JP6348518B2 - Conductive fiber - Google Patents

Conductive fiber Download PDF

Info

Publication number
JP6348518B2
JP6348518B2 JP2015558554A JP2015558554A JP6348518B2 JP 6348518 B2 JP6348518 B2 JP 6348518B2 JP 2015558554 A JP2015558554 A JP 2015558554A JP 2015558554 A JP2015558554 A JP 2015558554A JP 6348518 B2 JP6348518 B2 JP 6348518B2
Authority
JP
Japan
Prior art keywords
metal
fiber
poly
solution
diallyldimethylammonium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015558554A
Other languages
Japanese (ja)
Other versions
JP2016513182A (en
Inventor
アシャイヤ−ソルタニ,ロヤ
ハント,クリストファー・ポール
Original Assignee
エヌピーエル マネージメント リミテッド
エヌピーエル マネージメント リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌピーエル マネージメント リミテッド, エヌピーエル マネージメント リミテッド filed Critical エヌピーエル マネージメント リミテッド
Publication of JP2016513182A publication Critical patent/JP2016513182A/en
Application granted granted Critical
Publication of JP6348518B2 publication Critical patent/JP6348518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/166Process features with two steps starting with addition of reducing agent followed by metal deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01CCHEMICAL OR BIOLOGICAL TREATMENT OF NATURAL FILAMENTARY OR FIBROUS MATERIAL TO OBTAIN FILAMENTS OR FIBRES FOR SPINNING; CARBONISING RAGS TO RECOVER ANIMAL FIBRES
    • D01C1/00Treatment of vegetable material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/155Halides of elements of Groups 2 or 12 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/285Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemically Coating (AREA)

Description

本発明は、布用の導電性の繊維を製造するための方法、複数のこのような繊維から形成された布、および、前記布を取り入れた品物に関する。特に、本発明は、銀ナノ粒子を用いた、綿などの天然繊維のコーティングに関する。得られる綿布は、繊維に良く付着した銀粒子で完全に覆われているのが見られる。導電性があり、かつ極めて柔軟なだけでなく、布は、ナノ銀が存在しているため抗菌性もある。   The present invention relates to a method for producing conductive fibers for fabrics, a fabric formed from a plurality of such fibers, and an article incorporating said fabric. In particular, the present invention relates to the coating of natural fibers such as cotton using silver nanoparticles. The resulting cotton fabric is seen to be completely covered with silver particles that adhere well to the fibers. Not only is it conductive and extremely flexible, the fabric is also antibacterial because of the presence of nanosilver.

スマートフォン、GPS装置およびパーソナルコンピュータなどの電子機器を内部に取り込んだ導電性の衣類または旅行かばんなどを製造できるように、導電性布を作る試みがいくつかなされてきた。このような機器は、消費者、ビジネスおよび軍事の分野にさまざまな用途がある。   Some attempts have been made to make conductive cloth so that conductive clothing or travel bags or the like that incorporate electronic devices such as smartphones, GPS devices and personal computers can be manufactured. Such devices have a variety of uses in the consumer, business and military fields.

導電性布を製造するための従来の方法は、布が織られるときに、布の本体内に導電性フィラメントを含有することが必要である。   Conventional methods for producing conductive fabrics require that conductive filaments be contained within the body of the fabric when the fabric is woven.

最初の導電性布は、導電性繊維が、薄い銅箔に包まれた絹糸でできた絹のオーガンザでできていた(E.R.Post and M.Orth,IEEE International Symposium on Wearable Computers,October 13−14,1997)。   The first conductive fabric was made of silk organza made of silk with conductive fibers wrapped in a thin copper foil (ER Post and M. Orth, IEEE International Symposium on Wearable Computers, October 13). -14, 1997).

布のなかで、金属線または導電性ポリマーフィラメントの混織も利用されてきた(H.−C.Chen,K.−C.Lee and J.−H.Lin,Composites,Part A,35,1249−1256,2004)。しかし、これらの工程から、最も単純な設計以外のものを形成するのは困難である。   Among fabrics, metal wire or conductive polymer filament blends have also been utilized (H.-C. Chen, K.-C. Lee and J.-H. Lin, Composites, Part A, 35, 1249. -1256, 2004). However, it is difficult to form something other than the simplest design from these processes.

導電性布を製造する別の方法は、導電性ポリマーを用いるものである。導電性ポリマーは、ポリアニリンおよびポリピロールを含め、テキスタイルのコーティングに広く用いられる(J.Molina,A.I.del Rio,J.Bonastre and F.Cases,Eur.Polym.J.,45,1302,2009およびB.Yue,C.Wang,X.Ding and G.G.Wallace,Electrochim.Acta,68,18−24,2012)。しかし、これらのポリマーは、金属ほど導電性でない傾向がある。   Another method of producing a conductive fabric is to use a conductive polymer. Conductive polymers are widely used in textile coatings, including polyaniline and polypyrrole (J. Molina, AI del Rio, J. Bonastre and F. Cases, Eur. Polym. J., 45, 1302, 2009). And B. Yue, C. Wang, X. Ding and GG Wallace, Electrochim. Acta, 68, 18-24, 2012). However, these polymers tend to be less conductive than metals.

銀でコーティングされたナイロン布が、Shieldexの商標でShieldex Trading,Inc.により販売されている。この製品は、厚い銀を使用し、高価で、回路を製造する形態で提供されていない。   A silver-coated nylon cloth is available from Shieldex Trading, Inc. under the Shieldex trademark. It is sold by. This product uses thick silver, is expensive, and is not offered in the form of manufacturing circuits.

国際公開第2008/133672号パンフレット(ドレクセル大学)には、高分子電解質をリンカー基として用いることによって、ポリアクリロニトリルナノファイバーの外面にマルチウォールナノチューブをグラフト化する方法が開示されている。どのような他のグラフト化法の例も記載されていない。   International Publication No. 2008/133672 (Drexel University) discloses a method of grafting multi-wall nanotubes on the outer surface of polyacrylonitrile nanofibers by using a polymer electrolyte as a linker group. No example of any other grafting method is described.

米国特許出願公開第2007/0054577号明細書(Avloni)には、(i)プラズマ前処理と、それに続く、(ii)高分子電解質をリンカー基として用いて導電性コーティングを層毎に付着することによる電気伝導性繊維の形成が開示されている。   U.S. Patent Application Publication No. 2007/0054577 (Avloni) includes (i) plasma pretreatment followed by (ii) depositing a conductive coating layer by layer using a polyelectrolyte as a linker group. The formation of electrically conductive fibers is disclosed.

中国特許第102120043号明細書(Basic Medical)には、ガーゼに殺生物性をもたせるために、キトサンをリンカーとして用いることによるナノ銀層のガーゼへの付着が開示されている。   Chinese Patent No. 102120043 (Basic Medical) discloses the attachment of nano-silver layers to gauze by using chitosan as a linker to make gauze biocidal.

また、国際公開第00/49219号パンフレット(Foxwood Research Limited)には、キトサンをリンカー基として用いて銀粒子を基材に結合させることにより、殺生物性のナノ銀を用いて基材をコーティングする方法が開示されている。キトサンは、酸性のpHで不溶性にするために、架橋される必要がある。   In addition, WO 00/49219 (Foxwood Research Limited) coats a substrate with biocidal nanosilver by binding silver particles to the substrate using chitosan as a linker group. A method is disclosed. Chitosan needs to be cross-linked to make it insoluble at acidic pH.

本発明の第1の態様において:
(a)繊維の表面に負電荷を有する繊維を提供するステップと、
(b)繊維に、キトサンではない物質(以下で「リンカー」と呼ぶ。)を施して、前記物質の層を繊維上に提供し、繊維の表面の電荷を負から正に変えるステップと、
(c)繊維の表面を金属を用いて導電性にするステップであって、ステップ(c)の金属は、金属イオンの形態で提供され、金属イオンは、元素の金属に還元される、ステップとを含む、導電性の繊維を製造するための方法が提供される。
In a first aspect of the invention:
(A) providing a fiber having a negative charge on the surface of the fiber;
(B) subjecting the fiber to a material that is not chitosan (hereinafter referred to as a “linker”) to provide a layer of the material on the fiber to change the surface charge of the fiber from negative to positive;
(C) making the surface of the fiber conductive with a metal, wherein the metal of step (c) is provided in the form of metal ions, and the metal ions are reduced to elemental metals; A method for producing a conductive fiber is provided.

キトサンの使用は、繊維の物理特性に不利に影響を与えることが見つかっており、したがって、キトサンは、本方法の範囲から除外される。   The use of chitosan has been found to adversely affect the physical properties of the fiber, and thus chitosan is excluded from the scope of the method.

金属イオンの形態の金属を提供し、次いで、還元を行う利点は、改善された結果が得られることである(比較例5参照)。   The advantage of providing a metal in the form of metal ions and then reducing is that improved results are obtained (see Comparative Example 5).

還元剤は、好ましくは、繊維の表面にまず施され、金属イオンが二番目に繊維の表面に施される。この方法の利点は、使用する必要のある還元剤および金属イオン溶液の量を最小限に抑えられることと、第2に、繊維をより速くナノ粒子で覆うことができることである。   The reducing agent is preferably applied first to the fiber surface, and metal ions are applied second to the fiber surface. The advantage of this method is that the amount of reducing agent and metal ion solution that needs to be used can be minimized and, second, the fibers can be covered with nanoparticles faster.

代替の実施形態では、金属イオンの溶液、還元剤およびリンカーがまず(例えば、水溶液中で)合わせられ、次いで、この合わせたものが繊維に施される。この方法では、金属イオンは、繊維に施される前に還元されているが、金属イオンは、繊維と接触する前に、リンカーと接触してもいる。この方法は、リンカーが既に施されている繊維に元素の金属が施される方法とは異なる(以下の実施例4と比較例5を比較されたい)。理論によって制約されることは本意ではないが、リンカーの存在によって、普通なら不十分な結果につながるはずのナノ粒子の凝集が起こらないようになると考えられる。   In an alternative embodiment, a solution of metal ions, a reducing agent and a linker are first combined (eg, in an aqueous solution) and then this combination is applied to the fiber. In this method, the metal ions are reduced before being applied to the fiber, but the metal ions are also in contact with the linker before contacting the fiber. This method is different from the method in which an elemental metal is applied to a fiber already provided with a linker (compare Example 4 and Comparative Example 5 below). While not wishing to be bound by theory, it is believed that the presence of a linker prevents aggregation of nanoparticles that would otherwise lead to poor results.

好ましくは、使用される還元剤の量は、98mlの水中で7mg(最も好ましくは6.1mg)未満である。このことの利点は、生じる金属粒子が異常に小さいこと−好ましくは50nm未満、最も好ましくは約20nmの平均径であるように見受けられる。これは、金属粒子が、次に穏やかに熱を加えることによって自己焼結されることを意味する−例えば、平均径が約20nmの銀ナノ粒子が、約60℃で自己焼結されて、繊維の周りに均一な導電性の銀の鞘が得られる。   Preferably, the amount of reducing agent used is less than 7 mg (most preferably 6.1 mg) in 98 ml of water. The advantage of this appears to be that the resulting metal particles are unusually small-preferably with an average diameter of less than 50 nm, most preferably about 20 nm. This means that the metal particles are then self-sintered by gently applying heat—for example, silver nanoparticles with an average diameter of about 20 nm are self-sintered at about 60 ° C. to produce fibers. A uniform conductive silver sheath is obtained.

次に、別の金属層を、例えば、従来の無電解めっきの技術によって、導電性繊維に施してもよい。   Next, another metal layer may be applied to the conductive fibers, for example, by conventional electroless plating techniques.

好ましくは、方法は、さらに、ステップ(a)の後に、
(a1)繊維の表面の負電荷を増加させるために、繊維を(酸性溶液を使用してもよいが、好ましくはアルカリ溶液を用いて)処理するステップ(いわゆる、「マーセル加工」ステップ)を含む。
Preferably, the method further comprises after step (a):
(A1) includes a step of treating the fiber (which may use an acidic solution, but preferably with an alkaline solution) to increase the negative charge on the surface of the fiber (so-called “mercelling” step). .

当該繊維は、天然、合成、織または不織のものでもよい。好ましくは、当該繊維は天然繊維であり、既に布に織られていてもよい。あるいは、当該繊維は、織られていない形態で提供されて、本方法にしたがって処理された後に織られてもよい。   The fibers may be natural, synthetic, woven or non-woven. Preferably, the fibers are natural fibers and may already be woven into the fabric. Alternatively, the fibers may be woven after being provided in an unwoven form and treated according to the present method.

天然繊維(および、特に、綿などのセルロース系繊維)は、本来、繊維表面に負電荷を有し、これは、(正の実効電荷に対して静電結合を形成する)金属粒子が繊維表面に結合しないことを意味する。   Natural fibers (and especially cellulosic fibers such as cotton) inherently have a negative charge on the fiber surface, which is because the metal particles (which form electrostatic bonds for positive net charges) are on the fiber surface. Means not to be bound to.

ステップ(b)の物質は、好ましくはカチオン性高分子電解質、より好ましくはプロタミン硫酸塩、ポリブレン、ポリ(L−リシン)、ポリ(アリルアミン塩酸塩)、ポリ(エチレングリコール−コ−ジメチルアミノエチルメタクリレート)、ポリ(エチレンイミン)、ポリアクリルアミド、ポリ(アクリルアミド−コ−ジアリルジメチルアンモニウムクロリド)、ジアリルジメチルアンモニウムクロリド、ポリ(ジアリルジメチルアンモニウムクロリド)、四級化ポリ[ビス(2−クロロエチル)エーテル−alt−1,3−ビス[3−(ジメチルアミノ)プロピル]尿素]、ポリクアテルニウム−7、または、これらの任意の組み合わせである。   The substance of step (b) is preferably a cationic polyelectrolyte, more preferably protamine sulfate, polybrene, poly (L-lysine), poly (allylamine hydrochloride), poly (ethylene glycol-co-dimethylaminoethyl methacrylate) ), Poly (ethyleneimine), polyacrylamide, poly (acrylamide-co-diallyldimethylammonium chloride), diallyldimethylammonium chloride, poly (diallyldimethylammonium chloride), quaternized poly [bis (2-chloroethyl) ether-alt -1,3-bis [3- (dimethylamino) propyl] urea], polyquaternium-7, or any combination thereof.

ポリ(アリルアミン塩酸塩)は、2種類の異なる分子量、すなわち、1)平均Mw約15,000、および、2)平均Mw約58,000で市販されている。いずれかを使用できる。   Poly (allylamine hydrochloride) is commercially available in two different molecular weights: 1) an average Mw of about 15,000 and 2) an average Mw of about 58,000. Either can be used.

ステップ(b)の物質の量は、好ましくは2重量%を超えず、好ましくは1重量%を超えず、最も好ましくは約0.2重量%(具体的には、100mlの水と混合した1gのPDADMACの20重量%溶液、すなわち0.198重量%)である。   The amount of substance in step (b) preferably does not exceed 2% by weight, preferably does not exceed 1% by weight, most preferably about 0.2% by weight (specifically 1 g mixed with 100 ml water) A 20 wt% solution of PDADMAC, ie 0.198 wt%).

特に好ましい実施形態において、この物質は、ポリ(ジアリルジメチルアンモニウムクロリド)であり、PDADMACとしても知られる(Sigma−Aldrich提供の画像):   In a particularly preferred embodiment, this material is poly (diallyldimethylammonium chloride), also known as PDADMAC (image provided by Sigma-Aldrich):

Figure 0006348518
Figure 0006348518

PDADMACは、金属とテキスタイルの間のバインダーとして重要な役割を果たし、より均一で密なコーティングを生じる。ポリマー鎖中の2個のメチル基および1個のアミン基の存在によって、核形成が起こる電気的に正の部位がもたらされると考えられる。PDADMACの繊維への付着は、カチオン性PDADMACと繊維のアニオン性の表面との間のイオン性の相互作用によって主に決まると考えられる。そのカチオン性の性質の結果、PDADMACの綿繊維への付着がイオン結合によって起こると考えられる。また、長いポリマー鎖も、より多くのカチオン性の部位をもたらして、おそらく布の表面とさらに強く結合することができる。   PDADMAC plays an important role as a binder between metal and textile, resulting in a more uniform and dense coating. It is believed that the presence of two methyl groups and one amine group in the polymer chain provides an electrically positive site where nucleation occurs. The attachment of PDADMAC to the fiber is thought to be mainly determined by the ionic interaction between the cationic PDADMAC and the anionic surface of the fiber. As a result of its cationic nature, it is believed that PDADMAC adheres to cotton fibers by ionic bonding. Long polymer chains can also provide more cationic sites and possibly more strongly bond to the fabric surface.

PDADMACは4種類が市販されており、分子量が異なる:
(i)超低分子量(平均Mw<100,000)
(ii)低分子量(平均Mw100,000〜200,000)
(iii)中分子量(平均Mw200,000〜350,000)
(iv)高分子量(平均Mw400,000〜500,000)
これら(または組み合わせ)のいずれも本発明において用いることができるが、(ii)低分子量PDADMACが好ましい。商業的に、このPDADMACは20重量%水溶液で提供されている。
Four types of PDADMAC are commercially available and have different molecular weights:
(I) Ultra low molecular weight (average Mw <100,000)
(Ii) Low molecular weight (average Mw 100,000-200,000)
(Iii) Medium molecular weight (average Mw 200,000-350,000)
(Iv) High molecular weight (average Mw 400,000-500,000)
Any of these (or combinations) can be used in the present invention, but (ii) low molecular weight PDADMAC is preferred. Commercially, this PDADMAC is provided in a 20 wt% aqueous solution.

ステップ(a1)は、マーセル加工として知られる周知の技術である。従来のマーセル加工において、アルカリ溶液の濃度は10重量%以上である。しかし、本発明において、約1重量%のアルカリ溶液を使用するのが好ましい。   Step (a1) is a well-known technique known as mercerization. In the conventional mercerization, the concentration of the alkaline solution is 10% by weight or more. However, in the present invention, it is preferred to use about 1% by weight alkaline solution.

繊維がアルカリ溶液(水酸化ナトリウム溶液など)で処理されるとき、繊維表面のアニオン性の部位の数が増え、PDADMACの吸着がさらに容易になる。   When the fiber is treated with an alkaline solution (such as a sodium hydroxide solution), the number of anionic sites on the fiber surface increases and PDADMAC adsorption is further facilitated.

水酸化ナトリウムは、布中のセルロース鎖をいくらか離脱させる原因となり、したがって結合する負の部位の数が増える。したがって、溶液中のNaOHの重量パーセントを上昇させることによって、負の部位の数も増えることが予想される。しかし、3.0moldm-3を超えるアルカリ処理では、繊維の特性が変化するようである。したがって、好ましい実施形態において、アルカリ溶液の濃度は、この値未満である。 Sodium hydroxide causes some of the cellulose chains in the fabric to detach, thus increasing the number of negative sites that bind. Thus, increasing the weight percent of NaOH in the solution is expected to increase the number of negative sites. However, it seems that the properties of the fibers change with alkali treatment above 3.0 mold- 3 . Accordingly, in a preferred embodiment, the concentration of the alkaline solution is less than this value.

他のタイプのアルカリ溶液も同様に振る舞うと予想されることに留意されたい。セルロースベースの材料のアルカリ処理は、マーセル加工と呼ばれる。しかし、他のタイプの布の表面電荷は、異なる処理を用いて増加させることができる。   Note that other types of alkaline solutions are expected to behave as well. The alkali treatment of cellulose-based materials is called mercerization. However, the surface charge of other types of fabrics can be increased using different treatments.

次に、繊維を布(または、他の非導電性布内の導電性パターン)に織ることができる。同様に、本発明による方法を用いて、布中の繊維を導電性コーティングでコーティングすることができる。   The fibers can then be woven into a fabric (or a conductive pattern within another non-conductive fabric). Similarly, the fibers in the fabric can be coated with a conductive coating using the method according to the invention.

ナノ銀コートファブリックは、創傷被覆材、衛生衣料、および、細菌の存在が危険な医療用途など、幅広い用途で使用することができる。例えば、このファブリックは、傷の感染が深刻な影響を与えうるフェイスマスク、手術用手袋および軍服の製作に使用することができる。高い柔軟性によって、布地類を健康産業、レジャー産業およびスポーツ産業で使用することが可能になる。   Nano silver coated fabrics can be used in a wide range of applications such as wound dressings, sanitary garments, and medical applications where the presence of bacteria is dangerous. For example, the fabric can be used to make face masks, surgical gloves and military uniforms where wound infections can be seriously affected. High flexibility allows fabrics to be used in the health, leisure and sports industries.

また、導電性布は、快適で、窮屈さを感じないウェアラブルセンサとして使用することもできる。   The conductive cloth can also be used as a wearable sensor that is comfortable and does not feel cramped.

本発明の工程において、ナノ粒子の作製は、好ましくは、同時に(1)布を還元溶液で濡らし、(2)金属塩溶液を加えることによって行われ、この結果、ナノ粒子が形成されて、繊維上に析出する。これは、ナノ粒子の析出に、ナノ粒子を含む溶液に布全体を浸漬させる必要がないという点で重要な概念上の利点である。このナノ金属析出の方法は、従来の方法よりも費用効果が高い。さらに、この方法は、銀を選択的に析出させるように適合させることができる。これは、複雑なパターンを含む、あらゆるタイプの回路設計のための布にスクリーン印刷またはスプレー印刷することによっても可能である。   In the process of the present invention, the preparation of the nanoparticles is preferably carried out by simultaneously (1) wetting the cloth with the reducing solution and (2) adding the metal salt solution, so that the nanoparticles are formed and the fibers Precipitate on top. This is an important conceptual advantage in that it is not necessary to immerse the entire fabric in a solution containing nanoparticles for nanoparticle precipitation. This method of nanometal deposition is more cost effective than conventional methods. Furthermore, this method can be adapted to selectively deposit silver. This is also possible by screen printing or spray printing on fabric for any type of circuit design, including complex patterns.

ナノ粒子を析出させる前に、布をコーティングするための他のタイプのポリマーも使用することができる。ポリマーは、電荷を有することもできて、単独または組み合わせで使用することができる。さらに、工程は、銅、二酸化チタンおよび亜鉛など、異なる特性を与える他のタイプのナノ粒子で綿のテキスタイルを覆うために利用することができる。   Other types of polymers can be used to coat the fabric prior to depositing the nanoparticles. The polymers can also have a charge and can be used alone or in combination. In addition, the process can be utilized to cover cotton textiles with other types of nanoparticles that give different properties, such as copper, titanium dioxide and zinc.

無電解めっきの前に、異なるタイプのナノ粒子/ナノワイヤを使用することもできる。無電解めっきは、Al、NiおよびSnなど、用途に応じて他のタイプの材料により実現することができる。   Different types of nanoparticles / nanowires can also be used prior to electroless plating. Electroless plating can be achieved with other types of materials depending on the application, such as Al, Ni and Sn.

この工程の別の展開には、スプレーコーティングを含むことができる。   Another development of this process can include spray coating.

本発明の第2の態様において:
(i)繊維の表面に負電荷を有する繊維を提供するステップと、
(ii)繊維の表面の負電荷を増加させるために、繊維をアルカリ溶液で処理するステップと、
(iii)ステップ(ii)の繊維に、物質を施して、前記物質の層を繊維の周りに提供し、繊維の表面の電荷を負から正に変えるステップと、
(iv)表面を導電性にするために、金属をステップ(iii)の繊維の表面に析出させるステップとを含む、導電性の繊維を製造するための方法が提供される。
In a second aspect of the invention:
(I) providing a fiber having a negative charge on the surface of the fiber;
(Ii) treating the fiber with an alkaline solution to increase the negative charge on the surface of the fiber;
(Iii) applying a material to the fibers of step (ii) to provide a layer of said material around the fibers and changing the charge on the surface of the fibers from negative to positive;
(Iv) depositing a metal on the surface of the fiber of step (iii) to make the surface conductive, a method for producing a conductive fiber is provided.

本発明の第3の態様において、還元剤(水性の水素化ホウ素ナトリウムなど)を繊維の表面にまず施すステップと、金属イオン(硝酸銀など)を二番目に繊維の表面に施すステップとを含み、これにより、金属イオンが金属粒子(好ましくは50nm未満の平均サイズを備え、最も好ましくは約20nmの平均サイズを備える。)に還元される、繊維の表面に正の電荷を有する繊維の表面に金属を析出させるための方法が提供される。   In a third aspect of the present invention, the method comprises first applying a reducing agent (such as aqueous sodium borohydride) to the surface of the fiber, and secondly applying a metal ion (such as silver nitrate) to the surface of the fiber, Thereby, metal ions are reduced to metal particles (preferably with an average size of less than 50 nm, most preferably with an average size of about 20 nm), the metal on the surface of the fiber having a positive charge on the surface of the fiber. A method for precipitating is provided.

好ましくは、使用される還元剤の量は、98mlの水中で7mg(最も好ましくは6.1mg)未満である。   Preferably, the amount of reducing agent used is less than 7 mg (most preferably 6.1 mg) in 98 ml of water.

ここで本発明のいくつかの好ましい実施形態を以下の添付図面を参照して説明する。   Several preferred embodiments of the present invention will now be described with reference to the following accompanying drawings.

本発明による方法により処理された綿布の一連の走査電子顕微鏡(SEM)像(3回還元)である。Figure 2 is a series of scanning electron microscope (SEM) images (three times reduction) of a cotton fabric treated by the method according to the present invention. 本発明による方法(マーセル加工ステップが省略された点を除く。)により処理された綿布の一連のSEM像(3回還元)である。FIG. 3 is a series of SEM images (three times reduction) of a cotton fabric treated by the method according to the present invention (except that the mercerizing step is omitted). 本発明による方法(カチオン性高分子電解質を施すステップが省略された点を除く。)により処理された綿布の一連のSEM像(3回還元)である。It is a series of SEM images (three times reduction) of a cotton fabric treated by the method according to the present invention (except that the step of applying a cationic polyelectrolyte is omitted). 本発明による好ましい方法のステップを示す概略図である。Fig. 2 is a schematic diagram showing the steps of a preferred method according to the present invention. 本発明による方法により処理された別の綿布のSEM像(および拡大図)である。FIG. 4 is an SEM image (and enlarged view) of another cotton fabric treated by the method according to the present invention. 本発明による方法により処理された別の綿布のSEM像(および拡大図)である。FIG. 4 is an SEM image (and enlarged view) of another cotton fabric treated by the method according to the present invention. 本発明による方法により作製された(使用中の)導電路の写真である。2 is a photograph of a conductive path (in use) made by a method according to the invention. (本発明によらない)ナノ銀溶液に浸漬した綿繊維のSEM像である。It is a SEM image of the cotton fiber immersed in the nano silver solution (not according to the present invention). 銅無電解めっき後の図8Aの綿布の写真である。It is a photograph of the cotton fabric of FIG. 8A after copper electroless plating.

実施例1
綿布を以下の4段階の工程により処理した。
1.マーセル加工
2.表面改質
3.銀ナノ粒子の作製および析出および焼結
4.第2の導電層の積層
この実施例を示す概略図を図4に示す。
Example 1
The cotton fabric was treated by the following four steps.
1. Mercer processing 2. Surface modification 3. Preparation, deposition and sintering of silver nanoparticles Lamination of Second Conductive Layer A schematic diagram showing this embodiment is shown in FIG.

1.マーセル加工
綿布を、1重量%NaOH水溶液を用いて室温で30分間処理し、続いて蒸留水ですすいだ。
1. Mercerization Cotton fabric was treated with 1 wt% aqueous NaOH for 30 minutes at room temperature followed by rinsing with distilled water.

2.表面改質
サンプルを乾燥させ、次に、その繊維を0.198重量%のポリ−ジアリルジメチルアンモニウムクロリド(PDADMAC)水溶液でコーティングした。この水溶液は、PDADMACの20重量%溶液を1g取り、100mlの水と混合して作り、したがって、生じた溶液は、101mlの水中の0.2gのPDADMAC、すなわち0.198重量%であった。
2. Surface modification The sample was dried and then the fiber was coated with 0.198 wt% poly-diallyldimethylammonium chloride (PDADMAC) aqueous solution. This aqueous solution was made by taking 1 g of a 20 wt% solution of PDADMAC and mixing with 100 ml of water, so the resulting solution was 0.2 g PDADMAC in 101 ml of water, ie 0.198 wt%.

布を溶液で完全に濡らした後、残留する水分子をすべて蒸発させるために、布をオーブン内で59℃で5分間乾燥させた。布は、ナノ粒子を析出させる前に室温で自然に乾燥させることができることに留意されたい。   After the fabric was completely wetted with the solution, the fabric was dried in an oven at 59 ° C. for 5 minutes in order to evaporate any remaining water molecules. Note that the fabric can be naturally dried at room temperature before the nanoparticles are deposited.

3.作製および析出
0.025M(0.43g/水100ml)の硝酸銀水溶液を調製した。次に、綿布(1.5g、表面積は64mm2)を0.1mlの1.61×10-4M(6.1mg/水98ml)のNaBH4水溶液で濡らした。次に、10μlの硝酸銀溶液を布に加えた。
3. Preparation and Precipitation A 0.025M (0.43 g / 100 ml water) aqueous silver nitrate solution was prepared. Next, a cotton cloth (1.5 g, surface area of 64 mm 2 ) was wetted with 0.1 ml of 1.61 × 10 −4 M (6.1 mg / 98 ml of water) NaBH 4 aqueous solution. Next, 10 μl of silver nitrate solution was added to the fabric.

布の色は、白色から茶色がかった色にすぐに変化したが、これは、ナノ銀粒子の形成を示すものである。ナノ粒子のサイズが約20nmであることを動的光散乱法(DLS)により確認した。テキスタイルを59℃で乾燥させ、次いで、ナノ粒子の別の層を布に追加するために、別の還元ステップを実施した。綿繊維は、連続して3回還元した後に、銀ナノ粒子で完全に覆われた。   The fabric color quickly changed from white to brownish, indicating the formation of nanosilver particles. It was confirmed by dynamic light scattering (DLS) that the size of the nanoparticles was about 20 nm. The textile was dried at 59 ° C. and then another reduction step was performed to add another layer of nanoparticles to the fabric. The cotton fibers were completely covered with silver nanoparticles after three consecutive reductions.

4.第2の導電層の積層
厚さ100nm未満の導電性の銀の鞘が繊維上に作り、次いで、無電解金属めっきを利用して導電層を厚くした。具体的には、銅無電解めっきを46℃の温度で25分間実施した。銅厚さ約1.25ミクロンで、比抵抗は0.1Ω/sqであった。
4). Lamination of the second conductive layer A conductive silver sheath having a thickness of less than 100 nm was formed on the fibers, and then the conductive layer was thickened using electroless metal plating. Specifically, copper electroless plating was performed at a temperature of 46 ° C. for 25 minutes. The copper thickness was about 1.25 microns and the specific resistance was 0.1 Ω / sq.

得られた処理済みの綿繊維の一連のSEM像を図1に示す。   A series of SEM images of the resulting treated cotton fibers is shown in FIG.

対照として、同一の綿布に本方法を施すが、マーセル加工ステップは省略される。その後の工程ステップの間、繊維はナノ銀粒子で完全には覆われなかった(図2参照)。マーセル加工工程は、さらに数多くの負の部位を繊維上に作り出し、このステップがなければ、その後のステップで結合の機会が少なくなる。   As a control, the method is applied to the same cotton fabric, but the mercerizing step is omitted. During subsequent process steps, the fibers were not completely covered with nanosilver particles (see FIG. 2). The mercerization process creates many more negative sites on the fiber, and without this step there is less chance of bonding in subsequent steps.

別の対照は、PDADMACを全く使用せずに同一の綿布に本方法を施すことにより実施される。   Another control is performed by applying the method to the same cotton fabric without any PDADMAC.

PDADMACは、銀粒子とテキスタイルの間のバインダーとして重要な役割を果たし、より均一で密なコーティングを生じる(図1)。対照的に、マーセル加工ステップを用いたが、PDADMACなしで調製したテキスタイルは、不規則な形態を有していた(図3)。   PDADMAC plays an important role as a binder between silver particles and textiles, resulting in a more uniform and dense coating (Figure 1). In contrast, the textile prepared using the mercerization step but without PDADMAC had an irregular morphology (Figure 3).

実施例2
導電性布の第2のサンプルを作るために、上述の実施例1のステップを繰り返したが、PDADMACの代わりに、ポリ(アクリルアミド−コ−ジアリルジメチルアンモニウムクロリド)(PAADADMAC)の水溶液で布をコーティングした点を除く。
Example 2
To make a second sample of conductive fabric, the steps of Example 1 above were repeated, but instead of PDADMAC, the fabric was coated with an aqueous solution of poly (acrylamide-co-diallyldimethylammonium chloride) (PAADADMAC). Excluded points.

ポリマー溶液は、PAADADMACの10重量%溶液を1g取り、100mlの水と混合して作った。   The polymer solution was made by taking 1 g of a 10% by weight solution of PAADADMAC and mixing with 100 ml of water.

SEM像(図5)は、布中の繊維が完全に覆われていることを示した。銅無電解めっきを46℃の温度で25分間実施した。これにより、銅厚さ約1.25ミクロン、比抵抗0.2Ω/sqが得られた。   The SEM image (Figure 5) showed that the fibers in the fabric were completely covered. Copper electroless plating was performed at a temperature of 46 ° C. for 25 minutes. As a result, a copper thickness of about 1.25 microns and a specific resistance of 0.2Ω / sq were obtained.

実施例3
実施例1を繰り返したが、異なるカチオン性高分子電解質、すなわちポリ(アリルアミン塩酸塩)(PAAHC)(分子量58000、Sigma Aldrichから購入。)を用いた。
Example 3
Example 1 was repeated, but using a different cationic polyelectrolyte, namely poly (allylamine hydrochloride) (PAAHC) (molecular weight 58000, purchased from Sigma Aldrich).

ポリマー溶液は、1重量%のPAAHC水溶液を調製して作った。   The polymer solution was prepared by preparing a 1% by weight PAAHC aqueous solution.

SEM像(図6)は、布中の繊維が覆われていることを示した。銅無電解めっきを46℃の温度で25分間実施した。これにより、銅厚さ約1.25ミクロンが得られ、比抵抗は0.2Ω/sqであった。   The SEM image (Figure 6) showed that the fibers in the fabric were covered. Copper electroless plating was performed at a temperature of 46 ° C. for 25 minutes. As a result, a copper thickness of about 1.25 microns was obtained, and the specific resistance was 0.2Ω / sq.

実施例4
布上にナノ粒子を析出させる前の高分子電解質のナノ粒子溶液への添加を調査するために実験を行った。以下のステップを実施した。
Example 4
An experiment was conducted to investigate the addition of the polymer electrolyte to the nanoparticle solution prior to nanoparticle deposition on the fabric. The following steps were performed.

(a)0.025Mの硝酸銀溶液1mlを1.61×10-4MのNaBH4溶液100mlに加えた。銀ナノ粒子の形成により、色が黄色の色調にすぐに変化した。
(b)ポリ−ジアリルジメチルアンモニウムクロリド(PDADMAC)の水溶液を、PDADMACの20重量%溶液を1g取り、これを100mlの水と混合して作り、したがって、生じた溶液は、101ml水中の0.2gのPDADMAC、すなわち0.198重量%であった。
(c)ステップ(b)で調製したPDADMAC溶液0.1mlを銀ナノ粒子溶液に加えた。色が黄色から赤色の色調に変化した。次に、溶液を3500rpmで100分間遠心分離した。流出物を排出して、布をコーティングするために沈殿物を使用し、その後、テキスタイルを銅無電解めっきの前に60℃で乾燥させた。この方法により、非常に細い導電路を作ることができた。このような導電路の1つを図7に示した。
(A) 1 ml of 0.025M silver nitrate solution was added to 100 ml of 1.61 × 10 −4 M NaBH 4 solution. The formation of silver nanoparticles immediately changed the color to a yellow hue.
(B) An aqueous solution of poly-diallyldimethylammonium chloride (PDADMAC) is made by taking 1 g of a 20 wt% solution of PDADMAC and mixing it with 100 ml of water, so that the resulting solution is 0.2 g in 101 ml of water. PDADMAC of 0.198% by weight.
(C) 0.1 ml of the PDADMAC solution prepared in step (b) was added to the silver nanoparticle solution. The color changed from yellow to red. The solution was then centrifuged at 3500 rpm for 100 minutes. The spill was drained and the precipitate was used to coat the fabric, after which the textile was dried at 60 ° C. before copper electroless plating. By this method, a very thin conductive path could be made. One such conductive path is shown in FIG.

高分子電解質をナノ粒子溶液に加えたときに、溶液のゼータ電位が負から正(+36)に変化したことに留意されたい。また、遠心処理後、粒子は凝集しておらず、大きな銀金属粒子を形成しなかった。理論によって制約されることは本意ではないが、これは、ナノ銀粒子と、ポリマー鎖上の電荷基との間の結合によるものと考えられる。したがって、布の上に配置されたときに、ナノ銀粒子は、布によって均一に吸着された。   Note that when the polyelectrolyte was added to the nanoparticle solution, the zeta potential of the solution changed from negative to positive (+36). In addition, after centrifugation, the particles were not agglomerated and no large silver metal particles were formed. While not wishing to be bound by theory, it is believed that this is due to the bond between the nanosilver particles and the charged groups on the polymer chain. Thus, when placed on the fabric, the nanosilver particles were uniformly adsorbed by the fabric.

比較例5
導電性布を製造するためのナノ銀粒子溶液の有効性を調査するために実験を行った。布中の繊維をPDADMACリンカーでコーティングした。ナノ銀溶液は、付与する約2時間前に調製した。連続して8回、ナノ銀粒子溶液を析出させた後でも、布はナノ銀粒子でコーティングされないことが観察された。ナノ銀溶液に浸漬した綿繊維のSEM像を図8Aに示す。
Comparative Example 5
An experiment was conducted to investigate the effectiveness of the nano silver particle solution for producing conductive fabrics. The fibers in the fabric were coated with a PDADMAC linker. The nanosilver solution was prepared about 2 hours before application. Even after depositing the nanosilver particle solution eight times in succession, it was observed that the fabric was not coated with nanosilver particles. An SEM image of cotton fibers immersed in the nanosilver solution is shown in FIG. 8A.

さらに、銅無電解めっきを46℃の温度で3時間を超えて実施したとき、布は銅で覆われなかった(図8B参照)。ナノ銀の被覆は不十分であったため、これは驚くべきことではない。   Furthermore, when copper electroless plating was performed at a temperature of 46 ° C. for more than 3 hours, the cloth was not covered with copper (see FIG. 8B). This is not surprising because the nanosilver coating was inadequate.

比較例6
導電性布のサンプルを作るため、前述と同じステップ(実施例1参照)を用いた。ただし、工程に実施した唯一の変更は、布を1重量%(%w)のキトサン(Sigma Aldrichから購入。)水溶液でコーティングした点である。
Comparative Example 6
The same steps as described above (see Example 1) were used to make a sample of conductive fabric. However, the only change made to the process was that the fabric was coated with a 1 wt% (% w) aqueous solution of chitosan (purchased from Sigma Aldrich).

キトサンは水に溶解しないことに留意されたい。したがって、(98mlの脱イオン水中のキトサン1グラムおよび2mlの酢酸)の水溶液を作った。   Note that chitosan does not dissolve in water. Therefore, an aqueous solution of (1 gram of chitosan and 2 ml acetic acid in 98 ml deionized water) was made.

得られた導電性布は、その伸縮性を失っており、表面は、かなり粒状で粗かった。抵抗値は、実施例1の布の抵抗値と同等であった。   The obtained conductive cloth lost its stretchability, and the surface was quite granular and rough. The resistance value was equivalent to the resistance value of the fabric of Example 1.

テキスタイルの質感が非常に変化したため、希釈したキトサン溶液を用いて調査することに決めた。しかし、キトサン溶液を0.1重量%(%w)に希釈したとき、同様の結果が観察された。   Since the texture of the textile changed so much, we decided to investigate using a diluted chitosan solution. However, similar results were observed when the chitosan solution was diluted to 0.1 wt% (% w).

Claims (19)

(a)繊維の表面に負電荷を有する繊維を提供するステップと、
(b)前記繊維に、キトサンではない物質(以下で「リンカー」と呼ぶ。)を施して、前記物質の層を繊維上に提供し、繊維の表面の前記電荷を負から正に変えるステップと、
(c)前記繊維の前記表面を金属を用いて導電性にするステップであって、ステップ(c)の前記金属が、金属イオンの形態で提供され、前記金属イオンが元素の金属に還元される、ステップと
を含
前記リンカーが、カチオン性高分子電解質である、
導電性の繊維を製造するための方法。
(A) providing a fiber having a negative charge on the surface of the fiber;
(B) applying a non-chitosan material (hereinafter referred to as a “linker”) to the fiber to provide a layer of the material on the fiber to change the charge on the surface of the fiber from negative to positive; ,
(C) making the surface of the fiber conductive using a metal, wherein the metal of step (c) is provided in the form of metal ions, and the metal ions are reduced to elemental metals. , and a step seen including,
The linker is a cationic polyelectrolyte;
A method for producing conductive fibers.
還元剤を用いて前記金属イオンを前記元素の金属に還元し、前記還元剤が、前記繊維の前記表面にまず施され、前記金属イオンが、二番目に前記繊維の前記表面に施される、請求項1に記載の方法。   Reducing the metal ion to the elemental metal using a reducing agent, the reducing agent is first applied to the surface of the fiber, and the metal ion is applied second to the surface of the fiber; The method of claim 1. 金属イオンの溶液、還元剤および前記物質が合わせられ、次いで、前記合わせたものが前記繊維に施される、請求項1に記載の方法。   The method of claim 1, wherein a solution of metal ions, a reducing agent and the material are combined and then the combination is applied to the fiber. 金属イオンの前記溶液および前記還元剤がまず合わせられ、次いで、前記物質が加えられる、請求項3に記載の方法。   4. The method of claim 3, wherein the solution of metal ions and the reducing agent are first combined and then the substance is added. ステップ(a)の後に、
(a1)繊維の表面の前記負電荷を増加させるために、前記繊維をアルカリまたは酸性溶液で処理するステップをさらに含む、請求項1から4のいずれかに記載の方法。
After step (a)
The method according to any one of claims 1 to 4, further comprising the step of (a1) treating the fiber with an alkali or acidic solution to increase the negative charge on the surface of the fiber.
ステップ(a1)が、前記繊維を3.0moldm-3未満の濃度の水酸化ナトリウム水溶液で処理するステップを含む、請求項5に記載の方法。 The method of claim 5, wherein step (a1) comprises treating the fiber with an aqueous sodium hydroxide solution having a concentration of less than 3.0 moldm −3 . 前記水酸化ナトリウム水溶液が、1重量%の濃度を有する、請求項6に記載の方法。 The method of claim 6, wherein the aqueous sodium hydroxide solution has a concentration of 1 % by weight. ステップ(b)の前記物質が、プロタミン硫酸塩、ポリブレン、ポリ(L−リシン)、ポリ(アリルアミン塩酸塩)、ポリ(エチレングリコール−コ−ジメチルアミノエチルメタクリレート)、ポリ(エチレンイミン)、ポリアクリルアミド、ポリ(アクリルアミド−コ−ジアリルジメチルアンモニウムクロリド)、ジアリルジメチルアンモニウムクロリド、ポリ(ジアリルジメチルアンモニウムクロリド)、四級化ポリ[ビス(2−クロロエチル)エーテル−alt−1,3−ビス[3−(ジメチルアミノ)プロピル]尿素]、ポリクアテルニウム−7、または、これらの任意の組み合わせである、請求項1からのいずれかに記載の方法。 The substance of step (b) is protamine sulfate, polybrene, poly (L-lysine), poly (allylamine hydrochloride), poly (ethylene glycol-co-dimethylaminoethyl methacrylate), poly (ethyleneimine), polyacrylamide , Poly (acrylamide-co-diallyldimethylammonium chloride), diallyldimethylammonium chloride, poly (diallyldimethylammonium chloride), quaternized poly [bis (2-chloroethyl) ether-alt-1,3-bis [3- ( The method according to any one of claims 1 to 7 , which is dimethylamino) propyl] urea], polyquaternium-7, or any combination thereof. ステップ(b)の前記物質が、ポリ(ジアリルジメチルアンモニウムクロリド)、ポリ(アクリルアミド−コ−ジアリルジメチルアンモニウムクロリド)、ポリ(アリルアミン塩酸塩)、または、これらの任意の組み合わせである、請求項1からのいずれかに記載の方法。 2. The material of step (b) is poly (diallyldimethylammonium chloride), poly (acrylamide-co-diallyldimethylammonium chloride), poly (allylamine hydrochloride), or any combination thereof. 9. The method according to any one of 8 . ステップ(b)の前記物質が、ポリ(ジアリルジメチルアンモニウムクロリド)の0.2重量%水溶液である、請求項に記載の方法。 The material of step (b) is a poly (diallyldimethylammonium chloride) 0 . The method according to claim 9 , which is a 2% by weight aqueous solution. 還元後の前記金属が、50nm未満の平均径を有する金属粒子の形態である、請求項1から10のいずれかに記載の方法。 The method according to any one of claims 1 to 10 , wherein the metal after reduction is in the form of metal particles having an average diameter of less than 50 nm. 水素化ホウ素ナトリウムを用いて前記金属イオンを前記元素の金属に還元する、請求項1から11のいずれかに記載の方法。 Reducing the metal ions into the metal of the element by using sodium borohydride, a method according to any one of claims 1 to 11. 前記金属イオンが、金属硝酸塩の形態で提供される、請求項1から12のいずれかに記載の方法。 Wherein the metal ions are provided in the form of a metal nitrate, a method according to any one of claims 1 to 12. 前記金属が銀である、請求項1から13のいずれかに記載の方法。 Wherein the metal is silver, the method according to any one of claims 1 to 13. (d)前記金属を焼結する追加のステップを含む、請求項1から14のいずれかに記載の方法。 And (d) an additional step of sintering the metal A method according to any of claims 1 to 14. 前記焼結ステップ(d)を50〜70℃の温度で行う、請求項15に記載の方法。 The method according to claim 15 , wherein the sintering step (d) is performed at a temperature of 50 to 70 ° C. 金属の別の層を前記繊維上の前記金属に施す追加のステップを含む、請求項1から16のいずれかに記載の方法。 Comprising the additional step of applying another layer of metal to the metal on the fibers, the method according to any of claims 1 to 16. 金属の前記別の層が、無電解めっきにより施される、請求項17に記載の方法。 The method of claim 17 , wherein the further layer of metal is applied by electroless plating. 前記別の層内の前記金属が、ステップ(c)の前記金属とは異なる、請求項18に記載の方法。 The method of claim 18 , wherein the metal in the another layer is different from the metal of step (c).
JP2015558554A 2013-02-25 2014-02-24 Conductive fiber Expired - Fee Related JP6348518B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1303284.2A GB201303284D0 (en) 2013-02-25 2013-02-25 Conductive fabric
GB1303284.2 2013-02-25
PCT/GB2014/050550 WO2014128505A1 (en) 2013-02-25 2014-02-24 Conductive fibres

Publications (2)

Publication Number Publication Date
JP2016513182A JP2016513182A (en) 2016-05-12
JP6348518B2 true JP6348518B2 (en) 2018-06-27

Family

ID=48092026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015558554A Expired - Fee Related JP6348518B2 (en) 2013-02-25 2014-02-24 Conductive fiber

Country Status (12)

Country Link
US (1) US10508387B2 (en)
EP (1) EP2959053B1 (en)
JP (1) JP6348518B2 (en)
KR (1) KR102193267B1 (en)
CN (2) CN105189851A (en)
AU (1) AU2014220444B2 (en)
CA (1) CA2902278C (en)
ES (1) ES2688053T3 (en)
GB (1) GB201303284D0 (en)
PL (1) PL2959053T3 (en)
RU (1) RU2660045C2 (en)
WO (1) WO2014128505A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139521A1 (en) * 2015-03-03 2016-09-09 Epro Development Limited An electrically conductive textile element and method of producing same
JP7138095B2 (en) * 2017-04-21 2022-09-15 日本製紙株式会社 Inorganic particle composite fiber, method for producing the same, and molded article
CN108624907A (en) * 2018-04-26 2018-10-09 复旦大学 Nonmetal basal body efficient catalytic electrode and preparation method thereof
CN112752823A (en) * 2018-09-28 2021-05-04 株式会社巴川制纸所 Sealing material for analyzer, flow cell using same, detection device, and analyzer
CZ308348B6 (en) * 2018-11-06 2020-06-10 Bochemie A.S. Process for continuously metallizing a textile material, the apparatus for carrying out the process, metallized textile material and its use
CN109537275A (en) * 2018-12-03 2019-03-29 广东工业大学 A kind of preprocess method of conductive dacron fibre, conductive dacron fibre and preparation method thereof
US11458816B2 (en) 2019-11-01 2022-10-04 Honda Motor Co., Ltd. Self cleaning of ride sharing vehicle
US11011045B1 (en) 2019-11-01 2021-05-18 Honda Motor Co., Ltd. Object detection and alert for autonomous ride-sharing vehicle
US11358078B2 (en) 2019-11-01 2022-06-14 Honda Motor Co., Ltd. Conductive thread for vehicle maintenance
US20210213146A1 (en) * 2020-01-10 2021-07-15 Grant Kitchen Electrification System for Preventing Transmission of Pathogens by Dermal Contact
CN111303342B (en) * 2020-03-27 2020-11-03 珠海华大浩宏化工有限公司 Dust remover for cotton knitted fabric and preparation method thereof
FR3110603B1 (en) * 2020-05-20 2022-08-12 Lifco Ind Metallic vegetable fiber
CN112010572A (en) * 2020-08-17 2020-12-01 泰山玻璃纤维有限公司 Conductive glass fiber and preparation method thereof
CN112376263A (en) * 2020-11-06 2021-02-19 湖南中泰特种装备有限责任公司 Preparation method of ultrahigh molecular weight polyethylene fiber conductive weftless fabric
WO2023012508A1 (en) * 2021-08-06 2023-02-09 Indian Institute Of Science A method for fabricating an antimicrobial layer on a fabric and a coated fabric thereof
CN114530287B (en) * 2021-12-26 2023-06-09 江苏纳盾科技有限公司 Fabric wet power generation material based on molybdenum disulfide, preparation method and application thereof
CN114892396B (en) * 2022-06-20 2024-01-19 深圳市乐清合兴电子有限公司 Conductive cloth with good conductivity and manufacturing method thereof
CN114921949A (en) * 2022-06-23 2022-08-19 浙江理工大学 Protamine-containing bioactive cotton fabric and preparation method thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895620A (en) * 1986-02-18 1990-01-23 Armstrong World Industries, Inc. Electrically conductive carbon-coated fibers
US5030508A (en) * 1988-06-27 1991-07-09 Milliken Research Corporation Method for making electrically conductive textile materials
US5411795A (en) * 1992-10-14 1995-05-02 Monsanto Company Electroless deposition of metal employing thermally stable carrier polymers
US7601406B2 (en) * 2002-06-13 2009-10-13 Cima Nanotech Israel Ltd. Nano-powder-based coating and ink compositions
JP4065165B2 (en) * 2002-09-02 2008-03-19 セーレン株式会社 Electroless plating pretreatment method and electroless plating substrate using the same
KR20050097956A (en) 2003-01-28 2005-10-10 컨덕티브 잉크젯 테크놀로지 리미티드 Method of forming a conductive metal region on a substrate
GB0301933D0 (en) * 2003-01-28 2003-02-26 Conductive Inkjet Tech Ltd Method of forming a conductive metal region on a substrate
JP4000476B2 (en) * 2003-09-11 2007-10-31 奥野製薬工業株式会社 Composition for pretreatment of electroless plating
JP4712420B2 (en) * 2005-03-31 2011-06-29 富士フイルム株式会社 Surface graft material, conductive material and method for producing the same
US20090136719A1 (en) * 2005-03-31 2009-05-28 Fujifilm Corporation Surface graft material and its manufacturing method, electrically conductive material and its manufacturing method, and electrically conductive pattern material
US7468332B2 (en) * 2005-09-02 2008-12-23 Jamshid Avloni Electroconductive woven and non-woven fabric
WO2008133672A2 (en) * 2006-12-22 2008-11-06 Drexel University Nanowires and coatings of self-assembled nanoparticles
JP2008202159A (en) * 2007-02-19 2008-09-04 Bando Chem Ind Ltd Fiber covered with metal colloid and method for producing the same
WO2009129410A1 (en) * 2008-04-18 2009-10-22 Cornell University Conformal particle coatings on fibrous materials
JP5638751B2 (en) * 2008-08-07 2014-12-10 名古屋メッキ工業株式会社 Method for plating polymer fiber material and method for producing polymer fiber material
JP2011001576A (en) * 2009-06-17 2011-01-06 Hitachi Maxell Ltd Plating-pretreatment method for polymeric base material
CN102121194B (en) * 2010-01-11 2013-08-14 香港理工大学 Conductive fabric manufacturing method and fabric manufactured by same
US20150176198A1 (en) * 2010-03-12 2015-06-25 Ifyber, Llc Particle-interconnects on non-planar substrates
JP5617074B2 (en) * 2010-03-31 2014-11-05 奥野製薬工業株式会社 Metal nanostructure and manufacturing method thereof
CN102002694B (en) * 2010-12-14 2012-07-04 江西理工大学 Method for preparing uniform silver conducting layer on surface of metal or nonmetal material
JP5492140B2 (en) * 2011-04-28 2014-05-14 名古屋メッキ工業株式会社 Polymer fiber material plating method, polymer fiber material manufacturing method, and polymer fiber material for plating

Also Published As

Publication number Publication date
AU2014220444A1 (en) 2015-09-10
US20160010273A1 (en) 2016-01-14
CN111155311A (en) 2020-05-15
KR102193267B1 (en) 2020-12-22
WO2014128505A1 (en) 2014-08-28
EP2959053A1 (en) 2015-12-30
US10508387B2 (en) 2019-12-17
CA2902278A1 (en) 2014-08-28
ES2688053T3 (en) 2018-10-30
RU2015138489A (en) 2017-03-30
CA2902278C (en) 2021-09-14
EP2959053B1 (en) 2018-08-08
GB201303284D0 (en) 2013-04-10
PL2959053T3 (en) 2018-12-31
RU2660045C2 (en) 2018-07-04
CN105189851A (en) 2015-12-23
KR20160008501A (en) 2016-01-22
AU2014220444B2 (en) 2018-02-01
JP2016513182A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP6348518B2 (en) Conductive fiber
Tan et al. A review of antimicrobial fabric containing nanostructures metal‐based compound
Montazer et al. Electroless plating of silver nanoparticles/nanolayer on polyester fabric using AgNO3/NaOH and ammonia
Song et al. Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups
Sedighi et al. Fabrication of electrically conductive superparamagnetic fabric with microwave attenuation, antibacterial properties and UV protection using PEDOT/magnetite nanoparticles
Gadkari et al. Leveraging antibacterial efficacy of silver loaded chitosan nanoparticles on layer-by-layer self-assembled coated cotton fabric
Rivero et al. Nanomaterials for functional textiles and fibers
KR101079775B1 (en) Preparation Method of Electroconductive Nanofiber through Electrospinning followed by Electroless Plating
TWI705074B (en) Method of making fiber comprising metal nanoparticles
Ashayer-Soltani et al. Fabrication of highly conductive stretchable textile with silver nanoparticles
JP2019060067A (en) Method for producing graphene-coated fabric and graphene-coated fabric
Ali et al. Comparative performance of copper and silver coated stretchable fabrics
Yadav et al. Metallization of electrospun PAN nanofibers via electroless gold plating
KR102272024B1 (en) Conductive Fiber and the Fabrication Method Thereof
CN107429398A (en) Multiple functionalized CNT
Kang et al. Silver nanoparticles incorporated electrospun silk fibers
You et al. Utilizing a pH-responsive palladium nanocomposite to fabricate adhesion-enhanced and highly reliable copper coating on nylon 6 fabrics
JP6558768B2 (en) Method for producing composite nanofiber
CN114032675A (en) Conductive fiber and preparation method thereof
JP6095159B2 (en) Method for producing conductive cellulose fiber material
CN105714404B (en) A kind of preparation method of cuprous sulfide/PET composite conducting fibers
KR20190071149A (en) Method of coating for nanofiber using reduction of metalic salts and method for manufacturing transparent electrode
Jayan et al. Sustainable nanotextiles: emerging antibacterial fabrics
Hemamalini et al. Silver Nanoparticle-Incorporated Textile Substrate for Antimicrobial Applications
Hussain et al. Synthesis of Highly Conductive Electrospun Recycled Polyethylene Terephthalate Nanofibers (r-PET Nanofibers) Using Electroless Deposition Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180531

R150 Certificate of patent or registration of utility model

Ref document number: 6348518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees