive Yarn Consisting of Conductive Cellulose-Based Fiber Material A copper (II) acetate monohydrate similar to that in Example 1 was added at a concentration of 40 g / y to the yarn consisting of the same cupra fiber as in Example 1. The impregnation treatment was carried out by introducing the yarn in a 25 ° C. water bath in which the same amount of liter and sodium hydroxide as in Example 1 were dissolved at a concentration of 9% by weight so that the residence time was 120 seconds. The impregnated yarn was subsequently placed in a 25 ° C. water bath in which sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 80 g / liter and sodium hydroxide as in Example 1 was dissolved at a concentration of 9% by weight. The yarn was introduced so as to have a residence time of 120 seconds and subjected to a sulfidation reduction treatment. These impregnation treatment and sulfidation reduction treatment were repeated four times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive yarn made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性糸の評価
得られた繊維の初期弾性率、破断伸度及び破断強度は、それぞれ199.4MPa、1.3%及び110.5MPaであった。導電性糸の体積固有抵抗値は1.3×10-1Ω・cmであった。導電性糸に含まれる硫化銅の重量について、実施例1と同様のDTA−TG分析を約600℃まで行った結果、残存重量は25重量%であった。TEMで撮影した導電性糸の繊維の断面を観察したところ、硫化銅からなる微粒子として、繊維内部の平均粒子径50nm以下の不定形微粒子と繊維外周部の長さ200nm以下の棒状微粒子が形成されて相互に連なっていることが観察された。平均粒子径50nm以下の不定形微粒子の密度は788個/(μm)2で、棒状微粒子の密度は354個/(μm)2であった。
(2) Evaluation of conductive yarn made of conductive cellulose fiber material The initial elastic modulus, breaking elongation and breaking strength of the obtained fiber were 199.4 MPa, 1.3% and 110.5 MPa, respectively. The volume specific resistance value of the conductive yarn was 1.3 × 10 −1 Ω · cm. As for the weight of copper sulfide contained in the conductive yarn, the same DTA-TG analysis as in Example 1 was performed up to about 600 ° C. As a result, the remaining weight was 25% by weight. Observation of the cross section of the conductive yarn fiber photographed with TEM revealed that fine particles made of copper sulfide were amorphous fine particles having an average particle diameter of 50 nm or less inside the fiber and rod-shaped fine particles having a fiber outer peripheral length of 200 nm or less. It was observed that they were connected to each other. The density of amorphous fine particles having an average particle diameter of 50 nm or less was 788 particles / (μm) 2 , and the density of rod-shaped fine particles was 354 particles / (μm) 2 .

図5は、実施例1から実施例10で得られた酢酸銅及び硫化ナトリウムの濃度の組み合せを変化させた場合の導電性糸に関する体積固有抵抗値及び酢酸銅(II)一水和物の濃度を5g/リットル、10g/リットル、20g/リットルと変化させた場合の導電性糸に関する体積固有抵抗値を示す。図5に示すように、硫化ナトリウムの濃度が高くなると体積固有抵抗値は低くなる傾向が認められた。このことは、硫化銅の残留重量が大きくなるとともに棒状微粒子の密度が大きくなっている結果と合致している。   FIG. 5 shows the volume resistivity value and the concentration of copper (II) acetate monohydrate with respect to the conductive yarn when the combination of the concentrations of copper acetate and sodium sulfide obtained in Examples 1 to 10 is changed. The volume specific resistance value for the conductive yarn is shown in the case where is changed to 5 g / liter, 10 g / liter, and 20 g / liter. As shown in FIG. 5, the volume resistivity value tended to decrease as the concentration of sodium sulfide increased. This is consistent with the result that the residual weight of copper sulfide is increased and the density of rod-shaped fine particles is increased.

