JP2007239144A - Electroconductive polyvinyl alcohol-based fiber - Google Patents

Electroconductive polyvinyl alcohol-based fiber Download PDF

Info

Publication number
JP2007239144A
JP2007239144A JP2006063581A JP2006063581A JP2007239144A JP 2007239144 A JP2007239144 A JP 2007239144A JP 2006063581 A JP2006063581 A JP 2006063581A JP 2006063581 A JP2006063581 A JP 2006063581A JP 2007239144 A JP2007239144 A JP 2007239144A
Authority
JP
Japan
Prior art keywords
fiber
polyvinyl alcohol
copper
pva
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006063581A
Other languages
Japanese (ja)
Inventor
Riyoukei Endou
了慶 遠藤
Shunichiro Watabe
俊一郎 渡部
Tetsuya Hara
哲也 原
Yoshinobu Omae
好信 大前
Hideki Kamata
英樹 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2006063581A priority Critical patent/JP2007239144A/en
Publication of JP2007239144A publication Critical patent/JP2007239144A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyvinyl alcohol-based fiber having all of practically sufficient mechanical characteristics, heat resistance and electroconductive performance, applicable to fabrics such as paper, a nonwoven fabric, a woven fabric and a knit fabric and much useful for several uses such as a charging material, a discharging material, a brush, a sensor, an electromagnetic wave shielding material and an electronic material, and to provide a method for producing the fiber. <P>SOLUTION: The polyvinyl alcohol-based fiber comprises a polyvinyl alcohol-based polymer, and copper sulfide nanoparticulates finely dispersed in the polymer and having ≤100 nm average particle diameter, wherein the polyvinyl alcohol-based fiber has continuous convex parts continuing in the fiber axis direction and continuous recessed parts continuing in the fiber axis direction, on the fiber surface by turns. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、強度、弾性率等の機械的特性、耐熱性および導電性能を兼ね備えたポリビニルアルコール(以下、PVAと略する)系繊維とその製造方法及び、該繊維を用いてなる布帛に関するものである。   The present invention relates to a polyvinyl alcohol (hereinafter abbreviated as PVA) fiber having mechanical properties such as strength and elastic modulus, heat resistance, and conductive performance, a method for producing the same, and a fabric using the fiber. is there.

従来、合成繊維に導電性を付与する方法として提案されている、カーボンブラックなどの導電性フィラーを練りこんだ導電性繊維は、コストが比較的安く、しかも量産化にも適しているため、多くの産業分野で広く使用されている。例えば、静電複写機に用いられる帯電用、除電用ブラシとして、かかる導電性繊維が広く使われているが、複写機等では定着時の加熱によって、機内の温度が高温になることから、これら用途に使用される導電繊維には長時間にわたって熱を受けても変形しないことが要求されている。   Conventionally, conductive fibers kneaded with conductive fillers such as carbon black, which have been proposed as a method for imparting conductivity to synthetic fibers, are relatively inexpensive and suitable for mass production. Widely used in industrial fields. For example, such conductive fibers are widely used as charging and static elimination brushes used in electrostatic copying machines. However, in copying machines, etc., the temperature inside the machine becomes high due to heating during fixing. Conductive fibers used for applications are required not to be deformed even when subjected to heat for a long time.

ポリエステル系繊維、ポリアミド系繊維、アクリル系繊維、溶融紡糸によって得られるポリオレフィン系繊維などの大部分の汎用合成繊維は、耐熱性や高温下での形態安定性が不十分であることから、かかる用途においては導電性の再生セルロース系繊維が広く使用されている(例えば、特許文献1〜4参照)。しかしながら導電性セルロース繊維は力学物性が低いために、帯電用ブラシや除電用ブラシを製造する段階での取り扱い性や、長時間使用する場合の耐久性など、更なる高性能化要求に対して十分対応できなくなっている。   Most general-purpose synthetic fibers such as polyester fibers, polyamide fibers, acrylic fibers, and polyolefin fibers obtained by melt spinning have insufficient heat resistance and high form stability at high temperatures. In Japan, conductive regenerated cellulosic fibers are widely used (see, for example, Patent Documents 1 to 4). However, because conductive cellulose fibers have low mechanical properties, they are sufficient to meet the demands for higher performance such as handling at the stage of manufacturing charging brushes and static elimination brushes and durability for long-term use. It is no longer available.

一方、耐熱性及び機械的性能に優れたPVA系繊維を導電性繊維としてこれらの用途に用いることも提案されている(例えば、特許文献5参照)。しかし、この導電性PVA繊維は、50μm程度の多量の導電性フィラーをあらかじめ紡糸原液に添加させるため、原液中でのフィラーの凝集や沈降などが起こり、製造工程の安定性が低下するばかりでなく、得られた糸の延伸性などが導電性フィラー無添加系に比べて著しく劣ってしまい、その結果、導電性は付与できても、繊維の強度、弾性率などの機械的性質の低下を招くなどの問題があった。これに対して、工程性、品位の問題を改善した導電性PVA系繊維を得るために、原液に仕込むカーボンブラックなどの導電性フィラーの平均粒径を小さくすること、及びポリオキシアルキレン系などのノニオン系分散剤を併用することで、原液中での凝集、沈降を防ぐことが提案されている(例えば、特許文献6参照)。この場合、導電性フィラーの粒子径は1μm程度まで小さくすることができ、粒子の比表面積を増加させて導電性を付与する観点からは望ましいが、やはり、所望の導電性を得るためには、数10%以上の添加が必要となり、原液での凝集や延伸性の低下などの問題を抱えていた。   On the other hand, it has also been proposed to use a PVA fiber excellent in heat resistance and mechanical performance as a conductive fiber for these applications (for example, see Patent Document 5). However, in this conductive PVA fiber, a large amount of conductive filler of about 50 μm is added to the spinning stock solution in advance, which causes aggregation and sedimentation of the filler in the stock solution, which not only decreases the stability of the manufacturing process. As a result, the stretchability of the obtained yarn is remarkably inferior to that of the conductive filler-free system, and as a result, even if conductivity can be imparted, mechanical properties such as fiber strength and elastic modulus are reduced. There were problems such as. On the other hand, in order to obtain conductive PVA fibers with improved processability and quality problems, the average particle size of conductive fillers such as carbon black charged in the stock solution is reduced, and polyoxyalkylene-based fibers, etc. It has been proposed to prevent aggregation and sedimentation in the stock solution by using a nonionic dispersant together (for example, see Patent Document 6). In this case, the particle size of the conductive filler can be reduced to about 1 μm, which is desirable from the viewpoint of imparting conductivity by increasing the specific surface area of the particles, but in order to obtain the desired conductivity, Addition of several tens of percent or more was necessary, and there were problems such as aggregation in the undiluted solution and reduced stretchability.

また、近年、携帯電話や電子機器の飛躍的な普及に伴い、それらから漏洩する電磁波の人体への影響、または他電子機器への誤動作などの問題が取り沙汰されている。それを遮蔽する電磁波遮蔽材として、導電性布帛がよく用いられるが、この用途では、より高い導電性能が必要であり、先述した導電性フィラーの練り込み繊維などでは遮蔽性能を発現させることはできない。一般的には、軽量で柔軟性のある合成繊維からなる布帛表面に、金属被膜を形成させることが広く知られており、真空蒸着法、スパッタリング法、無電解メッキ法などによって達成できる。しかしながら、このような方法で作られた金属被膜は、耐摩耗性や耐候性、長期の使用による化学的変化による物性低下などの問題があり一層の改善が求められている。更には、これらの方法による導電化処理は、非常にコスト高になり実使用に制限がかかるものであった。   In recent years, with the rapid spread of mobile phones and electronic devices, problems such as the influence of electromagnetic waves leaking from them on the human body or malfunctions of other electronic devices have been investigated. A conductive fabric is often used as an electromagnetic wave shielding material for shielding it. However, in this application, higher conductive performance is necessary, and the above-described conductive filler kneaded fiber cannot exhibit the shielding performance. . In general, it is widely known that a metal film is formed on the surface of a fabric made of a lightweight and flexible synthetic fiber, which can be achieved by a vacuum deposition method, a sputtering method, an electroless plating method, or the like. However, the metal film produced by such a method has problems such as wear resistance, weather resistance, and deterioration of physical properties due to chemical changes due to long-term use, and further improvement is required. Furthermore, the conductive treatment by these methods is very expensive and restricts practical use.

このような高い導電性能を付与する方法としては、上記に示したような導電性フィラーを原液または原料の段階から仕込む方法とは別に、ポリアクリロニトリル系繊維で知られているように、塩化第二銅などの銅化合物を繊維表面に吸着させた後、これを硫化物で還元処理することにより、繊維自体の表面に導電性を示す硫化銅薄厚層を形成させる技術が広く提案されている(例えば、特許文献7及び8参照)。これらの方法で得られる導電性繊維は、繊維の表面に存在するシアノ基やメルカプトン基の銅イオン捕捉基を介して硫化銅が繊維に対して5〜15質量部程度結合されたもので、繊維表面に薄厚の表面層を有するものであり、高い導電性能を示すものとなる。しかしながら、これらの繊維は、100nm程度の極薄い表面の硫化銅層のみで導電性能を発現させるものであり、それ故、耐久性が不十分であり、また、繊維表面に所望の量の硫化銅を付着させるには、高温、長時間の処理が必要になり、更には、上記のシアノ基やメルカプトン基などは、一価の銅イオン捕捉能に優れており、工程中にて二価の銅塩をわざわざ一価の銅イオンに還元する必要があるなど、コストが高くなるなどの問題を抱えていた。   As a method for imparting such a high conductive performance, as known in the polyacrylonitrile fiber, apart from the method in which the conductive filler as shown above is charged from the stock solution or raw material stage, a second chloride chloride is used. A technique for forming a copper sulfide thin layer exhibiting conductivity on the surface of the fiber itself by adsorbing a copper compound such as copper on the fiber surface and then reducing it with sulfide has been widely proposed (for example, And Patent Documents 7 and 8). The conductive fiber obtained by these methods is one in which about 5 to 15 parts by mass of copper sulfide is bonded to the fiber via a copper ion capturing group of a cyano group or mercapton group present on the surface of the fiber. It has a thin surface layer on the fiber surface and exhibits high electrical conductivity. However, these fibers exhibit electrical conductivity only with a copper sulfide layer having a very thin surface of about 100 nm, and therefore have insufficient durability, and a desired amount of copper sulfide on the fiber surface. In order to adhere, it is necessary to process at a high temperature for a long time. Furthermore, the cyano group and mercapton group described above are excellent in monovalent copper ion scavenging ability. There was a problem that the cost was high, for example, it was necessary to reduce the copper salt to monovalent copper ions.

上記課題である導電性、耐久性の改良を目的に、硫化銅粒子を繊維内部にまで浸透させる方法として、硫化染料含有高分子材料を用いて、該高分子中で硫化染料を介して硫化銅が結合されている繊維が提案されている(例えば、特許文献9参照)。また、その実施例では具体的に導電性PVA繊維が提案されている。この方法では、硫化染料を含有する高分子材料を得る工程と、この硫化染料高分子材料に硫化銅を結合させて導電性高分子材料を得る工程によって初めて達成されるものであるが、湿熱処理などを幾つも設定する必要があり工程が複雑になることに加えて、この処理中にPVA系繊維が膨潤してしまうことから、導電性が付与できても、力学物性が低下してしまい、布帛を製造することができないなどの問題を抱えていた。また、硫化銅粒子を繊維内部にまで浸透させるためには硫化染料を用いらなければならず、コスト高になるなどの問題も抱えていた。   For the purpose of improving conductivity and durability, which are the above-mentioned problems, as a method of infiltrating the copper sulfide particles into the inside of the fiber, using a sulfur dye-containing polymer material, copper sulfide is passed through the sulfide dye in the polymer. Has been proposed (for example, see Patent Document 9). Moreover, in the Example, the electroconductive PVA fiber is specifically proposed. This method is achieved for the first time by a step of obtaining a polymer material containing a sulfur dye and a step of obtaining a conductive polymer material by bonding copper sulfide to the sulfur dye polymer material. In addition to the complexity of the process that needs to be set several times, the PVA fiber swells during this treatment, so even if conductivity can be imparted, the mechanical properties are reduced, There was a problem that the fabric could not be manufactured. Further, in order to infiltrate the copper sulfide particles into the inside of the fiber, a sulfur dye must be used, which causes problems such as high cost.

また、アミド基や水酸基を有する高分子材料に導電性を付与する方法も提案されている(例えば、特許文献10参照)。この方法は、銅塩と緩和な硫化能を有する還元剤の混合水溶液中に高温、長時間、成形体を浸漬することにより、成形体の内部にまで導電性を示す硫化銅層を形成せしめようとするものであるが、実質的には、成形体のごく表面近傍にしか硫化銅層は存在せず、それ故、得られる導電性能も低いものであった。すなわち、水溶液中の銅塩と硫化還元剤を直接、高温で長時間反応させるため、生成する硫化銅粒子は大きく成長してしまい、成形体内部での分散粒子径は大きくならざるをえず、内部導電というよりはむしろ表面導電層が主体であった。このため、導電性能は低いばかりでなく、耐久性にも劣るものであり、更にはコストが高くなるなどの問題も抱えていた。   A method of imparting conductivity to a polymer material having an amide group or a hydroxyl group has also been proposed (see, for example, Patent Document 10). In this method, by immersing the molded body in a mixed aqueous solution of a copper salt and a reducing agent having a mild sulfidizing ability for a long time at a high temperature, a conductive copper sulfide layer is formed even inside the molded body. However, substantially, the copper sulfide layer is present only in the vicinity of the very surface of the molded body, and therefore, the obtained conductive performance is low. In other words, since the copper salt and the sulfide reducing agent in the aqueous solution are directly reacted at a high temperature for a long time, the produced copper sulfide particles grow large, and the dispersed particle size inside the molded body must be large. Rather than internal conductivity, the surface conductive layer was the main component. For this reason, the conductive performance is not only low but also inferior in durability, and further has a problem of high cost.

これまでに本発明者等は、硫化銅ナノ微粒子を繊維中に微細に分散させた導電性に優れたPVA系繊維を提案した(例えば、特許文献11参照)が、高い導電性を付与させるためには、繊維中の硫化銅量を高める必要があり、例えば銅化合物が溶解された浴を通して繊維中に銅を含侵させ、続いて繊維中の銅を硫化する目的で、硫化剤が溶解された浴を通す工程を、数回繰り返さなければならず、コスト高になるなどの問題を抱えていた。また、この導電化工程を繰り返すことにより、繊維の力学物性が低下したり、繊維表面に不要な硫化銅粒子が析出してしまうなど、品質が悪化することが問題となっていた。   So far, the present inventors have proposed a PVA fiber excellent in conductivity in which copper sulfide nanoparticles are finely dispersed in the fiber (see, for example, Patent Document 11), in order to impart high conductivity. Therefore, it is necessary to increase the amount of copper sulfide in the fiber. For example, a sulfurizing agent is dissolved for the purpose of impregnating copper in the fiber through a bath in which a copper compound is dissolved, and subsequently sulfurizing copper in the fiber. The process of passing through the bath had to be repeated several times, which caused problems such as high costs. Further, repeating this conductive step has been a problem in that the quality deteriorates, for example, the mechanical properties of the fiber are lowered or unnecessary copper sulfide particles are deposited on the fiber surface.

特開昭63−249185号公報JP-A-63-249185 特開平4−289876号公報Japanese Patent Laid-Open No. 4-289766 特開平4−289877号公報Japanese Patent Laid-Open No. 4-289877 特公平1−29887号公報Japanese Patent Publication No. 1-229887 特開昭52−144422号公報JP-A-52-144422 特開2002−212829号公報Japanese Patent Laid-Open No. 2002-212829 特開昭57−21570号公報JP 57-21570 A 特開昭59−108043号公報JP 59-108043 A 特開平7−179769号公報JP-A-7-179769 特開昭59−132507号公報JP 59-132507 A 特開2005−264419号公報JP 2005-264419 A

本発明の目的は、強度、弾性率等の機械的特性、耐熱性などの従来のPVA系繊維の性能を損なうことがなく、優れた導電性が付与されたPVA系繊維とその製造方法及び該繊維を用いてなる布帛を提供することである。   An object of the present invention is to provide a PVA fiber imparted with excellent conductivity without impairing the performance of conventional PVA fibers such as mechanical properties such as strength and elastic modulus, heat resistance, etc. It is providing the fabric which uses a fiber.

本発明者等は上記したPVA系繊維を得るべく鋭意検討を重ねた結果、PVA系ポリマーに対して特別に高価な設備を必要とせず、通常の繊維製造工程中において、銅イオンを含む化合物を繊維中に含浸させ、その後の工程で銅を硫化処理することにより、繊維内部に微細に分散した硫化銅ナノ微粒子を形成させ、且つ延伸条件により繊維の表面構造を制御することで、機械的特性と優れた導電性を兼備したPVA系繊維を安価に製造できることを見出した。   As a result of intensive studies to obtain the above-described PVA fibers, the present inventors do not require specially expensive equipment for PVA polymers, and in the normal fiber manufacturing process, a compound containing copper ions is used. By impregnating the fiber and sulfiding copper in the subsequent process, finely dispersed copper sulfide nanoparticles are formed inside the fiber, and by controlling the surface structure of the fiber according to the stretching conditions, mechanical properties are obtained. It has been found that PVA fibers having excellent electrical conductivity can be manufactured at low cost.

すなわち本発明は、PVA系ポリマーと、ポリマー中に微細に分散した平均粒子径が100nm以下の硫化銅ナノ微粒子からなる繊維であって、且つその繊維表面には繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが交互に存在していることを特徴とする導電性PVA系繊維に関するものであり、好ましくは繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部の間隔が1μ以下であることを特徴とする上記の導電性PVA系繊維であり、より好ましくは体積固有抵抗値が1.0×10−3〜1.0×10Ω・cmであることを特徴とする上記の導電性PVA系繊維である。さらに好ましくはPVA系ポリマー100質量%に対して、硫化銅微粒子が1〜50質量%含有されてなることを特徴とする上記の導電性PVA系繊維に関する。 That is, the present invention is a fiber composed of a PVA polymer and copper sulfide nanoparticles having an average particle diameter of 100 nm or less finely dispersed in the polymer, and the fiber surface has convex portions continuous in the fiber axis direction. In addition, the present invention relates to a conductive PVA-based fiber characterized in that recesses continuous in the fiber axis direction are alternately present, and preferably a protrusion continuous in the fiber axis direction and a recess continuous in the fiber axis direction. The conductive PVA fiber is characterized in that the interval of the above is 1 μm or less, and more preferably the volume resistivity value is 1.0 × 10 −3 to 1.0 × 10 8 Ω · cm. The conductive PVA fiber described above. More preferably, the present invention relates to the above conductive PVA fiber, wherein 1 to 50% by mass of copper sulfide fine particles are contained with respect to 100% by mass of the PVA polymer.

また本発明は、100〜250℃の延伸温度にて30m/min以上の延伸速度で延伸倍率が1.5倍以上延伸された繊維であって、繊維表面において、繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが交互に存在しており、且つその間隔が1μ以下であるPVA系繊維を、銅イオンを含む化合物が10〜400g/Lの濃度で溶解された浴と、硫化物イオンを含む化合物が1〜100g/Lの濃度で溶解された浴を通して、繊維中に各々の化合物を含有させ、さらに銅を硫化させることで、繊維の内部に平均粒子径が100nm以下の硫化銅ナノ微粒子を微細に生成させることを特徴とする上記の導電性PVA系繊維の製造方法である。さらに本発明は上記の導電性PVA系繊維を用いてなる布帛に関するものである。   Further, the present invention is a fiber stretched at a stretching temperature of 100 to 250 ° C. at a stretching speed of 30 m / min or more and a stretching ratio of 1.5 times or more, and on the fiber surface, a convex portion continuous in the fiber axis direction. And a bath in which a compound containing copper ions is dissolved at a concentration of 10 to 400 g / L, a PVA-based fiber in which concave portions continuous in the fiber axis direction are alternately present and the interval is 1 μm or less; In addition, each compound is contained in the fiber through a bath in which a compound containing sulfide ions is dissolved at a concentration of 1 to 100 g / L, and copper is further sulfided, so that the average particle diameter is 100 nm or less inside the fiber. This is a method for producing the above-mentioned conductive PVA-based fiber, characterized in that the copper sulfide nanoparticles are finely produced. Furthermore, this invention relates to the fabric which uses said electroconductive PVA type fiber.

本発明によれば、強度、弾性率などの力学的特性、耐熱性と共に、優れた導電性を兼備したPVA系繊維を提供することが可能である。また本発明のPVA系繊維は、特別な工程を必要とせず、通常の繊維製造工程で達成可能であり、安価に製造することができ、紙、不織布、織物、編物などの布帛とすることが可能であり、帯電材、除電材、ブラシ、センサー、電磁波シールド材、電子材料をはじめとして多くの用途に極めて有用である。   According to the present invention, it is possible to provide a PVA fiber having excellent electrical conductivity as well as mechanical properties such as strength and elastic modulus, and heat resistance. Moreover, the PVA fiber of the present invention does not require a special process, can be achieved by a normal fiber manufacturing process, can be manufactured at low cost, and can be made into a fabric such as paper, nonwoven fabric, woven fabric, and knitted fabric. It is possible and is extremely useful for many applications including a charging material, a static eliminating material, a brush, a sensor, an electromagnetic shielding material, and an electronic material.

以下、本発明について具体的に説明する。まず本発明のPVA系繊維を構成するPVA系ポリマーについて説明する。本発明に用いるPVA系ポリマーの重合度は特に限定されるものではないが、得られる繊維の機械的特性や寸法安定性等を考慮すると30℃水溶液の粘度から求めた平均重合度が1200〜20000のものが望ましい。高重合度のものを用いると、強度、耐湿熱性等の点で優れるので好ましいが、ポリマー製造コストや繊維化コストなどの観点から、より好ましくは、平均重合度が1500〜5000である。   Hereinafter, the present invention will be specifically described. First, the PVA polymer constituting the PVA fiber of the present invention will be described. The degree of polymerization of the PVA polymer used in the present invention is not particularly limited, but the average degree of polymerization obtained from the viscosity of the 30 ° C. aqueous solution is 1200 to 20000 in consideration of the mechanical properties and dimensional stability of the obtained fiber. Is desirable. The use of a polymer having a high degree of polymerization is preferable because it is excellent in terms of strength, heat and humidity resistance, and the like, but the average degree of polymerization is more preferably 1500 to 5000 from the viewpoint of polymer production cost and fiberization cost.

本発明で用いるPVA系ポリマーのケン化度は特に限定されるものではないが、得られる繊維の機械的特性の点から、88モル%以上であることが好ましい。PVA系ポリマーのケン化度が88モル%よりも低いものを使用した場合、得られる繊維の機械的特性や工程通過性、製造コストなどの面で好ましくない。   The saponification degree of the PVA polymer used in the present invention is not particularly limited, but is preferably 88 mol% or more from the viewpoint of the mechanical properties of the obtained fiber. When the saponification degree of the PVA polymer is lower than 88 mol%, it is not preferable in terms of mechanical properties, process passability, production cost and the like of the obtained fiber.

また本発明の繊維を形成するPVA系ポリマーは、ビニルアルコールユニットを主成分とするものであれば特に限定されず、本発明の効果を損なわない限り、所望により他の構成単位を有していてもかまわない。このような構造単位としては、例えば、エチレン、プロピレン、ブチレン等のオレフィン類、アクリル酸及びその塩とアクリル酸メチルなどのアクリル酸エステル、メタクリル酸およびその塩、メタクリル酸メチル等のメタクリル酸エステル類、アクリルアミド、N−メチルアクリルアミド等のアクリルアミド誘導体、メタクリルアミド、N−メチロールメタクリルアミド等のメタクリルアミド誘導体、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド等のN−ビニルアミド類、ポリアルキレンオキシドを側鎖に有するアリルエーテル類、メチルビニルエーテル等のビニルエーテル類、アクリロニトリル等のニトリル類、塩化ビニル等のハロゲン化ビニル、マレイン酸およびその塩またはその無水物やそのエステル等の不飽和ジカルボン酸等がある。このような変性ユニットの導入法は共重合による方法でも、後反応による方法でもよい。しかしながら、本発明の目的とする繊維を得るためにはビニルアルコール単位が88モル%以上のポリマーがより好適に使用される。もちろん本発明の効果を損なわない範囲であれば、目的に応じてポリマー中に酸化防止剤、凍結防止剤、pH調整剤、隠蔽剤、着色剤、油剤、難燃剤、特殊機能剤などの添加剤が含まれていてもよい。   The PVA polymer forming the fiber of the present invention is not particularly limited as long as it has a vinyl alcohol unit as a main component, and may have other structural units as desired as long as the effects of the present invention are not impaired. It doesn't matter. Examples of such a structural unit include olefins such as ethylene, propylene, and butylene, acrylic acid and salts thereof and acrylic esters such as methyl acrylate, methacrylic acid and salts thereof, and methacrylate esters such as methyl methacrylate. Acrylamide derivatives such as acrylamide, N-methylacrylamide, methacrylamide derivatives such as methacrylamide, N-methylol methacrylamide, N-vinylamides such as N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, polyalkylene oxide Allyl ethers having a side chain, vinyl ethers such as methyl vinyl ether, nitriles such as acrylonitrile, vinyl halides such as vinyl chloride, maleic acid and salts thereof, anhydrides or esters thereof There like of unsaturated dicarboxylic acids. Such a modified unit may be introduced by copolymerization or post-reaction. However, in order to obtain the target fiber of the present invention, a polymer having a vinyl alcohol unit of 88 mol% or more is more preferably used. Of course, as long as the effects of the present invention are not impaired, additives such as antioxidants, antifreeze agents, pH adjusters, masking agents, colorants, oil agents, flame retardants and special functional agents may be included in the polymer depending on the purpose. May be included.

本発明の繊維は上記PVA系ポリマー以外の構成成分として、平均粒子径100nm以下の硫化銅ナノ微粒子が、繊維内部に微細に分散されていることが必要である。先述した通り、繊維表面に硫化銅粒子が付着している繊維や、繊維内部に硫化銅粒子が分散している繊維であっても、目視や実体顕微鏡レベルで確認できる1μm以上の大きな粒子が多く存在する繊維は本発明のPVA系繊維の範囲外であり、目的である導電性能が発揮されない。なお、本発明において、繊維中の硫化銅ナノ微粒子の分散状態は図2に示すように透過型電子顕微鏡(TEM)にて初めてその存在形態を確認することができる。   In the fiber of the present invention, copper sulfide nanoparticles having an average particle diameter of 100 nm or less must be finely dispersed inside the fiber as a constituent component other than the PVA polymer. As described above, there are many large particles of 1 μm or more that can be confirmed visually or at the level of a stereoscopic microscope, even if the fibers have copper sulfide particles attached to the fiber surface or fibers in which copper sulfide particles are dispersed inside the fibers. The existing fiber is outside the range of the PVA fiber of the present invention, and the intended conductive performance is not exhibited. In addition, in this invention, the dispersion | distribution state of the copper sulfide nanoparticle in a fiber can confirm the presence form for the first time with a transmission electron microscope (TEM), as shown in FIG.

更に本発明のPVA系繊維は、上述のように100nm以下の硫化銅微粒子が繊維の内部に微細に分散されており、且つその繊維表面には繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが交互に存在していることが本発明のキーポイントである。詳細は後述するが、繊維表面にこのような凹凸構造を有することで、繊維表面が平滑な繊維に比べて優れた導電性能を発現する。なお本発明において、繊維表面の凹凸構造は図1に示すように走査型電子顕微鏡(SEM)にて確認することができる。   Furthermore, in the PVA fiber of the present invention, copper sulfide fine particles of 100 nm or less are finely dispersed inside the fiber as described above, and the fiber surface has convex portions continuous in the fiber axis direction, and the fiber axis direction. It is a key point of the present invention that the continuous recesses are alternately present. Although details will be described later, by having such a concavo-convex structure on the fiber surface, excellent conductive performance is exhibited as compared with a fiber having a smooth fiber surface. In the present invention, the uneven structure on the fiber surface can be confirmed with a scanning electron microscope (SEM) as shown in FIG.

本発明のPVA系繊維の体積固有抵抗値は1×10−3〜1×10Ω・cmであることが好ましい。体積固有抵抗値が1×10Ω・cmより高い場合、もはや導電性繊維とは言えず、半導体材料として使用できない。より好ましくは、1×10−3Ω・cm〜1×10Ω・cmの範囲である。本発明のPVA系繊維の固有抵抗値は、後述するが、硫化銅の導入量や配向度などの繊維構造によって適宜コントロールできる。 The volume specific resistance value of the PVA fiber of the present invention is preferably 1 × 10 −3 to 1 × 10 8 Ω · cm. When the volume resistivity value is higher than 1 × 10 8 Ω · cm, it is no longer a conductive fiber and cannot be used as a semiconductor material. More preferably, it is in the range of 1 × 10 −3 Ω · cm to 1 × 10 7 Ω · cm. Although the specific resistance value of the PVA fiber of the present invention will be described later, it can be appropriately controlled by the fiber structure such as the amount of copper sulfide introduced and the degree of orientation.

本発明の導電性PVA系繊維は、PVA系ポリマー100質量%に対して、硫化銅微粒子を1〜50質量%含有することが好ましく、より好ましくは2〜40質量%含有するものである。硫化銅微粒子の含有量が1質量%より少ない場合、所望の導電性能が得られにくい。一方で、硫化銅粒子の含有量が多くなりすぎると、繊維の機械的性質や耐摩耗性が不十分になることから、硫化銅微粒子の含有量は50質量%以下であることが好ましく、40質量%以下であることがより好ましい。また、硫化銅ナノ微粒子を多く含有させるためには、導電化処理回数を多くしたり、浴中滞留時間を長くするなどの方法が必要となるため、生産性がダウンし、且つ必要以上の硫化銅を含有させることによってコストが高くなるので好ましくない。   The conductive PVA fiber of the present invention preferably contains 1 to 50% by mass of copper sulfide fine particles, more preferably 2 to 40% by mass with respect to 100% by mass of the PVA polymer. When the content of the copper sulfide fine particles is less than 1% by mass, it is difficult to obtain desired conductive performance. On the other hand, if the content of the copper sulfide particles is too large, the mechanical properties and abrasion resistance of the fibers become insufficient. Therefore, the content of the copper sulfide fine particles is preferably 50% by mass or less. It is more preferable that the amount is not more than mass%. Further, in order to contain a large amount of copper sulfide nanoparticles, a method such as increasing the number of times of conducting treatment or increasing the residence time in the bath is required, resulting in a decrease in productivity and excessive sulfurization. It is not preferable because copper is added to increase the cost.

かかる硫化銅微粒子の平均粒子径は、100nm以下の微粒子であることが必要であり、80nm以下であるような微粒子であることが好ましく、50nm以下であるような微粒子であると更に好ましい。このようなナノ微粒子であることにより、繊維中での粒子間距離の著しい減少が可能となる。例えば、同じ質量%の含有量において、粒子径が百分の一になると、粒子間距離は一万分の一にまで小さくなることが知られている。また、このような場合、粒子間の相互作用が非常に強く働き、その間に挟まれたポリマー分子は、あたかも粒子と同じような機能を示すことも知られている〔例えば、ナノコンポジットの世界、p22(工業調査会)参照〕。従って、本発明で初めて達成できる、このサイズ効果により、電流がより流れやすくなり、少ない量でも、優れた導電性能を付与することができることが本発明のキーポイントである。一方で、平均粒子径が100nmより大きい場合、上記の理由で導電性改良効果が小さくなるので、本発明の目的とする導電性能を得ることはできない。   The average particle diameter of such copper sulfide fine particles needs to be fine particles of 100 nm or less, preferably fine particles such as 80 nm or less, and more preferably fine particles such as 50 nm or less. By using such nano-particles, the interparticle distance in the fiber can be significantly reduced. For example, it is known that when the particle diameter becomes 1/100 in the same mass% content, the inter-particle distance is reduced to 1 / 10,000. In such a case, the interaction between the particles is very strong, and the polymer molecules sandwiched between them are known to function as if they were particles [for example, the world of nanocomposites, See page 22 (Industry Research Committee). Therefore, it is the key point of the present invention that the current can be more easily flowed by the size effect that can be achieved for the first time in the present invention, and that excellent conductive performance can be imparted even with a small amount. On the other hand, when the average particle diameter is larger than 100 nm, the conductivity improving effect becomes small for the above-mentioned reason, so that the conductive performance intended by the present invention cannot be obtained.

一般にPVA系ポリマーはその水酸基を介して銅などの金属イオンと強く配位結合することが知られている〔例えば、Polymer、Vol37、No.14、3097、(1996)参照〕。本発明ではこのPVA系ポリマー独自の挙動に着目し、硫化銅微粒子を繊維中に含有させることを試み、種々検討の結果、繊維中においてPVA分子鎖と銅イオンで形成された錯体ブロックは、その大きさが数オングストロームであることから、硫化銅ナノ微粒子構成ユニットとなり得ることを見出した。さらに検討を重ね、繊維表面に繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが交互に存在しているPVA系繊維を使用することにより、繊維の比表面積を増大させることができ、同じ硫化銅微粒子含有量であれば繊維内部全体に分散させた場合に比べて導電性能に優れ、繊維の力学物性にも優位であること見出し、遂に本発明を完成したものである。本発明では、この銅イオンを、繊維表面において繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが交互に存在しているPVA系繊維に含有させ、PVA系ポリマーの有する水酸基と配位させて、PVAと銅との配位結合を形成させる。詳細は後述するが、これを達成するには、銅イオンを含有する化合物が溶解された浴にPVA系繊維を通過させることにより、繊維の内部に銅イオンを均一に浸透させ、配位させることができる。   In general, it is known that a PVA polymer is strongly coordinated with a metal ion such as copper via its hydroxyl group [for example, Polymer, Vol37, No. 14, 3097, (1996)]. In the present invention, paying attention to the unique behavior of this PVA polymer, an attempt was made to contain copper sulfide fine particles in the fiber. As a result of various studies, the complex block formed of PVA molecular chains and copper ions in the fiber was Since the size is several angstroms, it has been found that it can be a copper sulfide nanoparticle constituent unit. Further investigations will be carried out to increase the specific surface area of the fiber by using PVA fibers in which convex portions continuous in the fiber axis direction and concave portions continuous in the fiber axis direction are alternately present on the fiber surface. The present inventors have finally found that the same copper sulfide fine particle content is superior in electrical conductivity and superior in the mechanical properties of the fiber as compared with the case where it is dispersed throughout the fiber. In the present invention, this copper ion is contained in a PVA fiber in which convex portions continuous in the fiber axis direction and concave portions continuous in the fiber axis direction are alternately present on the fiber surface, and the hydroxyl group of the PVA polymer is included. To form a coordinate bond between PVA and copper. Although details will be described later, in order to achieve this, the PVA fiber is passed through a bath in which a compound containing copper ions is dissolved, so that the copper ions are uniformly infiltrated and coordinated inside the fiber. Can do.

続いて、繊維表面において繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが交互に存在しているPVA系繊維の繊維内部にて、PVA系ポリマーの水酸基と配位結合している銅イオンを硫化処理することで、平均粒子径が100nm以下の硫化銅ナノ微粒子を形成させることができる。すなわち、前述した銅イオン含浸処理に引き続き、硫化能力を有する硫化物イオンを含む化合物が溶解された浴を通すことで、PVA系ポリマーと銅イオンの配位を外すことにより、硫化銅ナノ微粒子を繊維内部に形成させることができる。なお、ここでの処理は、特別に高価な工程を設ける必要はなく、通常の繊維製造工程中で処理可能である。   Subsequently, in the fiber surface of the PVA fiber in which convex portions continuous in the fiber axis direction and concave portions continuous in the fiber axis direction are alternately present on the fiber surface, it is coordinated with the hydroxyl group of the PVA polymer. By subjecting the copper ions to sulfuration treatment, copper sulfide nanoparticles having an average particle diameter of 100 nm or less can be formed. That is, following the copper ion impregnation treatment described above, by passing through a bath in which a compound containing sulfide ions having sulfiding ability is dissolved, the coordination between the PVA polymer and the copper ions is removed, and thereby the copper sulfide nanoparticles are removed. It can be formed inside the fiber. In addition, the process here does not need to provide an especially expensive process, but can process in a normal fiber manufacturing process.

本発明で使用する銅イオンを含有する化合物としては、可溶であるものであれば特に限定はなく、酢酸銅、蟻酸銅、硝酸銅、くえん酸銅、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、沃化第一銅、沃化第二銅などが用いられる。かかる銅イオンは一価でも二価でもよく、特に限定されるものではない。一価の銅イオンを含有する化合物を用いる場合は、その溶解性を向上させる目的で、塩酸、ヨウ化カリウム、アンモニア等を併用してもかまわない。これらの中でも、溶液状態でPVA系ポリマーと配位結合し易いものがより望ましく、その観点からは、銅イオンを含む化合物は、硝酸銅や酢酸銅、蟻酸銅などが好適に用いられる。   The compound containing copper ions used in the present invention is not particularly limited as long as it is soluble, copper acetate, copper formate, copper nitrate, copper citrate, cuprous chloride, cupric chloride, Cuprous bromide, cupric bromide, cuprous iodide, cupric iodide and the like are used. Such copper ions may be monovalent or divalent and are not particularly limited. When a compound containing monovalent copper ions is used, hydrochloric acid, potassium iodide, ammonia or the like may be used in combination for the purpose of improving the solubility. Among these, those that are easily coordinated with a PVA polymer in a solution state are more desirable, and from this viewpoint, copper nitrate, copper acetate, copper formate, and the like are preferably used as the compound containing copper ions.

PVA繊維中で配位した銅イオンを硫化する硫化剤としては、硫化物イオンを放出し得る化合物が用いられ、例えば、硫化ナトリウム、第二チオン酸ナトリウム、チオ硫酸ナトリウム、亜硫酸水素ナトリウム、ピロ硫酸ナトリウム、硫化水素、チオ尿素、チオアセトアミド等が挙げられる。これらの中でもコスト、入手し易さ、低腐食性の点で、硫化物イオンを含む化合物としては、硫化ナトリウムが好適である。   As the sulfiding agent for sulfiding copper ions coordinated in the PVA fiber, compounds capable of releasing sulfide ions are used. For example, sodium sulfide, sodium dithionate, sodium thiosulfate, sodium hydrogen sulfite, pyrosulfuric acid Sodium, hydrogen sulfide, thiourea, thioacetamide and the like can be mentioned. Among these, sodium sulfide is preferable as the compound containing sulfide ions from the viewpoint of cost, availability, and low corrosivity.

さらに本発明のPVA系繊維において、高い導電性を付与させるためには、繊維表面において、繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが交互に存在しており、且つその間隔が1μ以下であることが好ましい。凹部と凸部の間隔が1μmより大きい場合は、繊維の比表面積を増大させる効果が少なく、導電性能を発現し難い。また、繊維強度が低くなったり、繊維軸方と垂直方向の摩耗性が悪化したり、更には一本の繊維中での導電性能のばらつきも大きくなる傾向がある。好ましくは、1μm以下、更に好ましくは0.8μm以下であり、より好ましくは0.7μm以下である。   Furthermore, in the PVA-based fiber of the present invention, in order to impart high conductivity, convex portions that are continuous in the fiber axis direction and concave portions that are continuous in the fiber axis direction are alternately present on the fiber surface, and The interval is preferably 1 μm or less. When the distance between the concave portion and the convex portion is larger than 1 μm, the effect of increasing the specific surface area of the fiber is small, and the conductive performance is hardly exhibited. Further, the fiber strength tends to be low, the wearability in the direction perpendicular to the fiber axis direction is deteriorated, and further, the variation in the conductive performance in one fiber tends to increase. Preferably, it is 1 μm or less, more preferably 0.8 μm or less, and more preferably 0.7 μm or less.

このように、従来の導電性繊維とは異なり、繊維内部に硫化銅ナノ微粒子を分散させ、且つその繊維表面には繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが交互に存在しているPVA系繊維とすることで、これに通電させた時の電流量を高めることができ、導電性、機械的特性、耐久性に優れた繊維を得ることができる。また、粒子径が小さいことから、これを延伸する場合も何ら問題なく、硫化銅を含有していないPVA系繊維と同等の延伸倍率と力学物性を発現させることが可能である。   Thus, unlike conventional conductive fibers, copper sulfide nanoparticles are dispersed inside the fiber, and the fiber surface has convex portions that are continuous in the fiber axis direction and concave portions that are continuous in the fiber axis direction. By using the PVA fiber existing in the fiber, the amount of current when energized can be increased, and a fiber excellent in conductivity, mechanical properties, and durability can be obtained. In addition, since the particle diameter is small, there is no problem even when this is stretched, and it is possible to express the draw ratio and mechanical properties equivalent to those of the PVA fiber not containing copper sulfide.

本発明により得られる繊維の繊度は特に限定されず、例えば0.1〜10000dtex、好ましくは1〜5000dtexの繊度の繊維が広く使用できる。繊維の繊度はノズル径や延伸倍率により適宜調整すればよい。   The fineness of the fiber obtained by this invention is not specifically limited, For example, the fiber of the fineness of 0.1-10000 dtex, Preferably 1-5000 dtex can be used widely. What is necessary is just to adjust the fineness of a fiber suitably with a nozzle diameter or a draw ratio.

次に本発明のPVA系繊維の製造方法について説明する。本発明においては、PVA系ポリマーを水あるいは有機溶剤に溶解した紡糸原液を用いて後述する方法で繊維を製造することにより、硫化銅ナノ微粒子が繊維内部に微細に分散しており、且つその繊維表面において繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが交互に存在した、力学物性及び導電性に優れた繊維を効率良く安価に製造することができる。紡糸原液を構成する溶媒としては、例えば水、ジメチルスルホキシド(以下、DMSOと略記)、ジメチルアセトアミド、ジメチルホルムアミド、N−メチルピロリドンなどの極性溶媒やグリセリン、エチレングリコールなどの多価アルコール類、およびこれらとロダン塩、塩化リチウム、塩化カルシウム、塩化亜鉛などの膨潤性金属塩の混合物、さらにはこれら溶媒同士、あるいはこれら溶媒と水との混合物などが挙げられるが、これらの中でも、とりわけ水やDMSOがコスト、回収性等の工程通過性の点で最も好適である。   Next, the manufacturing method of the PVA type fiber of this invention is demonstrated. In the present invention, by producing a fiber by a method described later using a spinning solution in which a PVA polymer is dissolved in water or an organic solvent, copper sulfide nanoparticles are finely dispersed inside the fiber, and the fiber It is possible to efficiently and inexpensively produce a fiber excellent in mechanical properties and conductivity in which convex portions continuous in the fiber axis direction and concave portions continuous in the fiber axis direction are alternately present on the surface. Examples of the solvent constituting the spinning dope include polar solvents such as water, dimethyl sulfoxide (hereinafter abbreviated as DMSO), dimethylacetamide, dimethylformamide, N-methylpyrrolidone, polyhydric alcohols such as glycerin and ethylene glycol, and the like. And a mixture of swellable metal salts such as rhodan salts, lithium chloride, calcium chloride, zinc chloride and the like, or a mixture of these solvents, or a mixture of these solvents and water. Among these, water and DMSO are particularly preferable. Most suitable in terms of process passability such as cost and recoverability.

紡糸原液中のポリマー濃度は組成、重合度、溶媒によって異なるが、8〜60質量部の範囲であることが好ましい。紡糸原液の吐出時の液温は、紡糸原液が分解、着色しない範囲であることが好ましく、具体的には50〜200℃とすることが好ましい。また、本発明の効果を損なわない範囲であれば、紡糸原液にはPVA系ポリマー以外にも、目的に応じて、難燃剤、酸化防止剤、凍結防止剤、pH調整剤、隠蔽剤、着色剤、油剤、特殊機能剤などの添加剤などが含まれていてもよい。更にこれらは、一種類または二種類以上のものを併用して使用してもかまわない。   The polymer concentration in the spinning dope varies depending on the composition, degree of polymerization, and solvent, but is preferably in the range of 8 to 60 parts by mass. The liquid temperature at the time of discharging the spinning dope is preferably in a range in which the spinning dope is not decomposed or colored, and specifically 50 to 200 ° C. is preferable. Moreover, as long as the effect of the present invention is not impaired, the spinning dope includes a flame retardant, an antioxidant, an antifreezing agent, a pH adjuster, a concealing agent, and a colorant in addition to the PVA polymer. In addition, additives such as oil agents and special functional agents may be included. Furthermore, these may be used alone or in combination of two or more.

かかる紡糸原液をノズルから吐出して湿式紡糸、乾湿式紡糸あるいは乾式紡糸を行えばよく、PVA系ポリマーに対して固化能を有する固化液あるいは、気体中に吐出すればよい。なお、湿式紡糸とは、紡糸ノズルから直接固化浴に紡糸原液を吐出する方法のことであり、乾湿式紡糸とは、紡糸ノズルから一旦任意の距離の空気中あるいは不活性ガス中に紡糸原液を吐出し、その後に固化浴に導入する方法のことである。また、乾式紡糸とは、空気中あるいは不活性ガス中に紡糸原液を吐出する方法のことである。   Such a spinning stock solution may be discharged from a nozzle to perform wet spinning, dry wet spinning, or dry spinning, and may be discharged into a solidified liquid or a gas having a solidifying ability for a PVA polymer. Wet spinning is a method in which a spinning stock solution is discharged directly from a spinning nozzle to a solidification bath, and dry-wet spinning is a method in which spinning stock solution is once discharged into air or inert gas at an arbitrary distance from the spinning nozzle. It is a method of discharging and then introducing into the solidification bath. Dry spinning is a method of discharging a spinning solution into air or an inert gas.

本発明において、湿式紡糸または乾湿式紡糸の際に用いる固化浴は、原液溶媒が有機溶媒の場合と水の場合では異なる。有機溶媒を用いた原液の場合には、得られる繊維強度等の点から固化浴溶媒と原液溶媒からなる混合液であることが好ましく、固化溶媒としては特に制限はないが、例えばメタノール、エタノール、プロパノ−ル、ブタノールなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類等のPVA系ポリマーに対して固化能を有する有機溶媒を用いることができる。これらの中でも低腐食性及び溶剤回収の点でメタノールとDMSOとの組合せが好ましい。一方、紡糸原液が水溶液の場合、固化浴を構成する固化溶媒としては、芒硝、硫酸アンモニウム、炭酸ナトリウム等のPVA系ポリマーに対して固化能を有する無機塩類や苛性ソーダの水溶液を用いることができる。また、PVA系ポリマーと共に、ホウ酸などを加えた水溶液をアルカリ性固化浴中にゲル化紡糸することもできる。   In the present invention, the solidification bath used in wet spinning or dry wet spinning differs depending on whether the stock solution is an organic solvent or water. In the case of a stock solution using an organic solvent, it is preferably a mixed solution composed of a solidification bath solvent and a stock solution solvent from the viewpoint of fiber strength and the like obtained, and the solidification solvent is not particularly limited, but for example, methanol, ethanol, An organic solvent capable of solidifying PVA-based polymers such as alcohols such as propanol and butanol, and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone can be used. Among these, a combination of methanol and DMSO is preferable in terms of low corrosivity and solvent recovery. On the other hand, when the spinning dope is an aqueous solution, an aqueous solution of inorganic salts or caustic soda having a solidifying ability with respect to PVA-based polymers such as sodium sulfate, ammonium sulfate, and sodium carbonate can be used as the solidifying solvent constituting the solidifying bath. Further, an aqueous solution to which boric acid or the like is added together with the PVA polymer can be gel-spun in an alkaline solidification bath.

次に固化された原糸から紡糸原液の溶媒を抽出除去するために、抽出浴を通過させるが、抽出時に同時に原糸を湿延伸することが、乾燥時の繊維間膠着抑制及び得られる繊維の機械的特性を向上させるうえで好ましい。その際の湿延伸倍率としては1.1〜10倍であることが工程性、生産性の点で好ましい。抽出溶媒としては固化溶媒単独あるいは原液溶媒と固化溶媒の混合液を用いることができる。   Next, in order to extract and remove the solvent of the spinning dope from the solidified yarn, it is passed through an extraction bath. It is preferable for improving the mechanical properties. The wet draw ratio at that time is preferably 1.1 to 10 times from the viewpoint of processability and productivity. As the extraction solvent, a solidified solvent alone or a mixed solution of a stock solvent and a solidified solvent can be used.

湿延伸後に乾燥した糸篠、或いは乾式紡糸後の巻き取りした糸篠に、熱延伸または熱処理を施す。本発明の繊維表面の凹凸構造を発現させるには、この延伸過程での、延伸速度と延伸温度のバランスが重要である。延伸温度としては、一般的には100℃〜250℃の温度で行われるが、特に220℃以上の高温で延伸する場合は、早い延伸速度で延伸した方がよく、例えば30m/分以上の延伸速度であることが好ましく、100m/分以上の高速延伸であることがより好ましい。またその時の延伸倍率は1.5倍以上であることが好ましい。温度が100℃未満の場合や、延伸倍率が1.5倍未満の場合は力学物性が低いものしか得られないばかりか、後述する導電化処理工程における工程通過性が悪化してしまうので好ましくない。また延伸温度が250℃を越える場合や、250℃未満であっても延伸速度が遅い場合は、繊維表面の部分的な融解が生じ、繊維表面が平滑になってしまい、本発明の特徴である繊維表面の凹凸構造を発現することができない。   A hot drawing or a heat treatment is applied to the dried yarns after wet drawing or the wound yarns after dry spinning. In order to develop the concavo-convex structure on the fiber surface of the present invention, it is important to balance the drawing speed and the drawing temperature in this drawing process. The stretching temperature is generally 100 ° C to 250 ° C. In particular, when stretching at a high temperature of 220 ° C or higher, it is better to stretch at a high stretching speed, for example, 30 m / min or higher. The speed is preferable, and high-speed stretching at 100 m / min or more is more preferable. Moreover, it is preferable that the draw ratio at that time is 1.5 times or more. When the temperature is less than 100 ° C. or when the draw ratio is less than 1.5 times, not only low mechanical properties can be obtained, but also the process passability in the conductive treatment process described later is deteriorated, which is not preferable. . Further, when the stretching temperature exceeds 250 ° C. or when the stretching speed is low even if it is less than 250 ° C., partial melting of the fiber surface occurs, and the fiber surface becomes smooth, which is a feature of the present invention. The uneven structure on the fiber surface cannot be expressed.

何故上記の製造方法にて繊維表面に凹凸構造を有するPVA系繊維が得られるかは定かではないが、延伸過程での繊維の変形機構が大きく影響しているものと推測される。延伸温度が低い場合や、延伸温度が高くても高速で延伸される場合には、繊維全体が均一に変形するに十分な熱量が付与されず、繊維表面だけで組成変形が起こり、その結果、繊維の表面だけが配向して突っ張った形で延伸され、凹凸構造が発現すると思われる。すなわち、低エネルギー付与延伸が本発明に必要な繊維表面凹凸構造を発現させる要因であると考えられる。   It is not certain why PVA fibers having a concavo-convex structure on the fiber surface can be obtained by the above production method, but it is presumed that the deformation mechanism of the fiber during the drawing process has a great influence. When the drawing temperature is low or when the drawing temperature is high, even if the drawing temperature is high, sufficient heat is not given to uniformly deform the entire fiber, and compositional deformation occurs only on the fiber surface. Only the surface of the fiber is oriented and stretched in a stretched form, and an uneven structure appears. That is, it is considered that the low energy imparting stretching is a factor for developing the fiber surface uneven structure necessary for the present invention.

本発明の目的とする導電性PVA系繊維を得るためには、上記の乾燥または延伸後の糸篠を、銅イオンを含む化合物を溶解した浴を通過させて該化合物を繊維中に含浸させる。この場合、繊維内部への銅イオンを含む化合物を均一浸透させ、銅イオンをPVA系ポリマーの水酸基と配位結合を形成せしめるためには、繊維は浴溶媒により膨潤していることが望ましく、そのためには浴に用いる溶媒はメタノール等のアルコール類や水、塩類あるいはこれらの混合物であることが好ましい。その時の浴溶媒による繊維の膨潤率は20質量部以上であることが好ましい。なお、膨潤率調整のため、糸篠を先ず所定の浴に浸漬し、その後、銅イオンを放出する化合物が溶解された浴に浸漬することが望ましい場合もある。膨潤率が20質量部未満の場合、銅イオンがPVA系ポリマーの水酸基と十分な配位結合を形成できず、従ってコア層にて硫化銅微粒子を生成させることができない。一方で、膨潤率が大きくなりすぎた場合、浴へのPVA系ポリマーの溶出などが起こり、工程通過性の面で好ましくない。以上のことから、銅イオンを含む化合物が溶解された浴での膨潤率は30質量部以上300質量部以下であることが好ましく、50質量部以上250質量部以下であることがより好ましい。   In order to obtain the conductive PVA fiber intended for the present invention, the dried or drawn yarn is passed through a bath in which a compound containing copper ions is dissolved to impregnate the compound in the fiber. In this case, in order to uniformly infiltrate the compound containing copper ions into the fiber and to form a coordinate bond with the hydroxyl group of the PVA polymer, the fiber is desirably swollen by a bath solvent. The solvent used in the bath is preferably alcohols such as methanol, water, salts, or a mixture thereof. At this time, the swelling ratio of the fiber by the bath solvent is preferably 20 parts by mass or more. In order to adjust the swelling rate, it may be desirable to first immerse Yinshino in a predetermined bath and then immerse in a bath in which a compound that releases copper ions is dissolved. When the swelling rate is less than 20 parts by mass, copper ions cannot form a sufficient coordination bond with the hydroxyl group of the PVA polymer, and therefore, copper sulfide fine particles cannot be generated in the core layer. On the other hand, when the swelling rate becomes too large, elution of the PVA polymer into the bath occurs, which is not preferable in terms of process passability. From the above, the swelling rate in the bath in which the compound containing copper ions is dissolved is preferably 30 parts by mass or more and 300 parts by mass or less, and more preferably 50 parts by mass or more and 250 parts by mass or less.

本発明のPVA系繊維は、先述したように、硫化銅の導入量などにより、体積固有抵抗値を適宜コントロール可能である。銅イオンを含む化合物の浴への溶解量は要求される導電性能に応じて適宜設定すればよいが、10〜400g/Lの範囲であることが好ましい。添加量が10g/L未満の場合、所望の物性が得られず、また400g/Lを越える場合は、ローラーへの付着など、工程性不良をもたらすので好ましくない。より好ましくは20〜300g/Lである。前記したように、所定の膨潤状態にある場合、銅イオンが溶解された浴に糸篠が通過した時点で、銅イオンを含む化合物の繊維への含浸は起こるので、浴での滞留時間については特に制限はないが、スキン−コア構造中のコア層にまで銅イオンを均一に含浸させ、PVA系ポリマーと配位結合を十分にせしめることを目的に、浴での滞留時間は3秒以上、好ましくは30秒以上であることが望ましい。   As described above, the volume resistivity value of the PVA fiber of the present invention can be appropriately controlled by the amount of copper sulfide introduced. The amount of the compound containing copper ions dissolved in the bath may be appropriately set according to the required conductivity performance, but is preferably in the range of 10 to 400 g / L. When the addition amount is less than 10 g / L, desired physical properties cannot be obtained, and when it exceeds 400 g / L, it is not preferable because it causes poor processability such as adhesion to a roller. More preferably, it is 20-300 g / L. As described above, when the yarn is passed through a bath in which copper ions are dissolved, impregnation into the fiber of the compound containing copper ions occurs when the copper ions are dissolved. Although there is no particular limitation, the residence time in the bath is 3 seconds or more for the purpose of uniformly impregnating copper ions up to the core layer in the skin-core structure and sufficiently coordinating with the PVA polymer. Preferably it is 30 seconds or more.

次にPVA系繊維内部と表面で配位結合している銅イオンを硫化処理する目的で、硫化物イオンを含む化合物を溶解した浴を通過させる必要がある。その場合、硫化物イオンを含む化合物の浴への添加量は銅イオンの導入量によって必要に応じて適宜設定すればよいが、1〜100g/Lの範囲であることが好ましい。添加量が1g/L未満の場合、繊維内部の銅イオンまで硫化処理が進まない可能性があるので好ましくない。また100g/Lを超える場合は、PVA系繊維内に含まれる銅イオンを硫化処理するに十分な量ではあるが、回収系や臭気問題など工程性の面であまり好ましくない。
繊維に含浸された銅イオンを硫化する反応は、特に硫化能の大きい化合物を用いた場合は瞬時に起こることから、この場合の滞留時間には特に制限はないが、繊維内部にまで十分硫化処理を施すことを目的に、滞留時間は0.1秒以上であることが望ましい。
Next, it is necessary to pass through a bath in which a compound containing sulfide ions is dissolved for the purpose of sulfiding copper ions coordinated and bonded to the inside and the surface of the PVA fiber. In that case, the amount of the compound containing sulfide ions added to the bath may be appropriately set depending on the amount of copper ions introduced, but is preferably in the range of 1 to 100 g / L. If the amount added is less than 1 g / L, the sulfiding treatment may not proceed to the copper ions inside the fiber, which is not preferable. On the other hand, when it exceeds 100 g / L, the amount is sufficient for sulfiding copper ions contained in the PVA fiber, but it is not so preferable in terms of processability such as recovery system and odor problem.
The reaction to sulfidize the copper ions impregnated in the fiber occurs instantaneously, especially when a compound with a high sulfidation ability is used, so there is no particular limitation on the residence time in this case, but sufficient sulfidation treatment is performed even inside the fiber. For the purpose of applying, it is desirable that the residence time is 0.1 seconds or more.

PVA系繊維の導電性能を高める為に、上記の銅イオンを繊維内部に含浸させる工程と、銅イオンを硫化処理する工程を繰り返し通過させ、繊維中の硫化銅含有量を高めることが可能である。一旦PVA鎖に配位した銅イオンを硫化処理することで硫化銅微粒子が生成するが、その際に、銅イオンと配位結合していた水酸基は回復し、再度銅イオンが配位できる水酸基が存在することになる。従って、上記処理を繰り返すことで、効果的に繊維への硫化銅微粒子を生成させ、導電性能を高めることができる。しかしながら、処理回数を繰り返すことにより、力学物性の低下、不要な硫化銅粒子が繊維表面に析出してしまうなどの懸念があることから、繰り返しの処理回数は6回以下であることが望ましい。また、繊維の配向度については高いほど、すなわち繊維の総延伸倍率が高いほど、導電性能を高めることができるので望ましい。この理由は現段階では明らかではないが、繊維の配向度が高いほど、硫化銅微粒子が、繊維軸方向に沿って生成し、粒子間の距離が一層短くなるためと考えている。ここでいう繊維の配向度は、銅イオンを含浸させた後の配向度である。繊維中に硫化銅微粒子を生成したものに対して延伸を行うと、繊維中の硫化銅微粒子間距離が増加するためか、導電性が低下する傾向があるので好ましくない。   In order to increase the conductive performance of the PVA fiber, it is possible to increase the copper sulfide content in the fiber by repeatedly passing the step of impregnating the above copper ions into the fiber and the step of sulfiding the copper ions. . The copper sulfide fine particles are generated by sulfiding copper ions once coordinated to the PVA chain. At that time, the hydroxyl groups coordinated with the copper ions are recovered, and the hydroxyl groups capable of coordinating the copper ions again. Will exist. Therefore, by repeating the above treatment, copper sulfide fine particles can be effectively generated on the fiber and the conductive performance can be improved. However, there are concerns that the mechanical properties may be deteriorated and unnecessary copper sulfide particles may be deposited on the fiber surface by repeating the number of treatments. Therefore, the number of repeated treatments is preferably 6 or less. Further, the higher the degree of orientation of the fiber, that is, the higher the total draw ratio of the fiber, the higher the conductive performance, which is desirable. The reason for this is not clear at this stage, but it is considered that the higher the degree of orientation of the fibers, the more the copper sulfide fine particles are generated along the fiber axis direction, and the distance between the particles is further shortened. The orientation degree of a fiber here is an orientation degree after impregnating a copper ion. If the copper sulfide fine particles are produced in the fiber, stretching is not preferable because the distance between the copper sulfide fine particles in the fiber increases or the conductivity tends to decrease.

一方で、硫化銅粒子を予め原液から仕込んだ場合には、繊維中に硫化銅微粒子を分散させることはできず、所望の物性を発現させるには、多量の硫化銅粒子の添加が必要となる。この場合、原液中での分散不良や、凝集、沈降などが起こり、繊維化工程、その後の延伸性が低下し、結果として結晶化度が低く、ある程度の導電性は付与できても、機械的特性の低い繊維しか得られない。また、あらかじめ銅イオンを配位させたPVA系ポリマーを原料として使用した場合は、銅の配位による溶液粘度の上昇や、固化性が悪化するなど、工程性が悪化することに加えて、得られる繊維の力学物性は低いものとなる。   On the other hand, when copper sulfide particles are charged from the stock solution in advance, the copper sulfide fine particles cannot be dispersed in the fiber, and a large amount of copper sulfide particles must be added in order to express desired physical properties. . In this case, poor dispersion in the stock solution, agglomeration, sedimentation, etc. occur, and the fiberization process and subsequent stretchability are reduced. As a result, the degree of crystallinity is low and a certain degree of conductivity can be imparted. Only fibers with low properties can be obtained. In addition, when a PVA polymer in which copper ions are coordinated in advance is used as a raw material, in addition to deterioration in processability such as increase in solution viscosity due to copper coordination and deterioration in solidification properties, The mechanical properties of the resulting fibers are low.

このようにして得られた、繊維中に硫化銅微粒子を導入された糸篠に、熱処理を施し繊維物性を向上させることで、本発明の導電性PVA系繊維を製造することができる。このための熱処理条件は、一般的には100℃以上の温度、好ましくは150℃〜250℃の温度で行うのがよい。温度が100℃未満の場合、繊維物性の向上効果が不十分である。また250℃を越えると繊維表面の部分的な融解が生じ、凹凸構造が消失してしまい、導電性の低下をもたらすので好ましくない。   The conductive PVA fiber of the present invention can be produced by applying heat treatment to the thus-obtained silkworm with copper sulfide fine particles introduced therein to improve the fiber properties. The heat treatment conditions for this are generally 100 ° C. or higher, preferably 150 ° C. to 250 ° C. When the temperature is less than 100 ° C., the effect of improving the fiber properties is insufficient. On the other hand, if the temperature exceeds 250 ° C., partial melting of the fiber surface occurs, the concavo-convex structure disappears, and the conductivity is lowered.

本発明の繊維は、例えばステープルファイバー、ショートカットファイバー、フィラメントヤーン、紡績糸、紐状物、ロープ、布帛などのあらゆる繊維形態において優れた導電性を示すので、センサーや電磁波シールド材などの用途に用いることができる。その際の繊維の断面形状に関しても特に制限はなく、円形、中空、あるいは星型等異型断面であってもかまわない。なかでも、本発明によるPVA系繊維は、導電性、柔軟性にすぐれているので、導電性布帛として有利に用いることができ、例えば、本発明によるPVA系繊維を50重量%以上、好ましくは、80重量%以上、特に、90重量%以上含む布帛とすることによって、高度に導電性を示すPVA系繊維製品を得ることができる。この時、併用しうる繊維として特に限定はないが、硫化銅微粒子を含有しないPVA系繊維や、ポリエステル系繊維、ポリアミド系繊維、セルロース系繊維等を挙げることができる。   The fibers of the present invention exhibit excellent conductivity in all fiber forms such as staple fibers, shortcut fibers, filament yarns, spun yarns, strings, ropes, and fabrics, and are therefore used for applications such as sensors and electromagnetic shielding materials. be able to. The cross-sectional shape of the fiber at that time is also not particularly limited, and may be circular, hollow, or an atypical cross section such as a star shape. Especially, since the PVA fiber according to the present invention is excellent in conductivity and flexibility, it can be advantageously used as a conductive fabric. For example, the PVA fiber according to the present invention is 50% by weight or more, preferably By using a fabric containing 80% by weight or more, particularly 90% by weight or more, a highly conductive PVA fiber product can be obtained. At this time, the fiber that can be used in combination is not particularly limited, and examples thereof include PVA fibers that do not contain copper sulfide fine particles, polyester fibers, polyamide fibers, and cellulose fibers.

本発明の繊維は、力学物性、耐熱性に加えて、柔軟性、導電性に優れることから、フィラメントや紡績糸、更には紙、不織布、織物、編物などの布帛とすることが可能であり、産業資材用、衣料用、医療用等あらゆる用途に好適に使用でき、例えば、帯電材、除電材、ブラシ、センサー、電磁波シールド材、電子材料をはじめとして多くの用途に極めて有用である。   The fibers of the present invention are excellent in flexibility and electrical conductivity in addition to mechanical properties and heat resistance, and thus can be used as fabrics such as filaments and spun yarns, and further paper, nonwoven fabrics, woven fabrics, knitted fabrics, It can be suitably used for various applications such as industrial materials, clothing, and medical use, and is extremely useful for many applications including, for example, charging materials, neutralizing materials, brushes, sensors, electromagnetic shielding materials, and electronic materials.

以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何等限定されるものではない。なお以下の実施例において、繊維表面の凹凸構造の有無、繊維中の硫化銅ナノ微粒子の含有量、存在形態および粒子径、繊維の体積固有抵抗値、布帛の電磁波シールド性能は下記の方法により測定したものを示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by this Example. In the following examples, the presence / absence of a concavo-convex structure on the fiber surface, the content of copper sulfide nanoparticles in the fiber, the presence form and particle diameter, the fiber volume resistivity, and the electromagnetic wave shielding performance of the fabric were measured by the following methods. Shows what

[繊維表面の凹凸構造の有無及び、繊維中の硫化銅微粒子の平均粒子径 nm]
繊維表面の凹凸構造、繊維中の硫化銅粒子の存在形態は、(株)日立製作所製S−3000N走査型電子顕微鏡(SEM)、及びH−800NA透過型電子顕微鏡(TEM)を用いて行った。繊維断面の写真から任意に50個の硫化銅微粒子を選び、その大きを夫々実測し、平均値を平均粒子径とした。
[The presence or absence of an uneven structure on the fiber surface and the average particle diameter of copper sulfide fine particles in the fiber nm]
The concavo-convex structure on the fiber surface and the existence form of the copper sulfide particles in the fiber were performed using an S-3000N scanning electron microscope (SEM) manufactured by Hitachi, Ltd. and an H-800NA transmission electron microscope (TEM). . Arbitrary 50 copper sulfide fine particles were selected from the photograph of the fiber cross section, their sizes were measured, and the average value was taken as the average particle diameter.

[繊維中の硫化銅微粒子の含有量測定 質量%]
繊維中の硫化銅微粒子の含有量測定は、ジャーレルアッシュ社製ICP発光分析装置IRIS−APを用いて行った。
[Measurement of content of copper sulfide fine particles in fiber by mass%]
The content of copper sulfide fine particles in the fiber was measured using an ICP emission analyzer IRIS-AP manufactured by Jarrel Ash.

[繊維の導電性(体積固有抵抗値)測定 Ω・cm]
PVA繊維を温度105℃で1時間かけて乾燥させ、その後、温度20℃、湿度30%の条件下で24時間以上放置させて調湿した。この繊維に対して、長さ2cmの単繊維試験片を採取し、該試験片の両端間に、横河ヒューレットパッカード社製の抵抗値測定機「MULTIMETER」を使用して、10Vの電圧をかけてその抵抗値(Ω)を測定した。そして、体積固有抵抗値(ρ)(Ω・cm)=R×(S/L)により、各試験片の体積固有抵抗値を求め、これを25試料片について行い、その平均値を試料の体積固有抵抗値とした。なお、Rは試験片の抵抗値(Ω)、Sは断面積(cm)、及びLは長さ(2cm)を示す。ここで、試験片の断面積は、繊維を顕微鏡下で観察することにより算出した。
[Measurement of fiber conductivity (volume resistivity) Ω · cm]
The PVA fiber was dried at a temperature of 105 ° C. for 1 hour, and then allowed to stand for 24 hours or more under conditions of a temperature of 20 ° C. and a humidity of 30% to adjust the humidity. For this fiber, a single fiber test piece having a length of 2 cm was collected, and a voltage of 10 V was applied between both ends of the test piece using a resistance measuring device “MULTITIMETER” manufactured by Yokogawa Hewlett-Packard Company. The resistance value (Ω) was measured. Then, the volume specific resistance value (ρ) (Ω · cm) = R × (S / L) is used to obtain the volume specific resistance value of each test piece, and this is performed for 25 sample pieces, and the average value is obtained as the volume of the sample. The specific resistance value was used. Here, R represents the resistance value (Ω) of the test piece, S represents the cross-sectional area (cm 2 ), and L represents the length (2 cm). Here, the cross-sectional area of the test piece was calculated by observing the fiber under a microscope.

[電磁波シールド測定 dB]
電磁波シールド特性の測定は、関西電子工業振興センター法(KEC法)に従い、行った。測定温度は24℃、測定周波数は10〜1000MHz、電波発信部と受信部との距離は5mmで行い、n=5の平均値を採用した。100MHzでの電磁波シールド特性(dB)を比較することで、効果の有無を判断した。なお、20dBとは入射電磁波の90%を遮蔽することを意味しており、40dBとは99%の遮蔽、60dBとは99.9%の遮蔽材料であることを意味する。
[Electromagnetic shield measurement dB]
The measurement of electromagnetic shielding characteristics was performed according to the Kansai Electronics Industry Promotion Center method (KEC method). The measurement temperature was 24 ° C., the measurement frequency was 10 to 1000 MHz, the distance between the radio wave transmission part and the reception part was 5 mm, and an average value of n = 5 was adopted. The presence or absence of the effect was judged by comparing the electromagnetic wave shielding characteristics (dB) at 100 MHz. 20 dB means that 90% of the incident electromagnetic wave is shielded, 40 dB means 99% shielding, and 60 dB means 99.9% shielding material.

[実施例1]
(1)粘度平均重合度1700、ケン化度99.8モル%のPVAをPVA濃度50質量%となるように水を含水させ、押出し機を通して165℃に加熱し、孔径0.1mm、ホール数200のノズルを通して空気中に乾式紡糸した。巻取り機により160m/minの速度で巻き取った繊維を、200℃の熱風延伸炉中で30m/minの延伸速度で1.6倍に延伸し、繊維表面に凹凸構造を有する繊維を得た。繊維表面のSEM写真を図1に示す。
(2)得られた繊維を、和光純薬(株)製の硝酸銅を280g/L溶解した50℃の水浴に滞留時間が240秒になるように導糸し、引き続き、和光純薬(株)製の硫化ナトリウムを50g/L溶解した25℃の水浴に滞留時間が120秒間になるように導糸した。この処理を2回繰り返した後、水洗し、120℃の熱風で乾燥し、繊維を得た。得られた繊維の性能評価結果を表1に、繊維の断面TEM写真を図2に示す。
(3)得られた繊維は、図1に示すように繊維表面に凹凸構造を有するものであり、その凹部と凸部の間隔は0.7μmであった。また繊維内部には図2に示すように平均粒子径10nmの硫化銅ナノ微粒子が微細に分散しており、その含有量は13.1質量%であった。また、体積固有抵抗値は2.0×10Ω・cmであり、従来のPVA系繊維に比べて、導電性に優れるものであった。
[Example 1]
(1) Water containing PVA having a viscosity average polymerization degree of 1700 and a saponification degree of 99.8 mol% was added so that the PVA concentration was 50% by mass, heated to 165 ° C. through an extruder, a pore diameter of 0.1 mm, and the number of holes Dry spinning in the air through 200 nozzles. The fiber wound up by a winder at a speed of 160 m / min was drawn 1.6 times at a drawing speed of 30 m / min in a hot air drawing furnace at 200 ° C. to obtain a fiber having an uneven structure on the fiber surface. . A SEM photograph of the fiber surface is shown in FIG.
(2) The obtained fiber was introduced into a 50 ° C. water bath in which 280 g / L of copper nitrate manufactured by Wako Pure Chemical Industries, Ltd. was dissolved so that the residence time was 240 seconds. The yarn was introduced into a 25 ° C. water bath in which 50 g / L of sodium sulfide was dissolved so that the residence time was 120 seconds. This treatment was repeated twice, then washed with water and dried with hot air at 120 ° C. to obtain a fiber. The performance evaluation result of the obtained fiber is shown in Table 1, and a cross-sectional TEM photograph of the fiber is shown in FIG.
(3) The obtained fiber had a concavo-convex structure on the fiber surface as shown in FIG. 1, and the interval between the concave and convex portions was 0.7 μm. Further, as shown in FIG. 2, copper sulfide nanoparticles having an average particle diameter of 10 nm were finely dispersed inside the fiber, and the content thereof was 13.1% by mass. Further, the volume resistivity value was 2.0 × 10 0 Ω · cm, which was superior in conductivity compared to conventional PVA fibers.

[実施例2]
硝酸銅が溶解された浴を通す処理、次いで硫化ナトリウムが溶解された浴を通す処理を5回繰り返した以外は実施例1と同じ条件で紡糸し、繊維を得た。得られた繊維の性能評価結果を表1に示す。得られた繊維は、繊維表面に凹凸構造を有するものであり、その凹部と凸部の間隔は0.7μmであった。また繊維内部には平均粒子径15nmの硫化銅ナノ微粒子が微細に分散しており、その含有量は24.4質量%であった。また、体積固有抵抗値は2.2×10−1Ω・cmであり、従来のPVA系繊維に比べて、導電性に優れるものであった。
[Example 2]
A fiber was obtained by spinning under the same conditions as in Example 1 except that the treatment through a bath in which copper nitrate was dissolved and then the treatment through a bath in which sodium sulfide was dissolved were repeated five times. Table 1 shows the performance evaluation results of the obtained fibers. The obtained fiber had a concavo-convex structure on the fiber surface, and the interval between the concave portion and the convex portion was 0.7 μm. In addition, copper sulfide nanoparticles having an average particle diameter of 15 nm were finely dispersed inside the fiber, and the content thereof was 24.4% by mass. The volume resistivity value was 2.2 × 10 −1 Ω · cm, which was superior to the conventional PVA fiber.

[実施例3]
延伸温度を230℃、延伸速度を300m/min、延伸倍率を2.0倍とした以外は実施例1と同様な方法にて紡糸、延伸、導電化処理を実施し、繊維を得た。得られた繊維の性能評価結果を表1に示す。得られた繊維は、繊維表面に凹凸構造を有するものであり、その凹部と凸部の間隔は0.5μmであった。また繊維内部には平均粒子径20nmの硫化銅ナノ微粒子が微細に分散しており、その含有量は10.1質量%であった。また、体積固有抵抗値は4.1×10Ω・cmであり、従来のPVA系繊維に比べて、導電性に優れるものであった。
[Example 3]
Spinning, drawing, and conducting treatment were performed in the same manner as in Example 1 except that the drawing temperature was 230 ° C., the drawing speed was 300 m / min, and the draw ratio was 2.0 times, to obtain fibers. Table 1 shows the performance evaluation results of the obtained fibers. The obtained fiber had a concavo-convex structure on the fiber surface, and the interval between the concave portion and the convex portion was 0.5 μm. In addition, copper sulfide nanoparticles having an average particle diameter of 20 nm were finely dispersed inside the fiber, and the content thereof was 10.1% by mass. Further, the volume resistivity value was 4.1 × 10 0 Ω · cm, which was superior in conductivity compared to conventional PVA fibers.

[実施例4]
実施例1と同様な方法にて乾式紡糸して得たPVA系繊維を紡績してC80/1とし、実施例1と同様な方法によって導電化処理を実施した。得られた繊維は、繊維表面に凹凸構造を有するものであり、その凹部と凸部の間隔は0.7μmであった。また繊維内部には平均粒子径10nmの硫化銅ナノ微粒子が微細に分散しており、その含有量は14.3質量%であった。また、体積固有抵抗値は9.8×10−1Ω・cmであり、従来のPVA系繊維に比べて、導電性に優れるものであった。
[Example 4]
A PVA fiber obtained by dry spinning in the same manner as in Example 1 was spun to give C80 / 1, and a conductive treatment was performed in the same manner as in Example 1. The obtained fiber had a concavo-convex structure on the fiber surface, and the interval between the concave portion and the convex portion was 0.7 μm. In addition, copper sulfide nanoparticles having an average particle diameter of 10 nm were finely dispersed inside the fiber, and the content thereof was 14.3% by mass. Further, the volume resistivity value was 9.8 × 10 −1 Ω · cm, which was superior in conductivity compared to conventional PVA fibers.

[実施例5]
実施例1で得られた導電性PVA系繊維を、基布密度経50本/10cm、緯50本/10cmにて、織り幅20cm×20cmの布帛を製造した。得られた布帛の100MHzでの電磁波シールド性能は、32dBであり、電磁波遮蔽性能に優れるものであった。
[Example 5]
A fabric with a weaving width of 20 cm × 20 cm was produced from the conductive PVA fibers obtained in Example 1 at a base fabric density of 50/10 cm and a weft of 50/10 cm. The obtained fabric had an electromagnetic wave shielding performance at 100 MHz of 32 dB, and was excellent in electromagnetic wave shielding performance.

[比較例1]
硝酸銅が溶解された浴及び硫化ナトリウムが溶解された浴を通過させない以外は、実施例1と同様な条件で紡糸し、繊維を得た。得られた繊維の性能評価を表2に示す。得られた繊維は、繊維表面に凹凸の間隔が0.7μmである凹凸構造を有するものの、硫化銅ナノ微粒子の生成がないので体積固有抵抗値は3.8×1012Ω・cmであり、導電性に劣るものであった。
[Comparative Example 1]
A fiber was obtained by spinning under the same conditions as in Example 1 except that it did not pass through a bath in which copper nitrate was dissolved and a bath in which sodium sulfide was dissolved. The performance evaluation of the obtained fiber is shown in Table 2. Although the obtained fiber has a concavo-convex structure with a concavo-convex spacing of 0.7 μm on the fiber surface, the volume specific resistance value is 3.8 × 10 12 Ω · cm because there is no formation of copper sulfide nanoparticles. The conductivity was inferior.

[比較例2]
(1)粘度平均重合度1700、ケン化度99.8モル%のPVAをPVA濃度23質量%となるようにDMSO中に添加し、90℃にて窒素雰囲気下で加熱溶解した。得られた紡糸原液を、孔径0.08mm、ホール数108のノズルを通して液温5℃のメタノール/DMSO=70/30(質量比)よりなる固化浴中に乾湿式紡糸した。得られた固化糸を固化浴と同じメタノール/DMSO組成の第2浴に浸漬し、次いで液温25℃のメタノール浴中で1.6倍の湿延伸を施した後、120℃の熱風で乾燥し、繊維表面が平滑である繊維を得た。参考として繊維表面のSEM写真を図3に示す。
(2)得られた繊維を、和光純薬(株)製の硝酸銅を280g/L溶解した50℃の水浴に滞留時間が240秒になるように導糸し、引き続き、和光純薬(株)製の硫化ナトリウムを50g/L溶解した25℃の水浴に滞留時間が120秒間になるように導糸した。この処理を2回繰り返した後、水洗し、120℃の熱風で乾燥し、繊維を得た。得られた繊維の性能評価結果を表2に示す。
(3)得られた繊維は、繊維内部には平均粒子径11nmの硫化銅ナノ微粒子が微細に分散していたものの、繊維表面は平滑であった。また、体積固有抵抗値は7.9×10Ω・cmであり、本発明の繊維に比べて導電性に劣るものであった。
[Comparative Example 2]
(1) PVA having a viscosity average polymerization degree of 1700 and a saponification degree of 99.8 mol% was added to DMSO so as to have a PVA concentration of 23% by mass, and was dissolved by heating at 90 ° C. in a nitrogen atmosphere. The obtained spinning solution was dry-wet-spun into a solidification bath of methanol / DMSO = 70/30 (mass ratio) at a liquid temperature of 5 ° C. through a nozzle having a hole diameter of 0.08 mm and a hole number of 108. The obtained solidified yarn is immersed in a second bath having the same methanol / DMSO composition as the solidified bath, and then subjected to wet stretching 1.6 times in a methanol bath having a liquid temperature of 25 ° C., and then dried with hot air at 120 ° C. Thus, a fiber having a smooth fiber surface was obtained. As a reference, an SEM photograph of the fiber surface is shown in FIG.
(2) The obtained fiber was introduced into a 50 ° C. water bath in which 280 g / L of copper nitrate manufactured by Wako Pure Chemical Industries, Ltd. was dissolved so that the residence time was 240 seconds. The yarn was introduced into a 25 ° C. water bath in which 50 g / L of sodium sulfide was dissolved so that the residence time was 120 seconds. This treatment was repeated twice, then washed with water and dried with hot air at 120 ° C. to obtain a fiber. Table 2 shows the performance evaluation results of the obtained fibers.
(3) Although the obtained fiber had finely dispersed copper sulfide nanoparticles having an average particle diameter of 11 nm inside the fiber, the fiber surface was smooth. Further, the volume resistivity value was 7.9 × 10 1 Ω · cm, which was inferior in conductivity compared to the fiber of the present invention.

[比較例3]
和光純薬(株)製の硝酸銅を280g/L溶解した水溶液と、和光純薬(株)製の硫化ナトリウムを50g/L溶解した水溶液を混合し、2次粒子径約10μmの硫化銅粒子を析出させた。これを水で十分洗浄後、80℃で乾燥したものを、PVAに対して30質量%となるように原液に添加する、いわゆる原液添加にて比較例1と同様の方法で紡糸した。得られた繊維は、繊維表面に凹凸の間隔が1.0μmである凹凸構造を有しており、また繊維中の硫化銅粒子の含有量は28.8質量%であったが、体積固有抵抗値は2.0×10Ω・cmであり、導電性は低いものであった。また、繊維内部での硫化銅粒子の平均粒子径は5μmであり、繊維内部で所々凝集していた。そのため、糸斑が見られるばかりでなく、繊維の強度は0.2cN/dtexと低いものであった。また、短時間でフィルターの昇圧が起こるなど、工程通過性も悪いものであった。
[Comparative Example 3]
An aqueous solution prepared by dissolving 280 g / L of copper nitrate manufactured by Wako Pure Chemical Industries, Ltd. and an aqueous solution prepared by dissolving 50 g / L of sodium sulfide manufactured by Wako Pure Chemical Industries, Ltd. are mixed to produce copper sulfide particles having a secondary particle size of about 10 μm. Was precipitated. This was sufficiently washed with water, dried at 80 ° C., and added to the stock solution so as to be 30% by mass with respect to PVA, and spinning was performed in the same manner as in Comparative Example 1 by so-called stock solution addition. The obtained fiber had a concavo-convex structure with a concavo-convex spacing of 1.0 μm on the fiber surface, and the content of copper sulfide particles in the fiber was 28.8% by mass. The value was 2.0 × 10 9 Ω · cm, and the conductivity was low. Moreover, the average particle diameter of the copper sulfide particles inside the fiber was 5 μm, and it was agglomerated in some places inside the fiber. Therefore, not only yarn spots were observed, but the fiber strength was as low as 0.2 cN / dtex. In addition, the process passability was poor, such as the pressure rising of the filter occurring in a short time.

[比較例4]
市販のナイロン6繊維を、和光純薬(株)製の酢酸銅を280g/L溶解した50℃の水浴に滞留時間が240秒になるように導糸し、引き続き、和光純薬(株)製の硫化ナトリウムを50g/L溶解した30℃の水浴に滞留時間が120秒間になるように導糸した。これを、2回繰り返した後、120℃の熱風で乾燥し、繊維を得た。得られた繊維の性能評価を表2に示す。得られた繊維は、硫化銅量は0.45質量%であり、表面にのみ1μm程度の硫化銅粒子が、大きな塊上に付着している状態であった。また、体積固有抵抗値は4.0×1010Ω・cmであり、導電性は低いものであった。
[Comparative Example 4]
A commercially available nylon 6 fiber was introduced into a 50 ° C. water bath in which 280 g / L of copper acetate manufactured by Wako Pure Chemical Industries, Ltd. was dissolved so that the residence time was 240 seconds, and subsequently manufactured by Wako Pure Chemical Industries, Ltd. Was introduced into a 30 ° C. water bath in which 50 g / L of sodium sulfide was dissolved so that the residence time was 120 seconds. This was repeated twice, followed by drying with hot air at 120 ° C. to obtain a fiber. The performance evaluation of the obtained fiber is shown in Table 2. The obtained fiber had a copper sulfide amount of 0.45% by mass, and copper sulfide particles of about 1 μm were attached on a large lump only on the surface. Further, the volume resistivity value was 4.0 × 10 10 Ω · cm, and the conductivity was low.

[比較例5]
比較例4で得られたナイロン6繊維を、基布密度経50本/10cm、緯50本/10cmにて、織り幅20cm×20cmの布帛を製造した。得られた布帛の100MHzでの電磁波シールド性能は、1dBであり、電磁波遮蔽性能に劣るものであった。
[Comparative Example 5]
A fabric having a weaving width of 20 cm × 20 cm was produced from the nylon 6 fiber obtained in Comparative Example 4 at a base fabric density of 50/10 cm and a weft of 50/10/10 cm. The obtained fabric had an electromagnetic wave shielding performance at 100 MHz of 1 dB, which was inferior to the electromagnetic wave shielding performance.

Figure 2007239144
Figure 2007239144

Figure 2007239144
Figure 2007239144

表1及び図1、2の結果から明らかなように、本発明のPVA系繊維は、その繊維表面には繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが交互に存在した形態を有しており、かつ繊維内部に平均粒子径が100nm以下の硫化銅微粒子が分散しているので、優れた導電性を有している。また、そのような繊維から構成される布帛は、優れた電磁波シールド性能を示す。
一方、表2及び図3の結果から明らかなように、繊維内部であっても硫化銅粒子の粒子径が大きい場合や、粒子径が小さくても繊維表面の凹凸構造を有さない場合は、本発明の繊維のように、導電性に優れた繊維を得ることはできない。
As is apparent from the results of Table 1 and FIGS. 1 and 2, the PVA fiber of the present invention has alternately convex portions continuous in the fiber axis direction and concave portions continuous in the fiber axis direction on the fiber surface. The copper sulfide fine particles having an average particle diameter of 100 nm or less are dispersed inside the fiber, and thus has excellent conductivity. Moreover, the fabric comprised from such a fiber shows the outstanding electromagnetic wave shielding performance.
On the other hand, as is apparent from the results of Table 2 and FIG. 3, when the particle size of the copper sulfide particles is large even inside the fiber, or when the particle surface is small but does not have an uneven structure on the fiber surface, Like the fiber of this invention, the fiber excellent in electroconductivity cannot be obtained.

本発明によれば、従来技術では達成することができなかった、優れた導電性を有するPVA系繊維を提供することができる。また本発明のPVA系繊維は特別に高価な工程を必要とせず、通常の紡糸、延伸工程で安価に製造可能である。さらに本発明のPVA系繊維は、紙、不織布、織物、編物などの布帛とすることが可能であり、帯電材、除電材、ブラシ、センサー、電磁波シールド材、電子材料をはじめとして多くの用途に期待される。   ADVANTAGE OF THE INVENTION According to this invention, the PVA type fiber which has the outstanding electroconductivity which was not able to be achieved by the prior art can be provided. The PVA fiber of the present invention does not require a particularly expensive process, and can be manufactured at a low cost by ordinary spinning and drawing processes. Furthermore, the PVA fiber of the present invention can be made into a fabric such as paper, non-woven fabric, woven fabric, and knitted fabric, and is used in many applications including a charging material, a charge eliminating material, a brush, a sensor, an electromagnetic wave shielding material, and an electronic material. Be expected.

本発明のPVA繊維において、繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが交互に存在している状態示す走査型電子顕微鏡写真。The scanning electron micrograph which shows the state in which the convex part which followed the fiber axis direction and the recessed part which followed the fiber axis direction exist alternately in the PVA fiber of this invention. 本発明のPVA繊維において、繊維内部に硫化銅微粒子が分散している状態を示す透過型電子顕微鏡写真。In the PVA fiber of the present invention, a transmission electron micrograph showing a state in which copper sulfide fine particles are dispersed inside the fiber. 本発明以外のPVA繊維であり、繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが存在していない状態示す走査型電子顕微鏡写真。The scanning electron micrograph which is a PVA fiber other than this invention, and shows the state which the convex part continuous in the fiber axis direction and the recessed part continuous in the fiber axis direction do not exist.

Claims (6)

ポリビニルアルコール系ポリマーと、ポリマー中に微細に分散した平均粒子径が100nm以下の硫化銅ナノ微粒子からなる繊維であって、且つその繊維表面には繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが交互に存在していることを特徴とする導電性ポリビニルアルコール系繊維。   A fiber composed of a polyvinyl alcohol-based polymer and copper sulfide nanoparticles having an average particle diameter of 100 nm or less finely dispersed in the polymer, and a convex portion continuous in the fiber axis direction on the fiber surface, and the fiber axis direction Conductive polyvinyl alcohol-based fibers characterized in that continuous recesses are alternately present. 交互に存在している繊維軸方向に連続した凸部と凹部の間隔が1μ以下であることを特徴とする請求項1記載の導電性ポリビニルアルコール系繊維。   2. The conductive polyvinyl alcohol fiber according to claim 1, wherein an interval between the convex portions and the concave portions that are alternately present in the fiber axis direction is 1 μm or less. 体積固有抵抗値が1.0×10−3〜1.0×10Ω・cmであることを特徴とする請求項1または2記載の導電性ポリビニルアルコール系繊維。 3. The conductive polyvinyl alcohol fiber according to claim 1, wherein the volume resistivity value is 1.0 × 10 −3 to 1.0 × 10 8 Ω · cm. ポリビニルアルコール系ポリマー100質量%に対して、硫化銅ナノ微粒子が1〜50質量%含有されてなることを特徴とする請求項1〜3のいずれか1項記載の導電性ポリビニルアルコール系繊維。   4. The conductive polyvinyl alcohol fiber according to claim 1, wherein 1 to 50 mass% of copper sulfide nanoparticles are contained with respect to 100 mass% of the polyvinyl alcohol polymer. 100〜250℃の延伸温度にて30m/min以上の延伸速度で延伸倍率が1.5倍以上延伸された繊維であって、繊維表面において、繊維軸方向に連続した凸部と、繊維軸方向に連続した凹部とが交互に存在しているポリビニルアルコール系繊維を、銅イオンを含む化合物が10〜400g/Lの濃度で溶解された浴と、硫化物イオンを含む化合物が1〜100g/Lの濃度で溶解された浴を通して、繊維中に各々の化合物を含有させ、さらに銅を硫化させることで、繊維の内部に平均粒子径が100nm以下の硫化銅ナノ微粒子を微細に生成させることを特徴とする請求項1〜4のいずれか1項記載の導電性ポリビニルアルコール系繊維の製造方法。   A fiber that has been stretched at a stretching temperature of 100 to 250 ° C. at a stretching speed of 30 m / min or more and a stretching ratio of 1.5 times or more, and a convex portion that is continuous in the fiber axis direction on the fiber surface, and the fiber axis direction In the polyvinyl alcohol fiber in which concave portions continuous to each other are alternately present, a bath in which a compound containing copper ions is dissolved at a concentration of 10 to 400 g / L, and a compound containing sulfide ions is 1 to 100 g / L. Each compound is contained in the fiber through a bath dissolved at a concentration of, and copper is further sulfided to produce fine copper sulfide nanoparticles having an average particle diameter of 100 nm or less inside the fiber. The manufacturing method of the electroconductive polyvinyl alcohol-type fiber of any one of Claims 1-4. 請求項1〜4記載のいずれか1項記載の導電性ポリビニルアルコール系繊維を用いてなる布帛。
A fabric comprising the conductive polyvinyl alcohol fiber according to any one of claims 1 to 4.
JP2006063581A 2006-03-09 2006-03-09 Electroconductive polyvinyl alcohol-based fiber Withdrawn JP2007239144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063581A JP2007239144A (en) 2006-03-09 2006-03-09 Electroconductive polyvinyl alcohol-based fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063581A JP2007239144A (en) 2006-03-09 2006-03-09 Electroconductive polyvinyl alcohol-based fiber

Publications (1)

Publication Number Publication Date
JP2007239144A true JP2007239144A (en) 2007-09-20

Family

ID=38584958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063581A Withdrawn JP2007239144A (en) 2006-03-09 2006-03-09 Electroconductive polyvinyl alcohol-based fiber

Country Status (1)

Country Link
JP (1) JP2007239144A (en)

Similar Documents

Publication Publication Date Title
KR101028984B1 (en) Conductive polyvinyl alcohol fiber
JP6852200B2 (en) Modified textile products, preparation methods and their use
US10508387B2 (en) Conductive fibres
KR20140136689A (en) EMI Shield sheet comprising carbon complex fiber manufactured by electrospinning and a preparation method thereof
EP3012359A1 (en) Polyacrylonitrile-based precursor fiber for carbon fibre, and production method therefor
Li et al. Ni@ nylon mesh/PP composites with a novel tree-ring structure for enhancing electromagnetic shielding
Nasouri et al. Fabrication of polyamide 6/carbon nanotubes composite electrospun nanofibers for microwave absorption application
JP2005264419A (en) Conductive polyvinyl alcohol fiber
Hu et al. Rubber composite fibers containing silver nanoparticles prepared by electrospinning and in-situ chemical crosslinking.
JP6095159B2 (en) Method for producing conductive cellulose fiber material
JP2007231483A (en) Electroconductive fiber and method for producing the same
JP2007131977A (en) Conductive polyvinyl alcohol-based fiber
JP2007239144A (en) Electroconductive polyvinyl alcohol-based fiber
JP2007231482A (en) Polyvinyl alcohol-based fiber having both of electroconductivity and flame retardancy and method for producing the same
JP2007119950A (en) Conductive polyvinyl alcohol-based fiber
DÜZYER Different Methods of Fabricating Conductive Nanofibers
JP2007221018A (en) Electromagnetic wave shielding material
KR100633222B1 (en) High conductive fiber having antimicrobial effects and manufacturing method thereof
JP2013253817A (en) Radiation shielding fiber and fabric
JP5964638B2 (en) Carbon fiber chopped strand and method for producing the same
CN112376167A (en) Low-impedance electrostatic functional non-woven fabric and production process thereof
CN114438618B (en) Fiber and preparation method thereof
JP2007231481A (en) Polyvinyl alcohol-based fiber having both of electroconductivity and flame retardancy
JP2008007661A (en) Method for producing functional polymer molded product
Hussain et al. Synthesis of Highly Conductive Electrospun Recycled Polyethylene Terephthalate Nanofibers (r-PET Nanofibers) Using Electroless Deposition Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091218