JP2007230848A - Visible light-absorbing black particulate and ink for forming visible light-absorbing film and visible light-absorbing film containing the particulate - Google Patents

Visible light-absorbing black particulate and ink for forming visible light-absorbing film and visible light-absorbing film containing the particulate Download PDF

Info

Publication number
JP2007230848A
JP2007230848A JP2006057653A JP2006057653A JP2007230848A JP 2007230848 A JP2007230848 A JP 2007230848A JP 2006057653 A JP2006057653 A JP 2006057653A JP 2006057653 A JP2006057653 A JP 2006057653A JP 2007230848 A JP2007230848 A JP 2007230848A
Authority
JP
Japan
Prior art keywords
visible light
fine particles
light absorbing
absorbing film
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006057653A
Other languages
Japanese (ja)
Inventor
Tomoko Shimada
智子 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006057653A priority Critical patent/JP2007230848A/en
Publication of JP2007230848A publication Critical patent/JP2007230848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a visible light-absorbing black particulate which does not cause color fade due to the deterioration by weathering and has a hue excellent in designability, and an ink for forming a visible light-absorbing film and the visible light-absorbing film containing the particulate. <P>SOLUTION: The visible light-absorbing black particulate is composed of a spinel composite oxide essentially comprising Cu, Mn and Co, wherein the molar ratio of Mn/Cu is 1.3-1.7, and the molar ratio of Co/Cu is 0.1-0.5. The ink for forming the visible light-absorbing film is obtained by dispersing the visible light-absorbing black particulate in a solvent. The visible light-absorbing film contains the visible light-absorbing black particulate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スピネル型複合酸化物により構成される可視光吸収黒色微粒子に係り、特に、耐候性劣化による色抜けを起こさず、しかも意匠性に優れた色調を有する可視光吸収黒色微粒子とこの微粒子が含まれる可視光吸収膜形成用インク並びに可視光吸収膜に関するものである。   The present invention relates to visible light-absorbing black fine particles composed of a spinel-type complex oxide, and in particular, visible-light-absorbing black fine particles having a color tone that does not cause color loss due to deterioration in weather resistance and has excellent design properties, and the fine particles The present invention relates to a visible light absorbing film forming ink and a visible light absorbing film.

Cu、Mn等の金属元素を主成分とするスピネル型複合酸化物は、従来から耐熱性、色調等に優れた無機材料として知られており、塗料や着色剤として広く利用されている。特に、金属塩水溶液にアルカリ水溶液を加え、生成した共沈物を焼成して複合酸化物を得る、いわゆる共沈法により合成された粒子は、着色力や分散性に優れており、昨今カーボンブラック代替の着色剤等として用いられるようになってきた。   Spinel-type composite oxides mainly composed of metal elements such as Cu and Mn are conventionally known as inorganic materials having excellent heat resistance and color tone, and are widely used as paints and colorants. In particular, particles synthesized by the so-called coprecipitation method, in which an alkaline aqueous solution is added to an aqueous metal salt solution and the resulting coprecipitate is baked to obtain a composite oxide, are excellent in coloring power and dispersibility. It has come to be used as an alternative colorant.

例えば、特開平9−25126号公報では、液晶ディスプレイのブラックマトリックス用黒色顔料、印刷インク用黒色顔料として用いるCu−Mn−Fe複合酸化物微粒子の製造方法が提案されている。   For example, Japanese Patent Laid-Open No. 9-25126 proposes a method for producing Cu-Mn-Fe composite oxide fine particles used as a black pigment for a black matrix of a liquid crystal display and a black pigment for a printing ink.

一方、可視光吸収膜形成用インク、可視光吸収膜は、一般に意匠性の向上やプライバシー保護、車内または室内の温度上昇防止を目的として自動車や建物の開口部等に用いられている。   On the other hand, the visible light absorbing film forming ink and the visible light absorbing film are generally used in the opening of automobiles and buildings for the purpose of improving the design, protecting the privacy, and preventing the temperature rise in the vehicle or the room.

そして、上記可視光吸収膜形成用インク、可視光吸収膜の色調としては、黒色、特に青みの強い黒色が好まれ、特開2000−214310号公報では、Cu−Mn−Fe複合酸化物等を着色剤として用いた半透明の遮光フィルムが提案されている。   As the color tone of the above visible light absorbing film forming ink and visible light absorbing film, black, particularly black with strong bluish color is preferred. In JP-A-2000-214310, a Cu—Mn—Fe composite oxide or the like is used. A translucent light-shielding film used as a colorant has been proposed.

しかし、従来の可視光吸収黒色微粒子は耐候性が十分でなく、この可視光吸収黒色微粒子を用いた可視光吸収膜は耐候性劣化により色抜けを引き起こし、時間の経過と共に無色の膜となって透過率が上昇してしまうため、十分な可視光吸収効果が得られない欠点があり、更に意匠性も損なわれる欠点があった。   However, the conventional visible light-absorbing black fine particles have insufficient weather resistance, and the visible light-absorbing film using the visible light-absorbing black fine particles causes color loss due to deterioration of weather resistance, and becomes a colorless film over time. Since the transmittance is increased, there is a defect that a sufficient visible light absorption effect cannot be obtained, and further, the design property is also impaired.

この色抜け現象の詳細な機構は明らかでないが、可視光吸収膜中の樹脂が紫外線の照射により劣化し、高分子鎖が切断されるときに発生するヒドロキシラジカルが可視光吸収黒色微粒子に酸化的に作用して起きると考えられている。   Although the detailed mechanism of this color loss phenomenon is not clear, the hydroxyl radical generated when the resin in the visible light absorbing film is deteriorated by UV irradiation and the polymer chain is cleaved is oxidized to the visible light absorbing black fine particles. It is thought to occur by acting on.

尚、上記可視光吸収黒色微粒子の耐候性を改善する方法として、微粒子表面をシリカ、Al酸化物、ガラス質等で被覆する方法があり、例えば、特開2005−255426号公報では、コバルト、銅、およびマンガンの酸化物からなり、銅/コバルトのモル比が0.1〜0.5で、マンガン/コバルトのモル比が0.2〜1.0であり、かつ、粒子表面がAl酸化物で被覆されているスピネル型または逆スピネル型複合黒色酸化物粒子が提示されている。しかし、これら微粒子表面をシリカ、Al酸化物、ガラス質等で被覆する方法は、生産工程が増える分、製造コストが増加する共に、粒子の着色力を低下させてしまうためインクや膜を作製したときに十分な可視光吸収効果が得られなくなり、かつ、分散性が悪化し、色調が変化して好みの意匠性が得られなくなる等の問題があった。
特開平9−25126号公報 特開2000−214310号公報 特開2005−255426号公報
In addition, as a method for improving the weather resistance of the visible light absorbing black fine particles, there is a method in which the surface of the fine particles is coated with silica, Al oxide, glass, or the like. For example, in Japanese Patent Application Laid-Open No. 2005-255426, cobalt, copper And a manganese / cobalt molar ratio of 0.1 to 0.5, a manganese / cobalt molar ratio of 0.2 to 1.0, and the particle surface is an Al oxide. Spinel-type or inverse spinel-type composite black oxide particles coated with are presented. However, the method of coating the surface of these fine particles with silica, Al oxide, glassy material, etc. produced an ink or a film because the production process was increased and the coloring power of the particles was reduced as the production process increased. In some cases, a sufficient visible light absorption effect cannot be obtained, the dispersibility is deteriorated, the color tone is changed, and a desired design property cannot be obtained.
Japanese Patent Laid-Open No. 9-25126 JP 2000-214310 A JP 2005-255426 A

本発明はこのような問題点に着目してなされたもので、スピネル型複合酸化物の構成元素や組成を最適化することで材料そのものの耐候性を改善し、耐候性劣化による色抜けを起こさず、しかも意匠性に優れた色調を有する可視光吸収黒色微粒子とこの微粒子が含まれる可視光吸収膜形成用インク並びに可視光吸収膜を提供することを目的とする。   The present invention has been made paying attention to such problems, and by optimizing the constituent elements and composition of the spinel-type composite oxide, the weather resistance of the material itself is improved, and color loss due to weather resistance deterioration is caused. Furthermore, it aims at providing the visible light absorption black fine particle which has the color tone excellent in the designability, the visible light absorption film forming ink containing this fine particle, and the visible light absorption film.

そこで、本発明者は上記課題を解決するため、スピネル型複合酸化物の構成元素や組成を最適化する条件について鋭意探索したところ、上記構成元素としてCu、Mn、Coを必須成分とし、かつ、これ等Cu、Mn、Coの組成が特定範囲に設定されたスピネル型複合酸化物を可視光吸収黒色微粒子として用い、可視光吸収膜形成用インク並びに可視光吸収膜を作製した場合、意匠性の高い色調を保ったまま、耐候性劣化による透過率の上昇を従来品に較べて大幅に低減できることを見出すに至った。本発明はこのような技術的発見に基づき完成されている。   Therefore, in order to solve the above problems, the present inventor has eagerly searched for the conditions for optimizing the constituent elements and composition of the spinel-type composite oxide. As the constituent elements, Cu, Mn, Co are essential components, and When these spinel-type composite oxides in which the composition of Cu, Mn, and Co is set in a specific range are used as visible light absorbing black fine particles, visible light absorbing film forming ink and visible light absorbing film are produced. While maintaining a high color tone, the inventors have found that the increase in transmittance due to deterioration of weather resistance can be significantly reduced compared to conventional products. The present invention has been completed based on such technical findings.

すなわち、請求項1に係る発明は、
可視光吸収黒色微粒子を前提とし、
Cu、Mn、Coを主成分とし、かつ、Mn/Cuのモル比が1.3〜1.7、Co/Cuのモル比が0.1〜0.5であるスピネル型複合酸化物により構成されることを特徴とする。
That is, the invention according to claim 1
Assuming visible light absorbing black fine particles,
Consists of a spinel-type composite oxide containing Cu, Mn, and Co as main components, a Mn / Cu molar ratio of 1.3 to 1.7, and a Co / Cu molar ratio of 0.1 to 0.5. It is characterized by being.

また、請求項2に係る発明は、
請求項1に記載の発明に係る可視光吸収黒色微粒子を前提とし、
Al、Fe、Niから選択された1種以上の金属が添加された上記スピネル型複合酸化物により構成されることを特徴とし、
請求項3に係る発明は、
請求項2に記載の発明に係る可視光吸収黒色微粒子を前提とし、
Co/(Co+Al+Fe+Ni)のモル比が0.4〜1.0である上記スピネル型複合酸化物により構成されることを特徴とし、
請求項4に係る発明は、
請求項1〜3のいずれかに記載の発明に係る可視光吸収黒色微粒子を前提とし、
X線回折のデバイ・シェラー法により求められる結晶子径が30nm以下であることを特徴とする。
The invention according to claim 2
Based on the visible light absorbing black fine particles according to the invention of claim 1,
It is composed of the above spinel-type complex oxide to which one or more metals selected from Al, Fe, and Ni are added,
The invention according to claim 3
Based on the visible light absorbing black fine particles according to the invention of claim 2,
It is characterized by being constituted by the above spinel-type complex oxide having a Co / (Co + Al + Fe + Ni) molar ratio of 0.4 to 1.0,
The invention according to claim 4
Based on the visible light absorbing black fine particles according to any one of claims 1 to 3,
The crystallite diameter determined by the Debye-Scherrer method of X-ray diffraction is 30 nm or less.

次に、請求項5に係る発明は、
可視光吸収膜形成用インクを前提とし、
請求項1〜4のいずれかに記載の可視光吸収黒色微粒子が溶媒中に分散されていることを特徴とし、
請求項6に係る発明は、
請求項5に記載の発明に係る可視光吸収膜形成用インクを前提とし、
無機バインダーおよび/または樹脂バインダーが含まれていることを特徴とする。
Next, the invention according to claim 5 is:
On the premise of the visible light absorbing film forming ink,
The visible light absorbing black fine particles according to any one of claims 1 to 4 are dispersed in a solvent,
The invention according to claim 6
Based on the visible light absorbing film forming ink according to the invention of claim 5,
An inorganic binder and / or a resin binder are included.

また、請求項7に係る発明は、
可視光吸収膜を前提とし、
請求項1〜4のいずれかに記載の可視光吸収黒色微粒子が含まれていることを特徴とする。
The invention according to claim 7
Assuming a visible light absorbing film,
The visible light absorbing black fine particles according to any one of claims 1 to 4 are contained.

本発明の可視光吸収黒色微粒子は、Cu、Mn、Coを主成分とし、かつ、Mn/Cuのモル比が1.3〜1.7で、Co/Cuのモル比が0.1〜0.5である、構成元素と組成が最適化されたスピネル型複合酸化物により構成されているため、材料そのものの耐候性が改善されて色抜けが抑制され、かつ、意匠性にも優れた色調を具備する。   The visible light absorbing black fine particles of the present invention are mainly composed of Cu, Mn, and Co, have a molar ratio of Mn / Cu of 1.3 to 1.7, and a molar ratio of Co / Cu of 0.1 to 0. .5, which is composed of a spinel-type composite oxide having an optimized compositional element and composition, the weather resistance of the material itself is improved, color loss is suppressed, and the color tone is excellent in design. It comprises.

従って、この可視光吸収黒色微粒子を用いて可視光吸収膜形成用インク並びに可視光吸収膜を作製することにより、意匠性の高い色調を保ったまま、耐候性劣化による透過率の上昇を大幅に低減させることが可能となる。   Therefore, the visible light absorbing film forming ink and the visible light absorbing film are produced using the visible light absorbing black fine particles, and the increase in the transmittance due to the weather resistance deterioration is greatly maintained while maintaining the color tone having a high design property. It can be reduced.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[可視光吸収黒色微粒子]
本発明に係る可視光吸収黒色微粒子は、Cu、Mn、Coを主成分とし、かつ、Mn/Cuのモル比が1.3〜1.7、Co/Cuのモル比が0.1〜0.5であるスピネル型複合酸化物により構成されることを特徴とする。上記Mn/Cuのモル比が1.3未満であると、可視光吸収黒色微粒子の耐候性が著しく低下してしまい、耐候性の劣化が抑制された可視光吸収膜としての使用に適さず、また、1.7を越えてMn量が多くなると、合成時に不純物が生成し易くなり、可視光吸収膜に含ませたときに十分な透明性と意匠性が得られなくなるからである。他方、上記Co/Cuのモル比が0.1未満であると、可視光吸収黒色微粒子の耐候性が得られなくなり、また、0.5を越えると、色調が赤っぽくなり、好みの意匠性が得られなくなるからである。
[Visible light absorbing black fine particles]
The visible light-absorbing black fine particles according to the present invention are mainly composed of Cu, Mn, and Co, have a molar ratio of Mn / Cu of 1.3 to 1.7, and a molar ratio of Co / Cu of 0.1 to 0. .5 of a spinel type complex oxide. When the Mn / Cu molar ratio is less than 1.3, the weather resistance of the visible light absorbing black fine particles is remarkably lowered, and is not suitable for use as a visible light absorbing film in which deterioration of weather resistance is suppressed, Further, if the amount of Mn exceeds 1.7, impurities are easily generated at the time of synthesis, and sufficient transparency and design cannot be obtained when it is included in the visible light absorption film. On the other hand, if the Co / Cu molar ratio is less than 0.1, the weather resistance of the visible light absorbing black fine particles cannot be obtained, and if it exceeds 0.5, the color tone becomes reddish, and the desired design. This is because sex cannot be obtained.

ここで、本発明に係る可視光吸収黒色微粒子は、Cu、Mn、Coを必須成分とするスピネル型複合酸化物により構成されるが、スピネル型複合酸化物において、Al、Fe、Niから選択された1種類以上の金属を添加することが好ましい。Al、Fe、Niから選択された1種類以上の金属を添加することにより耐候性が更に向上し、また、可視光吸収膜に含ませたときの色調を好みのものとすることが可能となるからである。   Here, the visible light-absorbing black fine particles according to the present invention are composed of a spinel-type complex oxide containing Cu, Mn, and Co as essential components. In the spinel-type complex oxide, selected from Al, Fe, and Ni. It is preferable to add one or more kinds of metals. Addition of one or more metals selected from Al, Fe and Ni can further improve the weather resistance, and the color tone when included in the visible light absorbing film can be made as desired. Because.

上記金属の添加割合は、Co/(Co+Al+Fe+Ni)のモル比が0.4〜1.0であることが好ましい。上記モル比が0.4未満であると、可視光吸収膜に含ませたときの耐候性が低下する場合があり、また、色調が緑みや黄色みを帯びて好みの意匠性が得られなくなる場合があるからである。   As for the addition ratio of the metal, the molar ratio of Co / (Co + Al + Fe + Ni) is preferably 0.4 to 1.0. When the molar ratio is less than 0.4, the weather resistance when it is included in the visible light absorbing film may be deteriorated, and the color tone is greenish or yellowish and the desired design property cannot be obtained. Because there are cases.

次に、本発明に係る可視光吸収黒色微粒子の粒子径については、X線回折(以下XRD)のデバイ・シェラー法により求められる結晶子径が30nm以下であることが好ましい。結晶子径が30nmを越えると、可視光吸収膜形成用インクとするときの分散性が低下し、可視光吸収膜としたときに十分な透明性が得られなくなる場合があり、また、分散工程に長時間を要するようになって製造コストが嵩む等の悪影響を生ずる場合があるからである。更に、分散工程で可視光吸収黒色微粒子にかかる熱負荷が大きくなるため、変色が起こって色調が黄色みを増し、可視光吸収膜としたときに好みの意匠性が得られなくなる場合があるからである。   Next, regarding the particle diameter of the visible light absorbing black fine particles according to the present invention, the crystallite diameter determined by the Debye-Scherrer method of X-ray diffraction (hereinafter referred to as XRD) is preferably 30 nm or less. When the crystallite diameter exceeds 30 nm, the dispersibility when the ink for forming a visible light absorbing film is lowered, and there may be a case where sufficient transparency cannot be obtained when the ink is formed as a visible light absorbing film. This is because it may take a long time to cause adverse effects such as an increase in manufacturing cost. Furthermore, since the heat load applied to the visible light absorbing black fine particles in the dispersion process becomes large, discoloration occurs and the color tone increases yellowish, and when the visible light absorbing film is formed, a desired design property may not be obtained. It is.

[可視光吸収黒色微粒子の製造方法]
次に、本発明に係る可視光吸収黒色微粒子を製造する方法について説明する。
[Production method of visible light absorbing black fine particles]
Next, a method for producing visible light absorbing black fine particles according to the present invention will be described.

まず、Cu化合物、Mn化合物、Co化合物を、添加金属を加える場合は、更に、Al化合物、Fe化合物、Ni化合物から選ばれる1種以上の化合物を必要量溶解させた均一な混合水溶液を調製し、この混合水溶液にアルカリ溶液を攪拌しながらゆっくりと滴下する。この時の滴下速度は、沈殿物の粒子径と生産性の観点から、5時間以内とすることが好ましい。また、系内の均一化を図るため、水溶液は攪拌しながら滴下を行う。   First, when adding an additive metal to a Cu compound, a Mn compound, and a Co compound, a uniform mixed aqueous solution in which a necessary amount of at least one compound selected from an Al compound, an Fe compound, and a Ni compound is dissolved is prepared. Then, the alkaline solution is slowly dropped into the mixed aqueous solution while stirring. The dropping speed at this time is preferably within 5 hours from the viewpoint of the particle size and productivity of the precipitate. In order to make the system uniform, the aqueous solution is dropped while stirring.

滴下が終了して共沈物が得られたら、水溶液中へ酸を滴下し、あるいは、溶液中へ空気を吹き込む等の方法により共沈物を酸化し、攪拌を止めて70〜90℃に加熱し、1時間程度熟成を行う。   When dripping is completed and a coprecipitate is obtained, acid is dropped into the aqueous solution, or the coprecipitate is oxidized by a method such as blowing air into the solution, stirring is stopped, and the mixture is heated to 70 to 90 ° C. And aged for about 1 hour.

熟成後、デカンテーションを繰り返して十分に洗浄する。このとき、共沈物中に不純物としてアルカリイオンが残存していると、得られる微粒子の分散性を悪化させるので洗浄は十分に行う必要がある。   After aging, repeat decantation and wash thoroughly. At this time, if alkali ions remain as impurities in the coprecipitate, the dispersibility of the resulting fine particles is deteriorated.

ここで、上記Cu化合物、Mn化合物、Co化合物、および、Al化合物、Fe化合物、Ni化合物は特に限定されるものではなく、例えば、これ等金属の硫酸塩、硝酸塩、塩化物等が挙げられる。   Here, the Cu compound, Mn compound, Co compound, Al compound, Fe compound, and Ni compound are not particularly limited, and examples thereof include sulfates, nitrates, and chlorides of these metals.

また、沈殿剤として用いる上記アルカリ溶液は、水酸化ナトリウム、水酸化カリウム等の水溶液が好ましい。また、アルカリ溶液のアルカリ濃度は、Cu化合物、Mn化合物、Co化合物、および、Al化合物、Fe化合物、Ni化合物が水酸化物となるのに必要な化学当量の1〜1.5倍、より好ましくは当量の1.1〜1.3倍がよい。1倍未満であると得られる沈澱中のCu量が不足し、1.5倍を越えると沈澱中のMn量が不足する等、目的の組成が得られない場合があるからである。これは、沈澱生成時の反応速度・生成条件が各金属イオンにより異なることに由来するためと考えられる。   The alkaline solution used as a precipitating agent is preferably an aqueous solution such as sodium hydroxide or potassium hydroxide. Further, the alkali concentration of the alkaline solution is preferably 1 to 1.5 times the chemical equivalent required for the Cu compound, Mn compound, Co compound, and Al compound, Fe compound, and Ni compound to be hydroxides. Is preferably 1.1 to 1.3 times the equivalent. This is because if the amount is less than 1 time, the amount of Cu in the resulting precipitate is insufficient, and if it exceeds 1.5 times, the amount of Mn in the precipitate is insufficient, and the intended composition may not be obtained. This is presumably because the reaction rate and production conditions during precipitation formation differ depending on the metal ions.

デカンテーション後、十分に乾燥させた共沈粉を、大気雰囲気下にて30分から3時間焼成することで、目的のスピネル型複合酸化物微粒子を得ることができる。   After the decantation, the sufficiently dried coprecipitated powder is baked in an air atmosphere for 30 minutes to 3 hours to obtain the intended spinel-type complex oxide fine particles.

焼成温度は490℃以上550℃以下が好ましく、より好ましくは500℃以上540℃以下である。焼成温度が490℃未満の場合や焼成時間が30分未満の場合は、焼成が不十分で、焼成後も水酸化物が不純物として残存してしまう場合がある。また、焼成温度が550℃を越える場合や焼成時間が3時間を越える場合は、焼成により複合酸化物の粒成長が進行して粗大粒子となり易く、分散性が低下して良好なインクが得られなくなってしまう場合がある。   The firing temperature is preferably 490 ° C. or higher and 550 ° C. or lower, more preferably 500 ° C. or higher and 540 ° C. or lower. When the firing temperature is less than 490 ° C. or when the firing time is less than 30 minutes, firing may be insufficient, and hydroxide may remain as an impurity even after firing. When the firing temperature exceeds 550 ° C. or the firing time exceeds 3 hours, the grain growth of the composite oxide proceeds easily by firing, resulting in coarse particles, and the dispersibility is lowered to obtain a good ink. It may disappear.

[可視光吸収膜形成用インクと可視光吸収膜]
次に、得られた可視光吸収黒色微粒子を溶媒中に分散すると、分散性に優れた可視光吸収膜形成用インクを得ることができる。
[Ink for forming visible light absorbing film and visible light absorbing film]
Next, when the obtained visible light absorbing black fine particles are dispersed in a solvent, a visible light absorbing film forming ink having excellent dispersibility can be obtained.

溶媒は、特に限定されるものではなく、例えば、水や、エタノール、イソプロピルアルコール等のアルコール類、メチルエーテル、エチルエーテル等のエーテル類、エステル類、アセトン、メチルエチルケトン、イソブチルケトン等のケトン類といった各種溶媒を用いることができる。また、インク中の粒子の分散安定性を向上させるため、各種の界面活性剤、カップリング剤等を添加してもよい。   The solvent is not particularly limited, and examples thereof include water, alcohols such as ethanol and isopropyl alcohol, ethers such as methyl ether and ethyl ether, esters, ketones such as acetone, methyl ethyl ketone, and isobutyl ketone. A solvent can be used. In addition, various surfactants, coupling agents, and the like may be added to improve the dispersion stability of the particles in the ink.

また、必要に応じて樹脂バインダーや無機バインダーを配合することもできる。その種類は特に限定されるものではなく、例えば、アクリル樹脂等の熱可塑性熱樹脂、エポキシ樹脂等の熱硬化性樹脂等が挙げられる。   Moreover, a resin binder and an inorganic binder can also be mix | blended as needed. The kind is not specifically limited, For example, thermoplastic thermoresins, such as an acrylic resin, thermosetting resins, such as an epoxy resin, etc. are mentioned.

また、可視光吸収黒色微粒子の分散方法は、上記微粒子をインク中に均一に分散できる方法であれば特に限定されない。例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザー等を用いることができる。   Further, the method for dispersing the visible light absorbing black fine particles is not particularly limited as long as the fine particles can be uniformly dispersed in the ink. For example, a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, or the like can be used.

そして、上記可視光吸収膜形成用インクを適宜フィルム上に塗布すると、耐候性劣化による色抜けを起こさず、意匠性に優れた色調を有する、曇りのない均一な可視光吸収膜が得られる。   When the visible light absorbing film forming ink is appropriately applied on a film, a uniform visible light absorbing film having no haze and having a color tone excellent in design properties without causing color loss due to weather resistance deterioration can be obtained.

尚、可視光吸収膜形成用インクの塗布方法は特に限定されず、スピンコート法、バーコート法、スプレーコート法、スクリーン印刷法等、インクを平滑かつ均一に塗布できる方法であればいずれの方法でもよい。   The method for applying the visible light absorbing film forming ink is not particularly limited, and any method can be used as long as the ink can be applied smoothly and uniformly, such as spin coating, bar coating, spray coating, and screen printing. But you can.

また、可視光吸収膜形成用インクに樹脂バインダーが配合されている場合は、それぞれの硬化法に従って硬化させる。紫外線硬化樹脂であれば、塗布後に紫外線を適宜照射すればよく、常温硬化樹脂であれば塗布後十分な時間静置しておけばよい。   Moreover, when the resin binder is mix | blended with the ink for visible light absorption film formation, it is hardened according to each hardening method. If it is an ultraviolet curable resin, it may be appropriately irradiated with ultraviolet rays after application, and if it is a room temperature curable resin, it may be allowed to stand for a sufficient time after application.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

尚、可視光吸収膜形成用インクと可視光吸収膜の可視光透過率や色調(10°視野、光源D65)は、日立製作所製の分光光度計U−4000を用いて測定した。   The visible light transmittance and color tone (10 ° field of view, light source D65) of the visible light absorbing film forming ink and the visible light absorbing film were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd.

[Cu−Mn−Co複合酸化物]
硫酸銅5水和物120重量部、硫酸マンガン5水和物180重量部、および、硫酸コバルト7水和物59重量部を1000重量部の水に溶解し、均一な水溶液A1とする。
[Cu-Mn-Co composite oxide]
120 parts by weight of copper sulfate pentahydrate, 180 parts by weight of manganese sulfate pentahydrate, and 59 parts by weight of cobalt sulfate heptahydrate are dissolved in 1000 parts by weight of water to obtain a uniform aqueous solution A1.

他方、水酸化ナトリウム145重量部を水1000重量部に溶解し、均一な水溶液Bとする。   On the other hand, 145 parts by weight of sodium hydroxide is dissolved in 1000 parts by weight of water to obtain a uniform aqueous solution B.

そして、別に水1000重量部を用意し、攪拌しながら上記水溶液A1と水溶液Bをゆっくり滴下させ、次に過酸化水素水60重量部と水200重量部の混合溶液を滴下する。   Separately, 1000 parts by weight of water is prepared, the aqueous solution A1 and the aqueous solution B are slowly dropped while stirring, and then a mixed solution of 60 parts by weight of hydrogen peroxide and 200 parts by weight of water is dropped.

得られた沈殿を洗浄してナトリウムイオンを十分除去した後、120℃で乾燥させる。更に、得られた乾燥固体を大気雰囲気下500℃で1時間焼成して粉砕し、黒色粉末を得た。   The obtained precipitate is washed to sufficiently remove sodium ions, and then dried at 120 ° C. Furthermore, the obtained dry solid was fired at 500 ° C. for 1 hour in an air atmosphere and pulverized to obtain a black powder.

得られた黒色粉末をXRDにより分析したところ、スピネル型の複合酸化物であり、一次粒子径(結晶粒子径)は22nmと小さく、分散に適した微粒子であった。   When the obtained black powder was analyzed by XRD, it was a spinel-type composite oxide, and the primary particle diameter (crystal particle diameter) was as small as 22 nm, and it was fine particles suitable for dispersion.

また、ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.56、Co/Cu=0.44と、目的とする組成に一致していた。   Further, when each metal ion was quantified by ICP emission analysis, Mn / Cu = 1.56 and Co / Cu = 0.44 were consistent with the intended composition.

次に、得られたCu−Mn−Co系の黒色複合酸化物微粒子(実施例1に係る可視光吸収黒色微粒子)10重量部と、トルエン80重量部、および、分散剤4重量部を混合し、ペイントシェーカーを用いて分散液とした。   Next, 10 parts by weight of the obtained Cu—Mn—Co-based black composite oxide fine particles (visible light absorbing black fine particles according to Example 1), 80 parts by weight of toluene, and 4 parts by weight of a dispersant were mixed. A dispersion was made using a paint shaker.

この分散液30重量部に、紫外線硬化樹脂を35重量部、トルエン35重量部を加えて攪拌し、実施例1に係る可視光吸収膜形成用インクとした。   To 30 parts by weight of this dispersion, 35 parts by weight of an ultraviolet curable resin and 35 parts by weight of toluene were added and stirred to obtain a visible light absorbing film forming ink according to Example 1.

この可視光吸収膜形成用インクをポリエチレンテレフタレート製透明フィルムの一面上にバーコーターで塗布し、70℃で60秒乾燥させた後、紫外線を照射して硬化させ、実施例1に係る可視光吸収膜を作製した。   This visible light absorbing film forming ink was applied on one side of a transparent film made of polyethylene terephthalate with a bar coater, dried at 70 ° C. for 60 seconds, then cured by irradiating with ultraviolet rays, and visible light absorption according to Example 1 A membrane was prepared.

次に、得られた実施例1に係る可視光吸収膜の色調をL表色系で測定したところ、L=74.00、a=0.40、b=−4.87と青みの黒の色調を呈し、意匠性に優れたものであった。 Next, when the color tone of the visible light absorption film | membrane which concerns on obtained Example 1 was measured by L * a * b * colorimetric system, L * = 74.00, a * = 0.40, b * =- It exhibited a color tone of 4.87 and bluish black, and was excellent in design.

また、実施例1に係る可視光吸収膜について、初期可視光透過率が40%前後の膜を用いて耐候性を調べた。   The weather resistance of the visible light absorbing film according to Example 1 was examined using a film having an initial visible light transmittance of about 40%.

耐候性は、キセノンウェザオメーター(XWOM、ATLAS社製Ci4000)で膜面側から200時間照射し、
[可視光透過率変化率]=
[200時間照射後の可視光透過率−初期可視光透過率]/[初期可視光透過率]
で定義される上記可視光透過率変化率が50%未満であるものを「○」、50%以上であるものを「×」として以下の表1に示した。
The weather resistance was irradiated for 200 hours from the film surface side with a xenon weatherometer (XWOM, ATLAS Ci4000),
[Visible light transmittance change rate] =
[Visible light transmittance after irradiation for 200 hours-initial visible light transmittance] / [initial visible light transmittance]
Table 1 below shows that the change rate of the visible light transmittance defined by is less than 50%, and “x” is 50% or more.

[Cu−Mn−Co複合酸化物]
硫酸銅5水和物120重量部、硫酸マンガン5水和物150重量部、および、硫酸コバルト7水和物59重量部を1000重量部の水に溶解し、均一な水溶液A2として適用した以外は実施例1と同様にして実施例2に係る黒色粉末を得た。
[Cu-Mn-Co composite oxide]
Except that 120 parts by weight of copper sulfate pentahydrate, 150 parts by weight of manganese sulfate pentahydrate and 59 parts by weight of cobalt sulfate heptahydrate were dissolved in 1000 parts by weight of water and applied as a uniform aqueous solution A2. A black powder according to Example 2 was obtained in the same manner as Example 1.

得られた黒色粉末をXRDにより分析したところ、スピネル型の複合酸化物であり、一次粒子径は15nmと小さく、分散に適した微粒子であった。   When the obtained black powder was analyzed by XRD, it was a spinel-type composite oxide, and the primary particle size was as small as 15 nm, and it was fine particles suitable for dispersion.

また、ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.30、Co/Cu=0.44と、目的とする組成に一致していた。   Further, when each metal ion was quantified by ICP emission analysis, Mn / Cu = 1.30 and Co / Cu = 0.44, which were consistent with the intended composition.

得られた実施例2に係る可視光吸収黒色微粒子を用いて実施例1と同様の方法により実施例2に係る吸収膜形成用インクを調製し、かつ、このインクを用いて実施例2に係る可視光吸収膜を作製した。   Using the obtained visible light-absorbing black fine particles according to Example 2, an absorption film forming ink according to Example 2 was prepared in the same manner as in Example 1, and this ink was used as Example 2. A visible light absorbing film was prepared.

次に、得られた実施例2に係る可視光吸収膜の色調をL表色系で測定したところ、L=70.85、a=0.98、b=−4.10と紫黒の色調を呈し、意匠性に優れたものであった。 Next, when the color tone of the obtained visible light absorption film according to Example 2 was measured by the L * a * b * color system, L * = 70.85, a * = 0.98, b * = −. It exhibited a hue of 4.10 and purple-black, and was excellent in design.

また、実施例2に係る可視光吸収膜の耐候性について、実施例1と同様の方法により調べた。この結果も表1に示す。
Further, the weather resistance of the visible light absorbing film according to Example 2 was examined by the same method as in Example 1. The results are also shown in Table 1.

[Cu−Mn−Co複合酸化物]
硫酸銅5水和物120重量部、硫酸マンガン5水和物197重量部、および、硫酸コバルト7水和物59重量部を1000重量部の水に溶解し、均一な水溶液A3として適用した以外は実施例1と同様にして実施例3に係る黒色粉末を得た。
[Cu-Mn-Co composite oxide]
Except that 120 parts by weight of copper sulfate pentahydrate, 197 parts by weight of manganese sulfate pentahydrate and 59 parts by weight of cobalt sulfate heptahydrate were dissolved in 1000 parts by weight of water and applied as a uniform aqueous solution A3. A black powder according to Example 3 was obtained in the same manner as Example 1.

得られた黒色粉末をXRDにより分析したところ、スピネル型の複合酸化物であり、一次粒子径は18nmと小さく、分散に適した微粒子であった。   When the obtained black powder was analyzed by XRD, it was a spinel-type composite oxide, and the primary particle diameter was as small as 18 nm, and it was fine particles suitable for dispersion.

また、ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.70、Co/Cu=0.44と、目的とする組成に一致していた。   Further, when each metal ion was quantified by ICP emission analysis, Mn / Cu = 1.70 and Co / Cu = 0.44, which were consistent with the intended composition.

得られた実施例3に係る可視光吸収黒色微粒子を用いて実施例1と同様の方法により実施例3に係る吸収膜形成用インクを調製し、かつ、このインクを用いて実施例3に係る可視光吸収膜を作製した。   Using the obtained visible light-absorbing black fine particles according to Example 3, an ink for forming an absorption film according to Example 3 was prepared in the same manner as in Example 1, and the ink according to Example 3 was prepared using this ink. A visible light absorbing film was prepared.

次に、得られた実施例3に係る可視光吸収膜の色調をL表色系で測定したところ、L=69.78、a=−0.70、b=−3.05と青みの黒の色調を呈し、意匠性に優れたものであった。 Next, when the color tone of the visible light absorbing film according to Example 3 obtained was measured by the L * a * b * color system, L * = 69.78, a * = − 0.70, b * = It exhibited a color tone of -3.05 and bluish black and was excellent in design.

また、実施例3に係る可視光吸収膜の耐候性について、実施例1と同様の方法により調べた。この結果も表1に示す。
Further, the weather resistance of the visible light absorbing film according to Example 3 was examined by the same method as in Example 1. The results are also shown in Table 1.

[Cu−Mn−Co複合酸化物]
硫酸銅5水和物120重量部、硫酸マンガン5水和物180重量部、および、硫酸コバルト7水和物13重量部を1000重量部の水に溶解し、均一な水溶液A4として適用した以外は実施例1と同様にして実施例4に係る黒色粉末を得た。
[Cu-Mn-Co composite oxide]
Except that 120 parts by weight of copper sulfate pentahydrate, 180 parts by weight of manganese sulfate pentahydrate, and 13 parts by weight of cobalt sulfate heptahydrate were dissolved in 1000 parts by weight of water and applied as a uniform aqueous solution A4. A black powder according to Example 4 was obtained in the same manner as Example 1.

得られた黒色粉末をXRDにより分析したところ、スピネル型の複合酸化物であり、一次粒子径は17nmと小さく、分散に適した微粒子であった。   When the obtained black powder was analyzed by XRD, it was a spinel-type composite oxide, and the primary particle diameter was as small as 17 nm, and it was fine particles suitable for dispersion.

また、ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.56、Co/Cu=0.10と、目的とする組成に一致していた。   Further, when each metal ion was quantified by ICP emission analysis, Mn / Cu = 1.56 and Co / Cu = 0.10 were consistent with the intended composition.

得られた実施例4に係る可視光吸収黒色微粒子を用いて実施例1と同様の方法により実施例4に係る吸収膜形成用インクを調製し、かつ、このインクを用いて実施例4に係る可視光吸収膜を作製した。   Using the obtained visible light-absorbing black fine particles according to Example 4, an ink for forming an absorption film according to Example 4 was prepared in the same manner as in Example 1, and the ink was used according to Example 4 using this ink. A visible light absorbing film was prepared.

次に、得られた実施例4に係る可視光吸収膜の色調をL表色系で測定したところ、L=69.87、a=0.45、b=−1.20と青みの黒の色調を呈し、意匠性に優れたものであった。 Next, when the color tone of the visible light absorption film | membrane which concerns on obtained Example 4 was measured by the L * a * b * colorimetric system, L * = 69.87, a * = 0.45, b * =- It exhibited a color tone of 1.20 and a bluish black and was excellent in design.

また、実施例4に係る可視光吸収膜の耐候性について、実施例1と同様の方法により調べた。この結果も表1に示す。
Further, the weather resistance of the visible light absorbing film according to Example 4 was examined by the same method as in Example 1. The results are also shown in Table 1.

[Cu−Mn−Co複合酸化物]
硫酸銅5水和物120重量部、硫酸マンガン5水和物180重量部、および、硫酸コバルト7水和物67重量部を1000重量部の水に溶解し、均一な水溶液A5として適用した以外は実施例1と同様にして実施例5に係る黒色粉末を得た。
[Cu-Mn-Co composite oxide]
Except that 120 parts by weight of copper sulfate pentahydrate, 180 parts by weight of manganese sulfate pentahydrate, and 67 parts by weight of cobalt sulfate heptahydrate were dissolved in 1000 parts by weight of water and applied as a uniform aqueous solution A5. A black powder according to Example 5 was obtained in the same manner as Example 1.

得られた黒色粉末をXRDにより分析したところ、スピネル型の複合酸化物であり、一次粒子径は16nmと小さく、分散に適した微粒子であった。   When the obtained black powder was analyzed by XRD, it was a spinel type complex oxide, and the primary particle size was as small as 16 nm, and it was fine particles suitable for dispersion.

また、ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.56、Co/Cu=0.50と、目的とする組成に一致していた。   Further, when each metal ion was quantified by ICP emission analysis, Mn / Cu = 1.56 and Co / Cu = 0.50, which were consistent with the intended composition.

得られた実施例5に係る可視光吸収黒色微粒子を用いて実施例1と同様の方法により実施例5に係る吸収膜形成用インクを調製し、かつ、このインクを用いて実施例5に係る可視光吸収膜を作製した。   Using the obtained visible light-absorbing black fine particles according to Example 5, an ink for forming an absorption film according to Example 5 was prepared in the same manner as in Example 1, and the ink was used according to Example 5 using this ink. A visible light absorbing film was prepared.

次に、得られた実施例5に係る可視光吸収膜の色調をL表色系で測定したところ、L=70.89、a=0.50、b=−3.39と紫みの黒の色調を呈し、意匠性に優れたものであった。 Next, when the color tone of the obtained visible light absorption film according to Example 5 was measured by the L * a * b * color system, L * = 70.89, a * = 0.50, b * = −. It exhibited a color of 3.39 and purple black, and was excellent in design.

また、実施例5に係る可視光吸収膜の耐候性について、実施例1と同様の方法により調べた。この結果も表1に示す。
Further, the weather resistance of the visible light absorbing film according to Example 5 was examined by the same method as in Example 1. The results are also shown in Table 1.

[Cu−Mn−Fe−Co複合酸化物]
硫酸銅5水和物120重量部、硫酸マンガン5水和物180重量部、硫酸第一鉄7水和物29重量部、および、硫酸コバルト7水和物30重量部を1000重量部の水に溶解し、均一な水溶液A6として適用した以外は実施例1と同様にして実施例6に係る黒色粉末を得た。
[Cu-Mn-Fe-Co composite oxide]
1000 parts by weight of 120 parts by weight of copper sulfate pentahydrate, 180 parts by weight of manganese sulfate pentahydrate, 29 parts by weight of ferrous sulfate heptahydrate, and 30 parts by weight of cobalt sulfate heptahydrate A black powder according to Example 6 was obtained in the same manner as in Example 1 except that it was dissolved and applied as a uniform aqueous solution A6.

得られた黒色粉末をXRDにより分析したところ、スピネル型の複合酸化物であり、一次粒子径は26nmと小さく、分散に適した微粒子であった。   When the obtained black powder was analyzed by XRD, it was a spinel-type composite oxide, and the primary particle size was as small as 26 nm, and it was fine particles suitable for dispersion.

また、ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.55、Co/Cu=0.21、Co/(Fe+Co)=0.5と、目的とする組成に一致していた。   Further, when each metal ion was quantified by ICP emission analysis, Mn / Cu = 1.55, Co / Cu = 0.21, Co / (Fe + Co) = 0.5, which coincided with the target composition. It was.

得られた実施例6に係る可視光吸収黒色微粒子を用いて実施例1と同様の方法により実施例6に係る吸収膜形成用インクを調製し、かつ、このインクを用いて実施例6に係る可視光吸収膜を作製した。   Using the obtained visible light-absorbing black fine particles according to Example 6, the ink for forming an absorption film according to Example 6 was prepared in the same manner as in Example 1, and the ink according to Example 6 was prepared using this ink. A visible light absorbing film was prepared.

次に、得られた実施例6に係る可視光吸収膜の色調をL表色系で測定したところ、L=74.41、a=−0.33、b=−1.43と青みの黒の色調を呈し、意匠性に優れたものであった。 Next, when the color tone of the obtained visible light absorption film according to Example 6 was measured by the L * a * b * color system, L * = 74.41, a * = − 0.33, b * = It exhibited a color tone of -1.43 and bluish black and was excellent in design.

また、実施例6に係る可視光吸収膜の耐候性について、実施例1と同様の方法により調べた。この結果も表1に示す。
Further, the weather resistance of the visible light absorbing film according to Example 6 was examined by the same method as in Example 1. The results are also shown in Table 1.

[Cu−Mn−Al−Co複合酸化物]
硫酸銅5水和物120重量部、硫酸マンガン5水和物180重量部、硫酸アルミニウム水和物33重量部、および、硫酸コバルト7水和物30重量部を1000重量部の水に溶解し、均一な水溶液A7として適用した以外は実施例1と同様にして実施例7に係る黒色粉末を得た。
[Cu-Mn-Al-Co composite oxide]
120 parts by weight of copper sulfate pentahydrate, 180 parts by weight of manganese sulfate pentahydrate, 33 parts by weight of aluminum sulfate hydrate, and 30 parts by weight of cobalt sulfate heptahydrate are dissolved in 1000 parts by weight of water, A black powder according to Example 7 was obtained in the same manner as in Example 1 except that it was applied as a uniform aqueous solution A7.

得られた黒色粉末をXRDにより分析したところ、スピネル型の複合酸化物であり、一次粒子径は25nmと小さく、分散に適した微粒子であった。   When the obtained black powder was analyzed by XRD, it was a spinel-type composite oxide, and the primary particle size was as small as 25 nm, and it was fine particles suitable for dispersion.

また、ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.57、Co/Cu=0.22、Co/(Co+Al)=0.8と、目的とする組成に一致していた。   Further, when each metal ion was quantified by ICP emission analysis, Mn / Cu = 1.57, Co / Cu = 0.22, and Co / (Co + Al) = 0.8, which coincided with the target composition. It was.

得られた実施例7に係る可視光吸収黒色微粒子を用いて実施例1と同様の方法により実施例7に係る吸収膜形成用インクを調製し、かつ、このインクを用いて実施例7に係る可視光吸収膜を作製した。   Using the obtained visible light-absorbing black fine particles according to Example 7, the ink for forming an absorption film according to Example 7 was prepared in the same manner as in Example 1, and the ink according to Example 7 was prepared using this ink. A visible light absorbing film was prepared.

次に、得られた実施例7に係る可視光吸収膜の色調をL表色系で測定したところ、L=70.50、a=0.28、b=−3.81と青みの黒の色調を呈し、意匠性に優れたものであった。 Next, when the color tone of the visible light absorbing film according to Example 7 obtained was measured by the L * a * b * color system, L * = 70.50, a * = 0.28, b * = −. It had a color tone of 3.81 and bluish black, and was excellent in design.

また、実施例7に係る可視光吸収膜の耐候性について、実施例1と同様の方法により調べた。この結果も表1に示す。
Further, the weather resistance of the visible light absorbing film according to Example 7 was examined by the same method as in Example 1. The results are also shown in Table 1.

[Cu−Mn−Fe−Co−Ni複合酸化物]
硫酸銅5水和物120重量部、硫酸マンガン5水和物180重量部、硫酸第一鉄7水和物12重量部、および、硫酸コバルト7水和物36重量部、硫酸ニッケル6水和物11重量部を1000重量部の水に溶解し、均一な水溶液A8として適用した以外は実施例1と同様にして実施例8に係る黒色粉末を得た。
[Cu-Mn-Fe-Co-Ni composite oxide]
120 parts by weight of copper sulfate pentahydrate, 180 parts by weight of manganese sulfate pentahydrate, 12 parts by weight of ferrous sulfate heptahydrate, 36 parts by weight of cobalt sulfate heptahydrate, nickel sulfate hexahydrate A black powder according to Example 8 was obtained in the same manner as in Example 1 except that 11 parts by weight was dissolved in 1000 parts by weight of water and applied as a uniform aqueous solution A8.

得られた黒色粉末をXRDにより分析したところ、スピネル型の複合酸化物であり、一次粒子径は23nmと小さく、分散に適した微粒子であった。   When the obtained black powder was analyzed by XRD, it was a spinel type complex oxide, and the primary particle diameter was as small as 23 nm, and it was fine particles suitable for dispersion.

また、ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.57、Co/Cu=0.27、Co/(Co+Ni+Fe)=0.6と、目的とする組成に一致していた。   Moreover, when each metal ion was quantified by ICP emission analysis, Mn / Cu = 1.57, Co / Cu = 0.27, and Co / (Co + Ni + Fe) = 0.6, which were in agreement with the target composition. It was.

得られた実施例8に係る可視光吸収黒色微粒子を用いて実施例1と同様の方法により実施例8に係る吸収膜形成用インクを調製し、かつ、このインクを用いて実施例8に係る可視光吸収膜を作製した。   Using the obtained visible light-absorbing black fine particles according to Example 8, the ink for forming an absorption film according to Example 8 was prepared in the same manner as in Example 1, and the ink according to Example 8 was prepared using this ink. A visible light absorbing film was prepared.

次に、得られた実施例8に係る可視光吸収膜の色調をL表色系で測定したところ、L=70.39、a=−1.03、b=−4.50と青みの黒の色調を呈し、意匠性に優れたものであった。 Next, when the color tone of the obtained visible light absorption film according to Example 8 was measured by the L * a * b * color system, L * = 70.39, a * = − 1.03, b * = It exhibited a color tone of -4.50 and bluish black and was excellent in design.

また、実施例8に係る可視光吸収膜の耐候性について、実施例1と同様の方法により調べた。この結果も表1に示す。

[比較例1]
[Cu−Mn−Co複合酸化物]
硫酸銅5水和物120重量部、硫酸マンガン5水和物203重量部、および、硫酸コバルト7水和物59重量部を1000重量部の水に溶解し、均一な水溶液C1として適用した以外は実施例1と同様にして比較例1に係る黒色粉末を得た。
Further, the weather resistance of the visible light absorbing film according to Example 8 was examined by the same method as in Example 1. The results are also shown in Table 1.

[Comparative Example 1]
[Cu-Mn-Co composite oxide]
Except that 120 parts by weight of copper sulfate pentahydrate, 203 parts by weight of manganese sulfate pentahydrate and 59 parts by weight of cobalt sulfate heptahydrate were dissolved in 1000 parts by weight of water and applied as a uniform aqueous solution C1. A black powder according to Comparative Example 1 was obtained in the same manner as Example 1.

得られた黒色粉末をXRDにより分析したところ、スピネル型の複合酸化物の他にスピネル型ではない構造の不純物が検出された。   When the obtained black powder was analyzed by XRD, impurities having a structure other than the spinel type were detected in addition to the spinel type composite oxide.

また、ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.75、Co/Cu=0.44であった。   Moreover, when each metal ion was quantified by ICP emission analysis, it was Mn / Cu = 1.75 and Co / Cu = 0.44.

得られた比較例1に係る可視光吸収黒色微粒子を用いて実施例1と同様の方法により比較例1に係る吸収膜形成用インクを調製し、かつ、このインクを用いて比較例1に係る可視光吸収膜を作製した。   Using the obtained visible light-absorbing black fine particles according to Comparative Example 1, an ink for forming an absorption film according to Comparative Example 1 was prepared in the same manner as in Example 1, and the ink according to Comparative Example 1 was prepared using this ink. A visible light absorbing film was prepared.

次に、得られた比較例1に係る可視光吸収膜の色調をL表色系で測定したところ、L=74.24、a=−0.30、b=−2.44と青みの黒の色調を呈し、意匠性に優れたものであった。 Next, when the color tone of the obtained visible light absorption film according to Comparative Example 1 was measured by the L * a * b * color system, L * = 74.24, a * = − 0.30, b * = It exhibited a color tone of -2.44 and bluish black and was excellent in design.

また、比較例1に係る可視光吸収膜の耐候性について、実施例1と同様の方法により調べた。この結果を表1に示すが、200時間照射により顕著な色抜けが確認され、可視光透過率変化率は50%を越えたため「×」評価とした。

[比較例2]
[Cu−Mn−Co複合酸化物]
硫酸銅5水和物120重量部、硫酸マンガン5水和物139重量部、および、硫酸コバルト7水和物59重量部を1000重量部の水に溶解し、均一な水溶液C2として適用した以外は実施例1と同様にして比較例2に係る黒色粉末を得た。
Further, the weather resistance of the visible light absorbing film according to Comparative Example 1 was examined by the same method as in Example 1. The results are shown in Table 1, and a noticeable color loss was confirmed by irradiation for 200 hours, and the change rate of visible light transmittance exceeded 50%.

[Comparative Example 2]
[Cu-Mn-Co composite oxide]
Except that 120 parts by weight of copper sulfate pentahydrate, 139 parts by weight of manganese sulfate pentahydrate, and 59 parts by weight of cobalt sulfate heptahydrate were dissolved in 1000 parts by weight of water and applied as a uniform aqueous solution C2. A black powder according to Comparative Example 2 was obtained in the same manner as Example 1.

得られた黒色粉末をXRDにより分析したところ、スピネル型の複合酸化物であり、一次粒子径は19nmと小さく、分散に適した微粒子であった。   When the obtained black powder was analyzed by XRD, it was a spinel type complex oxide, and the primary particle size was as small as 19 nm, and it was fine particles suitable for dispersion.

また、ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.20、Co/Cu=0.44であった。   Further, when each metal ion was quantified by ICP emission analysis, Mn / Cu = 1.20 and Co / Cu = 0.44.

得られた比較例2に係る可視光吸収黒色微粒子を用いて実施例1と同様の方法により比較例2に係る吸収膜形成用インクを調製し、かつ、このインクを用いて比較例2に係る可視光吸収膜を作製した。   Using the obtained visible light-absorbing black fine particles according to Comparative Example 2, an ink for forming an absorption film according to Comparative Example 2 was prepared in the same manner as in Example 1, and this ink was used to produce Comparative Example 2 A visible light absorbing film was prepared.

次に、得られた比較例2に係る可視光吸収膜の色調をL表色系で測定したところ、L=70.24、a=1.10、b=−4.50と濃い紫の色調を呈し、意匠性に劣るものであった。 Next, when the color tone of the obtained visible light absorption film according to Comparative Example 2 was measured in the L * a * b * color system, L * = 70.24, a * = 1.10, b * = −. It exhibited a deep purple color tone of 4.50 and was inferior in design.

また、比較例2に係る可視光吸収膜の耐候性について、実施例1と同様の方法により調べた。この結果を表1に示す。可視光透過率変化率は50%よりも低く、「○」評価とした。

[比較例3]
[Cu−Mn−Co複合酸化物]
硫酸銅5水和物120重量部、硫酸マンガン5水和物180重量部、および、硫酸コバルト7水和物5重量部を1000重量部の水に溶解し、均一な水溶液C3として適用した以外は実施例1と同様にして比較例3に係る黒色粉末を得た。
Further, the weather resistance of the visible light absorbing film according to Comparative Example 2 was examined by the same method as in Example 1. The results are shown in Table 1. The visible light transmittance change rate was lower than 50%, and was evaluated as “◯”.

[Comparative Example 3]
[Cu-Mn-Co composite oxide]
Except that 120 parts by weight of copper sulfate pentahydrate, 180 parts by weight of manganese sulfate pentahydrate, and 5 parts by weight of cobalt sulfate heptahydrate were dissolved in 1000 parts by weight of water and applied as a uniform aqueous solution C3. A black powder according to Comparative Example 3 was obtained in the same manner as Example 1.

得られた黒色粉末をXRDにより分析したところ、スピネル型の複合酸化物であり、一次粒子径は23nmと小さく、分散に適した微粒子であった。   When the obtained black powder was analyzed by XRD, it was a spinel type complex oxide, and the primary particle diameter was as small as 23 nm, and it was fine particles suitable for dispersion.

また、ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.56、Co/Cu=0.04であった。   Moreover, when each metal ion was quantified by ICP emission analysis, it was Mn / Cu = 1.56 and Co / Cu = 0.04.

得られた比較例3に係る可視光吸収黒色微粒子を用いて実施例1と同様の方法により比較例3に係る吸収膜形成用インクを調製し、かつ、このインクを用いて比較例3に係る可視光吸収膜を作製した。   Using the obtained visible light-absorbing black fine particles according to Comparative Example 3, an ink for forming an absorption film according to Comparative Example 3 was prepared in the same manner as in Example 1, and the ink according to Comparative Example 3 was prepared using this ink. A visible light absorbing film was prepared.

次に、得られた比較例3に係る可視光吸収膜の色調をL表色系で測定したところ、L=71.36、a=0.38、b=−0.20と青みが少ない黒の色調を呈し、意匠性に劣るものであった。 Next, when the color tone of the visible light absorbing film according to Comparative Example 3 obtained was measured by the L * a * b * color system, L * = 71.36, a * = 0.38, b * = −. It exhibited a black color tone with less bluish color of 0.20 and was inferior in design.

また、比較例3に係る可視光吸収膜の耐候性について、実施例1と同様の方法により調べた。この結果を表1に示すが、200時間照射により顕著な色抜けが確認された。

[比較例4]
[Cu−Mn−Co複合酸化物]
硫酸銅5水和物120重量部、硫酸マンガン5水和物180重量部、および、硫酸コバルト7水和物86重量部を1000重量部の水に溶解し、均一な水溶液C4として適用した以外は実施例1と同様にして比較例4に係る黒色粉末を得た。
Further, the weather resistance of the visible light absorbing film according to Comparative Example 3 was examined by the same method as in Example 1. The results are shown in Table 1. As a result, remarkable color loss was confirmed by irradiation for 200 hours.

[Comparative Example 4]
[Cu-Mn-Co composite oxide]
Except that 120 parts by weight of copper sulfate pentahydrate, 180 parts by weight of manganese sulfate pentahydrate, and 86 parts by weight of cobalt sulfate heptahydrate were dissolved in 1000 parts by weight of water and applied as a uniform aqueous solution C4. A black powder according to Comparative Example 4 was obtained in the same manner as Example 1.

得られた黒色粉末をXRDにより分析したところ、スピネル型の複合酸化物であり、一次粒子径は22nmと小さく、分散に適した微粒子であった。   When the obtained black powder was analyzed by XRD, it was a spinel-type composite oxide, and the primary particle size was as small as 22 nm, and it was fine particles suitable for dispersion.

また、ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.56、Co/Cu=0.64であった。   Moreover, when each metal ion was quantified by ICP emission analysis, it was Mn / Cu = 1.56 and Co / Cu = 0.64.

得られた比較例4に係る可視光吸収黒色微粒子を用いて実施例1と同様の方法により比較例4に係る吸収膜形成用インクを調製し、かつ、このインクを用いて比較例4に係る可視光吸収膜を作製した。   Using the obtained visible light-absorbing black fine particles according to Comparative Example 4, an absorption film forming ink according to Comparative Example 4 was prepared by the same method as in Example 1, and this ink was used to produce Comparative Example 4 A visible light absorbing film was prepared.

次に、得られた比較例4に係る可視光吸収膜の色調をL表色系で測定したところ、L=70.53、a=1.34、b=−3.29と濃い紫の色調を呈し、意匠性に劣るものであった。 Next, when the color tone of the obtained visible light absorption film according to Comparative Example 4 was measured by the L * a * b * color system, L * = 70.53, a * = 1.34, b * = −. It exhibited a deep purple color tone of 3.29 and was inferior in design.

また、比較例4に係る可視光吸収膜の耐候性について、実施例1と同様の方法により調べた。この結果を表1に示す。

[比較例5]
[Cu−Mn−Ni複合酸化物]
硫酸銅5水和物116重量部、硫酸マンガン5水和物184重量部、および、硫酸ニッケル6水和物56重量部を1000重量部の水に溶解し、均一な水溶液C5として適用した以外は実施例1と同様にして比較例5に係る黒色粉末を得た。
Further, the weather resistance of the visible light absorbing film according to Comparative Example 4 was examined by the same method as in Example 1. The results are shown in Table 1.

[Comparative Example 5]
[Cu-Mn-Ni composite oxide]
Except that 116 parts by weight of copper sulfate pentahydrate, 184 parts by weight of manganese sulfate pentahydrate and 56 parts by weight of nickel sulfate hexahydrate were dissolved in 1000 parts by weight of water and applied as a uniform aqueous solution C5. A black powder according to Comparative Example 5 was obtained in the same manner as Example 1.

得られた黒色粉末をXRDにより分析したところ、スピネル型の複合酸化物であり、一次粒子径は23nmと小さく、分散に適した微粒子であった。   When the obtained black powder was analyzed by XRD, it was a spinel type complex oxide, and the primary particle diameter was as small as 23 nm, and it was fine particles suitable for dispersion.

また、ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.67、Ni/Cu=0.47であった。   Moreover, when each metal ion was quantified by ICP emission analysis, it was Mn / Cu = 1.67 and Ni / Cu = 0.47.

得られた比較例5に係る可視光吸収黒色微粒子を用いて実施例1と同様の方法により比較例5に係る吸収膜形成用インクを調製し、かつ、このインクを用いて比較例5に係る可視光吸収膜を作製した。   Using the obtained visible light-absorbing black fine particles according to Comparative Example 5, an ink for forming an absorption film according to Comparative Example 5 was prepared in the same manner as in Example 1, and the ink according to Comparative Example 5 was prepared using this ink. A visible light absorbing film was prepared.

次に、得られた比較例5に係る可視光吸収膜の色調をL表色系で測定したところ、L=74.24、a=−0.30、b=−2.44と青みの黒の色調であった。 Next, when the color tone of the visible light absorbing film according to Comparative Example 5 obtained was measured by the L * a * b * color system, L * = 74.24, a * = − 0.30, b * = The color tone was -2.44 and bluish black.

また、比較例5に係る可視光吸収膜の耐候性について、実施例1と同様の方法により調べた。この結果を表1に示すが、必須成分であるCoが含まれていないため200時間照射により顕著な色抜けが確認された。

[比較例6]
[Cu−Fe−Mn複合酸化物]
Cu−Fe−Mn系黒色複合酸化物顔料微粒子[大日精化工業(株)社製、商品名TMB#3550]10重量部を着色成分として用いた。
Further, the weather resistance of the visible light absorbing film according to Comparative Example 5 was examined by the same method as in Example 1. The results are shown in Table 1. As Co, which is an essential component, is not contained, significant color loss was confirmed by irradiation for 200 hours.

[Comparative Example 6]
[Cu-Fe-Mn composite oxide]
10 parts by weight of Cu—Fe—Mn black composite oxide pigment fine particles [manufactured by Dainichi Seika Kogyo Co., Ltd., trade name TMB # 3550] were used as a coloring component.

ICP発光分析により各金属イオンの定量を行ったところ、Mn/Cu=1.61、Fe/Cu=0.40であった。   When each metal ion was quantified by ICP emission analysis, Mn / Cu = 1.61 and Fe / Cu = 0.40.

この顔料微粒子を用いて実施例1と同様の方法により比較例6に係る吸収膜形成用インクを調製し、かつ、このインクを用いて比較例6に係る可視光吸収膜を作製した。   Using this pigment fine particle, an ink for forming an absorption film according to Comparative Example 6 was prepared in the same manner as in Example 1, and a visible light absorption film according to Comparative Example 6 was prepared using this ink.

比較例6に係る可視光吸収膜の色調をL表色系で測定したところ、L=72.0、a=−0.49、b=0.66と黒の色調であったが、青みに乏しかった。 When the color tone of the visible light absorbing film according to Comparative Example 6 was measured with the L * a * b * color system, L * = 72.0, a * = − 0.49, b * = 0.66, black. Although it was a color tone, it was poor in blueness.

また、比較例6に係る可視光吸収膜の耐候性について、実施例1と同様の方法により調べた。この結果を表1に示すが、必須成分であるCoが含まれていないため200時間照射により顕著な色抜けが確認された。   Further, the weather resistance of the visible light absorbing film according to Comparative Example 6 was examined by the same method as in Example 1. The results are shown in Table 1. As Co, which is an essential component, is not contained, significant color loss was confirmed by irradiation for 200 hours.

Figure 2007230848
[確 認]
表1の結果から以下のことが確認される。
(1)実施例1〜8に係る可視光吸収膜は、意匠性に優れた「青みの黒」〜「紫みの黒」の色調を呈し、かつ、耐候性にも優れていることが確認された。
(2)Cu−Mn−Co系の可視光吸収黒色微粒子が適用された比較例1〜4に係る可視光吸収膜において、Mn/Cuのモル比が1.7を越える比較例1、および、Co/Cuのモル比が0.1未満の比較例3に係る可視光吸収膜はその耐候性において各実施例より劣ることが確認され、また、Mn/Cuのモル比が1.3未満の比較例2、および、Co/Cuのモル比が0.5を越える比較例4に係る可視光吸収膜は意匠性の面で各実施例より劣ることが確認された。更に、Mn/Cuのモル比が1.7を越える比較例1では、得られた粉末中に不純物が確認された。
(3)次に、Cu−Mn−Ni系の可視光吸収黒色微粒子が適用された比較例5に係る可視光吸収膜は、色調は青みの黒を示したが、耐候性試験による色抜けが確認された。
Figure 2007230848
[Confirmation]
The following is confirmed from the results in Table 1.
(1) It is confirmed that the visible light absorption films according to Examples 1 to 8 have a color tone of “blue black” to “purple black” excellent in design properties and excellent weather resistance. It was done.
(2) In the visible light absorbing film according to Comparative Examples 1 to 4 in which Cu-Mn-Co based visible light absorbing black fine particles are applied, Comparative Example 1 in which the molar ratio of Mn / Cu exceeds 1.7, and The visible light absorbing film according to Comparative Example 3 having a Co / Cu molar ratio of less than 0.1 was confirmed to be inferior to each of the examples in terms of its weather resistance, and the Mn / Cu molar ratio was less than 1.3. It was confirmed that the visible light absorbing film according to Comparative Example 2 and Comparative Example 4 having a Co / Cu molar ratio exceeding 0.5 was inferior to each Example in terms of design. Furthermore, in Comparative Example 1 in which the molar ratio of Mn / Cu exceeds 1.7, impurities were confirmed in the obtained powder.
(3) Next, the visible light absorbing film according to Comparative Example 5 to which the Cu—Mn—Ni based visible light absorbing black fine particles were applied showed a bluish black color tone, but color loss due to a weather resistance test was observed. confirmed.

また、Cu−Mn−Fe系の可視光吸収黒色微粒子が適用された比較例6に係る可視光吸収膜は、その色調が青みに乏しく意匠性の面で各実施例より劣っており、かつ、耐候性試験でも顕著な色抜けが確認された。   Further, the visible light absorbing film according to Comparative Example 6 to which the Cu—Mn—Fe based visible light absorbing black fine particles are applied has a poor color tone and is inferior to each example in terms of design, and In the weather resistance test, remarkable color loss was confirmed.

本発明に係る可視光吸収黒色微粒子を用いて可視光吸収膜形成用インク並びに可視光吸収膜を作製することにより、意匠性の高い色調を保ったまま、耐候性劣化による透過率の上昇を大幅に低減させることが可能となる。   By producing the visible light absorbing film forming ink and the visible light absorbing film using the visible light absorbing black fine particles according to the present invention, it is possible to greatly increase the transmittance due to the weather resistance deterioration while maintaining the color tone with a high design property. It is possible to reduce it.

従って、意匠性の向上やプライバシー保護、車内または室内の温度上昇防止を目的として自動車や建物の開口部等に適用される産業上の利用可能性を有している。   Therefore, the present invention has industrial applicability applied to automobiles, building openings, and the like for the purpose of improving design, protecting privacy, and preventing temperature rise in the vehicle or in the room.

Claims (7)

Cu、Mn、Coを主成分とし、かつ、Mn/Cuのモル比が1.3〜1.7、Co/Cuのモル比が0.1〜0.5であるスピネル型複合酸化物により構成されることを特徴とする可視光吸収黒色微粒子。   Consists of a spinel-type composite oxide containing Cu, Mn, and Co as main components, a Mn / Cu molar ratio of 1.3 to 1.7, and a Co / Cu molar ratio of 0.1 to 0.5. Visible light absorbing black fine particles, characterized in that Al、Fe、Niから選択された1種以上の金属が添加された上記スピネル型複合酸化物により構成されることを特徴とする請求項1に記載の可視光吸収黒色微粒子。   The visible light-absorbing black fine particles according to claim 1, wherein the visible light-absorbing black fine particles are composed of the spinel complex oxide to which one or more kinds of metals selected from Al, Fe, and Ni are added. Co/(Co+Al+Fe+Ni)のモル比が0.4〜1.0である上記スピネル型複合酸化物により構成されることを特徴とする請求項2に記載の可視光吸収黒色微粒子。   The visible light-absorbing black fine particles according to claim 2, wherein the visible light-absorbing black fine particles are composed of the spinel-type composite oxide having a Co / (Co + Al + Fe + Ni) molar ratio of 0.4 to 1.0. X線回折のデバイ・シェラー法により求められる結晶子径が30nm以下であることを特徴とする請求項1〜3のいずれかに記載の可視光吸収黒色微粒子。   The visible light-absorbing black fine particles according to any one of claims 1 to 3, wherein a crystallite diameter determined by a Debye-Scherrer method of X-ray diffraction is 30 nm or less. 請求項1〜4のいずれかに記載の可視光吸収黒色微粒子が溶媒中に分散されていることを特徴とする可視光吸収膜形成用インク。   The visible light absorbing film forming ink, wherein the visible light absorbing black fine particles according to claim 1 are dispersed in a solvent. 無機バインダーおよび/または樹脂バインダーが含まれていることを特徴とする請求項5に記載の可視光吸収膜形成用インク。   6. The visible light absorbing film forming ink according to claim 5, wherein an inorganic binder and / or a resin binder are contained. 請求項1〜4のいずれかに記載の可視光吸収黒色微粒子が含まれていることを特徴とする可視光吸収膜。   A visible light absorbing film comprising the visible light absorbing black fine particles according to claim 1.
JP2006057653A 2006-03-03 2006-03-03 Visible light-absorbing black particulate and ink for forming visible light-absorbing film and visible light-absorbing film containing the particulate Pending JP2007230848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057653A JP2007230848A (en) 2006-03-03 2006-03-03 Visible light-absorbing black particulate and ink for forming visible light-absorbing film and visible light-absorbing film containing the particulate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057653A JP2007230848A (en) 2006-03-03 2006-03-03 Visible light-absorbing black particulate and ink for forming visible light-absorbing film and visible light-absorbing film containing the particulate

Publications (1)

Publication Number Publication Date
JP2007230848A true JP2007230848A (en) 2007-09-13

Family

ID=38551821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057653A Pending JP2007230848A (en) 2006-03-03 2006-03-03 Visible light-absorbing black particulate and ink for forming visible light-absorbing film and visible light-absorbing film containing the particulate

Country Status (1)

Country Link
JP (1) JP2007230848A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029757A1 (en) * 2008-09-12 2010-03-18 戸田工業株式会社 Infrared light-reflecting black pigment, and coating material and resin composition each using the infrared light-reflecting black pigment
JP2010083752A (en) * 2008-09-08 2010-04-15 Dainichiseika Color & Chem Mfg Co Ltd Compound oxide black pigment and production method of the same
WO2013150983A1 (en) 2012-04-02 2013-10-10 大日精化工業株式会社 Composite oxide black pigment and method for producing same
JP2015098509A (en) * 2013-11-18 2015-05-28 大日精化工業株式会社 Composite oxide black pigment and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083752A (en) * 2008-09-08 2010-04-15 Dainichiseika Color & Chem Mfg Co Ltd Compound oxide black pigment and production method of the same
JP2013166954A (en) * 2008-09-08 2013-08-29 Dainichiseika Color & Chem Mfg Co Ltd Compound oxide black pigment and method of producing the same
WO2010029757A1 (en) * 2008-09-12 2010-03-18 戸田工業株式会社 Infrared light-reflecting black pigment, and coating material and resin composition each using the infrared light-reflecting black pigment
JP2010065201A (en) * 2008-09-12 2010-03-25 Toda Kogyo Corp Infrared reflective black pigment, and coating material and resin composition using the infrared reflective black pigment
WO2013150983A1 (en) 2012-04-02 2013-10-10 大日精化工業株式会社 Composite oxide black pigment and method for producing same
KR20140144263A (en) 2012-04-02 2014-12-18 다이니치 세이카 고교 가부시키가이샤 Composite oxide black pigment and method for producing same
US9732230B2 (en) 2012-04-02 2017-08-15 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Composite oxide black pigment and method for producing same
JP2015098509A (en) * 2013-11-18 2015-05-28 大日精化工業株式会社 Composite oxide black pigment and manufacturing method therefor

Similar Documents

Publication Publication Date Title
AU2008246747B2 (en) Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
JP5315589B2 (en) Black pigment for infrared reflection, paint and resin composition using the infrared reflection pigment
JP5866434B2 (en) Composite oxide black pigment and method for producing the same
JP5392453B2 (en) Infrared reflective blue pigment, paint and resin composition using the infrared reflective blue pigment
WO2017159790A1 (en) Near-infrared shielding material microparticles, production method thereof, and near-infrared shielding material microparticle dispersion
JP5682743B2 (en) Inorganic black pigment, paint and resin composition using the inorganic black pigment, and agricultural multi-film
EP2383316B1 (en) Transparent color coating composition containing nanosize dispersed pigments, coated substrate and method for preparing same
JP5201401B2 (en) Infrared reflective black pigment, paint and resin composition using the infrared reflective black pigment
JP2007314752A (en) Sunlight screen dispersion, sunlight screen and method for producing the same
JP2006249411A (en) Black pigment for reflecting infrared light, and paint and resin composition comprising the pigment for reflecting infrared light
JP2017218569A (en) Composition for laminated coating film containing iron oxide particles coated with silicon oxide
JP2007230848A (en) Visible light-absorbing black particulate and ink for forming visible light-absorbing film and visible light-absorbing film containing the particulate
JP5201405B2 (en) Infrared reflective black pigment, paint and resin composition using the infrared reflective black pigment
JP6100665B2 (en) Thermal barrier pigment composition, article, and infrared shielding composition
JP5579298B2 (en) Composite oxide black pigment and method for producing the same
JP6413969B2 (en) Dispersion for forming solar shading body and solar shading body using the dispersion
JP5266805B2 (en) Infrared reflective green pigment, paint and resin composition using the infrared reflective green pigment
JP7415890B2 (en) Dark powder dispersion, dark powder dispersion and base material with colored layer
JP3601759B2 (en) Composite oxide green pigment and method for producing the same
JP6305755B2 (en) UV shielding agent and ultraviolet shielding coating comprising monoclinic bismuth oxide containing different elements
WO2021246055A1 (en) Substrate with dark-colored powder dispersion liquid, dark-colored powder dispersion body, and colored layer
JP2004204209A (en) Golden pigment and method for producing the same
JP2001040288A (en) Yellow coating material and yellow rubber/resin composition
JP2009144037A (en) Tungsten oxide microparticle dispersion for addition to resin, molded product of tungsten oxide microparticle-dispersed vinyl chloride resin, and method for producing molded product of tungsten oxide microparticle-dispersed vinyl chloride resin
JPH08198629A (en) Green pigment of fine particulate multiple oxide and its production