JP2014051014A - Method for producing fiber-reinforced composite material and intermediate base material for fiber-reinforced composite material - Google Patents

Method for producing fiber-reinforced composite material and intermediate base material for fiber-reinforced composite material Download PDF

Info

Publication number
JP2014051014A
JP2014051014A JP2012196386A JP2012196386A JP2014051014A JP 2014051014 A JP2014051014 A JP 2014051014A JP 2012196386 A JP2012196386 A JP 2012196386A JP 2012196386 A JP2012196386 A JP 2012196386A JP 2014051014 A JP2014051014 A JP 2014051014A
Authority
JP
Japan
Prior art keywords
fiber
resin
composite material
base material
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012196386A
Other languages
Japanese (ja)
Inventor
Akira Harada
亮 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012196386A priority Critical patent/JP2014051014A/en
Publication of JP2014051014A publication Critical patent/JP2014051014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced composite material capable of providing excellent surface quality to a molded article thereof without complicating constitution of molding steps and molding equipment, to which a molding process where continuous pressurizing or position control of a mobile mold during impregnation and curing of a resin is not necessary is applicable.SOLUTION: An intermediate base material for a fiber-reinforced composite material 11 comprises a reinforced base material 14 in which laminated fiber layers 12 are connected with binding yarn 13 and a plurality of mold release sheets 15 integrated with the reinforced base material 14 at both sides in the lamination direction thereof. The intermediate base material 11 is set in a mold and a composite material as a primary molded article is taken out from the mold after impregnation and curing of a matrix resin. Then the release sheets 15 in which sink marks generated are removed from the primary article to obtain a molded article as a product without sink mark.

Description

本発明は、繊維強化複合材の製造方法及び繊維強化複合材用中間基材に係り、詳しくは積層繊維層を強化基材として表面品質が優れる繊維強化複合材を製造することができる繊維強化複合材の製造方法及び繊維強化複合材用中間基材に関する。   The present invention relates to a method for producing a fiber reinforced composite material and an intermediate base material for fiber reinforced composite material, and more particularly, a fiber reinforced composite material capable of producing a fiber reinforced composite material having excellent surface quality using a laminated fiber layer as a reinforced base material. The present invention relates to a method for producing a material and an intermediate substrate for a fiber-reinforced composite material.

繊維強化複合材のうちマトリックスを樹脂とした繊維強化プラスチック(FRP)の成形方法には、いくつか成形方法が知られているが、強化基材として積層繊維層を用いたFRPを成形するには、成形サイクルが短く、生産性が高いという等の利点があることからRTM(Resin Transfer Molding)法が用いられることが多い。RTM法は、成形型内に形成されるキャビティ内に強化基材を配置し、該キャビティ内に樹脂を注入して強化基材に含浸させた後、樹脂を硬化させ、硬化後に脱型してFRP成形品を得るというものである。積層繊維層としては、織物、編物、不織布の積層体や積層繊維層を結合糸で結合した三次元繊維構造体等が挙げられる。   Several molding methods are known for molding fiber reinforced plastic (FRP) using a matrix as a resin among fiber reinforced composite materials. To mold FRP using a laminated fiber layer as a reinforced base material The RTM (Resin Transfer Molding) method is often used because of advantages such as a short molding cycle and high productivity. In the RTM method, a reinforced substrate is placed in a cavity formed in a mold, a resin is injected into the cavity and impregnated into the reinforced substrate, the resin is cured, and the mold is removed after curing. An FRP molded product is obtained. Examples of the laminated fiber layer include a woven fabric, a knitted fabric, a nonwoven fabric laminate, and a three-dimensional fiber structure in which the laminated fiber layers are bonded with a binding yarn.

RTM法で成形された成形品には、通常、樹脂含浸性や樹脂の硬化収縮による成形品表面のヒケが発生する。ヒケの発生を防止するため、ベントを介して成形型のキャビティ内を減圧しながら、該キャビティ内に注入口から合成樹脂を注入して充填するとともに、該合成樹脂を前記キャビティ内から前記ベントを介してキャビティ外に溢れ出させ、その後、溢れ出させた合成樹脂を前記ベントからの溢出圧力に抗するように加圧する成形方法が提案されている(特許文献1)。   In a molded product molded by the RTM method, the sink of the surface of the molded product is usually generated due to resin impregnation property or resin curing shrinkage. In order to prevent the occurrence of sink marks, the inside of the mold cavity is decompressed through the vent, the synthetic resin is injected and filled into the cavity from the injection port, and the vent is inserted into the cavity from the cavity. A molding method has been proposed in which the overflowed synthetic resin is pressurized so as to resist the overflow pressure from the vent (Patent Document 1).

また、固定型に対向して配設され、固定型に対して近接離間可能に構成され、かつ固定型に対する可動型の位置を制御可能な成形装置を使用し、硬化終了まで可動型で樹脂に面圧を付与し続け、樹脂含浸性を高めるとともにヒケに追従して可動型が移動されるようにした成形方法も提案されている(特許文献2)。   Also, using a molding device that is arranged facing the fixed mold, can be moved close to and away from the fixed mold, and can control the position of the movable mold with respect to the fixed mold, the movable mold is used as a resin until curing is completed. There has also been proposed a molding method in which a surface pressure is continuously applied, the resin impregnation property is improved, and the movable mold is moved following the sink (Patent Document 2).

特開2007−1179号公報JP 2007-1179 A 特開2010−221642号公報JP 2010-221642 A

特許文献1の方法では、樹脂の硬化収縮が表面に集中してヒケが生じるのを防止するためには、ヒケに追従して樹脂が表面に供給される必要があるが、圧力損失のため効果的に供給できない。また、特許文献2の方法においても、ヒケに追従した可動型の位置制御が難しい。   In the method of Patent Document 1, in order to prevent the shrinkage due to the curing shrinkage of the resin from concentrating on the surface, the resin needs to be supplied to the surface following the sink. Cannot be supplied. Also in the method of Patent Document 2, it is difficult to control the movable position following the sink.

本発明は、前記の問題に鑑みてなされたものであって、その目的は樹脂の含浸、硬化時に持続的な圧力付与や可動型の位置制御が不要な成形方法の適用が可能で、成形工程及び成形設備の構成を複雑化せずに、成形品の表面品質が優れる繊維強化複合材を得ることができる繊維強化複合材の製造方法及び繊維強化複合材用中間基材を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to apply a molding method that does not require continuous pressure application or movable position control during resin impregnation and curing. Another object of the present invention is to provide a method for producing a fiber reinforced composite material and an intermediate substrate for fiber reinforced composite material, which can obtain a fiber reinforced composite material with excellent surface quality of a molded product without complicating the structure of the molding equipment. .

前記の目的を達成するため、請求項1に記載の発明の繊維強化複合材の製造方法は、積層繊維層からなる強化基材の少なくとも片側に欠陥吸収層が一体化された状態で前記強化基材を成形型にセットし、前記強化基材にマトリックス樹脂の含浸、硬化後、成形品から前記欠陥吸収層を除去する。ここで、「欠陥吸収層が一体化された状態」とは、欠陥吸収層が結合糸で積層繊維層に結合された構成のみを意味するのではなく、接着剤や粘着剤などの接合剤で欠陥吸収層が積層繊維層に接合された状態や、欠陥吸収層が成形型の押圧作用によって積層繊維層に圧接された状態も意味する。また、「マトリックス樹脂の含浸、硬化」とは、未硬化の熱硬化性樹脂の含浸、硬化に限らず、熱可塑性樹脂のモノマーの含浸、重合(硬化)あるいは溶融状態の熱可塑性樹脂の含浸と冷却による固体化をも意味する。   In order to achieve the above object, the method for producing a fiber-reinforced composite material according to claim 1 is characterized in that the reinforcing group is integrated in a state in which a defect-absorbing layer is integrated on at least one side of a reinforcing substrate made of a laminated fiber layer. The material is set in a mold, and the defect absorbing layer is removed from the molded article after impregnating and curing the matrix resin on the reinforced substrate. Here, “the state in which the defect absorption layer is integrated” does not mean only a configuration in which the defect absorption layer is bonded to the laminated fiber layer with a binding yarn, but a bonding agent such as an adhesive or a pressure-sensitive adhesive. It also means a state where the defect absorbing layer is bonded to the laminated fiber layer and a state where the defect absorbing layer is pressed against the laminated fiber layer by the pressing action of the mold. In addition, “impregnation and curing of matrix resin” is not limited to impregnation and curing of uncured thermosetting resin, but also impregnation of thermoplastic resin monomer, polymerization (curing) or molten thermoplastic resin. It also means solidification by cooling.

従来の成形方法では、積層繊維層に対する樹脂の含浸、硬化時に、成形品の表面にヒケが発生しないように、樹脂の供給あるいは可動型の押圧制御(位置制御)を行う等の方法をとっていた。しかし、この発明では、樹脂の含浸、硬化時に、成形品の表面にヒケが発生するのを防止するという思想と発想を転換し、成形品の表面にヒケが発生するのを防止せずに、成形品を成形型から取り外し易くするための部分を欠陥吸収層とし、その欠陥吸収層にヒケを発生させる。そして、ヒケが発生した欠陥吸収層を成形品から除去して、目的の製品にはヒケが存在しないようにした。そのため、樹脂の含浸、硬化時の成形条件が変動してヒケの大きさが変化しても、ヒケが欠陥吸収層と共に除去されるため、成形条件の変動に対しても悪影響が少ない。したがって、樹脂の含浸、硬化時に持続的な圧力付与や可動型の位置制御が不要な成形方法の適用が可能で、成形工程及び成形設備の構成を複雑化せずに、成形品の表面品質が優れる繊維強化複合材を製造することができる。   In the conventional molding method, the resin is supplied or the movable press control (position control) is performed so as not to cause sink marks on the surface of the molded product when the laminated fiber layer is impregnated and cured. It was. However, in the present invention, at the time of impregnation and curing of the resin, the idea and idea of preventing the occurrence of sink marks on the surface of the molded product is changed, and without preventing the occurrence of sink marks on the surface of the molded product, A portion for facilitating removal of the molded product from the mold is used as a defect absorbing layer, and sink marks are generated in the defect absorbing layer. Then, the defect absorbing layer in which sink marks are generated is removed from the molded product so that the target product does not have sink marks. Therefore, even if the molding conditions at the time of impregnation and curing of the resin fluctuate and the size of the sink changes, the sink is removed together with the defect-absorbing layer. Therefore, it is possible to apply molding methods that do not require continuous pressure application and movable position control during resin impregnation and curing, and the surface quality of the molded product can be improved without complicating the configuration of the molding process and molding equipment. An excellent fiber reinforced composite material can be produced.

請求項2に記載の発明は、請求項1に記載の発明において、前記マトリックス樹脂の含浸、硬化の際、前記強化基材の片側に配置された前記欠陥吸収層に欠陥(ヒケ)が生じるように前記成形型の温度制御を行う。   According to a second aspect of the present invention, in the first aspect of the present invention, when the matrix resin is impregnated and cured, a defect (sink) is generated in the defect absorbing layer disposed on one side of the reinforced substrate. The temperature of the mold is controlled.

通常の成形方法では、積層繊維層に対する樹脂の含浸、硬化の際、樹脂は積層繊維層の中央部分から外側に向かって硬化が進み、ヒケが両側に生じる。この発明では、成形型の温度制御を、マトリックス樹脂の含浸、硬化の際、強化基材(積層繊維層)の片側に配置された欠陥吸収層に欠陥が生じるように行う。そのため、欠陥吸収層を強化基材の両側に一体化する必要がなく、欠陥吸収層を強化基材に取り付ける作業及び、成形後に成形品から欠陥吸収層を取り外す作業が容易になる。   In a normal molding method, when the resin is impregnated and cured in the laminated fiber layer, the resin cures outward from the central portion of the laminated fiber layer, and sink marks are generated on both sides. In the present invention, the temperature of the mold is controlled so that defects are generated in the defect absorbing layer disposed on one side of the reinforced substrate (laminated fiber layer) when the matrix resin is impregnated and cured. Therefore, it is not necessary to integrate the defect absorbing layer on both sides of the reinforced base material, and the operation of attaching the defect absorbing layer to the reinforced base material and the operation of removing the defect absorbing layer from the molded product after molding become easy.

請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記マトリックス樹脂は熱硬化性樹脂である。繊維強化複合材を構成するマトリックス樹脂は熱硬化性樹脂でも熱可塑性樹脂でも可能であるが、熱硬化性樹脂の方が、樹脂の含浸、硬化が容易である。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the matrix resin is a thermosetting resin. The matrix resin constituting the fiber-reinforced composite material can be either a thermosetting resin or a thermoplastic resin, but the thermosetting resin is easier to impregnate and cure the resin.

請求項4に記載の発明は、請求項1〜請求項3のいずれか1項に記載の発明において、前記欠陥吸収層は離型シートである。この発明では、欠陥吸収層として離型シートが使用されるため、成形型を使用して繊維強化複合材を製造する際に必要な離型シートと別に欠陥吸収層を設ける必要がない。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the defect absorbing layer is a release sheet. In this invention, since a release sheet is used as the defect absorption layer, it is not necessary to provide a defect absorption layer separately from the release sheet required when a fiber reinforced composite material is manufactured using a mold.

請求項5に記載の発明は、請求項1〜請求項4のいずれか1項に記載の発明において、前記強化基材は積層繊維層が結合糸で結合されており、前記欠陥吸収層は前記結合糸により前記強化基材と一体化される。この発明では、強化基材と欠陥吸収層との一体化が、積層繊維層の結合糸で行われるため、欠陥吸収層が一体化された積層繊維層の製造工数が少なくなる。   The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the reinforcing base material is formed by bonding laminated fiber layers with a binding yarn, and the defect absorbing layer is It is integrated with the reinforced substrate by a binding yarn. In this invention, since the integration of the reinforcing substrate and the defect absorbing layer is performed by the bonded yarn of the laminated fiber layer, the number of manufacturing steps of the laminated fiber layer in which the defect absorbing layer is integrated is reduced.

請求項6に記載の発明の繊維強化複合材用中間基材は、積層繊維層からなる強化基材の繊維積層方向の少なくとも片側に欠陥吸収層が一体化されている。請求項1に記載の発明の製造方法を実施する場合、積層繊維層からなる強化基材の少なくとも片側に欠陥吸収層が一体化された状態で前記強化基材を成形型にセットする必要がある。欠陥吸収層の厚さや使用枚数は、積層繊維層の厚さや繊維体積含有率や樹脂の硬化収縮量等によって適正な値が異なり、欠陥吸収層が積層繊維層に一体化されていない場合は、積層繊維層と適正な厚さ及び枚数の欠陥吸収層とを成形型にセットする際の工数が多くなる。しかし、この発明の繊維強化複合材用中間基材は、積層繊維層からなる強化基材の繊維積層方向の少なくとも片側に欠陥吸収層が一体化されているため、積層繊維層と、適正な厚さ及び枚数の欠陥吸収層とを成形型にセットする際の工数が少なくなる。   In the intermediate base material for fiber-reinforced composite material according to the sixth aspect of the invention, the defect absorbing layer is integrated on at least one side of the reinforcing base material composed of the laminated fiber layers in the fiber lamination direction. When the manufacturing method of the invention according to claim 1 is carried out, it is necessary to set the reinforced base material in a mold in a state in which the defect absorbing layer is integrated on at least one side of the reinforced base material composed of laminated fiber layers. . The thickness of the defect absorbing layer and the number of sheets used vary depending on the thickness of the laminated fiber layer, the fiber volume content, the amount of cure shrinkage of the resin, etc., and if the defect absorbing layer is not integrated with the laminated fiber layer, The number of man-hours for setting the laminated fiber layer and the defect absorbing layer having an appropriate thickness and number of sheets in the mold increases. However, the intermediate substrate for fiber-reinforced composite material of the present invention has a laminated fiber layer and an appropriate thickness because the defect absorbing layer is integrated on at least one side in the fiber lamination direction of the reinforcing substrate composed of the laminated fiber layer. The number of man-hours for setting the number and the number of defect absorbing layers in the mold is reduced.

請求項7に記載の発明は、請求項6に記載の発明において、前記欠陥吸収層は離型シートである。この発明では、欠陥吸収層として離型シートが使用されるため、成形型を使用して繊維強化複合材用中間基材を製造する際に必要な離型シートと別に欠陥吸収層を設ける必要がない。   The invention according to claim 7 is the invention according to claim 6, wherein the defect absorbing layer is a release sheet. In this invention, since the release sheet is used as the defect absorption layer, it is necessary to provide the defect absorption layer separately from the release sheet necessary for producing an intermediate substrate for fiber-reinforced composite material using a mold. Absent.

請求項8に記載の発明は、請求項7に記載の発明において、前記離型シートは複数枚からなる。積層繊維層の厚さや繊維体積含有率や樹脂の硬化収縮量等によって欠陥吸収層の厚さの適正な値が異なり、欠陥吸収層を1枚の離型シートで形成する場合、積層繊維層の厚さや繊維体積含有率や樹脂の硬化収縮量等の違いに対応して種々の厚さの離型シートが必要になる。しかし、離型シートが複数枚からなる場合は、同じ離型シートの枚数を変更することにより、積層繊維層の厚さや繊維体積含有率や樹脂の硬化収縮量等の変更に対応することができる。   The invention according to an eighth aspect is the invention according to the seventh aspect, wherein the release sheet comprises a plurality of sheets. When the appropriate value of the thickness of the defect absorbing layer varies depending on the thickness of the laminated fiber layer, the fiber volume content, the amount of cure shrinkage of the resin, etc., and the defect absorbing layer is formed with a single release sheet, Release sheets having various thicknesses are required corresponding to differences in thickness, fiber volume content, cure shrinkage of resin, and the like. However, when the release sheet is composed of a plurality of sheets, it is possible to cope with changes in the thickness of the laminated fiber layer, the fiber volume content, the amount of cure shrinkage of the resin, etc. by changing the number of the same release sheet. .

請求項9に記載の発明は、請求項6〜請求項8のいずれか1項に記載の発明において、前記強化基材は積層繊維層が結合糸で結合されており、前記欠陥吸収層は前記結合糸により前記強化基材と一体化されている。この発明では、強化基材と欠陥吸収層との一体化が、積層繊維層の結合糸で行われるため、欠陥吸収層が一体化された積層繊維層の製造工数が少なくなる。   The invention according to claim 9 is the invention according to any one of claims 6 to 8, wherein the reinforcing base material is formed by bonding laminated fiber layers with a binding yarn, and the defect absorbing layer is It is integrated with the reinforced substrate by a binding yarn. In this invention, since the integration of the reinforcing substrate and the defect absorbing layer is performed by the bonded yarn of the laminated fiber layer, the number of manufacturing steps of the laminated fiber layer in which the defect absorbing layer is integrated is reduced.

請求項10に記載の発明は、請求項9に記載の発明において、前記結合糸は繊維強化複合材のマトリックス樹脂に可溶である。したがって、この発明では、結合糸がマトリックス樹脂に不溶な場合に比べて、樹脂の含浸、硬化後に離型シートを成形品から取り外す作業が容易になる。   The invention described in claim 10 is the invention described in claim 9, wherein the binding yarn is soluble in a matrix resin of a fiber-reinforced composite material. Therefore, in this invention, compared with the case where the binding yarn is insoluble in the matrix resin, the work of removing the release sheet from the molded product after the resin impregnation and curing is facilitated.

請求項11に記載の発明は、請求項10に記載の発明において、前記マトリックス樹脂は熱硬化性樹脂であり、前記結合糸はフェノキシ樹脂繊維製である。繊維強化複合材を構成するマトリックス樹脂は熱硬化性樹脂でも熱可塑性樹脂でも可能であるが、熱硬化性樹脂の方が、樹脂の含浸、硬化が容易である。また、結合糸をマトリックス樹脂に可溶とした場合は、結合糸がマトリックス樹脂の一部となって樹脂リッチ部となる。樹脂リッチ部ではマイクロクラックが発生し易いが、結合糸をフェノキシ樹脂繊維製とした場合は、結合糸が熱硬化性樹脂(例えば、エポキシ樹脂)に可溶となる。そして、フェノキシ樹脂は分子鎖が長いので屈曲性があり、柔軟性に優れ、また、親水基としての水酸基、疎水基としての炭化水素基を有するため、樹脂リッチ部の靭性が向上し、マイクロクラックが発生し難い。   The invention according to claim 11 is the invention according to claim 10, wherein the matrix resin is a thermosetting resin, and the binding yarn is made of phenoxy resin fiber. The matrix resin constituting the fiber-reinforced composite material can be either a thermosetting resin or a thermoplastic resin, but the thermosetting resin is easier to impregnate and cure the resin. When the binding yarn is made soluble in the matrix resin, the binding yarn becomes a part of the matrix resin and becomes a resin rich portion. Microcracks are likely to occur in the resin-rich portion, but when the binding yarn is made of phenoxy resin fiber, the binding yarn is soluble in a thermosetting resin (for example, epoxy resin). The phenoxy resin has a long molecular chain, so it is flexible and flexible, and has a hydroxyl group as a hydrophilic group and a hydrocarbon group as a hydrophobic group, so that the toughness of the resin-rich part is improved, and microcracks Is unlikely to occur.

本発明によれば、樹脂の含浸、硬化時に持続的な圧力付与や可動型の位置制御が不要な成形方法の適用が可能で、成形工程及び成形設備の構成を複雑化せずに、成形品の表面品質が優れる繊維強化複合材を得ることができる繊維強化複合材の製造方法及び繊維強化複合材用中間基材を提供することができる。   According to the present invention, it is possible to apply a molding method that does not require continuous pressure application or movable mold position control during resin impregnation and curing, and without complicating the configuration of the molding process and molding equipment. It is possible to provide a method for producing a fiber-reinforced composite material and an intermediate substrate for fiber-reinforced composite material, which can obtain a fiber-reinforced composite material having excellent surface quality.

(a)は第1の実施形態の繊維強化複合材用中間基材の模式斜視図、(b)は模式断面図。(A) is a schematic perspective view of the intermediate base material for fiber reinforced composite materials of 1st Embodiment, (b) is a schematic cross section. 繊維強化複合材の製造装置の概略構成図。The schematic block diagram of the manufacturing apparatus of a fiber reinforced composite material. 第2の実施形態の繊維強化複合材用中間基材の模式断面図。The schematic cross section of the intermediate base material for fiber reinforced composite materials of 2nd Embodiment. 製造装置の概略構成図。The schematic block diagram of a manufacturing apparatus.

(第1の実施形態)
以下、本発明を具体化した第1の実施形態を図1及び図2にしたがって説明する。
図1(a),(b)に示すように、中間基材(繊維強化複合材用中間基材)11は、積層繊維層12が結合糸13で結合された強化基材14の繊維積層方向の両側に欠陥吸収層としての複数の離型シート15が一体化されている。即ち、中間基材11は、積層繊維層12からなる強化基材14の繊維積層方向の少なくとも片側に欠陥吸収層が一体化されている。
(First embodiment)
A first embodiment embodying the present invention will be described below with reference to FIGS.
As shown in FIGS. 1 (a) and 1 (b), an intermediate base material (intermediate base material for fiber reinforced composite material) 11 is a fiber lamination direction of a reinforcing base material 14 in which a laminated fiber layer 12 is bonded with a binding yarn 13. A plurality of release sheets 15 as defect absorbing layers are integrated on both sides of the sheet. That is, in the intermediate base material 11, the defect absorbing layer is integrated on at least one side of the reinforcing base material 14 made of the laminated fiber layer 12 in the fiber lamination direction.

積層繊維層12は、連続繊維が少なくとも2軸配向となるように配列されており、この実施形態では、図1(b)に示すように、積層繊維層12は、配列角度0の連続繊維16aから成る繊維層12aと、配列角度90度の連続繊維16bから成る繊維層12bとが交互に複数積層されて、2軸配向の積層繊維層12が形成されている。積層繊維層12は、厚さが、例えば、数mmに形成されている。連続繊維16a,16b及び結合糸13としては、例えば、炭素繊維が使用される。炭素繊維はフィラメント数が数百〜数万本程度であり、要求性能に適した本数の繊維束が選択される。   The laminated fiber layer 12 is arranged so that the continuous fibers are at least biaxially oriented. In this embodiment, as shown in FIG. 1B, the laminated fiber layer 12 is a continuous fiber 16a having an arrangement angle of 0. A plurality of fiber layers 12a composed of continuous fibers 16b composed of continuous fibers 16b having an arrangement angle of 90 degrees are alternately laminated to form a biaxially oriented laminated fiber layer 12. The laminated fiber layer 12 has a thickness of, for example, several mm. For example, carbon fibers are used as the continuous fibers 16 a and 16 b and the binding yarn 13. Carbon fiber has a number of filaments of about several hundred to several tens of thousands, and the number of fiber bundles suitable for the required performance is selected.

結合糸13は、積層繊維層12の一方の側に配置された離型シート15の外側面(図1(a),(b)の下面側)で折り返すように他方の側に配置された離型シート15の外側面からループ状に挿入されるとともに、一方の外側面から突出したループ部に挿通されて、結合糸13の配列方向と直交する方向に配列された抜け止め糸(耳糸)17により抜け止めされている。結合糸13と抜け止め糸17との共同で積層繊維層12の繊維層12a,12bが結合されるとともに、複数枚の離型シート15が積層繊維層12の両側にそれぞれ一体化されている。   The binding yarn 13 is disposed on the other side so as to be folded back on the outer surface of the release sheet 15 disposed on one side of the laminated fiber layer 12 (the lower surface side in FIGS. 1A and 1B). Retaining yarns (ear yarns) inserted in a loop shape from the outer surface of the mold sheet 15 and inserted in a loop portion protruding from one outer surface and arranged in a direction orthogonal to the arrangement direction of the binding yarns 13 It is prevented from coming off by 17. The fiber layers 12 a and 12 b of the laminated fiber layer 12 are bonded together with the binding yarn 13 and the retaining yarn 17, and a plurality of release sheets 15 are integrated on both sides of the laminated fiber layer 12.

離型シート15としては、例えば、シリコーンやフッ素樹脂により表面処理されたガラス繊維で形成された布が使用される。離型シート15は、1枚あたりの厚さが25〜330μmであるが、積層繊維層12の厚さ、繊維体積含有率(Vf)、樹脂の硬化収縮量等によって、離型シート15の厚さや使用枚数が適正な値に設定される。離型シート15は、例えば、2,3枚あるいは数枚使用される。   As the release sheet 15, for example, a cloth formed of glass fiber surface-treated with silicone or fluororesin is used. The release sheet 15 has a thickness of 25 to 330 μm per sheet. The thickness of the release sheet 15 depends on the thickness of the laminated fiber layer 12, the fiber volume content (Vf), the amount of cure shrinkage of the resin, and the like. The sheath number is set to an appropriate value. For example, a few or several release sheets 15 are used.

次に前記のように構成された中間基材11を用いた繊維強化複合材としての繊維強化樹脂の製造方法を説明する。
繊維強化樹脂の製造は、RTM法の一種であるVaRTM法(真空RTM法)を用いて行う。図2にVaRTM法で用いる製造装置の構成を示す。製造装置は、成形型20と、成形型20の成形面21側を覆うバッグフィルム22とを備えている。成形型20には成形面21の周囲を囲繞するシール部23が設けられ、バッグフィルム22はその周縁部がシール部23に押圧された状態で成形面21を覆うようになっている。成形型20は図示しない加熱装置によって温度調整が可能に構成されている。
Next, the manufacturing method of the fiber reinforced resin as a fiber reinforced composite material using the intermediate base material 11 comprised as mentioned above is demonstrated.
The production of the fiber reinforced resin is performed using a VaRTM method (vacuum RTM method) which is a kind of RTM method. FIG. 2 shows a configuration of a manufacturing apparatus used in the VaRTM method. The manufacturing apparatus includes a molding die 20 and a bag film 22 that covers the molding surface 21 side of the molding die 20. The molding die 20 is provided with a seal portion 23 that surrounds the periphery of the molding surface 21, and the bag film 22 covers the molding surface 21 with its peripheral edge pressed against the seal portion 23. The mold 20 is configured such that the temperature can be adjusted by a heating device (not shown).

製造装置は真空ポンプ24を備え、真空ポンプ24にはシール部23を貫通する減圧配管25の一端が連結され、減圧配管25の途中には樹脂回収タンク(トラップ)26及び開閉弁27が設けられている。製造装置はマトリックス用樹脂の貯留部としての樹脂貯留タンク28を備え、樹脂貯留タンク28にはシール部23を貫通する樹脂供給配管29の一端が連結されている。樹脂供給配管29の途中には開閉弁30が設けられている。   The manufacturing apparatus includes a vacuum pump 24, one end of a decompression pipe 25 penetrating the seal portion 23 is connected to the vacuum pump 24, and a resin recovery tank (trap) 26 and an opening / closing valve 27 are provided in the middle of the decompression pipe 25. ing. The manufacturing apparatus includes a resin storage tank 28 as a matrix resin storage section, and one end of a resin supply pipe 29 penetrating the seal section 23 is connected to the resin storage tank 28. An on-off valve 30 is provided in the middle of the resin supply pipe 29.

次に、前記の製造装置を用いた繊維強化樹脂の製造方法について説明する。
先ず、成形型20の成形面21上に中間基材11及びフローメディア31を配置した後、バッグフィルム22をその周縁部がシール部23と対応する状態に配置する。即ち、中間基材11の外面側からバッグフィルム22で覆った状態でフローメディア31側からマトリックス用樹脂を供給可能な状態に配置する。その状態で、開閉弁30を閉鎖し、開閉弁27を開放した状態で真空ポンプ24を駆動して成形面21及びバッグフィルム22により区画された空間(以下、樹脂注入空間と記載する)内を真空に近い状態まで減圧する。中間基材11の上に配置されたフローメディア31は、樹脂注入空間の減圧に伴い、バッグフィルム22により中間基材11に押圧された状態となり、その状態でマトリックス用樹脂の注入が行われる。マトリックス用樹脂として熱硬化製樹脂、例えば、エポキシ樹脂が使用される。
Next, the manufacturing method of the fiber reinforced resin using the said manufacturing apparatus is demonstrated.
First, after the intermediate base material 11 and the flow media 31 are arranged on the molding surface 21 of the molding die 20, the bag film 22 is arranged in a state where the peripheral edge portion thereof corresponds to the seal portion 23. That is, the matrix resin is arranged in a state where it can be supplied from the flow media 31 side while being covered with the bag film 22 from the outer surface side of the intermediate substrate 11. In that state, the on-off valve 30 is closed, and the on-off valve 27 is opened to drive the vacuum pump 24 and the space defined by the molding surface 21 and the bag film 22 (hereinafter referred to as a resin injection space). Depressurize to near vacuum. The flow media 31 disposed on the intermediate substrate 11 is pressed against the intermediate substrate 11 by the bag film 22 as the resin injection space is depressurized, and the matrix resin is injected in this state. A thermosetting resin such as an epoxy resin is used as the matrix resin.

成形型20の温度を所定温度に維持した状態で、開閉弁30を開放し、樹脂貯留タンク28内のマトリックス用樹脂を樹脂注入空間へ注入する。樹脂注入空間内に注入されたマトリックス用樹脂は、フローメディア31の作用により中間基材11全面に沿うように拡がった後、離型シート15を経て中間基材11全体に含浸される。樹脂注入空間内に注入されて樹脂注入空間から溢れたマトリックス用樹脂は、減圧配管25を経て樹脂回収タンク26に回収される。予め設定された所定時間経過後、開閉弁27が閉鎖され、真空ポンプ24の駆動が停止される。また、開閉弁30が閉鎖される。そして、成形型20の温度が予め設定された所定温度に所定時間上昇され、マトリックス用樹脂が硬化することにより一次成型品としての複合材が形成される。樹脂が完全に硬化した後、樹脂注入空間内を大気圧に戻し、バッグフィルム22を成形型20から取り外し、複合材を成形面21から取り外す。この複合材は中間基材11全体に樹脂が含浸、硬化されたものである。その後、両側の離型シート15を除去した後、バリを除去すると製品となる成形品が得られる。両側の離型シート15の除去は、例えば、離型シート15を破りながら、結合糸13を残すようにして除去することで行われる。   With the temperature of the mold 20 maintained at a predetermined temperature, the on-off valve 30 is opened, and the matrix resin in the resin storage tank 28 is injected into the resin injection space. The matrix resin injected into the resin injection space spreads along the entire surface of the intermediate substrate 11 by the action of the flow media 31, and then is impregnated throughout the intermediate substrate 11 through the release sheet 15. The matrix resin injected into the resin injection space and overflowing from the resin injection space is recovered in the resin recovery tank 26 via the decompression pipe 25. After a predetermined time set in advance, the on-off valve 27 is closed and the driving of the vacuum pump 24 is stopped. Further, the on-off valve 30 is closed. Then, the temperature of the mold 20 is raised to a predetermined temperature set in advance for a predetermined time, and the matrix resin is cured to form a composite material as a primary molded product. After the resin is completely cured, the inside of the resin injection space is returned to atmospheric pressure, the bag film 22 is removed from the molding die 20, and the composite material is removed from the molding surface 21. In this composite material, the entire intermediate substrate 11 is impregnated with resin and cured. Thereafter, after removing the release sheets 15 on both sides, a molded product that becomes a product is obtained by removing the burrs. The release sheets 15 on both sides are removed by, for example, removing the release sheets 15 while leaving the binding yarns 13 while tearing the release sheets 15.

中間基材11に対するマトリックス用樹脂の含浸、硬化の際、一次成型品の表面にヒケが発生する。ヒケは離型シート15の部分に発生するため、一次成型品から離型シート15を除去することによりヒケの存在しない製品としての成形品が得られる。   When the matrix substrate is impregnated and cured with respect to the intermediate base material 11, sink marks are generated on the surface of the primary molded product. Since sink marks are generated in the part of the release sheet 15, removing the release sheet 15 from the primary molded product provides a molded product as a product free from sink marks.

この実施形態によれば、以下に示す効果を得ることができる。
(1)繊維強化複合材の製造方法は、積層繊維層12からなる強化基材14の少なくとも片側に離型シート15(欠陥吸収層)が一体化された中間基材11を成形型20にセットし、強化基材14にマトリックス樹脂の含浸、硬化後、成形品(一次成形品)から離型シート15を除去する。即ち、従来の成形方法と異なり、樹脂の含浸、硬化時に、成形品の表面にヒケが発生するのを防止せずに、成形品を成形型20から取り外し易くするための離型シート15の部分にヒケを発生させて、ヒケが発生した離型シート15を成形品(一次成形品)から除去して、目的の製品にはヒケが存在しないようにした。そのため、樹脂の含浸、硬化時の成形条件が変動してヒケの大きさが変化しても、ヒケが離型シート15と共に除去されるため、成形条件の変動に対しても悪影響が少ない。したがって、樹脂の含浸、硬化時に持続的な圧力付与や可動型の位置制御が不要な成形方法の適用が可能で、成形工程及び成形設備の構成を複雑化せずに、成形品の表面品質が優れる繊維強化複合材を製造することができる。また、成型品の厚さの精度を高めることもできる。また、欠陥吸収層として離型シート15が使用されるため、成形型20を使用して繊維強化複合材を製造する際に必要な離型シート15と別に欠陥吸収層を設ける必要がない。
According to this embodiment, the following effects can be obtained.
(1) In the method for producing a fiber reinforced composite material, the intermediate base material 11 in which the release sheet 15 (defect absorbing layer) is integrated on at least one side of the reinforced base material 14 made of the laminated fiber layer 12 is set in the mold 20. The mold release sheet 15 is removed from the molded product (primary molded product) after the reinforced base material 14 is impregnated with the matrix resin and cured. That is, unlike the conventional molding method, the part of the release sheet 15 for making it easy to remove the molded product from the mold 20 without preventing the occurrence of sink marks on the surface of the molded product during resin impregnation and curing. The release sheet 15 in which sink marks were generated was removed from the molded product (primary molded product) so that the target product did not have sink marks. Therefore, even if the molding conditions at the time of resin impregnation and curing vary and the size of the sink marks changes, the sink marks are removed together with the release sheet 15, so there is little adverse effect on the variations in molding conditions. Therefore, it is possible to apply molding methods that do not require continuous pressure application and movable position control during resin impregnation and curing, and the surface quality of the molded product can be improved without complicating the configuration of the molding process and molding equipment. An excellent fiber reinforced composite material can be produced. Moreover, the precision of the thickness of a molded product can also be improved. Further, since the release sheet 15 is used as the defect absorbing layer, it is not necessary to provide the defect absorbing layer separately from the release sheet 15 necessary when the fiber reinforced composite material is manufactured using the mold 20.

(2)マトリックス樹脂は熱硬化性樹脂である。繊維強化複合材を構成するマトリックス樹脂は熱硬化性樹脂でも熱可塑性樹脂でも可能であるが、熱硬化性樹脂の方が、樹脂の含浸、硬化が容易である。   (2) The matrix resin is a thermosetting resin. The matrix resin constituting the fiber-reinforced composite material can be either a thermosetting resin or a thermoplastic resin, but the thermosetting resin is easier to impregnate and cure the resin.

(3)中間基材11は、積層繊維層12が結合糸13で結合された強化基材14の繊維積層方向の少なくとも片側にそれぞれ複数枚の離型シート15が一体化されている。離型シート15の厚さや使用枚数は、積層繊維層12の厚さや繊維体積含有率や樹脂の硬化収縮量等によって適正な値が異なり、離型シート15が積層繊維層12に一体化されていない場合は、積層繊維層12と、適正な厚さ及び枚数の離型シート15とを成形型20にセットする際の工数が多くなる。しかし、中間基材11は、積層繊維層12が結合糸13で結合された強化基材14の繊維積層方向の少なくとも片側に複数の離型シート15が一体化されているため、積層繊維層12と、適正な厚さ及び枚数の離型シート15とを成形型20にセットする際の工数が少なくなる。また、離型シート15が結合糸13により中間基材11に一体化されている場合は、中間基材11の取り扱いが容易になる。   (3) In the intermediate base material 11, a plurality of release sheets 15 are integrated on at least one side of the reinforcing base material 14 in which the laminated fiber layers 12 are joined by the binding yarns 13 in the fiber lamination direction. The appropriate values for the thickness and number of sheets used of the release sheet 15 vary depending on the thickness of the laminated fiber layer 12, the fiber volume content, the amount of cure shrinkage of the resin, and the release sheet 15 is integrated with the laminated fiber layer 12. If not, the number of man-hours for setting the laminated fiber layer 12 and the release sheets 15 of appropriate thickness and number on the mold 20 is increased. However, since the intermediate substrate 11 has a plurality of release sheets 15 integrated on at least one side in the fiber lamination direction of the reinforcing substrate 14 in which the laminated fiber layer 12 is bonded with the binding yarns 13, the laminated fiber layer 12 And the man-hour at the time of setting the release sheet 15 of appropriate thickness and number of sheets to the shaping | molding die 20 decreases. Further, when the release sheet 15 is integrated with the intermediate base material 11 by the binding yarn 13, the intermediate base material 11 can be easily handled.

積層繊維層12の厚さや繊維体積含有率や樹脂の硬化収縮量等によって欠陥吸収層の厚さの適正な値が異なり、欠陥吸収層を1枚の離型シート15で形成する場合、積層繊維層12の厚さや繊維体積含有率や樹脂の硬化収縮量等の違いに対応して種々の厚さの離型シート15が必要になる。しかし、離型シート15が複数枚からなる場合は、同じ厚さの離型シート15の枚数を変更することにより、積層繊維層12の厚さや繊維体積含有率や樹脂の硬化収縮量等の変更に対応することができる。   When the appropriate value of the thickness of the defect-absorbing layer varies depending on the thickness of the laminated fiber layer 12, the fiber volume content, the amount of cure shrinkage of the resin, etc., and the defect-absorbing layer is formed with one release sheet 15, the laminated fiber The release sheets 15 having various thicknesses are required corresponding to differences in the thickness of the layer 12, the fiber volume content, the curing shrinkage amount of the resin, and the like. However, when the release sheet 15 is composed of a plurality of sheets, by changing the number of the release sheets 15 having the same thickness, the thickness of the laminated fiber layer 12, the fiber volume content, the amount of cure shrinkage of the resin, and the like are changed. It can correspond to.

(4)離型シート15は強化基材14の両側に一体化されているため、一般的な方法でマトリックス樹脂の含浸、硬化を行うことにより、一次成型品の両側にヒケが発生しても支障がない。   (4) Since the release sheet 15 is integrated on both sides of the reinforced base material 14, even if sink marks occur on both sides of the primary molded product by impregnating and curing the matrix resin by a general method. There is no hindrance.

(第2の実施形態)
次に、第2の実施形態を図3及び図4にしたがって説明する。この実施形態では、中間基材11の片側に複数枚の離型シート15が一体化されている点と、繊維強化樹脂を製造する際に、ヒケが強化基材14の片側に配置された離型シート15の部分に発生するように、RTM法を行う点とが前記第1の実施形態と異なっている。なお、第1の実施形態と同様の部分については同一符号を付してその詳細な説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. In this embodiment, a plurality of release sheets 15 are integrated on one side of the intermediate base material 11, and when a fiber reinforced resin is manufactured, a sink is disposed on one side of the reinforced base material 14. The point which performs RTM method so that it may generate | occur | produce in the part of the type | mold sheet | seat 15 differs from the said 1st Embodiment. In addition, about the part similar to 1st Embodiment, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.

図3に示すように、中間基材11は、強化基材14の片側の抜け止め糸17が配列される側と反対側にのみ離型シート15が一体化されている。
図4に示すように、製造装置を構成する成形型41は、下型42及び上型43で構成されており、下型42は形成すべき繊維強化樹脂成形品の形状に対応したキャビティ44を備え、上型43にはキャビティ44に連通する注入孔45及び排出孔46が形成されている。注入孔45は一端がキャビティ44の一端と対応する位置に形成され、他端が注入管47を介して樹脂注入装置48に接続されている。樹脂注入装置48は、公知の装置が使用され、タンク内に貯蔵された樹脂をポンプで送り出すように構成されている。注入管47には開閉弁49が設けられるとともに、開閉弁49よりキャビティ44側に圧力計50が設けられている。
As shown in FIG. 3, in the intermediate base material 11, the release sheet 15 is integrated only on the side opposite to the side on which the retaining thread 17 on one side of the reinforced base material 14 is arranged.
As shown in FIG. 4, a molding die 41 constituting the manufacturing apparatus is composed of a lower die 42 and an upper die 43. The lower die 42 has a cavity 44 corresponding to the shape of the fiber reinforced resin molded product to be formed. The upper mold 43 is formed with an injection hole 45 and a discharge hole 46 communicating with the cavity 44. One end of the injection hole 45 is formed at a position corresponding to one end of the cavity 44, and the other end is connected to the resin injection device 48 via an injection pipe 47. As the resin injection device 48, a known device is used, and the resin stored in the tank is pumped out. The injection pipe 47 is provided with an on-off valve 49 and a pressure gauge 50 on the cavity 44 side from the on-off valve 49.

排出孔46は一端がキャビティ44の他端と対応する位置に形成され、他端が吸引管51を介して減圧ポンプ52に接続されている。吸引管51には開閉弁53が設けられるとともに、開閉弁53より減圧ポンプ52側にトラップ54が設けられている。下型42の上面には環状溝が形成され、環状溝に収容されるシール材55により型閉じ状態におけるキャビティ44の密閉性が確保されている。   One end of the discharge hole 46 is formed at a position corresponding to the other end of the cavity 44, and the other end is connected to the decompression pump 52 via the suction pipe 51. The suction pipe 51 is provided with an opening / closing valve 53, and a trap 54 is provided closer to the decompression pump 52 than the opening / closing valve 53. An annular groove is formed on the upper surface of the lower mold 42, and the sealing performance of the cavity 44 in the mold closed state is secured by the sealing material 55 accommodated in the annular groove.

下型42及び上型43には成形型41の温度調整のために熱媒体を流す熱媒配管56,57が設けられている。樹脂注入装置48、減圧ポンプ52及び開閉弁49,53は、図示しない制御装置からの指令によって運転あるいは切換え制御されるようになっている。また、制御装置には下型42及び上型43の温度を検出する温度センサ(図示せず)の検出信号に基づいて成形型41の温度を調整するようになっている。   The lower mold 42 and the upper mold 43 are provided with heat medium pipes 56 and 57 through which a heat medium flows to adjust the temperature of the mold 41. The resin injection device 48, the decompression pump 52, and the on-off valves 49 and 53 are operated or switched by commands from a control device (not shown). Further, the control device adjusts the temperature of the mold 41 based on a detection signal from a temperature sensor (not shown) that detects the temperatures of the lower mold 42 and the upper mold 43.

次に繊維強化樹脂成形品(FRP成形品)の製造方法を説明する。
下型42のキャビティ44の壁面に離型剤を塗った状態で、成形型41のキャビティ44内に中間基材11を配置し、成形型41の型締めを行った後、成形型41を加熱する。この加熱はキャビティ44に注入される未硬化樹脂の流動性を高めることを主目的としている。そして、開閉弁49を閉鎖し、開閉弁53を開放した状態で減圧ポンプ52を駆動して、キャビティ44内を真空に近い状態まで減圧する。続いて、キャビティ44内が減圧された状態で、開閉弁49を開放するとともに樹脂注入装置48から未硬化の熱硬化性樹脂を注入孔45からキャビティ44内に注入する。
Next, a method for producing a fiber reinforced resin molded product (FRP molded product) will be described.
With the mold release agent applied to the wall surface of the cavity 44 of the lower mold 42, the intermediate substrate 11 is placed in the cavity 44 of the mold 41, the mold 41 is clamped, and then the mold 41 is heated. To do. The main purpose of this heating is to increase the fluidity of the uncured resin injected into the cavity 44. Then, the on-off valve 49 is closed and the decompression pump 52 is driven in a state where the on-off valve 53 is opened to decompress the inside of the cavity 44 to a state close to a vacuum. Subsequently, in a state where the inside of the cavity 44 is decompressed, the on-off valve 49 is opened and uncured thermosetting resin is injected from the resin injection device 48 into the cavity 44 through the injection hole 45.

樹脂注入装置48は、送り出される樹脂が一定流量となるように樹脂を送り出す。キャビティ44内に注入された樹脂は中間基材11に含浸されるとともに、中間基材11に残っている気泡を押しながら移動する。そして、樹脂がキャビティ44を下から次第に満たしていき、気泡はキャビティ44の上側に移動し、キャビティ44内から排出孔46に移動する。   The resin injecting device 48 sends out the resin so that the sent out resin has a constant flow rate. The resin injected into the cavity 44 is impregnated in the intermediate substrate 11 and moves while pushing the bubbles remaining in the intermediate substrate 11. Then, the resin gradually fills the cavity 44 from below, and the bubbles move to the upper side of the cavity 44 and move from the inside of the cavity 44 to the discharge hole 46.

キャビティ44への樹脂の注入が継続されて、キャビティ44内への樹脂の注入が完了した後、開閉弁49,53を閉鎖し、樹脂注入装置48及び減圧ポンプ52の運転を停止する。熱媒配管56,57に供給する熱媒体の温度を高くして、樹脂の硬化が完了するまで加熱が継続される。上型43と下型42とに5〜30℃の温度差がつくように、かつ下型42側が高温となるように熱媒配管56,57に供給する熱媒体の温度が制御される。   After the resin injection into the cavity 44 is continued and the resin injection into the cavity 44 is completed, the on-off valves 49 and 53 are closed, and the operation of the resin injection device 48 and the decompression pump 52 is stopped. The temperature of the heat medium supplied to the heat medium pipes 56 and 57 is increased, and heating is continued until the resin is completely cured. The temperature of the heat medium supplied to the heat medium pipes 56 and 57 is controlled so that a temperature difference of 5 to 30 ° C. is formed between the upper mold 43 and the lower mold 42 and the lower mold 42 side is at a high temperature.

樹脂の硬化が完了した後、成形型41を開き、成形型41内から繊維強化樹脂成形品を取り出す。以上で繊維強化樹脂成形品の製造が完了する。なお、キャビティ44内への樹脂の注入が完了したことや樹脂の硬化が完了したことの判断は、例えば、キャビティ44内への樹脂の注入開始からの経過時間が、予め試験で求めて設定した時間に達したことで行われる。   After the curing of the resin is completed, the mold 41 is opened, and the fiber reinforced resin molded product is taken out from the mold 41. This completes the production of the fiber reinforced resin molded product. Note that the determination of the completion of the resin injection into the cavity 44 and the completion of the resin curing was performed by, for example, obtaining the elapsed time from the start of the resin injection into the cavity 44 in advance by a test. It is done by reaching the time.

通常の成形方法では、中間基材11に対する樹脂の含浸、硬化の際、樹脂は積層繊維層12の中央部分から外側に向かって硬化が進み、ヒケが中間基材11両側に生じる。この発明では、成形型41の温度制御を、マトリックス樹脂の含浸、硬化の際、強化基材14の片側、即ち中間基材11の片側に配置された離型シート15の部分に欠陥が生じるように行う。具体的には、下型42側が上型43より所定の温度、高温となるように温度制御が行われ、マトリックス樹脂の硬化が下型42側から進み、離型シート15が配置された側が最後に硬化する。その結果、マトリックス樹脂の含浸、硬化の際、中間基材11の片側に配置された離型シート15の部分に欠陥(ヒケ)が生じる状態になる。   In a normal molding method, when the resin is impregnated and cured with respect to the intermediate base material 11, the resin hardens from the central portion of the laminated fiber layer 12 toward the outside, and sink marks are generated on both sides of the intermediate base material 11. In the present invention, the temperature of the mold 41 is controlled so that defects occur in the part of the release sheet 15 disposed on one side of the reinforced base material 14, that is, on one side of the intermediate base material 11, during the impregnation and curing of the matrix resin. To do. Specifically, temperature control is performed so that the lower mold 42 side is at a predetermined temperature and a higher temperature than the upper mold 43, the curing of the matrix resin proceeds from the lower mold 42 side, and the side on which the release sheet 15 is disposed is the last. To harden. As a result, when the matrix resin is impregnated and cured, a defect (sink) occurs in the part of the release sheet 15 disposed on one side of the intermediate base material 11.

したがって、この実施形態によれば、第1の実施形態の(1),(2),(3)と同様な効果に加えて次の効果を得ることができる。
(5)マトリックス樹脂の含浸、硬化の際、強化基材14の片側に配置された離型シート15の部分に欠陥(ヒケ)が生じるように成形型41の温度制御を行う。そのため、離型シート15を強化基材14の両側に一体化する必要がなく、離型シート15を強化基材14に取り付ける作業及び、成形後に成形品から離型シート15を取り外す作業が容易になる。
Therefore, according to this embodiment, in addition to the same effects as (1), (2), and (3) of the first embodiment, the following effects can be obtained.
(5) During the impregnation and curing of the matrix resin, the temperature of the mold 41 is controlled so that defects (sinks) occur in the part of the release sheet 15 disposed on one side of the reinforced substrate 14. Therefore, it is not necessary to integrate the release sheet 15 on both sides of the reinforced base material 14, and the work of attaching the release sheet 15 to the reinforced base material 14 and the work of removing the release sheet 15 from the molded product after molding are easy. Become.

(6)中間基材11は、離型シート15が配置されていない側は離型剤を介して下型42と対向するため、成型品の表面の状態は離型シート15が存在する場合に比べて下型42の表面の状態(粗さ)が反映される。したがって、成型品の表面粗さを下型42の表面粗さで調整することができる。   (6) Since the intermediate substrate 11 faces the lower mold 42 through the mold release agent on the side where the release sheet 15 is not disposed, the surface state of the molded product is when the release sheet 15 exists. In comparison, the surface state (roughness) of the lower mold 42 is reflected. Therefore, the surface roughness of the molded product can be adjusted by the surface roughness of the lower mold 42.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ マトリックス樹脂としての熱硬化性樹脂はエポキシ樹脂に限らず、例えば、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂を使用しても良い。
The embodiment is not limited to the above, and may be embodied as follows, for example.
The thermosetting resin as the matrix resin is not limited to an epoxy resin, and for example, an unsaturated polyester resin, a phenol resin, or a vinyl ester resin may be used.

○ マトリックス樹脂は熱硬化性樹脂に限らず、熱可塑性樹脂を使用しても良い。マトリックス樹脂として熱可塑性樹脂を使用する場合は、中間基材11に溶融含浸成形法等、一般の含浸法で熱可塑性樹脂が含浸された後、冷却されて複合材が形成される。熱可塑性樹脂としては、例えば、ナイロン、ポリブチレンテレフタレート、ポリカーボネート等が使用される。熱可塑性樹脂を使用する場合、重合された熱可塑性樹脂を使用する方法に限らず、熱硬化性樹脂の場合のように、重合前のモノマーの状態で中間基材11に含浸後、重合させてもよい。モノマーの状態で含浸させる熱可塑性樹脂として、例えば、ポリアミド(ナイロン)のモノマー(例えば、ε−カプロラクタム)が挙げられる。   ○ The matrix resin is not limited to a thermosetting resin, and a thermoplastic resin may be used. When a thermoplastic resin is used as the matrix resin, the intermediate substrate 11 is impregnated with a thermoplastic resin by a general impregnation method such as a melt impregnation molding method, and then cooled to form a composite material. As the thermoplastic resin, for example, nylon, polybutylene terephthalate, polycarbonate or the like is used. When using a thermoplastic resin, the method is not limited to a method using a polymerized thermoplastic resin. As in the case of a thermosetting resin, the intermediate substrate 11 is impregnated in the state of a monomer before polymerization and then polymerized. Also good. Examples of the thermoplastic resin to be impregnated in the monomer state include a polyamide (nylon) monomer (for example, ε-caprolactam).

○ 繊維強化複合材は、強化基材14として少なくとも積層繊維層12が存在すればよく、結合糸13は成形品に存在しなくてもよい。結合糸13が成形品に存在しない繊維強化複合材を製造する場合は、中間基材11を構成する結合糸13として、マトリックス樹脂に可溶な繊維が使用される。例えば、マトリックス樹脂が熱硬化性樹脂の場合、結合糸13及び抜け止め糸17にフェノキシ樹脂繊維やポリアミド(ナイロン)繊維が使用される。また、マトリックス樹脂が熱可塑性樹脂の場合、結合糸13及び抜け止め糸17にはマトリックス樹脂と同系統の繊維が使用される。これらの場合、結合糸13がマトリックス樹脂に不溶な場合に比べて、樹脂の含浸、硬化後に離型シート15を成形品から取り外す作業が容易になる。   The fiber reinforced composite material only needs to have at least the laminated fiber layer 12 as the reinforcing base material 14, and the binding yarn 13 may not be present in the molded product. In the case of manufacturing a fiber reinforced composite material in which the binding yarn 13 is not present in the molded product, fibers that are soluble in the matrix resin are used as the binding yarn 13 constituting the intermediate substrate 11. For example, when the matrix resin is a thermosetting resin, a phenoxy resin fiber or a polyamide (nylon) fiber is used for the binding yarn 13 and the retaining yarn 17. When the matrix resin is a thermoplastic resin, fibers of the same system as the matrix resin are used for the binding yarn 13 and the retaining yarn 17. In these cases, it is easier to remove the release sheet 15 from the molded product after the resin is impregnated and cured as compared with the case where the binding yarn 13 is insoluble in the matrix resin.

○ 結合糸13にマトリックス樹脂に可溶なフェノキシ樹脂繊維を使用した場合、繊維強化複合材は、結合糸13が存在した箇所にフェノキシ樹脂がマトリックス樹脂と混合した相が存在する。繊維強化複合材は、結合糸13が存在した箇所の付近に樹脂リッチ部が存在し易くなり、樹脂リッチ部ではマイクロクラックが発生し易い。しかし、フェノキシ樹脂が混在すると、フェノキシ樹脂は、分子鎖が長いので屈曲性があり、柔軟性に優れ、また、親水基としての水酸基、疎水基としての炭化水素基を有するため接着性が良く、樹脂リッチ部の靱性が向上し、マイクロクラックの発生が抑制される。   When the phenoxy resin fiber soluble in the matrix resin is used for the binding yarn 13, the fiber reinforced composite material has a phase in which the phenoxy resin is mixed with the matrix resin at the location where the binding yarn 13 exists. In the fiber reinforced composite material, a resin-rich portion is likely to exist in the vicinity of the portion where the binding yarn 13 is present, and microcracks are easily generated in the resin-rich portion. However, when phenoxy resin is mixed, phenoxy resin is flexible because it has a long molecular chain, and has excellent flexibility, and also has good adhesion because it has a hydroxyl group as a hydrophilic group and a hydrocarbon group as a hydrophobic group. The toughness of the resin rich portion is improved and the occurrence of microcracks is suppressed.

○ 積層繊維層12を結合する結合糸13は、積層繊維層12に一方の面から折り返し状に挿入されるとともに抜け止め糸17で抜け止めされる構成に限らず、針を用いて1本の結合糸13を積層繊維層12に一方の面から挿通され、他方の面で貫通位置を変えて折り返す用に挿通されることを繰り返すスティッチ糸であってもよい。   ○ The binding yarn 13 for bonding the laminated fiber layer 12 is not limited to the configuration in which the laminated fiber layer 12 is inserted in a folded shape from one surface and is prevented from being removed by the retaining yarn 17, but one needle is used. It may be a stitch yarn that repeatedly inserts the binding yarn 13 into the laminated fiber layer 12 from one surface and changes the penetration position on the other surface to be turned back.

○ 繊維強化複合材の強化基材14として、積層繊維層12の繊維層12a,12bと交差する方向に配列された繊維(厚さ方向糸)を必要とする場合、離型シート15を中間基材11の片側にのみ結合糸13及び抜け止め糸17によって一体化するとともに、離型シート15を抜け止め糸17側に配置する。そして、抜け止め糸17をマトリックス樹脂に可溶な繊維で構成する。この場合、マトリックス樹脂の含浸により抜け止め糸17はマトリックス樹脂に溶解するが、結合糸13は厚さ方向糸として残る。また、抜け止め糸17が溶解することにより、成型品から離型シート15を容易に除去することができる。   ○ When the fibers (thickness direction yarns) arranged in the direction intersecting the fiber layers 12a and 12b of the laminated fiber layer 12 are required as the reinforcing base material 14 of the fiber reinforced composite material, the release sheet 15 is used as an intermediate base. Only one side of the material 11 is integrated by the binding yarn 13 and the retaining thread 17, and the release sheet 15 is disposed on the retaining thread 17 side. The retaining thread 17 is made of a fiber that is soluble in the matrix resin. In this case, the retaining yarn 17 is dissolved in the matrix resin by impregnation with the matrix resin, but the binding yarn 13 remains as a thickness direction yarn. Moreover, when the retaining thread 17 is dissolved, the release sheet 15 can be easily removed from the molded product.

○ 強化基材14として厚さ方向糸を必要とする場合、繊維層12a,12bがマトリックス樹脂に不溶な結合糸13で結合された積層繊維層12の少なくとも片側に離型シート15を配置した状態で、マトリックス樹脂に可溶な結合糸13で離型シート15を積層繊維層12に一体化して中間基材11を形成しても良い。   In the case where a thread in the thickness direction is required as the reinforcing substrate 14, the release sheet 15 is disposed on at least one side of the laminated fiber layer 12 in which the fiber layers 12a and 12b are bonded with the bonding yarn 13 insoluble in the matrix resin. Thus, the intermediate substrate 11 may be formed by integrating the release sheet 15 with the laminated fiber layer 12 with the binding yarn 13 soluble in the matrix resin.

○ 積層繊維層12が結合糸13で結合された強化基材14の繊維積層方向の少なくとも片側に複数枚の離型シート15が一体化されている中間基材11の構成は、結合糸13によって一体化された構成に限らない。例えば、離型シート15を溶着パウダや接着剤あるいは粘着剤で積層繊維層12と一体化してもよい。   The structure of the intermediate substrate 11 in which a plurality of release sheets 15 are integrated on at least one side in the fiber lamination direction of the reinforcing substrate 14 in which the laminated fiber layer 12 is bonded with the bonding yarn 13 is formed by the bonding yarn 13. It is not limited to an integrated configuration. For example, the release sheet 15 may be integrated with the laminated fiber layer 12 with a welding powder, an adhesive, or an adhesive.

○ 離型シート15は、少なくとも中間基材11が成形型20,41にセットされて、マトリックス樹脂が供給される前までに、中間基材11と一体化されていればよく、必ずしも中間基材11と一体に移動可能に一体化されている必要はない。例えば、中間基材11を成形型20,41にセットする際に、離型シート15を中間基材11と成形型20,41及びバッグフィルム22との間にセットし、成形型20,41及びバッグフィルム22の押圧力で所定の位置に保持される構成としてもよい。   The release sheet 15 may be integrated with the intermediate substrate 11 before at least the intermediate substrate 11 is set in the molds 20 and 41 and the matrix resin is supplied. It is not necessary to be integrated with 11 so that movement is possible. For example, when the intermediate substrate 11 is set on the molds 20 and 41, the release sheet 15 is set between the intermediate substrate 11, the molds 20 and 41, and the bag film 22, and the molds 20 and 41 and It is good also as a structure hold | maintained in a predetermined position with the pressing force of the bag film 22. FIG.

○ 欠陥吸収層として、例えば、不織布を使用してもよい。ヒケ(欠陥)の深さが深い場合、離型シート15の枚数を増やしたり、枚数を増やさずに厚さの厚い離型シート15を使用したりする必要があるが、離型シート15の外側に、欠陥吸収層を設けて離型シート15を1枚にしてもよい。   O As a defect absorption layer, you may use a nonwoven fabric, for example. When the depth of sink marks (defects) is deep, it is necessary to increase the number of release sheets 15 or to use a thick release sheet 15 without increasing the number of sheets. Alternatively, a single release sheet 15 may be provided by providing a defect absorbing layer.

○ 成形型41の温度制御で、中間基材11の離型シート15が配置された片面のみにヒケを集中させる場合、到達温度は同じで、下型42及び上型43に所定の範囲、例えば、5〜30℃の温度差がつくように時間差を設けて上昇させるように制御してもよい。   ○ When sink marks are concentrated only on one side where the release sheet 15 of the intermediate base material 11 is arranged by controlling the temperature of the molding die 41, the ultimate temperature is the same, and a predetermined range, for example, on the lower die 42 and the upper die 43, for example Alternatively, the temperature may be controlled to be increased by providing a time difference so that a temperature difference of 5 to 30 ° C. is obtained.

○ RTM法に限らず、VaRTM法においても、成形型20の温度制御で成形面21側から熱硬化性樹脂の硬化が進行するようにして、バッグフィルム22側に配置された離型シート15にヒケが集中するようにしてもよい。   ○ Not only in the RTM method, but also in the VaRTM method, the thermosetting resin is cured from the molding surface 21 side by controlling the temperature of the molding die 20, and the release sheet 15 disposed on the bag film 22 side is used. You may make it sink.

○ 中間基材11に対するマトリックス樹脂の含浸、硬化処理は、RTM法やVaRTM法に限らず、RFI(レジンフィルムインフュージョン)法を用いてもよい。
○ 連続繊維16a,16bからなる繊維層12a,12bが積層された積層繊維層12は、少なくとも2軸配向となればよく、連続繊維の配列角度は、0度と90度の組み合わせに限らない。例えば、配列角度が0度と90度の他に、配列角度が+45度及び−45度の連続繊維からなる繊維層を設けて4軸配向としたり、配列角度が0度又は90度の連続繊維と、その連続繊維に対して斜めに配列されるバイアス繊維束との組み合わせによる3軸配向としたりしてもよい。
The matrix resin impregnation and curing treatment for the intermediate base material 11 is not limited to the RTM method or the VaRTM method, and an RFI (resin film infusion) method may be used.
The laminated fiber layer 12 in which the fiber layers 12a and 12b made of the continuous fibers 16a and 16b are laminated may be at least biaxially oriented, and the arrangement angle of the continuous fibers is not limited to the combination of 0 degree and 90 degrees. For example, in addition to the arrangement angles of 0 degrees and 90 degrees, a fiber layer composed of continuous fibers with an arrangement angle of +45 degrees and −45 degrees is provided to form a 4-axis orientation, or a continuous fiber with an arrangement angle of 0 degrees or 90 degrees. Or a combination of bias fiber bundles arranged obliquely with respect to the continuous fibers.

○ 連続繊維及び厚さ方向糸は、炭素繊維に限らず、成形品の複合材の要求性能を満たせば、ガラス繊維、アラミド繊維等を使用してもよい。   ○ The continuous fiber and the thickness direction yarn are not limited to carbon fiber, and glass fiber, aramid fiber, or the like may be used as long as the required performance of the composite material of the molded product is satisfied.

11…繊維強化複合材用中間基材としての中間基材、12…積層繊維層、13…結合糸、14…強化基材、15…欠陥吸収層としての離型シート、20,41…成形型。   DESCRIPTION OF SYMBOLS 11 ... Intermediate base material as intermediate base material for fiber reinforced composite material, 12 ... Laminated fiber layer, 13 ... Bonding yarn, 14 ... Reinforcement base material, 15 ... Release sheet as defect absorbing layer, 20, 41 ... Mold .

Claims (11)

積層繊維層からなる強化基材の少なくとも片側に欠陥吸収層が一体化された状態で前記強化基材を成形型にセットし、前記強化基材にマトリックス樹脂の含浸、硬化後、成形品から前記欠陥吸収層を除去することを特徴とする繊維強化複合材の製造方法。   The reinforced base material is set in a molding die in a state where a defect absorbing layer is integrated on at least one side of the reinforced base material composed of a laminated fiber layer, and after the impregnation and curing of the matrix resin to the reinforced base material, A method for producing a fiber-reinforced composite material, wherein the defect absorbing layer is removed. 前記マトリックス樹脂の含浸、硬化の際、前記強化基材の片側に配置された前記欠陥吸収層に欠陥が生じるように前記成形型の温度制御を行う請求項1に記載の繊維強化複合材の製造方法。   The fiber-reinforced composite material according to claim 1, wherein the temperature of the mold is controlled so that a defect is generated in the defect absorbing layer disposed on one side of the reinforced base material when the matrix resin is impregnated and cured. Method. 前記マトリックス樹脂は熱硬化性樹脂である請求項1又は請求項2に記載の繊維強化複合材の製造方法。   The method for producing a fiber-reinforced composite material according to claim 1, wherein the matrix resin is a thermosetting resin. 前記欠陥吸収層は離型シートである請求項1〜請求項3のいずれか1項に記載の繊維強化複合材の製造方法。   The method for producing a fiber-reinforced composite material according to any one of claims 1 to 3, wherein the defect absorbing layer is a release sheet. 前記強化基材は積層繊維層が結合糸で結合されており、前記欠陥吸収層は前記結合糸により前記強化基材と一体化される請求項1〜請求項4のいずれか1項に記載の繊維強化複合材の製造方法。   The laminated fiber layer of the reinforced base material is bonded with a binding yarn, and the defect absorbing layer is integrated with the reinforced base material with the binding yarn. Manufacturing method of fiber reinforced composite material. 積層繊維層からなる強化基材の繊維積層方向の少なくとも片側に欠陥吸収層が一体化されていることを特徴とする繊維強化複合材用中間基材。   An intermediate substrate for a fiber-reinforced composite material, wherein a defect-absorbing layer is integrated on at least one side of a reinforcing substrate composed of a laminated fiber layer in the fiber lamination direction. 前記欠陥吸収層は離型シートである請求項6に記載の繊維強化複合材用中間基材。   The intermediate substrate for fiber-reinforced composite material according to claim 6, wherein the defect absorbing layer is a release sheet. 前記離型シートは複数枚からなる請求項7に記載の繊維強化複合材用中間基材。   The intermediate substrate for fiber-reinforced composite material according to claim 7, wherein the release sheet comprises a plurality of sheets. 前記強化基材は積層繊維層が結合糸で結合されており、前記欠陥吸収層は前記結合糸により前記強化基材と一体化されている請求項6〜請求項8のいずれか1項に記載の繊維強化複合材用中間基材。   The laminated fiber layer of the reinforced base material is bonded with a binding yarn, and the defect absorbing layer is integrated with the reinforced base material with the binding yarn. Intermediate substrate for fiber reinforced composites. 前記結合糸は繊維強化複合材のマトリックス樹脂に可溶である請求項9に記載の繊維強化複合材用中間基材。   The intermediate substrate for a fiber-reinforced composite material according to claim 9, wherein the binding yarn is soluble in a matrix resin of the fiber-reinforced composite material. 前記マトリックス樹脂は熱硬化性樹脂であり、前記結合糸はフェノキシ樹脂繊維製である請求項10に記載の繊維強化複合材用中間基材。   The intermediate substrate for fiber-reinforced composite material according to claim 10, wherein the matrix resin is a thermosetting resin, and the binding yarn is made of phenoxy resin fiber.
JP2012196386A 2012-09-06 2012-09-06 Method for producing fiber-reinforced composite material and intermediate base material for fiber-reinforced composite material Pending JP2014051014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012196386A JP2014051014A (en) 2012-09-06 2012-09-06 Method for producing fiber-reinforced composite material and intermediate base material for fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012196386A JP2014051014A (en) 2012-09-06 2012-09-06 Method for producing fiber-reinforced composite material and intermediate base material for fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2014051014A true JP2014051014A (en) 2014-03-20

Family

ID=50609959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012196386A Pending JP2014051014A (en) 2012-09-06 2012-09-06 Method for producing fiber-reinforced composite material and intermediate base material for fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2014051014A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015202574A (en) * 2014-04-11 2015-11-16 日産自動車株式会社 Method for producing fiber-reinforced material
KR101856139B1 (en) * 2016-06-13 2018-05-10 주식회사 휴비스 The Method Of Manufacturing High Strength Phenoxy Fiber And High Strength Phenoxy Fiber By The Same
CN111483158A (en) * 2019-01-29 2020-08-04 株式会社斯巴鲁 Method for producing composite material
WO2021230343A1 (en) * 2020-05-14 2021-11-18 学校法人金沢工業大学 Flow medium, frp molded article, and method for producing frp molded article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015202574A (en) * 2014-04-11 2015-11-16 日産自動車株式会社 Method for producing fiber-reinforced material
KR101856139B1 (en) * 2016-06-13 2018-05-10 주식회사 휴비스 The Method Of Manufacturing High Strength Phenoxy Fiber And High Strength Phenoxy Fiber By The Same
CN111483158A (en) * 2019-01-29 2020-08-04 株式会社斯巴鲁 Method for producing composite material
JP2020121414A (en) * 2019-01-29 2020-08-13 株式会社Subaru Method for manufacturing composite material
JP7198094B2 (en) 2019-01-29 2022-12-28 株式会社Subaru Composite manufacturing method
CN111483158B (en) * 2019-01-29 2024-05-31 株式会社斯巴鲁 Method for producing composite material
WO2021230343A1 (en) * 2020-05-14 2021-11-18 学校法人金沢工業大学 Flow medium, frp molded article, and method for producing frp molded article

Similar Documents

Publication Publication Date Title
RU2635623C2 (en) Method for forming moulded blank
US9205602B2 (en) Method for producing fiber-reinforced plastic
US8420002B2 (en) Method of RTM molding
US8216501B2 (en) Process for producing molded parts, in particular decorative part and/or trim part for the passenger compartment of a vehicle
US20160159057A1 (en) Forming of staged thermoset composite materials
KR20050106493A (en) Method of resin transfer molding
WO2005095079A1 (en) Preform, frp, and processes for producing these
JP2014051014A (en) Method for producing fiber-reinforced composite material and intermediate base material for fiber-reinforced composite material
JP6384213B2 (en) Composite material manufacturing method and composite material manufacturing apparatus
JP6750735B2 (en) Composite material molding method and composite material molding apparatus
WO2017175809A1 (en) Method for manufacturing composite material
CN108621531B (en) Method for manufacturing composite structure
CN108501406B (en) Method for producing fiber-reinforced composite material
KR20170123893A (en) double side Z-pinning patch and manufacturing method thereof
US20190047236A1 (en) Design and fabrication of a multilayer three-dimensional composite membrane
JP4292971B2 (en) FRP manufacturing method and manufacturing apparatus
JP5791365B2 (en) RTM molding method and RTM molding apparatus
EP2558280B1 (en) Method and apparatus for moulding parts made from composite materials
KR20170133769A (en) Resin trasferring mold forming method and device
JP2012245623A (en) Method and device of molding composite material using porous mold
JP5980348B2 (en) Method for producing composites using degradable membranes
JP5362596B2 (en) Paste composition method, pasting composite mold and pasting device
EP1775109B1 (en) Composite moulding method and apparatus with a vacuum bag
JP6915379B2 (en) Composite material molding method and molding equipment
JP7474070B2 (en) Manufacturing method of composite material, and composite material