[実施例11]
レーヨン繊維(株式会社クラレ製)からなる糸に対して、実施例1と同様の酢酸銅(II)一水和物を濃度10g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して含浸処理を行った。含浸処理した糸を、引き続き、実施例1と同様の硫化ナトリウム九水和物の濃度を5g/リットル、10g/リットル、20g/リットル、40g/リットル、80g/リットルと変化させて、水酸化ナトリウムの濃度をいずれも9重量%に設定して溶解した25℃の水浴中に滞留時間が120秒になるように導糸して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を2回又は4回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース繊維材料からなる導電性糸を得た。得られた導電性糸の体積固有抵抗値は、3×10-1Ω・cm〜2×102Ω・cmの範囲の値であった。
[Example 11]
For a yarn made of rayon fiber (manufactured by Kuraray Co., Ltd.), a copper (II) acetate monohydrate similar to that in Example 1 has a concentration of 10 g / liter and a sodium hydroxide similar to Example 1 has a concentration of 9% by weight. The impregnation treatment was carried out by introducing the yarn in a water bath at 25 ° C. dissolved in each step so that the residence time was 120 seconds. For the impregnated yarn, the sodium sulfide nonahydrate concentration in the same manner as in Example 1 was changed to 5 g / liter, 10 g / liter, 20 g / liter, 40 g / liter, 80 g / liter, and sodium hydroxide was changed. In each case, the sulphidic reduction treatment was carried out by introducing the yarn into a 25 ° C. water bath dissolved at a concentration of 9% by weight so that the residence time was 120 seconds. These impregnation treatment and sulfidation reduction treatment were repeated twice or four times, then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive yarn made of a conductive cellulose fiber material. The volume resistivity value of the obtained conductive yarn was in the range of 3 × 10 −1 Ω · cm to 2 × 10 2 Ω · cm.

[実施例12]
実施例11と同様のレーヨン繊維からなる糸に対して、実施例1と同様の酢酸銅(II)一水和物を濃度20g/リットル及び実施例1と同様の水酸化ナトリウムを濃度9重量%でそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導糸して含浸処理を行った。含浸処理した糸を、引き続き、実施例1と同様の硫化ナトリウム九水和物の濃度を5g/リットル、10g/リットル、20g/リットル、40g/リットル、80g/リットル、120g/リットルと変化させて、水酸化ナトリウムの濃度をいずれも9重量%に設定して溶解した25℃の水浴中に滞留時間が120秒になるように導糸して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を2回又は4回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース繊維材料からなる導電性糸を得た。得られた導電性糸の体積固有抵抗値は、2×10-1Ω・cm〜6×100Ω・cmの範囲の値であった。SEMで撮影した繊維表面を観察したところ、繊維の外観は良好で糸斑等はなく、繊維表面には硫化銅粒子が分散析出していた。
[Example 12]
For the yarn composed of the same rayon fiber as in Example 11, the same concentration of copper (II) acetate monohydrate as in Example 1 was 20 g / liter and the same concentration of sodium hydroxide as in Example 1 was 9% by weight. The impregnation treatment was carried out by introducing the yarn in a water bath at 25 ° C. dissolved in each step so that the residence time was 120 seconds. In the impregnated yarn, the concentration of sodium sulfide nonahydrate as in Example 1 was changed to 5 g / liter, 10 g / liter, 20 g / liter, 40 g / liter, 80 g / liter, 120 g / liter. Then, the concentration of sodium hydroxide was set to 9% by weight, and the solution was introduced into a 25 ° C. water bath so that the residence time was 120 seconds, and the sulfide reduction treatment was performed. These impregnation treatment and sulfidation reduction treatment were repeated twice or four times, then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive yarn made of a conductive cellulose fiber material. The volume resistivity value of the obtained conductive yarn was a value in the range of 2 × 10 −1 Ω · cm to 6 × 10 0 Ω · cm. Observation of the fiber surface photographed by SEM revealed that the appearance of the fiber was good, there were no yarn spots, and copper sulfide particles were dispersed and deposited on the fiber surface.

図6は、含浸処理と硫化還元処理の回数及び硫化ナトリウムの濃度の組み合せを変化させた場合の導電性糸に関する体積固有抵抗値の測定結果を示すグラフである。硫化ナトリウムの濃度及び処理回数を変化させることで、導電糸の体積固有抵抗値を大幅に変更できることがわかった。   FIG. 6 is a graph showing the measurement results of the volume specific resistance value for the conductive yarn when the combination of the number of impregnation treatments and sulfidation reduction treatments and the concentration of sodium sulfide is changed. It was found that the volume resistivity value of the conductive yarn can be changed significantly by changing the concentration of sodium sulfide and the number of treatments.

[実施例13]
(1)導電性セルロース系繊維材料からなる導電性布帛の製造
キュプラ繊維からなる布帛(旭化成せんい株式会社製)に対して、実施例1と同様の水酸化ナトリウムを濃度6重量%で溶解した25℃の水浴中に滞留時間が120秒になるように導入し、引き続き、実施例1と同様の酢酸銅(II)一水和物を濃度70g/リットルで溶解した25℃の水浴中に滞留時間が120秒になるように導入して含浸処理を行った。含浸処理した布帛を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度80g/リットルで溶解した25℃の水浴中に滞留時間が120秒になるように導入して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を8回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース繊維材料からなる導電性布帛を得た。
[Example 13]
(1) Production of conductive fabric made of conductive cellulose fiber material Sodium hydroxide similar to that in Example 1 was dissolved at a concentration of 6% by weight in a fabric made of cupra fiber (manufactured by Asahi Kasei Fibers Co., Ltd.) 25 Then, the residence time was introduced into a water bath at 120 ° C. so that the residence time was 120 seconds, and then the residence time was kept in a water bath at 25 ° C. in which the same copper (II) acetate monohydrate as in Example 1 was dissolved at a concentration of 70 g / liter. Was introduced for 120 seconds to perform the impregnation treatment. The impregnated fabric was subsequently introduced into a 25 ° C. water bath in which the same sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 80 g / liter so as to have a residence time of 120 seconds. went. These impregnation treatment and sulfidation reduction treatment were repeated 8 times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive fabric made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性布帛の評価
得られた導電性布帛の初期弾性率、破断伸度及び破断強度は、それぞれ313.6MPa、6.6%及び25.8MPaであった。導電性布帛の体積固有抵抗値は、2.4×101Ω・cmであった。導電性布帛に含まれる硫化銅の重量について、実施例1と同様にDTA−TG分析を約600℃まで行った結果、その残存重量は12重量%であった。
(2) Evaluation of conductive fabric made of conductive cellulose fiber material The initial elastic modulus, elongation at break and strength at break of the obtained conductive fabric were 313.6 MPa, 6.6% and 25.8 MPa, respectively. It was. The volume resistivity value of the conductive fabric was 2.4 × 10 1 Ω · cm. As a result of performing DTA-TG analysis up to about 600 ° C. in the same manner as in Example 1 for the weight of copper sulfide contained in the conductive fabric, the residual weight was 12% by weight.

[実施例14]
(1)導電性セルロース系繊維材料からなる導電性布帛の製造
実施例13と同様のキュプラ繊維からなる布帛に対して、実施例1と同様の水酸化ナトリウムを濃度6重量%で溶解した25℃の水浴中に滞留時間が120秒になるように導入し、引き続き、実施例1と同様の酢酸銅(II)一水和物を濃度70g/リットル及びクエン酸(ナカライテスク株式会社製)を濃度10g/リットルでそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導入して含浸処理を行った。含浸処理した布帛を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度80g/リットルで溶解した25℃の水浴中に滞留時間が120秒になるように導入して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を8回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース繊維材料からなる導電性布帛を得た。
[Example 14]
(1) Production of conductive fabric made of conductive cellulose fiber material 25 ° C. in which sodium hydroxide similar to that of Example 1 was dissolved at a concentration of 6% by weight with respect to a fabric made of cupra fibers similar to Example 13. Was introduced into the water bath so that the residence time was 120 seconds, and then the same concentration of copper (II) acetate monohydrate as in Example 1 was added at a concentration of 70 g / liter and citric acid (manufactured by Nacalai Tesque Co., Ltd.). Impregnation treatment was performed by introducing into a 25 ° C. water bath dissolved at 10 g / liter so that the residence time was 120 seconds. The impregnated fabric was subsequently introduced into a 25 ° C. water bath in which the same sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 80 g / liter so as to have a residence time of 120 seconds. went. These impregnation treatment and sulfidation reduction treatment were repeated 8 times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive fabric made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性布帛の評価
得られた導電性布帛の初期弾性率、破断伸度及び破断強度は、それぞれ352.8MPa、16.6%及び28.7MPaであった。導電性布帛の体積固有抵抗値は、7.2×100Ω・cmであった。
(2) Evaluation of conductive fabric made of conductive cellulose fiber material The initial elastic modulus, elongation at break and strength at break of the obtained conductive fabric were 352.8 MPa, 16.6% and 28.7 MPa, respectively. It was. The volume resistivity value of the conductive fabric was 7.2 × 10 0 Ω · cm.

[実施例15]
(1)導電性セルロース系繊維材料からなる導電性布帛の製造
実施例13と同様のキュプラ繊維からなる布帛に対して、実施例1と同様の水酸化ナトリウムを濃度6重量%で溶解した25℃の水浴中に滞留時間が120秒になるように導入し、引き続き、実施例1と同様の酢酸銅(II)一水和物を濃度70g/リットル及び実施例14と同様のクエン酸を濃度30g/リットルでそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導入して含浸処理を行った。含浸処理した布帛を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度80g/リットルで溶解した25℃の水浴中に滞留時間が120秒になるように導入して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を8回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース繊維材料からなる導電性布帛を得た。
[Example 15]
(1) Production of conductive fabric made of conductive cellulose fiber material 25 ° C. in which sodium hydroxide similar to that of Example 1 was dissolved at a concentration of 6% by weight with respect to a fabric made of cupra fibers similar to Example 13. Into the water bath, a residence time of 120 seconds was introduced, and subsequently copper (II) acetate monohydrate as in Example 1 had a concentration of 70 g / liter and citric acid as in Example 14 had a concentration of 30 g. The impregnation treatment was carried out by introducing into a 25 ° C. water bath dissolved at a rate of 120 liters / liter so that the residence time was 120 seconds. The impregnated fabric was subsequently introduced into a 25 ° C. water bath in which the same sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 80 g / liter so as to have a residence time of 120 seconds. went. These impregnation treatment and sulfidation reduction treatment were repeated 8 times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive fabric made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性布帛の評価
得られた導電性布帛の初期弾性率、破断伸度及び破断強度は、それぞれ588.0MPa、13.3%及び36.9MPaであった。導電性布帛の体積固有抵抗値は、4.3×100Ω・cmであった。
(2) Evaluation of conductive fabric made of conductive cellulose fiber material The initial elastic modulus, elongation at break and strength at break of the obtained conductive fabric were 588.0 MPa, 13.3% and 36.9 MPa, respectively. It was. The volume resistivity value of the conductive fabric was 4.3 × 10 0 Ω · cm.

[実施例16]
(1)導電性セルロース系繊維材料からなる導電性布帛の製造
実施例13と同様のキュプラ繊維からなる布帛に対して、実施例1と同様の水酸化ナトリウムを濃度6重量%で溶解した25℃の水浴中に滞留時間が120秒になるように導入し、引き続き、実施例1と同様の酢酸銅(II)一水和物を濃度70g/リットル及び実施例14と同様のクエン酸を濃度50g/リットルでそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導入して含浸処理を行った。含浸処理した布帛を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度80g/リットルで溶解した25℃の水浴中に滞留時間が120秒になるように導入して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を8回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース繊維材料からなる導電性布帛を得た。
[Example 16]
(1) Production of conductive fabric made of conductive cellulose fiber material 25 ° C. in which sodium hydroxide similar to that of Example 1 was dissolved at a concentration of 6% by weight with respect to a fabric made of cupra fibers similar to Example 13. Into the water bath, a residence time of 120 seconds was introduced. Subsequently, the same copper (II) acetate monohydrate as in Example 1 had a concentration of 70 g / liter and the same citric acid as in Example 14 had a concentration of 50 g. The impregnation treatment was carried out by introducing into a 25 ° C. water bath dissolved at a rate of 120 liters / liter so that the residence time was 120 seconds. The impregnated fabric was subsequently introduced into a 25 ° C. water bath in which the same sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 80 g / liter so as to have a residence time of 120 seconds. went. These impregnation treatment and sulfidation reduction treatment were repeated 8 times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive fabric made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性布帛の評価
得られた導電性布帛の初期弾性率、破断伸度及び破断強度は、それぞれ313.1MPa、8.9%及び24.3MPaであった。導電性布帛の体積固有抵抗値は、2.9×100Ω・cmであった。
(2) Evaluation of conductive fabric made of conductive cellulose fiber material The initial elastic modulus, elongation at break and strength at break of the obtained conductive fabric were 313.1 MPa, 8.9% and 24.3 MPa, respectively. It was. The volume resistivity value of the conductive fabric was 2.9 × 10 0 Ω · cm.

[実施例17]
(1)導電性セルロース系繊維材料からなる導電性布帛の製造
実施例13と同様のキュプラ繊維からなる布帛に対して、実施例1と同様の水酸化ナトリウムを濃度6重量%で溶解した25℃の水浴中に滞留時間が120秒になるように導入し、引き続き、実施例1と同様の酢酸銅(II)一水和物を濃度70g/リットル及び実施例14と同様のクエン酸を濃度70g/リットルでそれぞれ溶解した25℃の水浴中に滞留時間が120秒になるように導入して含浸処理を行った。含浸処理した布帛を、引き続き、実施例1と同様の硫化ナトリウム九水和物を濃度80g/リットルで溶解した25℃の水浴中に滞留時間が120秒になるように導入して硫化還元処理を行った。これらの含浸処理及び硫化還元処理を8回繰り返した後、十分な水洗後110℃の熱風で乾燥して導電性セルロース繊維材料からなる導電性布帛を得た。
[Example 17]
(1) Production of conductive fabric made of conductive cellulose fiber material 25 ° C. in which sodium hydroxide similar to that of Example 1 was dissolved at a concentration of 6% by weight with respect to a fabric made of cupra fibers similar to Example 13. Into the water bath, a residence time of 120 seconds was introduced. Subsequently, the same copper (II) acetate monohydrate as in Example 1 had a concentration of 70 g / liter and the same citric acid as in Example 14 had a concentration of 70 g. The impregnation treatment was carried out by introducing into a 25 ° C. water bath dissolved at a rate of 120 liters / liter so that the residence time was 120 seconds. The impregnated fabric was subsequently introduced into a 25 ° C. water bath in which the same sodium sulfide nonahydrate as in Example 1 was dissolved at a concentration of 80 g / liter so as to have a residence time of 120 seconds. went. These impregnation treatment and sulfidation reduction treatment were repeated 8 times, and then washed sufficiently with water and dried with hot air at 110 ° C. to obtain a conductive fabric made of a conductive cellulose fiber material.

(2)導電性セルロース系繊維材料からなる導電性布帛の評価
得られた導電性布帛の初期弾性率、破断伸度及び破断強度は、それぞれ536.4MPa、25.6%及び39.0MPaであった。導電性布帛の体積固有抵抗値は、2.7×100Ω・cmであった。
(2) Evaluation of conductive fabric made of conductive cellulose fiber material The initial elastic modulus, elongation at break and strength at break of the obtained conductive fabric were 536.4 MPa, 25.6% and 39.0 MPa, respectively. It was. The volume resistivity value of the conductive fabric was 2.7 × 10 0 Ω · cm.

図7は、実施例13から実施例17で得られたクエン酸添加濃度と導電性布帛の体積固有抵抗との関係を示している。図7に示すように、クエン酸の濃度が上昇するに従い体積固有抵抗が低下する傾向が認められる。   FIG. 7 shows the relationship between the citric acid addition concentration obtained in Examples 13 to 17 and the volume resistivity of the conductive fabric. As shown in FIG. 7, the volume specific resistance tends to decrease as the concentration of citric acid increases.

[実施例18]
実施例13から実施例17で得られた導電性布帛について、通電による発熱量の評価を行った。図8は、通電時間(秒)と布帛の平均温度(℃)との関係を示すグラフである。クエン酸の濃度が高いほど定常状態の平均温度が高くなっており、さらに定常状態の温度に達するまでの時間が短時間であることがわかる。また、定常状態では布帛全体がほぼ均一な発熱状態となっており、1時間発熱状態としたままでも導電性布帛に変化は認められず、発熱前と同様の導電性を維持しており、十分な耐熱性を有することが確認できた。また、70℃の熱水中に導電性布帛を12時間浸漬した状態のままでも特に変化は認められず、熱水への浸漬前と同様の導電性を備えていた。
[Example 18]
About the conductive fabric obtained in Example 13 to Example 17, the calorific value by energization was evaluated. FIG. 8 is a graph showing the relationship between the energization time (seconds) and the average temperature (° C.) of the fabric. It can be seen that the higher the concentration of citric acid, the higher the steady-state average temperature, and the shorter the time to reach the steady-state temperature. Moreover, in the steady state, the entire fabric is in a substantially uniform heat generation state, and even if the heat generation state is maintained for one hour, no change is observed in the conductive fabric, and the same conductivity as before the heat generation is maintained. It was confirmed that it has excellent heat resistance. Further, even when the conductive fabric was immersed in hot water at 70 ° C. for 12 hours, no particular change was observed, and the same conductivity as before immersion in hot water was provided.

[比較例1]
実施例1と同様に含浸処理及び硫化還元処理を行う際に、水酸化ナトリウムを添加せずそれ以外は同じ条件で処理を行った。得られた糸の初期弾性率、破断伸度及び破断強度は、それぞれ214.5MPa、8.9%及び180MPaであった。また、糸の体積固有抵抗は検出限界外であった。
[Comparative Example 1]
When impregnation treatment and sulfidation reduction treatment were performed in the same manner as in Example 1, the treatment was performed under the same conditions except that sodium hydroxide was not added. The initial elastic modulus, breaking elongation and breaking strength of the obtained yarn were 214.5 MPa, 8.9% and 180 MPa, respectively. The volume resistivity of the yarn was outside the detection limit.

本発明によれば、優れた導電性を有する繊維材料を得ることができ、またセルロース系繊維材料を用いることで耐熱性及び耐熱水性を兼備した導電性セルロース系繊維材料を製造することができる。また、導電性セルロース系繊維材料は、繊維の製造工程でも製造可能で、繊維、糸、布帛の後処理で製造することもでき、製造コストを安価に抑えることも可能である。そして、本発明により製造された導電性セルロース系繊維材料は、耐熱性、耐熱水性に優れた帯電材、除電材、ブラシ、センサー、電磁波シールド材、電子回路用非金属電線、面状発熱体、電子材料といった幅広い用途に適用することが可能である。   According to the present invention, a fiber material having excellent conductivity can be obtained, and a conductive cellulose fiber material having both heat resistance and hot water resistance can be produced by using a cellulose fiber material. In addition, the conductive cellulose fiber material can be manufactured in the fiber manufacturing process, and can be manufactured by post-processing of fibers, yarns, and fabrics, and the manufacturing cost can be kept low. The conductive cellulose fiber material produced according to the present invention is a heat-resistant, excellent heat-resistant water-charging material, charge-eliminating material, brush, sensor, electromagnetic shielding material, non-metallic electric wire for electronic circuits, planar heating element, It can be applied to a wide range of uses such as electronic materials.

Claims (6)

アルカリ金属水酸化物を含む水溶液によりセルロース系繊維材料を膨潤率20質量%〜300質量%で膨潤させる膨潤工程と、銅イオンを含む化合物を濃度5g/リットル〜70g/リットルで溶解させた水溶液によりセルロース系繊維材料の外周部及び内部に銅イオンを含浸させる含浸工程と、硫化物イオンを含む化合物を濃度5g/リットル〜120g/リットルで溶解させた水溶液によりセルロース系繊維材料に含浸させた銅イオンを硫化還元させてセルロース系繊維材料の外周部に長さ200nm以下の棒状の硫化銅からなる微粒子及び内部に平均粒子径50nm以下の不定形の硫化銅からなる微粒子を生成させる硫化還元工程とを含む導電性セルロース系繊維材料の製造方法。 A swelling step of swelling a cellulose fiber material with an aqueous solution containing an alkali metal hydroxide at a swelling rate of 20% by mass to 300% by mass, and an aqueous solution in which a compound containing copper ions is dissolved at a concentration of 5 g / liter to 70 g / liter Impregnation step for impregnating copper ions into the outer periphery and inside of the cellulosic fiber material, and copper ions impregnated into the cellulosic fiber material with an aqueous solution in which a compound containing sulfide ions is dissolved at a concentration of 5 g / liter to 120 g / liter A sulfidation reduction step of producing a fine particle composed of rod-shaped copper sulfide having a length of 200 nm or less on the outer peripheral portion of the cellulosic fiber material and a fine particle composed of amorphous copper sulfide having an average particle diameter of 50 nm or less inside A method for producing a conductive cellulose fiber material. 前記膨潤工程は、前記含浸工程と並行して行われる請求項1に記載の導電性セルロース系繊維材料の製造方法。The said swelling process is a manufacturing method of the electroconductive cellulose fiber material of Claim 1 performed in parallel with the said impregnation process. 前記含浸工程は、水溶液に濃度0g/リットル〜70g/リットルのカルボン酸が含まれている請求項1又は2に記載の導電性セルロース系繊維材料の製造方法。The said impregnation process is a manufacturing method of the electroconductive cellulose fiber material of Claim 1 or 2 with which carboxylic acid with a density | concentration of 0 g / liter-70 g / liter is contained in aqueous solution. 請求項1から3のいずれかに記載の導電性セルロース系繊維材料の製造方法により得られた体積固有抵抗値が1.0×10The volume resistivity obtained by the method for producing a conductive cellulose fiber material according to claim 1 is 1.0 × 10. -2-2 〜1.0×10~ 1.0 × 10 22 Ω・cmである導電性セルロース系繊維材料。A conductive cellulosic fiber material having Ω · cm. 請求項4に記載の導電性セルロース系繊維材料を含む布帛。A fabric comprising the conductive cellulose fiber material according to claim 4. 請求項5に記載の布帛を含む面状発熱体。A planar heating element comprising the fabric according to claim 5.
JP2013039080A 2013-02-28 2013-02-28 Method for producing conductive cellulose fiber material Expired - Fee Related JP6095159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013039080A JP6095159B2 (en) 2013-02-28 2013-02-28 Method for producing conductive cellulose fiber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013039080A JP6095159B2 (en) 2013-02-28 2013-02-28 Method for producing conductive cellulose fiber material

Publications (2)

Publication Number Publication Date
JP2014167187A JP2014167187A (en) 2014-09-11
JP6095159B2 true JP6095159B2 (en) 2017-03-15

Family

ID=51617006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039080A Expired - Fee Related JP6095159B2 (en) 2013-02-28 2013-02-28 Method for producing conductive cellulose fiber material

Country Status (1)

Country Link
JP (1) JP6095159B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101589834B1 (en) * 2014-12-01 2016-01-28 지근배 Preparing method of conductive materials
JP6919832B2 (en) * 2017-06-13 2021-08-18 株式会社リコー Image forming device and process cartridge
CN109137481B (en) * 2018-07-24 2020-06-02 东华大学 Functional modification method based on material swelling and shrinking
CN114032675B (en) * 2021-09-14 2024-03-29 中国林业科学研究院木材工业研究所 Conductive fiber and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073002B2 (en) * 1985-07-29 1995-01-18 旭化成工業株式会社 Copper ammonia cellulose conductive fiber
GB2210069A (en) * 1987-09-17 1989-06-01 Courtaulds Plc Electrically conductive cellulosic fibres
JPH01213473A (en) * 1988-02-23 1989-08-28 Takiron Co Ltd Conductive cellulosic product and production thereof
JP2005264419A (en) * 2004-02-18 2005-09-29 Kuraray Co Ltd Conductive polyvinyl alcohol fiber

Also Published As

Publication number Publication date
JP2014167187A (en) 2014-09-11

Similar Documents

Publication Publication Date Title
KR101028984B1 (en) Conductive polyvinyl alcohol fiber
JP6852200B2 (en) Modified textile products, preparation methods and their use
He et al. Flexible and highly conductive Ag/G-coated cotton fabric based on graphene dipping and silver magnetron sputtering
JP6348518B2 (en) Conductive fiber
KR101233818B1 (en) Method for Preparing the Fiber Treated by Graphene
CN113152088B (en) Flexible fabric-based strain sensor and preparation method thereof
Alamer Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black
JP6095159B2 (en) Method for producing conductive cellulose fiber material
Wang et al. Surface-conductive UHMWPE fibres via in situ reduction and deposition of graphene oxide
Liu et al. A novel method for fabricating elastic conductive polyurethane filaments by in-situ reduction of polydopamine and electroless silver plating
Ali et al. Comparative performance of copper and silver coated stretchable fabrics
KR20120111661A (en) Strechable conductive nano fiber, strechable fiber electrode using the same and method for producing the same
Zhou et al. Lightweight and highly conductive silver nanoparticles functionalized meta-aramid nonwoven fabric for enhanced electromagnetic interference shielding
Pawlak et al. Properties of thin metal layers deposited on textile composites by using the PVD method for textronic applications
JP2015507100A (en) Carbon fiber for composites with improved conductivity
JP2018188788A (en) Graphene-coated fiber, conductive multi-filament, conductive fabric, and method for producing graphene-coated fiber
Ke et al. Layer-by-layer assembly for all-graphene coated conductive fibers toward superior temperature sensitivity and humidity independence
Hossain et al. Durability of smart electronic textiles
Makowski et al. Electrochemical deposition of silver nanoparticle and polymerization of pyrrole on fabrics via conducting multiwall carbon nanotubes
Wang et al. Conductive cotton fabrics with ultrahigh washability by electroless silver plating after silane modification
Keshavarz et al. Electro‐conductive modification of polyethylene terephthalate fabric with nano carbon black and washing fastness improvement by dopamine self‐polymerized layer
JP7093539B2 (en) Composite surface, its manufacturing method, and the members on which it is formed
Chen et al. Flexible cotton fabric with stable conductive coatings for piezoresistive sensors
Nasouri et al. Effects of diameter and surface area of electrospun nanocomposite fibers on electromagnetic interference shielding
JP2005264419A (en) Conductive polyvinyl alcohol fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170210

R150 Certificate of patent or registration of utility model

Ref document number: 6095159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees