JP2007230175A - Manufacturing method of fiber reinforced resin molded article - Google Patents

Manufacturing method of fiber reinforced resin molded article Download PDF

Info

Publication number
JP2007230175A
JP2007230175A JP2006057925A JP2006057925A JP2007230175A JP 2007230175 A JP2007230175 A JP 2007230175A JP 2006057925 A JP2006057925 A JP 2006057925A JP 2006057925 A JP2006057925 A JP 2006057925A JP 2007230175 A JP2007230175 A JP 2007230175A
Authority
JP
Japan
Prior art keywords
resin
cavity
pressure
injection
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006057925A
Other languages
Japanese (ja)
Other versions
JP4923632B2 (en
Inventor
Akira Harada
亮 原田
Ryuta Kamiya
隆太 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2006057925A priority Critical patent/JP4923632B2/en
Publication of JP2007230175A publication Critical patent/JP2007230175A/en
Application granted granted Critical
Publication of JP4923632B2 publication Critical patent/JP4923632B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a fiber reinforced resin molded article which does not need a prior defoaming of the resin and is able to produce a reinforced resin molded article having a higher Vf and better quality compared with that made by the LRTM method. <P>SOLUTION: A mold 11 in which a reduced pressure channel 15 is formed at the out side of a cavity 14 so as to surround the cavity 14 at the same time the mold is clamped at a state where a member for deaerating 18 is arranged so as to mount the cavity 14 and a part of the reduced pressure channel 15 is used. The inside of the cavity 14 is evacuated through the reduced pressure channel 15 at a state where a reinforcing fiber substrate 30 ia arranged in the cavity 14, at the same time the reinforcing fiber substrate 30 is immersed with a resin by injecting the resin into the cavity 14 through an injecting port 19 communicating to with the cavity 14. The resin is injected into the cavity 14 under the first pressure, after gelation of the resin injected into the cavity 14 started to be gelled, the resin is injected by enhancing the injecting pressure of the resin at the second pressure higher than an injecting pressure in the case of the LRTM method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、繊維強化樹脂成形品の製造方法に係り、詳しくはソフトピンチオフ構造をもつ成形型を使用する繊維強化樹脂成形品の製造方法に関する。   The present invention relates to a method for manufacturing a fiber reinforced resin molded product, and more particularly to a method for manufacturing a fiber reinforced resin molded product using a mold having a soft pinch-off structure.

従来、繊維強化樹脂成形品で使用される強化繊維としてガラス繊維や炭素繊維等が挙げられるが、炭素繊維は比重が小さくて高強度、高弾性率を有し、炭素繊維を強化繊維とした繊維強化樹脂成形品は比強度・比弾性率が高く、航空宇宙用途をはじめ最近では自動車や土木・建材等の一般産業用途にも使われ始めている。   Conventionally, glass fibers, carbon fibers, and the like are listed as reinforcing fibers used in fiber reinforced resin molded products, but carbon fibers have a small specific gravity, high strength, and high elastic modulus, and carbon fibers are reinforcing fibers. Reinforced resin molded products have high specific strength and specific elastic modulus, and have recently begun to be used for general industrial applications such as automobiles, civil engineering and building materials, including aerospace applications.

また、その成形法には種々の方法があり、成形品の要求特性や製造コスト等から最適な成形法が選択されており、ハンドレイアップ成形、半硬化状態の熱硬化性樹脂を含浸させたプリプレグ(中間基材)を積層してオートクレーブで成形したものが、一般産業用途で広く採用されている。そして、生産性を高めるため、これまでのプリプレグを使用したオートクレーブ成形法よりも、成形サイクルが短縮できるRTM法、成形型内を真空吸引して樹脂の含浸を助けるVa−RTM法(真空RTM法)等、樹脂が未含浸の強化繊維基材を使用してプリフォームを成形した後に樹脂を一括含浸させる成形法が盛んになってきている。   In addition, there are various molding methods, and the most suitable molding method has been selected from the required characteristics and manufacturing cost of the molded product. Hand lay-up molding, impregnated with a semi-cured thermosetting resin A prepreg (intermediate base material) laminated and molded by an autoclave is widely used in general industrial applications. And in order to increase productivity, the RTM method that can shorten the molding cycle compared to the conventional autoclave molding method using prepreg, Va-RTM method (vacuum RTM method) that helps the resin impregnation by vacuum suction inside the mold. A molding method in which a preform is molded using a reinforcing fiber base not impregnated with a resin and then the resin is impregnated all at once has become popular.

真空RTM法では、キャビティ内外の圧力差によって樹脂を注入して含浸するため、注入初期の段階では強化繊維基材にまだ樹脂が十分に含浸されていないので流動抵抗が低く、速い流速で勢いよく流れる。しかし、強化繊維基材は場所によって流動抵抗に差があり、樹脂が強化繊維基材全体に十分に含浸できないうちに樹脂がゲル化する場合がある。その結果、ボイド(樹脂が含浸されていない空隙部)が発生する。この問題を改善するため、キャビティ内圧力と外部圧力との差圧を利用して樹脂をキャビティ内に注入するとともに、強化繊維基材に含浸させる真空RTM法において、樹脂の注入速度を前記差圧による自然流速よりも低い流速に減速して、樹脂を注入する方法が提案されている(特許文献1参照)。   In the vacuum RTM method, the resin is injected and impregnated by the pressure difference between the inside and outside of the cavity. Therefore, at the initial stage of injection, the resin is not sufficiently impregnated in the reinforcing fiber base, so the flow resistance is low, and it is vigorous at a high flow rate. Flowing. However, there is a difference in flow resistance between the reinforcing fiber bases depending on the location, and the resin may gel before the resin can be sufficiently impregnated into the entire reinforcing fiber base. As a result, voids (voids not impregnated with resin) are generated. In order to improve this problem, in the vacuum RTM method in which the resin is injected into the cavity using the differential pressure between the internal pressure of the cavity and the external pressure, and the reinforcing fiber base material is impregnated, the injection speed of the resin is set to the differential pressure. There has been proposed a method of injecting resin by decelerating to a flow rate lower than the natural flow rate by (see Patent Document 1).

また、ソフトピンチオフ構造を持つ成形型を使用するLRTM(Light Resin Transfer Molding )法も実施されている。ソフトピンチオフ構造とは、キャビティの外側にキャビティを囲むように減圧通路が形成されるとともに、キャビティ及び減圧通路の一部に跨るようにソフトピンチオフ用クロスを配置した状態で型閉じされ、前記減圧通路を介してキャビティ内を減圧する構造を言う。LRTM法では、ソフトピンチオフ構造を有する成形型のキャビティ内に強化繊維基材を配置した状態で、ソフトピンチオフ用クロスを介してキャビティ内を減圧し、減圧されたキャビティ内圧力と外部圧力との差圧を利用して樹脂をキャビティ内に注入して強化繊維基材に含浸させる。
特開2003−25347号公報
In addition, an LRTM (Light Resin Transfer Molding) method using a mold having a soft pinch-off structure is also being carried out. The soft pinch-off structure has a decompression passage formed outside the cavity so as to surround the cavity, and the mold is closed with a soft pinch-off cloth disposed across the cavity and a part of the decompression passage. The structure that decompresses the inside of the cavity via In the LRTM method, the inside of the cavity is depressurized through the soft pinch-off cloth in a state where the reinforcing fiber base is arranged in the cavity of the mold having the soft pinch-off structure, and the difference between the reduced pressure inside the cavity and the external pressure The resin is injected into the cavity using pressure to impregnate the reinforcing fiber substrate.
JP 2003-25347 A

ソフトピンチオフ構造を持たない成形型を使用してRTM法で強化繊維基材に樹脂を含浸させる場合は、樹脂の事前脱泡が必要になる。また、樹脂の事前脱泡をしても強化繊維基材の隙間に存在した小さな気泡の部分がボイドとなったり、気泡が成形型内に残って成形品にピット(凹部)が生じたりし易い。   When using a molding die having no soft pinch-off structure and impregnating the reinforcing fiber base with resin by the RTM method, it is necessary to defoam the resin in advance. In addition, even if the resin is defoamed in advance, small bubble portions present in the gaps between the reinforcing fiber bases may become voids, or the bubbles may remain in the mold and cause pits (recesses) in the molded product. .

特許文献1に記載の方法では、樹脂の注入速度を遅くして樹脂が強化繊維基材に均一に含浸し易くしている。しかし、樹脂注入速度が遅いため生産性が低くなる。
一方、ソフトピンチオフ構造を持つ成形型を使用するLRTM法では、キャビティ内に生じた気泡がソフトピンチオフ用クロスの部分からキャビティ外へ排出されるため、樹脂の事前脱泡が不要になる。
In the method described in Patent Document 1, the resin injection rate is slowed so that the resin is easily impregnated into the reinforcing fiber base. However, productivity is low due to the slow resin injection rate.
On the other hand, in the LRTM method using a mold having a soft pinch-off structure, bubbles generated in the cavity are discharged from the soft pinch-off cloth portion to the outside of the cavity, so that prior defoaming of the resin becomes unnecessary.

しかし、真空RTM法及びLRTM法では、樹脂を積極的に加圧せずに注入するため、強化繊維基材が、例えば、60%以上の高Vf(繊維体積含有率)の場合、樹脂が強化繊維基材全体に含浸し難くなり未含浸部(ボイド)の無い成形体が得難い。また、キャビティ内に注入された樹脂のゲル化が開始された後は、樹脂の粘度が急激に高くなり樹脂の注入が殆どなされなくなるため、高Vfでない強化繊維基材を使用する場合でも、ボイドが発生し易い。   However, in the vacuum RTM method and the LRTM method, since the resin is injected without being positively pressurized, the resin is reinforced when the reinforcing fiber base material has a high Vf (fiber volume content) of, for example, 60% or more. It becomes difficult to impregnate the entire fiber base material, and it is difficult to obtain a molded body having no unimpregnated portion (void). In addition, after the gelation of the resin injected into the cavity is started, the viscosity of the resin suddenly increases and almost no resin is injected. Therefore, even when a reinforcing fiber base material having a high Vf is used, voids are used. Is likely to occur.

本発明は、前記従来の問題に鑑みてなされたものであって、その目的は、樹脂の事前脱泡が不要で、LRTM法の場合に比較して高Vfで品質の良い繊維強化樹脂成形品を製造することができる繊維強化樹脂成形品の製造方法を提供することにある。   The present invention has been made in view of the above-described conventional problems, and its object is to eliminate the need for prior defoaming of the resin, and a fiber reinforced resin molded article having a high Vf and good quality as compared with the LRTM method. It is providing the manufacturing method of the fiber reinforced resin molded product which can manufacture.

前記の目的を達成するため請求項1に記載の発明は、キャビティが形成された第1の型とそのキャビティを覆う第2の型とを備え、前記キャビティの外側に前記キャビティを囲むように減圧通路が形成されるとともに、前記キャビティ及び前記減圧通路の一部に跨るように脱気用部材を配置した状態で型閉じされる成形型を使用する。そして、成形型内に強化繊維基材を配置した状態で前記減圧通路を介して前記キャビティ内を減圧し、前記キャビティに連通する注入孔から樹脂を前記キャビティ内に注入して前記強化繊維基材に樹脂を含浸させる樹脂含浸工程を備えている。そして、前記キャビティ内に前記樹脂を第1の圧力で注入し、前記キャビティ内に注入された樹脂がゲル化を開始した後、樹脂の注入圧力をLRTM(Light Resin Transfer Molding)法における注入圧力より高い第2の圧力に加圧して注入する。   In order to achieve the above object, the invention according to claim 1 includes a first mold in which a cavity is formed and a second mold that covers the cavity, and the pressure is reduced so as to surround the cavity outside the cavity. A mold is used in which a passage is formed and the mold is closed in a state where a deaeration member is disposed so as to straddle a part of the cavity and the decompression passage. Then, with the reinforcing fiber base disposed in the mold, the inside of the cavity is depressurized through the pressure reducing passage, and resin is injected into the cavity from the injection hole communicating with the cavity. A resin impregnation step of impregnating the resin with the resin. Then, the resin is injected into the cavity at a first pressure, and after the resin injected into the cavity starts to gel, the injection pressure of the resin is determined from the injection pressure in the LRTM (Light Resin Transfer Molding) method. Pressurize to inject high second pressure.

ここで、「脱気用部材」とは、型閉じ状態において第1の型と第2の型とに挟持されても、キャビティと減圧通路の間で気体や粘度の低い液体の通過を許容する部材を意味し、樹脂に不溶な材料で形成された織布、編み地、不織布等で構成される。   Here, the “degassing member” allows passage of gas or low-viscosity liquid between the cavity and the decompression passage even when sandwiched between the first mold and the second mold in the mold closed state. It means a member, and is composed of a woven fabric, a knitted fabric, a non-woven fabric or the like formed of a material insoluble in resin.

この発明では、キャビティ内に強化繊維基材が配置されて第1及び第2の型が閉じられた状態で減圧通路を介してキャビティ内が減圧される。そして、注入孔から樹脂がキャビティ内に注入される。キャビティ内に注入された樹脂は強化繊維基材に含浸され、強化繊維基材に残っている気泡を押しながら移動する。気泡はキャビティと減圧通路とに跨って存在する脱気用部材を経てキャビティ内から減圧通路に移動する。粘度が低い状態では樹脂も脱気用部材を通過可能であるが、粘度が高くなると通過が困難になり、気泡が主に通過可能となる。従って、事前に脱泡しないで樹脂を供給しても、樹脂から発生した気泡がキャビティ外へ円滑に排出される。キャビティ内に注入された樹脂のゲル化が開始されるまでは、樹脂はLRTM法と同等の第1の圧力、例えば、0.1MPa〜1MPaで注入され、キャビティ内に注入された樹脂のゲル化が開始された後は、LRTM法における注入圧力より高い第2の圧力に加圧されて注入される。従って、樹脂の粘度が高くなってLRTM法や真空RTM法では樹脂の注入が殆どできない状態においても、樹脂の注入が行われる。その結果、強化繊維基材の未含浸部分に樹脂が含浸され易くなり、LRTM法の場合に比較して高Vfで品質の良い繊維強化樹脂成形品を製造することができる。   In this invention, the inside of the cavity is depressurized through the depressurization passage in a state where the reinforcing fiber base is disposed in the cavity and the first and second molds are closed. And resin is inject | poured in a cavity from an injection hole. The resin injected into the cavity is impregnated in the reinforcing fiber base and moves while pushing the bubbles remaining in the reinforcing fiber base. The bubbles move from the cavity to the decompression passage through the deaeration member existing across the cavity and the decompression passage. In a state where the viscosity is low, the resin can also pass through the deaeration member. However, when the viscosity becomes high, the passage becomes difficult, and bubbles can mainly pass. Therefore, even if the resin is supplied without degassing in advance, the bubbles generated from the resin are smoothly discharged out of the cavity. Until the gelation of the resin injected into the cavity is started, the resin is injected at a first pressure equivalent to the LRTM method, for example, 0.1 MPa to 1 MPa, and the resin injected into the cavity is gelled. Is started, the pressure is increased to a second pressure higher than the injection pressure in the LRTM method and injected. Accordingly, the resin is injected even in a state where the resin has a high viscosity and the LRTM method or the vacuum RTM method can hardly inject the resin. As a result, the resin is easily impregnated in the non-impregnated portion of the reinforcing fiber base, and a fiber reinforced resin molded article having a high Vf and good quality can be manufactured as compared with the LRTM method.

請求項2に記載の発明は、請求項1に記載の発明において、前記樹脂の注入開始から予め設定された所定時間経過した時点で前記注入圧力が前記第2の注入圧力に高められる。従って、この発明では、注入圧力を第1の圧力から第2の圧力に高める適切な時期を、キャビティ内の樹脂の状態を実際に検出せずに注入開始からの経過時間を測定するだけで簡単に設定することができる。   According to a second aspect of the present invention, in the first aspect of the present invention, the injection pressure is increased to the second injection pressure when a predetermined time elapses from the start of the resin injection. Therefore, according to the present invention, it is easy to determine the appropriate time to increase the injection pressure from the first pressure to the second pressure by measuring the elapsed time from the start of injection without actually detecting the state of the resin in the cavity. Can be set to

請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記キャビティ内に注入された樹脂のゲル化に必要なゲル化時間経過後も、前記第2の注入圧力を予め設定された時間保持する。ここで、「予め設定された時間」とは、ゲル化が完了した後、樹脂の硬化収縮を補うために樹脂を有効に注入可能な時間を意味する。   According to a third aspect of the invention, in the first or second aspect of the invention, the second injection pressure is maintained even after the gelation time necessary for the gelation of the resin injected into the cavity. Hold for a preset time. Here, the “preset time” means a time during which the resin can be effectively injected in order to compensate for the curing shrinkage of the resin after the gelation is completed.

ゲル化が完了しても樹脂の硬化は完了しておらず、硬化の進行に伴って硬化収縮が生じる。硬化収縮の量が僅かであれば問題はないが、硬化収縮の量が多い場合、成形品の表面にピット(凹部)や引けが発生する。しかし、この発明では、ゲル化完了後も第2の注入圧力に保持されているため、硬化収縮の量が多い場合にその収縮を補うように樹脂がキャビティ内に注入されて、成形品の表面にピット(凹部)や引けが発生するのが抑制される。   Even when the gelation is completed, the curing of the resin is not completed, and curing shrinkage occurs as the curing proceeds. If the amount of cure shrinkage is small, there is no problem, but if the amount of cure shrinkage is large, pits (concave portions) and shrinkage occur on the surface of the molded product. However, in this invention, since the second injection pressure is maintained even after the completion of gelation, the resin is injected into the cavity to compensate for the shrinkage when the amount of cure shrinkage is large, and the surface of the molded product Occurrence of pits (concave portions) and shrinkage is suppressed.

請求項4に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、前記第2の圧力とは、樹脂がゲル化を開始した後から硬化完了するまでの樹脂中の気泡が前記脱気用部材を通過可能な圧力である。この発明では、ゲル化開始後から硬化完了までの間に発生した気泡をキャビティ外に排出することができる。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the second pressure is a resin from the start of gelation to the completion of curing. This is a pressure at which bubbles inside can pass through the deaeration member. In the present invention, bubbles generated between the start of gelation and the completion of curing can be discharged out of the cavity.

請求項5に記載の発明は、請求項1〜請求項4のいずれか一項に記載の発明において、前記脱気用部材は複数設けられ、前記各脱気用部材は前記注入孔の注入口からの距離が等しく、かつ対称に配置されている。この発明では、脱気用部材が1つ設けられる場合や、複数の脱気用部材を注入口からの距離が異なる状態で非対称に配置した場合に比較して、樹脂が強化繊維基材30に均一に含浸し易くなる。   The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein a plurality of the deaeration members are provided, and each of the deaeration members is an inlet of the injection hole. The distance from each other is equal and symmetrical. In this invention, compared with the case where one deaeration member is provided, or when a plurality of deaeration members are arranged asymmetrically at different distances from the inlet, the resin is in the reinforcing fiber base 30. It becomes easy to impregnate uniformly.

本発明によれば、樹脂の事前脱泡が不要で、LRTM法の場合に比較して高Vfで品質の良い繊維強化樹脂成形品を製造することができる繊維強化樹脂成形品の製造方法を提供することができる。   According to the present invention, there is provided a method for producing a fiber reinforced resin molded product that does not require prior defoaming of the resin and can produce a fiber reinforced resin molded product having a high Vf and good quality as compared with the LRTM method. can do.

以下、本発明を具体化した一実施形態を図1〜図3にしたがって説明する。
繊維強化樹脂成形品の製造にはLRTM(Light Resin Transfer Molding)法と同様にソフトピンチオフ構造を持つ成形型を使用する。図1及び図2に示すように、成形型11は第1の型としての下型12及び第2の型としての上型13を備えている。下型12及び上型13の一方が固定型に、他方が可動型に構成されている。なお、図1(a)は、上型13を省略した成形型11の概略平面図である。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
A mold having a soft pinch-off structure is used for the production of a fiber reinforced resin molded product, as in the LRTM (Light Resin Transfer Molding) method. As shown in FIGS. 1 and 2, the mold 11 includes a lower mold 12 as a first mold and an upper mold 13 as a second mold. One of the lower mold 12 and the upper mold 13 is a fixed mold and the other is a movable mold. FIG. 1A is a schematic plan view of the mold 11 from which the upper mold 13 is omitted.

下型12及び上型13は平面略矩形状に形成され、下型12は、形成すべき繊維強化樹脂成形品の形状に対応した平面略矩形状のキャビティ14を備えるとともに、キャビティ14を囲むように環状の減圧通路15が形成されている。下型12の上面には減圧通路15の内側及び外側に環状溝16a,16bが形成され、環状溝16a,16bにはシール材17a,17bがそれぞれ収容されている。シール材17a,17bとしてO−リングが使用されている。また、下型12の上面にはキャビティ14及び減圧通路15の一部に跨るように複数の脱気用部材(ソフトピンチオフ用クロス)18が配置されている。この実施形態では、脱気用部材18はキャビティ14の各コーナー部近くの4箇所に対称に配置されている。   The lower die 12 and the upper die 13 are formed in a substantially rectangular shape on the plane, and the lower die 12 includes a cavity 14 having a substantially rectangular shape corresponding to the shape of the fiber-reinforced resin molded product to be formed and surrounds the cavity 14. An annular decompression passage 15 is formed in the upper part. On the upper surface of the lower mold 12, annular grooves 16a and 16b are formed inside and outside the decompression passage 15, and sealing materials 17a and 17b are accommodated in the annular grooves 16a and 16b, respectively. O-rings are used as the sealing materials 17a and 17b. A plurality of deaeration members (soft pinch-off cloths) 18 are disposed on the upper surface of the lower mold 12 so as to straddle part of the cavity 14 and the decompression passage 15. In this embodiment, the deaeration members 18 are arranged symmetrically at four locations near each corner of the cavity 14.

脱気用部材18は、型閉じ状態において下型12と上型13とに挟持されても、キャビティ14と減圧通路15の間で気体や粘度の低い液体の通過を許容する機能を有し、例えば、未硬化状態の樹脂に不溶な材料で形成された織布、編み地、不織布等で構成される。脱気用部材18の材料としては特に制限はないが、ガラス繊維や炭素繊維が好ましい。減圧通路15及び脱気用部材18によりソフトピンチオフ構造が構成されている。   The deaeration member 18 has a function of allowing a gas or a low-viscosity liquid to pass between the cavity 14 and the decompression passage 15 even when sandwiched between the lower mold 12 and the upper mold 13 in the mold closed state. For example, it is composed of a woven fabric, a knitted fabric, a nonwoven fabric or the like formed of a material insoluble in an uncured resin. Although there is no restriction | limiting in particular as a material of the member 18 for deaeration, Glass fiber and carbon fiber are preferable. The decompression passage 15 and the deaeration member 18 constitute a soft pinch-off structure.

なお、下型12には、該下型12の温度を調節する図示しない温度調節部が設けられている。温度調節部は、例えば、熱媒体の流れる通路で構成され、通路に供給される熱媒体の温度を変更することで、下型12の温度調節が可能になっている。   The lower mold 12 is provided with a temperature adjusting unit (not shown) that adjusts the temperature of the lower mold 12. For example, the temperature adjustment unit includes a passage through which the heat medium flows, and the temperature of the lower mold 12 can be adjusted by changing the temperature of the heat medium supplied to the passage.

図2に示すように、上型13には、注入孔19及び排出孔20が形成され、注入孔19はその一端の注入口19aがキャビティ14の中央と対応する位置に形成されている。即ち、図1(a)に示すように、この実施形態では注入口19aから4個の脱気用部材18までの距離が等しくなるように構成されている。排出孔20はその一端の減圧口20aが減圧通路15と対応する位置に形成されている。   As shown in FIG. 2, an injection hole 19 and a discharge hole 20 are formed in the upper mold 13, and the injection hole 19 is formed at a position where one end of the injection hole 19 a corresponds to the center of the cavity 14. That is, as shown in FIG. 1A, in this embodiment, the distances from the inlet 19a to the four deaeration members 18 are configured to be equal. The discharge hole 20 has a decompression port 20 a at one end formed at a position corresponding to the decompression passage 15.

注入孔19は、注入管21を介して樹脂注入装置22に接続されている。樹脂注入装置22は、公知の装置が使用され、タンク内に貯蔵された樹脂をポンプで送り出すように構成されている。ポンプとしてシリンジポンプが使用され、樹脂を加圧して一定量で送出可能に構成されている。排出孔20は吸引管23を介して減圧ポンプ24に接続されている。注入管21には開閉弁25が設けられるとともに、開閉弁25よりキャビティ14側に圧力計26が設けられている。吸引管23には開閉弁27が設けられるとともに、開閉弁27より減圧ポンプ24側にトラップ28が設けられている。   The injection hole 19 is connected to a resin injection device 22 through an injection tube 21. A known device is used for the resin injection device 22 and is configured to pump out the resin stored in the tank. A syringe pump is used as a pump, and is configured to be able to pressurize the resin and deliver it in a fixed amount. The discharge hole 20 is connected to the decompression pump 24 via the suction pipe 23. The injection pipe 21 is provided with an opening / closing valve 25, and a pressure gauge 26 is provided closer to the cavity 14 than the opening / closing valve 25. The suction pipe 23 is provided with an opening / closing valve 27, and a trap 28 is provided closer to the decompression pump 24 than the opening / closing valve 27.

前記樹脂注入装置22、減圧ポンプ24及び開閉弁25,27は、図示しない制御装置からの指令によって運転あるいは切換え制御されるようになっている。また、制御装置には下型12の温度を検出する温度センサ(図示せず)及び圧力計26の検出信号が入力されるようになっている。制御装置は、温度センサの検出信号に基づいて下型12の温度を調整するようになっている。   The resin injection device 22, the pressure reducing pump 24, and the on-off valves 25 and 27 are controlled or operated in accordance with commands from a control device (not shown). Further, a temperature sensor (not shown) for detecting the temperature of the lower mold 12 and a detection signal of the pressure gauge 26 are input to the control device. The control device adjusts the temperature of the lower mold 12 based on the detection signal of the temperature sensor.

なお、図1及び図2は、成形型11の構成を模式的に示したものであり、図示の都合上、一部の寸法を誇張して分かり易くするために、それぞれの部分の幅、長さ、厚さ等の寸法の比は実際の比と異なっている。   1 and 2 schematically show the configuration of the mold 11, and for the sake of illustration, in order to exaggerate some dimensions and make them easy to understand, the width and length of each part are shown. The ratio of dimensions such as thickness and thickness is different from the actual ratio.

次に、繊維強化樹脂成形品の製造方法について説明する。
強化繊維基材としては、例えば、ガラス繊維、カーボン繊維、アラミド繊維等からなる織物、編物、不織布の積層体又は三次元織物、三次元編物、組み紐が使用される。樹脂としては不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂が使用される。
Next, the manufacturing method of a fiber reinforced resin molded product is demonstrated.
As the reinforcing fiber substrate, for example, a woven fabric, a knitted fabric, a nonwoven fabric laminate or a three-dimensional woven fabric, a three-dimensional knitted fabric, and a braid made of glass fiber, carbon fiber, aramid fiber or the like is used. As the resin, a thermosetting resin such as an unsaturated polyester resin, an epoxy resin, or a phenol resin is used.

繊維強化樹脂成形品を製造する場合、先ず、下型12のキャビティ14内に強化繊維基材30を配置し、成形型11の型締めを行い、成形型11の温度を所定温度に維持する。そして、開閉弁25を閉鎖し、開閉弁27を開放した状態で減圧ポンプ24を駆動して、キャビティ14内を真空に近い状態まで減圧する。続いて、キャビティ14内が減圧された状態で、開閉弁25を開放するとともに樹脂注入装置22から硬化剤が添加された樹脂を注入口19aからキャビティ14内に注入する樹脂含浸工程が行われる。   When manufacturing a fiber reinforced resin molded product, first, the reinforcing fiber base 30 is disposed in the cavity 14 of the lower mold 12, the mold 11 is clamped, and the temperature of the mold 11 is maintained at a predetermined temperature. Then, the pressure reducing pump 24 is driven in a state where the on-off valve 25 is closed and the on-off valve 27 is opened, so that the inside of the cavity 14 is decompressed to a state close to a vacuum. Subsequently, in a state where the inside of the cavity 14 is decompressed, a resin impregnation step is performed in which the on-off valve 25 is opened and a resin to which a curing agent is added from the resin injection device 22 is injected into the cavity 14 from the injection port 19a.

樹脂注入装置22は注入圧力が0.1MPa〜1MPa、好ましくは0.1MPa〜0.5MPaの第1の圧力(低圧)で、かつ一定流量となるように樹脂を送り出す。ここで注入圧力とは、樹脂注入装置22から送り出される樹脂の圧力を意味し、圧力計26の検出圧力に相当する。樹脂の流量は、キャビティ14内に注入された樹脂のゲル化が開始される時点でキャビティ14内に樹脂が充満された状態になっている値に設定されている。この流量は予め試験によって決定される。キャビティ14内に注入された樹脂は強化繊維基材30に含浸されるとともに、強化繊維基材30に残っている気泡を押しながら移動する。そして、樹脂がキャビティ14を下から次第に満たしていき、気泡はキャビティ14の上側に移動し、キャビティ14と減圧通路15とに跨って存在する脱気用部材18を経てキャビティ14内から減圧通路15に移動する。   The resin injection device 22 delivers the resin so that the injection pressure is a first pressure (low pressure) of 0.1 MPa to 1 MPa, preferably 0.1 MPa to 0.5 MPa, and a constant flow rate. Here, the injection pressure means the pressure of the resin delivered from the resin injection device 22 and corresponds to the detected pressure of the pressure gauge 26. The flow rate of the resin is set to a value at which the resin is filled in the cavity 14 when gelation of the resin injected into the cavity 14 is started. This flow rate is determined in advance by a test. The resin injected into the cavity 14 is impregnated in the reinforcing fiber base 30 and moves while pushing the bubbles remaining in the reinforcing fiber base 30. Then, the resin gradually fills the cavity 14 from the bottom, the bubbles move to the upper side of the cavity 14, passes through the deaeration member 18 that exists across the cavity 14 and the decompression passage 15, and from the cavity 14 to the decompression passage 15. Move to.

キャビティ14への樹脂の注入が継続されて、注入開始から所定時間経過した時点でキャビティ14内の樹脂のゲル化が開始される。前記ゲル化が開始されると、キャビティ14内の樹脂の粘度が急に高くなり、LRTM法と同等の第1の圧力で、樹脂注入装置22から樹脂の供給を行おうとしても樹脂の注入が殆どできない状態になる。しかし、この実施形態では、ゲル化が開始された後は、樹脂が、LRTM法における注入圧力より高い第2の圧力(例えば、6MPa)に樹脂注入装置22で加圧されて注入される。第2の圧力は、樹脂がゲル化を開始した後から硬化完了するまでの樹脂中の気泡が前記脱気用部材を通過可能な圧力である。従って、樹脂の粘度が高くなってLRTM法や真空RTM法では樹脂の注入が殆どできない状態においても、樹脂の注入が行われる。粘度が低い状態では樹脂も脱気用部材18を通過可能であるが、粘度が高くなると通過が困難になり、気泡が主に通過可能となる。従って、事前に脱泡しないで樹脂を供給しても、樹脂から発生した気泡がキャビティ14外へ円滑に排出される。   The injection of the resin into the cavity 14 is continued, and the gelation of the resin in the cavity 14 is started when a predetermined time has elapsed from the start of the injection. When the gelation is started, the viscosity of the resin in the cavity 14 suddenly increases, and the resin is injected even if the resin is supplied from the resin injection device 22 at the first pressure equivalent to the LRTM method. It becomes almost impossible. However, in this embodiment, after the gelation is started, the resin is pressurized and injected by the resin injection device 22 to a second pressure (for example, 6 MPa) higher than the injection pressure in the LRTM method. The second pressure is a pressure at which bubbles in the resin from the time when the resin starts to gel until the curing is completed can pass through the degassing member. Accordingly, the resin is injected even in a state where the resin has a high viscosity and the LRTM method or the vacuum RTM method can hardly inject the resin. In the state where the viscosity is low, the resin can also pass through the deaeration member 18, but when the viscosity becomes high, the passage becomes difficult, and bubbles can mainly pass through. Therefore, even if the resin is supplied without defoaming in advance, bubbles generated from the resin are smoothly discharged out of the cavity 14.

制御装置はゲル化が開始されたことを直接検出して樹脂注入装置22による加圧を高めるのではなく、樹脂の注入開始から予め設定された所定時間経過した時点で注入圧力を第2の注入圧力に高めるように樹脂注入装置22に指令信号を出力する。前記所定時間は、予め試験により求められ、制御装置の記憶装置に記憶されている。   The control device does not directly detect that gelation has started and does not increase the pressurization by the resin injecting device 22, but the second injecting pressure is applied when a predetermined time has elapsed since the start of injecting the resin. A command signal is output to the resin injection device 22 so as to increase the pressure. The predetermined time is obtained in advance by a test and stored in the storage device of the control device.

樹脂注入装置22は、キャビティ14内に注入された樹脂のゲル化に必要なゲル化時間経過後も、第2の注入圧力を予め設定された時間保持する。その後、開閉弁25,27を閉鎖し、樹脂注入装置22及び減圧ポンプ24の運転を停止する。ここで、「予め設定された時間」とは、ゲル化が完了した後、樹脂の硬化収縮を補うために樹脂を有効に注入可能な時間を意味し、予め試験により設定される。ゲル化が完了しても樹脂の硬化は完了しておらず、硬化の進行に伴って硬化収縮が生じる。硬化収縮の量が僅かであれば問題はないが、硬化収縮の量が多い場合、繊維強化樹脂成形品の表面にピット(凹部)や引けが発生する。しかし、ゲル化完了後も第2の注入圧力に保持することにより、硬化収縮の量が多い場合にその収縮を補うように樹脂が注入されて、成形品の表面にピット(凹部)や引けが発生するのが抑制される。   The resin injection device 22 holds the second injection pressure for a preset time even after the gelation time necessary for the gelation of the resin injected into the cavity 14 has elapsed. Thereafter, the on-off valves 25 and 27 are closed, and the operation of the resin injection device 22 and the decompression pump 24 is stopped. Here, the “preset time” means a time during which the resin can be effectively injected in order to compensate for the curing shrinkage of the resin after the gelation is completed, and is set by a test in advance. Even when the gelation is completed, the curing of the resin is not completed, and curing shrinkage occurs as the curing proceeds. If the amount of cure shrinkage is small, there is no problem, but if the amount of cure shrinkage is large, pits (concave portions) and shrinkage occur on the surface of the fiber-reinforced resin molded product. However, by maintaining the second injection pressure after the completion of gelation, the resin is injected so as to compensate for the shrinkage when the amount of cure shrinkage is large, and pits (recesses) and shrinkage are formed on the surface of the molded product. Occurrence is suppressed.

樹脂が完全に硬化した後、成形型11を開き、成形型11内から繊維強化樹脂成形品を脱型する。
樹脂の注入開始から樹脂の注入停止までの圧力変化は、例えば、図3に示すようになる。樹脂の注入は、流量が一定となるように行われるため、キャビティ14内に樹脂が注入されるに伴って圧力は徐々に増加する。そして、ゲル化が開始された時点から圧力が急激に上昇した後、一定の圧力となる。
After the resin is completely cured, the mold 11 is opened, and the fiber-reinforced resin molded product is removed from the mold 11.
The pressure change from the start of resin injection to the stop of resin injection is, for example, as shown in FIG. Since the resin is injected so that the flow rate is constant, the pressure gradually increases as the resin is injected into the cavity 14. And after a pressure rises rapidly from the time of gelatinization being started, it becomes a fixed pressure.

強化繊維基材30として、300mm×500mm×5mmの大きさの三次元織物、樹脂として、主剤がビスフェノールA型エポキシ樹脂、硬化剤が脂肪族ポリアミン、反応性希釈剤が1,4ブタンジオールジグリシジルエーテルからなる溶液を使用した。そして、第1実施例として、Vfが45%の強化繊維基材30について、注入速度4ml/秒、保圧時間(ゲル化開始後、第2の圧力に保持した時間)5分の条件で繊維強化樹脂成形品を製造し、第2実施例として、Vfが45%の強化繊維基材30について、注入速度8ml/秒、保圧時間5分の条件で繊維強化樹脂成形品を製造した。また、比較例としてゲル化開始後、圧力を第2の圧力に加圧しない点を除き第1実施例と同じ条件で繊維強化樹脂成形品を製造した。そして、第1及び第2実施例の繊維強化樹脂成形品と比較例の繊維強化樹脂成形品について外観を目視で評価した。   300 mm × 500 mm × 5 mm size three-dimensional woven fabric as reinforcing fiber substrate 30, resin as main component is bisphenol A type epoxy resin, curing agent is aliphatic polyamine, reactive diluent is 1,4 butanediol diglycidyl A solution consisting of ether was used. And as a 1st Example, about the reinforcement fiber base material 30 whose Vf is 45%, injection | emission speed | velocity | rate of 4 ml / sec and pressure holding time (time hold | maintained at the 2nd pressure after the start of gelatinization) 5 minutes A reinforced resin molded product was manufactured, and as a second example, a fiber reinforced resin molded product was manufactured under the conditions of an injection rate of 8 ml / second and a pressure holding time of 5 minutes for a reinforced fiber substrate 30 having a Vf of 45%. Further, as a comparative example, a fiber reinforced resin molded product was manufactured under the same conditions as in the first example except that the pressure was not increased to the second pressure after the start of gelation. And the external appearance was visually evaluated about the fiber reinforced resin molded product of 1st and 2nd Example, and the fiber reinforced resin molded product of a comparative example.

評価基準は5点満点で次の基準とした。
5点:欠陥(ドライスポット、気泡等)なし
4点:欠陥領域1.0%未満
3点:欠陥領域1.0%以上5%未満
2点:欠陥領域5.0%以上10.0%未満
1点:欠陥領域10.0%未満
その結果、第1実施例では評価点4点となり、第2実施例では評価点3点となり、比較例では評価点2点となった。第1実施例及び比較例により、ゲル化開始後、注入圧力を第2の圧力に加圧することにより品質が向上することが確認された。また、第1実施例及び第2実施例により、樹脂の注入速度が遅い方が、品質が向上することが確認された。
The evaluation criteria were the following criteria with a maximum score of 5 points.
5 points: No defects (dry spots, bubbles, etc.) 4 points: Defect region less than 1.0% 3 points: Defect region 1.0% or more and less than 5% 2 points: Defect region 5.0% or more and less than 10.0% 1 point: Less than 10.0% of defect area As a result, the evaluation score was 4 in the first example, 3 in the second example, and 2 in the comparative example. From the first example and the comparative example, it was confirmed that the quality was improved by increasing the injection pressure to the second pressure after the start of gelation. In addition, according to the first example and the second example, it was confirmed that the quality was improved when the resin injection rate was slower.

この実施形態によれば、以下に示す効果を得ることができる。
(1)ソフトピンチオフ構造を持つ成形型11のキャビティ14内に強化繊維基材30を配置した状態で、樹脂をLRTM法と同等の圧力で注入するとともに減圧通路15を介してキャビティ14内を減圧する。従って、事前に脱泡しないで樹脂を供給しても、樹脂から発生した気泡がキャビティ14外へ円滑に排出される。
According to this embodiment, the following effects can be obtained.
(1) In a state where the reinforcing fiber base 30 is disposed in the cavity 14 of the mold 11 having the soft pinch-off structure, the resin is injected at a pressure equivalent to that of the LRTM method, and the pressure in the cavity 14 is reduced through the pressure reducing passage 15. To do. Therefore, even if the resin is supplied without defoaming in advance, bubbles generated from the resin are smoothly discharged out of the cavity 14.

(2)樹脂のゲル化が開始されるまではキャビティ14内に樹脂を第1の圧力で注入し、キャビティ14内に注入された樹脂がゲル化を開始した後、樹脂の注入圧力をLRTM法における注入圧力より高い第2の圧力に加圧して注入する。従って、LRTM法では樹脂の注入が殆どできない状態においても、樹脂の注入が行われ、強化繊維基材30の未含浸部分に樹脂が含浸され易くなり、LRTM法の場合に比較して高Vfで品質の良い繊維強化樹脂成形品を製造することができる。   (2) The resin is injected into the cavity 14 at the first pressure until the resin gelation is started. After the resin injected into the cavity 14 starts to gel, the resin injection pressure is changed to the LRTM method. The second pressure higher than the injection pressure in is pressurized and injected. Therefore, even when the resin injection is almost impossible in the LRTM method, the resin is injected and the non-impregnated portion of the reinforcing fiber base 30 is easily impregnated with the resin, which is higher in Vf than in the LRTM method. A high-quality fiber-reinforced resin molded product can be manufactured.

(3)樹脂の注入開始から予め設定された所定時間経過した時点で注入圧力が第2の注入圧力に高められる。従って、注入圧力を第1の圧力から第2の圧力に高める適切な時期を、キャビティ14内の樹脂の状態を実際に検出せずに注入開始からの経過時間を測定するだけで簡単に設定することができる。   (3) The injection pressure is increased to the second injection pressure when a predetermined time elapses from the start of resin injection. Therefore, an appropriate time to increase the injection pressure from the first pressure to the second pressure is set simply by measuring the elapsed time from the start of injection without actually detecting the state of the resin in the cavity 14. be able to.

(4)キャビティ14内に注入された樹脂のゲル化に必要なゲル化時間経過後も、第2の注入圧力を予め設定された時間保持する。従って、ゲル化完了後も第2の注入圧力に保持されているため、ゲル化完了後、樹脂の硬化完了までに硬化収縮の量が多い場合にその収縮を補うように樹脂が注入されて、繊維強化樹脂成形品の表面にピット(凹部)や引けが発生するのが抑制される。   (4) The second injection pressure is maintained for a preset time even after the gelation time necessary for the gelation of the resin injected into the cavity 14 has elapsed. Therefore, since the second injection pressure is maintained even after the completion of gelation, the resin is injected so as to compensate for the shrinkage when the amount of cure shrinkage is large until the resin is completely cured after the gelation is completed. Occurrence of pits (concave portions) and shrinkage on the surface of the fiber reinforced resin molded product is suppressed.

(5)ゲル化開始までに第1の圧力での樹脂注入が流量一定で行われる。従って、圧力一定で樹脂注入を行う場合に比較して、樹脂が強化繊維基材30のうち抵抗の低い部分を選択的に流れることが抑制されて脱気用部材18からキャビティ14外に流出する量が少なくなるとともに、強化繊維基材30中に樹脂が均一に含浸し易くなる。   (5) Resin injection at the first pressure is performed at a constant flow rate before the start of gelation. Therefore, as compared with the case of injecting the resin at a constant pressure, the resin is prevented from selectively flowing through the low-resistance portion of the reinforcing fiber base 30 and flows out of the cavity 14 from the deaeration member 18. As the amount decreases, the reinforcing fiber base 30 is easily impregnated with the resin uniformly.

(6)脱気用部材18は複数設けられ、各脱気用部材18は注入孔19の注入口19aからの距離が等しく、かつ対称に配置されている。従って、脱気用部材18が1つ設けられる場合や、複数の脱気用部材18を注入口19aからの距離が異なる状態で非対称に配置した場合に比較して、樹脂が強化繊維基材30に均一に含浸し易くなる。   (6) A plurality of deaeration members 18 are provided, and each deaeration member 18 has the same distance from the injection port 19a of the injection hole 19 and is disposed symmetrically. Therefore, compared with the case where one deaeration member 18 is provided, or when the plurality of deaeration members 18 are arranged asymmetrically at different distances from the inlet 19a, the resin is reinforced fiber base 30. It becomes easy to impregnate uniformly.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ ゲル化開始の時点を樹脂の注入開始からの経過時間で定める代わりに、キャビティ14内に注入された樹脂の状態の変化を検出してゲル化開始時点を推定してもよい。例えば、キャビティ14内に注入される樹脂の圧力を検出し、その圧力変化に基づいてキャビティ14内に注入された樹脂のゲル化開始時点を推定する。ゲル化が開始すると、キャビティ14内に樹脂を注入するのに必要な圧力が急激に上昇するため、前記樹脂の圧力変化に基づいてゲル化開始時点を推定できる。この場合、時間のみでゲル化開始時点を類推する場合に比較して、精度が高くなる。
The embodiment is not limited to the above, and may be embodied as follows, for example.
○ Instead of determining the time point of the start of gelation by the elapsed time from the start of the resin injection, the change of the state of the resin injected into the cavity 14 may be detected to estimate the gelation start time point. For example, the pressure of the resin injected into the cavity 14 is detected, and the gelation start time of the resin injected into the cavity 14 is estimated based on the pressure change. When gelation starts, the pressure required to inject the resin into the cavity 14 rapidly increases, so that the gelation start time can be estimated based on the pressure change of the resin. In this case, the accuracy is higher than in the case of estimating the gelation start time only by time.

○ キャビティ14内の樹脂の誘電率を検出するセンサを成形型11に設けるとともに、センサの検出信号に基づいてゲル化の開始時点やゲル化の進行状況を把握してもよい。これの場合、時間のみでゲル化開始時点を類推する場合に比較して、ゲル化の開始時点の精度が高くなるとともに、ゲル化の完了時点や硬化の進行状態も類推が簡単になる。   A sensor for detecting the dielectric constant of the resin in the cavity 14 may be provided in the mold 11 and the gelation start time and the progress of the gelation may be grasped based on the detection signal of the sensor. In this case, as compared with the case of estimating the gelation start time only by time, the accuracy of the gelation start time becomes higher, and the analogization of the gelation completion time and the progress of curing becomes simple.

○ ゲル化が開始されるまでの第1の段階における樹脂の注入は一定流量ではなく、一定圧力で行ってもよい。即ち、樹脂をポンプで積極的に送り出して注入する代わりに、樹脂槽内の圧力(一般には大気圧)と、キャビティ14内の圧力との差圧で樹脂をキャビティ14内に注入してもよい。しかし、流量一定で注入する方が好ましい。なぜならば、前記差圧だけで注入する場合は、樹脂が抵抗の低い流路を選択的に流れてキャビティ14外に出てしまう量が多くなるのと、強化繊維基材中に樹脂が均一に含浸し難くなるからである。   (Circle) injection | pouring of the resin in the 1st stage until gelatinization is started may be performed not with a fixed flow volume but with a fixed pressure. That is, instead of actively pumping out and injecting the resin, the resin may be injected into the cavity 14 by the differential pressure between the pressure in the resin tank (generally atmospheric pressure) and the pressure in the cavity 14. . However, it is preferable to inject at a constant flow rate. This is because when the injection is performed only with the differential pressure, the amount of the resin that selectively flows through the low-resistance channel and out of the cavity 14 increases. This is because impregnation is difficult.

○ 第2の圧力による樹脂の注入をゲル化終了と同時に停止してもよい。しかし、ゲル化が終了しても、樹脂が完全硬化するまでに、樹脂の収縮が起こるため、ゲル化が終了しても、ポンプで樹脂を加圧状態に保持しておくのが好ましい。この場合、樹脂の収縮に伴って樹脂がキャビティ14内に供給されるため、引けやピット(凹部)が発生するのが抑制される。   (Circle) you may stop injection | pouring of resin by 2nd pressure simultaneously with completion | finish of gelatinization. However, since the resin shrinks before the resin is completely cured even after the gelation is completed, it is preferable to hold the resin in a pressurized state with a pump even after the gelation is completed. In this case, since the resin is supplied into the cavity 14 as the resin contracts, the occurrence of shrinkage and pits (concave portions) is suppressed.

○ 樹脂を供給するポンプはシリンジポンプに限らず、ローラポンプやダイヤフラムポンプ等他のポンプを使用してもよい。
○ 成形型11は、キャビティ14が平面矩形状で、樹脂の注入口19aがキャビティ14の中央に1個設けられ、脱気用部材18(ソフトピンチオフ用のクロス)が4箇所に対称に設けられた構成に限らない。キャビティ14は強化繊維基材30の形状に対応した形状に形成されるため、強化繊維基材30の形状が略四角板状と異なる形状になればキャビティ14の形状もそれに対応して変更される。強化繊維基材30は平板の四角板状に限らず、例えば、曲げ部を有する板状であってもよいし、任意の立体形状であってもよい。それに対応して脱気用部材18の数や配置位置を変更したり、注入口19aの位置や数を変更したりしてもよい。
○ The pump for supplying the resin is not limited to the syringe pump, and other pumps such as a roller pump and a diaphragm pump may be used.
In the mold 11, the cavity 14 has a flat rectangular shape, one resin injection port 19a is provided at the center of the cavity 14, and deaeration members 18 (soft pinch-off cloths) are provided symmetrically at four locations. The configuration is not limited. Since the cavity 14 is formed in a shape corresponding to the shape of the reinforcing fiber substrate 30, if the shape of the reinforcing fiber substrate 30 is different from a substantially square plate shape, the shape of the cavity 14 is also changed accordingly. . The reinforcing fiber substrate 30 is not limited to a flat rectangular plate shape, and may be, for example, a plate shape having a bent portion or an arbitrary three-dimensional shape. Correspondingly, the number and arrangement position of the deaeration members 18 may be changed, or the position and number of the injection ports 19a may be changed.

○ 排出孔20の位置をキャビティ14の形状に対応して変更したり、排出孔20の数を複数にしたりしてもよい。
○ 脱気用部材18は、ガラス繊維や炭素繊維に限らず、使用される樹脂に溶解しない材料であれば樹脂製でもよい。
(Circle) you may change the position of the discharge hole 20 according to the shape of the cavity 14, or you may make the number of the discharge holes 20 plural.
The deaeration member 18 is not limited to glass fiber or carbon fiber, and may be made of resin as long as it is a material that does not dissolve in the resin used.

○ 成形型11は、一定厚の強化繊維基材30を配置するキャビティ14であっても、水平に設ける構成に限らず斜状に設けてもよい。
○ 注入孔19及び排出孔20を共に上型13に設ける代わりに、いずれか一方を下型12に設けたり、共に下型12に設けたりしてもよい。
O Even if it is the cavity 14 which arrange | positions the reinforced fiber base material 30 of fixed thickness, the shaping | molding die 11 may be provided not only in the structure provided horizontally but in an oblique shape.
○ Instead of providing both the injection hole 19 and the discharge hole 20 in the upper mold 13, either one may be provided in the lower mold 12, or both may be provided in the lower mold 12.

○ キャビティ14を下型12だけで構成する代わりに、上型13もキャビティ14の一部を構成するようにしてもよい。
以下の技術的思想(発明)は前記実施形態から把握できる。
○ Instead of configuring the cavity 14 with only the lower mold 12, the upper mold 13 may also configure a part of the cavity 14.
The following technical idea (invention) can be understood from the embodiment.

(1)請求項1に記載の発明において、前記キャビティ内の樹脂の誘電率を測定するセンサを設け、キャビティ内の樹脂の誘電率の変化でゲル化の進行状態を把握して、ゲル化完了後に樹脂の注入圧力を第2の注入圧力に変更する繊維強化樹脂の製造方法。   (1) In the first aspect of the invention, a sensor for measuring the dielectric constant of the resin in the cavity is provided, and the gelation is completed by grasping the progress of the gelation by the change in the dielectric constant of the resin in the cavity. A method for producing a fiber reinforced resin, in which the resin injection pressure is changed to a second injection pressure later.

(2) 請求項1〜請求項3及び前記技術的思想(1)のいずれか一項に記載の発明において、前記第1の圧力での樹脂の注入は流量一定で行われる繊維強化樹脂の製造方法。   (2) In the invention according to any one of claims 1 to 3 and the technical idea (1), the resin injection at the first pressure is performed at a constant flow rate. Method.

(a)は上型を省略した状態の成形型の概略平面図、(b)は(a)のA−A線における拡大断面図。(A) is a schematic plan view of the shaping | molding die in the state which abbreviate | omitted the upper mold | type, (b) is an expanded sectional view in the AA line of (a). 製造装置の概略構成図。The schematic block diagram of a manufacturing apparatus. 樹脂注入時の圧力変化を示すグラフ。The graph which shows the pressure change at the time of resin injection | pouring.

符号の説明Explanation of symbols

11…成形型、12…第1の型としての下型、13…第2の型としての上型、14…キャビティ、15…減圧通路、18…脱気用部材、19…注入孔、19a…注入口、30…強化繊維基材。   DESCRIPTION OF SYMBOLS 11 ... Molding die, 12 ... Lower die as 1st type | mold, 13 ... Upper die as 2nd type | mold, 14 ... Cavity, 15 ... Pressure-reduction channel | path, 18 ... Deaeration member, 19 ... Injection hole, 19a ... Inlet, 30: Reinforcing fiber substrate.

Claims (5)

キャビティが形成された第1の型とそのキャビティを覆う第2の型とを備え、前記キャビティの外側に前記キャビティを囲むように減圧通路が形成されるとともに、前記キャビティ及び前記減圧通路の一部に跨るように脱気用部材を配置した状態で型閉じされる成形型内に強化繊維基材を配置した状態で前記減圧通路を介して前記キャビティ内を減圧するとともに、前記キャビティに連通する注入孔から樹脂を前記キャビティ内に注入して前記強化繊維基材に樹脂を含浸させる樹脂含浸工程を備えた繊維強化樹脂成形品の製造方法であって、
前記キャビティ内に前記樹脂を第1の圧力で注入し、前記キャビティ内に注入された樹脂がゲル化を開始した後、樹脂の注入圧力をLRTM(Light Resin Transfer Molding)法における注入圧力より高い第2の圧力に加圧して注入することを特徴とする繊維強化樹脂成形品の製造方法。
A first mold in which a cavity is formed and a second mold that covers the cavity; a decompression passage is formed outside the cavity so as to surround the cavity; and the cavity and a part of the decompression passage In the state where the degassing member is disposed so as to straddle the mold, the inside of the cavity is decompressed through the decompression passage while the reinforcing fiber base is disposed in the mold that is closed, and the injection is communicated with the cavity. A method for producing a fiber-reinforced resin molded article comprising a resin impregnation step of injecting resin into the cavity from a hole and impregnating the reinforcing fiber base with resin,
The resin is injected into the cavity at a first pressure, and after the resin injected into the cavity starts to gel, the resin injection pressure is higher than the injection pressure in the LRTM (Light Resin Transfer Molding) method. 2. A method for producing a fiber-reinforced resin molded article, wherein the injection is carried out under a pressure of 2.
前記樹脂の注入開始から予め設定された所定時間経過した時点で前記注入圧力が前記第2の注入圧力に高められる請求項1に記載の繊維強化樹脂成形品の製造方法。   The method for producing a fiber-reinforced resin molded article according to claim 1, wherein the injection pressure is increased to the second injection pressure when a predetermined time elapses from the start of injection of the resin. 前記キャビティ内に注入された樹脂のゲル化に必要なゲル化時間経過後も、前記第2の注入圧力を予め設定された時間保持する請求項1又は請求項2に記載の繊維強化樹脂成形品の製造方法。   3. The fiber-reinforced resin molded article according to claim 1, wherein the second injection pressure is maintained for a preset time even after the gelation time required for gelation of the resin injected into the cavity has elapsed. Manufacturing method. 前記第2の圧力とは、樹脂がゲル化を開始した後から硬化完了するまでの樹脂中の気泡が前記脱気用部材を通過可能な圧力である請求項1〜請求項3のいずれか一項に記載の繊維強化樹脂成形品の製造方法。   4. The pressure according to claim 1, wherein the second pressure is a pressure that allows air bubbles in the resin to pass through the degassing member after the resin starts gelling until the curing is completed. The manufacturing method of the fiber reinforced resin molded product of description. 前記脱気用部材は複数設けられ、前記各脱気用部材は前記注入孔の注入口からの距離が等しく、かつ対称に配置されている請求項1〜請求項4のいずれか一項に記載の繊維強化樹脂成形品の製造方法。   The said deaeration member is provided with two or more, Each said deaeration member is equal to the distance from the injection hole of the said injection hole, and is arrange | positioned symmetrically. Manufacturing method of fiber reinforced resin molded article.
JP2006057925A 2006-03-03 2006-03-03 Manufacturing method and manufacturing apparatus for fiber reinforced resin molded product Expired - Fee Related JP4923632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057925A JP4923632B2 (en) 2006-03-03 2006-03-03 Manufacturing method and manufacturing apparatus for fiber reinforced resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057925A JP4923632B2 (en) 2006-03-03 2006-03-03 Manufacturing method and manufacturing apparatus for fiber reinforced resin molded product

Publications (2)

Publication Number Publication Date
JP2007230175A true JP2007230175A (en) 2007-09-13
JP4923632B2 JP4923632B2 (en) 2012-04-25

Family

ID=38551230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057925A Expired - Fee Related JP4923632B2 (en) 2006-03-03 2006-03-03 Manufacturing method and manufacturing apparatus for fiber reinforced resin molded product

Country Status (1)

Country Link
JP (1) JP4923632B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065183A (en) * 2008-09-12 2010-03-25 Japan Agengy For Marine-Earth Science & Technology Manufacturing method for syntactic foam
CN103612399A (en) * 2013-10-29 2014-03-05 山东双一集团有限公司 Rapid molding method of LRTM product screw
CN103612401A (en) * 2013-10-29 2014-03-05 山东双一集团有限公司 Method for making logo on interior surface of glass fiber reinforced plastic product
WO2016063388A1 (en) * 2014-10-22 2016-04-28 日産自動車株式会社 Composite-material moulding method and moulding device
WO2016063387A1 (en) * 2014-10-22 2016-04-28 日産自動車株式会社 Composite-material moulding method and moulding device
WO2016092670A1 (en) * 2014-12-11 2016-06-16 日産自動車株式会社 Composite material molding method and molding device
KR20170001857A (en) * 2015-06-26 2017-01-05 해양산업 주식회사 RTM Mold Structure for Rapid Impregnation of matrix resin
JP2019147386A (en) * 2019-04-17 2019-09-05 株式会社共栄製作所 Mold for resin molding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156025A (en) * 1979-05-23 1980-12-04 Hitachi Chem Co Ltd Fabricating method of rod-shaped of cylindrical fiber reinforced thermosetting resin formed article
JPS59148634A (en) * 1983-02-15 1984-08-25 Daihatsu Motor Co Ltd Injection molding method of resin
JP2003053744A (en) * 2001-08-20 2003-02-26 Toray Ind Inc Rtm molding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156025A (en) * 1979-05-23 1980-12-04 Hitachi Chem Co Ltd Fabricating method of rod-shaped of cylindrical fiber reinforced thermosetting resin formed article
JPS59148634A (en) * 1983-02-15 1984-08-25 Daihatsu Motor Co Ltd Injection molding method of resin
JP2003053744A (en) * 2001-08-20 2003-02-26 Toray Ind Inc Rtm molding method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065183A (en) * 2008-09-12 2010-03-25 Japan Agengy For Marine-Earth Science & Technology Manufacturing method for syntactic foam
CN103612399A (en) * 2013-10-29 2014-03-05 山东双一集团有限公司 Rapid molding method of LRTM product screw
CN103612401A (en) * 2013-10-29 2014-03-05 山东双一集团有限公司 Method for making logo on interior surface of glass fiber reinforced plastic product
WO2016063388A1 (en) * 2014-10-22 2016-04-28 日産自動車株式会社 Composite-material moulding method and moulding device
WO2016063387A1 (en) * 2014-10-22 2016-04-28 日産自動車株式会社 Composite-material moulding method and moulding device
US10105878B2 (en) 2014-10-22 2018-10-23 Nissan Motor Co., Ltd. Composite-material molding method and molding device
US10647068B2 (en) 2014-10-22 2020-05-12 Nissan Motor Co., Ltd. Composite-material molding method and molding device
WO2016092670A1 (en) * 2014-12-11 2016-06-16 日産自動車株式会社 Composite material molding method and molding device
JPWO2016092670A1 (en) * 2014-12-11 2017-07-27 日産自動車株式会社 Composite material molding method and molding apparatus
KR20170001857A (en) * 2015-06-26 2017-01-05 해양산업 주식회사 RTM Mold Structure for Rapid Impregnation of matrix resin
KR102347729B1 (en) * 2015-06-26 2022-01-06 (주)동성티씨에스 RTM Mold Structure for Rapid Impregnation of matrix resin
JP2019147386A (en) * 2019-04-17 2019-09-05 株式会社共栄製作所 Mold for resin molding

Also Published As

Publication number Publication date
JP4923632B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4923632B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced resin molded product
US11179901B2 (en) Process and apparatus for molding composite articles
CN112912236B (en) Pouring device and method for producing fiber-reinforced composite parts
JPWO2011043253A1 (en) Method and apparatus for manufacturing fiber reinforced plastic
JP4548243B2 (en) Molding method of molded products
JP6900782B2 (en) Composite material molding method and composite material molding equipment
JP2005193587A (en) Resin transfer molding method
JP4292971B2 (en) FRP manufacturing method and manufacturing apparatus
JP4220874B2 (en) Resin impregnation sensor / repair device, resin impregnation repair device and repair method
US20150014898A1 (en) Device and method for producing a moulded part from a composite material
JP6750735B2 (en) Composite material molding method and composite material molding apparatus
JP6402775B2 (en) Composite material molding method and molding apparatus
AU2011239964B2 (en) Method and apparatus for moulding parts made from composite materials
JP2014051014A (en) Method for producing fiber-reinforced composite material and intermediate base material for fiber-reinforced composite material
JP2006192628A (en) Method and apparatus for forming composite material structure
KR20150128030A (en) Method of molding composite material by VARTM process
CN107073761B (en) The manufacturing process of composite material and the forming device of composite material
EP0751857A1 (en) Method of resin transfer molding
JP2016135573A (en) Molding method and molding device of composite material
JP2016083780A (en) Molding method and molding device for composite material
KR20230173384A (en) Resin defoamer, VARTM process system including the same, and composite material molding method using the system
JP2009248511A (en) Manufacturing method of fiber-reinforced member
JP2009179038A (en) Method of advance examination for resin impregnation molding, and method for preparing resin impregnation molding using it
JP2006159420A (en) Manufacturing method of frp molded product
JPH0639927A (en) Manufacture of spherical formed body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees