WO2016092670A1 - Composite material molding method and molding device - Google Patents

Composite material molding method and molding device Download PDF

Info

Publication number
WO2016092670A1
WO2016092670A1 PCT/JP2014/082848 JP2014082848W WO2016092670A1 WO 2016092670 A1 WO2016092670 A1 WO 2016092670A1 JP 2014082848 W JP2014082848 W JP 2014082848W WO 2016092670 A1 WO2016092670 A1 WO 2016092670A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
resin
molding
cavity
injection
Prior art date
Application number
PCT/JP2014/082848
Other languages
French (fr)
Japanese (ja)
Inventor
勝宏 臼井
荒井 直樹
安藤 直人
洸平 川崎
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2016563353A priority Critical patent/JP6332470B2/en
Priority to PCT/JP2014/082848 priority patent/WO2016092670A1/en
Publication of WO2016092670A1 publication Critical patent/WO2016092670A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/42Casting under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/44Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/56Compression moulding under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating

Definitions

  • the present invention relates to a molding method and molding apparatus for a composite material.
  • the resin molded product is obtained by injecting resin into a cavity in a mold composed of a pair of lower mold (female mold) and upper mold (male mold) that can be opened and closed, and curing the resin in the cavity.
  • the resin molded product may be formed as a composite material obtained by curing a resin together with a reinforced base material. In this case, the resin is injected and cured after the reinforced substrate is installed in the cavity.
  • the molding time can be shortened by increasing the resin injection pressure.
  • the reinforced substrate disposed in the mold is displaced from a predetermined position. If the position of the reinforced base material is shifted, it may cause molding defects such as the strength of the molded product not being as designed. Therefore, there is a problem that the injection pressure of the resin cannot be increased and the molding time cannot be shortened.
  • an object of the present invention is to provide a molding method and a molding apparatus for a composite material that can reduce molding time while preventing molding defects.
  • the method for molding a composite material according to the present invention that achieves the above object is to place a reinforced substrate in a cavity in a mold that can be opened and closed, and to inject resin into the cavity in a state where a mold clamping pressure is applied to the mold.
  • This is a molding method for curing a resin to mold a composite material.
  • a pressing portion that presses the reinforcing base against the mold is provided in the molding die, and the reinforcing base is pressed against the molding die by the pressing portion before the injection of the resin into the cavity is started. Then, the reinforced base material is not displaced in the mold.
  • the composite material molding apparatus includes an openable / closable mold having a cavity in which a reinforcing substrate is disposed, a press section for applying a mold clamping pressure to the mold, and a cavity. And a resin injection portion for injecting the resin therein.
  • molding apparatus is further provided in the shaping
  • FIG. 1 is a schematic view of a composite material molding apparatus according to Embodiment 1.
  • FIG. It is the schematic which shows the structure of the resin injection
  • FIG. 1 before and during mold closing, respectively.
  • FIG. 1 before and during mold closing, respectively.
  • FIG. 6 (A) and 6 (B) are explanatory views for explaining the operation of the pressing portion of the molding apparatus, corresponding to the portions surrounded by the broken line portion B in FIG. 1 before and during mold closing, respectively.
  • 3 is a flowchart illustrating a method for forming a composite material according to Embodiment 1.
  • FIG. 8A is a diagram showing an automobile part using a composite material
  • FIG. 8B is a diagram showing a vehicle body in which the parts are joined.
  • 5 is a flowchart showing a method for molding a composite material according to Embodiment 2.
  • FIG. 10 (A) and 10 (B) are schematic views showing a pressing portion of a molding apparatus according to a modified example, and before and after attaching a pressing jig constituting the pressing portion, broken lines in FIG.
  • FIG. 6 is an enlarged view showing a part corresponding to a part surrounded by part A.
  • 11 (A) and 11 (B) are schematic views showing a pressing portion of the molding apparatus, and portions corresponding to portions surrounded by a broken line portion A in FIG. 1 before and during mold closing, respectively. It is an enlarged view shown.
  • 12 (A) and 12 (B) are schematic views showing a pressing portion of a molding apparatus according to another modification, and are portions surrounded by a broken line portion A in FIG. 1 before and during mold closing, respectively. It is an enlarged view which shows the part corresponding to.
  • FIG. 1 is a schematic view of a molding apparatus 100 for a composite material 200.
  • FIG. 2 is a schematic diagram illustrating the configuration of the resin injection unit 30.
  • FIG. 3 is a schematic diagram showing the pressing portion 90, and is an enlarged view corresponding to a portion surrounded by a broken line portion A in FIG.
  • FIG. 4 is an explanatory diagram for explaining the force applied to the carbon fiber 210 from the resin 220 discharged from the direct gate 13, and is an enlarged view corresponding to a portion surrounded by a broken line portion C in FIG. 5 (A) and 5 (B) are explanatory views for explaining the operation of the pressing portion 90, and are portions corresponding to portions surrounded by a broken line portion A in FIG.
  • FIG. 7 is a flowchart showing a method for forming the composite material 200.
  • FIG. 8A is a view showing automobile parts 301 to 303 using the composite material 200
  • FIG. 8B is a view showing a vehicle body 300 to which the parts 301 to 303 are joined.
  • the composite material 200 obtained by the molding method and the molding apparatus 100 according to the present embodiment is composed of a reinforced base material 210 and a resin 220.
  • the composite material 200 having higher strength and rigidity than the resin 220 alone is obtained.
  • a frame part such as a front side member 301 and a pillar 302, which are parts used in an automobile body 300 (see FIG. 8B), and an outer plate part such as a roof 303.
  • the reinforced substrate 210 is formed of a woven sheet of carbon fiber, glass fiber, organic fiber or the like, and is placed in the cavity 15 formed in the mold 10 in a laminated state and preformed.
  • a carbon fiber having a small thermal expansion coefficient, excellent dimensional stability, and little deterioration in mechanical properties even at high temperatures is used.
  • the preform may be performed by another mold other than the mold 10.
  • Resin 220 is formed by mixing a main agent and a curing agent. Specifically, an epoxy resin, a phenol resin, or the like that is a thermosetting resin is used as the resin 220. In the present embodiment, an epoxy resin having excellent mechanical characteristics and dimensional stability is used. Epoxy resins are mainly two-pack type, bisphenol A type epoxy resin is mainly used as the main agent, and amine-based one is used as the curing agent. They can be selected as appropriate. The viscosity of the resin 220 increases with time from the mixing of the main agent and the curing agent.
  • the molding apparatus 100 can be outlined as follows: a mold 10 that can be opened and closed in which a cavity 15 in which a carbon fiber 210 (corresponding to a reinforced base material) is disposed, and a mold 10. And a press part 20 for applying a mold clamping pressure Pm, and a resin injection part 30 for injecting a resin 220 into the cavity 15.
  • the molding apparatus 100 includes a pressure gauge 50 that measures the pressure Pr in the cavity 15, a suction unit 60 that evacuates the mold 10, a mold temperature adjustment unit 70 that adjusts the temperature of the mold 10, and a molding apparatus. It further includes a control unit 80 that controls the operation of the entire 100 and a pressing unit 90 that is provided in the mold 10 and presses the carbon fibers 210 against the mold 10.
  • the molding apparatus 100 will be described in detail.
  • the mold 10 has a pair of upper mold 11 (male mold) and a lower mold 12 (female mold) that can be opened and closed.
  • a sealable cavity 15 is formed between the upper mold 11 and the lower mold 12.
  • the carbon fiber 210 is placed in the cavity 15 in advance in a state of being laminated and preformed.
  • a direct gate 13 is provided above the upper mold 11. The direct gate 13 is connected to the resin injection part 30 and the resin 220 is injected into the cavity 15 from above. The resin 220 is impregnated into the inside from the upper surface of the carbon fiber 210.
  • a suction port 14 is provided at the end of the lower mold 12. The suction port 14 is connected to the suction part 60, and the inside of the cavity 15 is evacuated to suck and remove air.
  • a groove 16 is provided in the periphery of the surface of the upper mold 11 where the cavity 15 is formed.
  • the groove 16 is provided with a pressing portion 90 described later.
  • a sealing member or the like may be provided on the mating surface of the upper mold 11 and the lower mold 12.
  • the pressing unit 20 applies a clamping pressure Pm to the upper mold 11 of the mold 10.
  • the press unit 20 includes a cylinder 21 that uses fluid pressure such as hydraulic pressure, and adjusts the mold clamping pressure Pm by controlling the hydraulic pressure or the like.
  • the resin injecting unit 30 includes a main agent tank 31 filled with the main agent, a curing agent tank 32 filled with the curing agent, a tube 33 forming a conveyance path for the main agent and the curing agent, and injection of the resin 220 into the cavity 15. It has a pressure gauge 34 for measuring the pressure Pi, and a mixing head 40 (corresponding to a mixing unit) for mixing the main agent and the curing agent.
  • the pressure gauge 34 is connected to the direct gate 13 in order to measure the injection pressure Pi of the resin 220.
  • the resin injecting unit 30 further includes pumps 35a and 35b disposed in tubes 33a and 33b connected to the main agent tank 31 and the curing agent tank 32, respectively.
  • the pumps 35a and 35b discharge the main agent and the curing agent toward the mixing head 40 at a constant pressure.
  • the mixing head 40 forms a resin 220 by mixing a main agent and a curing agent.
  • the mixing head 40 is disposed in the upper mold 11.
  • the mixing head 40 is connected to the direct gate 13 and discharges the resin 220 to the cavity 15 through the direct gate 13.
  • the mixing head 40 has a cylinder 41 and a piston 42.
  • the cylinder 41 has two chambers 41 u and 41 d defined by a base end portion 42 a of the piston 42.
  • the fluid pressure such as pneumatic pressure or hydraulic pressure supplied to the two chambers 41u and 41d, the piston 42 moves in the vertical direction in the figure.
  • the cylinder 41 has upper suction ports 44a and 44b and lower discharge ports 45a and 45b.
  • the lower discharge ports 45a and 45b are opened, and the main agent and the curing agent are discharged.
  • the main agent and the curing agent discharged from each of the lower discharge ports 45a and 45b are mixed to form the resin 220.
  • the formed resin 220 is discharged to the direct gate 13.
  • the upper suction ports 44a and 44b and the lower discharge ports 45a and 45b communicate with each other through the recesses 43a and 43b formed in the piston 42.
  • the main agent and the curing agent pass through the recesses 43a and 43b from the lower discharge ports 45a and 45b, and are returned again to the main agent tank 31 and the curing agent tank 32 from the upper suction ports 44a and 44b.
  • the main agent and the curing agent circulate in the tubes 33a and 33b at a constant pressure.
  • the opening degree of the flow path of the main agent and the curing agent is adjusted.
  • the injection amount Qi of the resin 220 into the cavity 15 is adjusted according to the opening of the flow path, and the injection pressure Pi of the resin 220 conveyed to the mold 10 is adjusted.
  • the viscosity is 200 [mPa ⁇ s] or less in the state before the resin 220 is cured
  • the mixing head 40 is disposed in the mold 10. Thereby, the injection pressure Pi of the resin 220 can be further increased without causing the carbon fiber 210 to be displaced in the mold 10.
  • the resin 220 discharged from the direct gate 13 is brought into contact with the carbon fiber 210, thereby causing the carbon fiber 210 to act on the carbon fiber 210.
  • the force for shifting the position of the carbon fiber 210 is, for example, a force in a direction indicated by arrows F1 to F3 in FIG.
  • the force in the direction indicated by arrow F1 or F3 can cause carbon fiber 210 to shift to the left or right in FIG. 4, respectively.
  • the force in the direction indicated by the arrow F2 can cause the carbon fibers 210 to flutter in the vertical direction in FIG. As the carbon fibers 210 flutter in the vertical direction, the carbon fibers 210 can be displaced.
  • the force to shift the position of the carbon fiber 210 applied from the resin 220 is weaker when the viscosity of the resin 220 is lower than when the viscosity is higher.
  • the viscosity of the resin 220 increases as time passes after the main agent and the curing agent are mixed.
  • the time from when the main agent and the curing agent are mixed to form the resin 220 to when the resin 220 is injected into the cavity 15 is short. . That is, the resin 220 is injected into the cavity 15 with a low viscosity.
  • the injection pressure Pi of the resin 220 can be increased without causing the carbon fiber 210 to be displaced in the mold 10.
  • the impregnation property of the carbon fiber 210 is higher when the viscosity is lower than when the viscosity is high. Therefore, the injection amount Qi of the resin 220 can be increased by reducing the viscosity of the resin 220 even at the same injection pressure Pi.
  • the pressure gauge 50 includes a strain gauge and the like, and is disposed in the mold 10 for measuring the pressure Pr in the cavity 15.
  • the suction unit 60 has a vacuum pump (not shown).
  • the suction part 60 sucks (evacuates) the air in the cavity 15 from the suction port 14 after the mold 10 is closed and before the injection of the resin 220 is started, and the inside of the cavity 15 is evacuated.
  • the mold temperature adjusting unit 70 has a heating member, heats the mold 10 to the curing temperature of the resin 220, and cures the resin 220 injected into the cavity 15.
  • the heating member is an electric heater and heats the mold 10 directly.
  • the heating member is not limited to this.
  • the temperature of the mold 10 may be adjusted by heating a heat medium such as oil with an electric heater and circulating the heat medium in the mold 10.
  • the control unit 80 controls the overall operation of the molding apparatus 100.
  • the control unit 80 includes a storage unit 81, a calculation unit 82, and an input / output unit 83.
  • the input / output unit 83 is connected to the pressure gauges 34 and 50, the press unit 20, the valve 40, the suction unit 60, and the mold temperature adjusting unit 70.
  • the storage unit 81 includes a ROM and a RAM.
  • the calculation unit 82 is mainly composed of a CPU, and via the input / output unit 83, the injection pressure Pi of the resin 220 from the pressure gauges 34 and 50, the pressure Pr in the cavity 15, and the mold 10 from the press unit 20. Receives open / closed data.
  • the calculation unit 82 is based on the data read from the storage unit 81 and the data received from the input / output unit 83, the position of the piston 42 of the mixing head 40, the suction pressure of the suction unit 60, and the mold temperature adjustment unit 70. Calculate the heating temperature.
  • a control signal based on the calculated data is transmitted to the mixing head 40, the suction unit 60, and the mold temperature adjusting unit 70 via the input / output unit 83. In this way, the control unit 80 controls the injection pressure Pi of the resin 220, the injection timing of the resin 220, the pressure Pr in the cavity 15 during evacuation, the mold temperature, and the like.
  • the pressing unit 90 is provided in the mold 10 and presses the carbon fiber 210 against the mold 10. Specifically, the pressing unit 90 presses the carbon fiber 210 against the mold 10 before the resin 220 is injected into the cavity 15 by the resin injection unit 30. More specifically, the pressing unit 90 presses the carbon fiber 210 against the mold 10 before the mold 10 is closed. More specifically, the pressing unit 90 presses the carbon fiber 210 against the mold 10 with an adjustable pressure different from the mold clamping pressure Pm of the mold 10. In the first embodiment, the pressing portion 90 is provided in the molding die 10 as a separate body from the molding die 10.
  • the pressing portion 90 includes an elastic member 91 and a pressing element 92 that are formed separately from the mold 10 in the present embodiment.
  • One end of the elastic member 91 is attached to the bottom of the groove 16 of the upper mold 11, and the other end is attached to the upper surface of the pressing element 92.
  • the length of the elastic member 91 is in a natural length state before the mold 10 starts closing.
  • the pressing element 92 contacts the carbon fiber 210.
  • the length of the elastic member 91 contracts in the direction of the arrow in FIG.
  • an elastic force is applied from the elastic member 91 to the pressing element 92. Accordingly, the pressing element 92 presses the carbon fiber 210 against the mold 10.
  • the side S of the upper mold 11 contacts the carbon fiber 210.
  • the carbon fiber 210 receives a force in the direction of the arrow in FIG.
  • the carbon fiber 210 can be displaced by a force acting from the side portion S of the upper mold 11.
  • the upper mold 11 and the lower mold 12 are generally provided with a draft angle.
  • the contraction of the length of the elastic member 91 starts before the mold 10 is closed. That is, the action of the elastic force from the elastic member 91 on the pressing element 92 starts before the mold closing of the mold 10 is completed. Therefore, the pressing element 92 presses the carbon fiber 210 against the mold 10 before the mold closing of the mold 10 is completed. Thereby, it is possible to prevent the carbon fiber 210 from being displaced due to the force in the arrow direction shown in FIG. Further, since the draft angle can be set small, the degree of freedom in designing the shapes of the upper mold 11 and the lower mold 12 is increased.
  • the contraction of the length of the elastic member 91 starts before the mold 10 is closed as described above.
  • the control unit 80 starts injecting the resin 220 after the mold closing of the mold 10 is completed as described above. That is, the pressing element 92 presses the carbon fiber 210 against the mold 10 before the resin 220 is injected into the cavity 15 by the resin injection portion 30.
  • the injection pressure Pi of the resin 220 can be increased without causing the carbon fiber 210 to be displaced in the mold 10. Since the molding time can be shortened by increasing the injection pressure Pi, the molding time can be shortened while preventing molding defects.
  • the pressing of the carbon fiber 210 by the pressing portion 90 is performed by the elastic force of the elastic element 91 unlike the mold clamping pressure Pm of the mold 10 as described above. That is, the pressing unit 90 presses the carbon fiber 210 against the mold 10 with an adjustable pressure different from the mold clamping pressure Pm of the mold 10. Thereby, since the pressure when pressing the carbon fiber 210 can be adjusted independently of the mold clamping pressure Pm, the carbon fiber 210 can be pressed stably. Specifically, since the mold clamping pressure Pm is a very large pressure, it is difficult to control the magnitude of the pressure so as to stably press the carbon fiber 210.
  • the contact between the upper mold 11 and the lower mold 12 is not necessarily made evenly due to the influence of molding errors between the upper mold 11 and the upper mold 12. Therefore, by pressing the carbon fiber 210 against the mold 10 with an adjustable pressure different from the mold clamping pressure Pm of the mold 10, it becomes easy to load the carbon fiber 210 evenly. That is, the carbon fiber 210 can be pressed stably.
  • the pressing portion 90 is provided in the mold 10 as a separate body from the mold 10.
  • molding apparatus 100 becomes easy and the manufacturing cost of the shaping
  • the molding apparatus 100 can be manufactured by a simple method of attaching a pressing portion 90 manufactured separately from the molding die to an existing molding die that does not include the pressing portion 90. Thereby, manufacture of the shaping
  • the design of only the pressing part 90 can be changed without changing the mold 10.
  • FIG. it becomes easy to optimally design the elastic force of the elastic member 91, the shape of the pressing element 92, and the like according to the shape and material of the reinforcing base 210, the pressing position of the reinforcing base 210, and the like.
  • the mold 10 and the pressing part 90 can be exchanged independently. Thereby, the maintainability of the molding apparatus 100 is improved. For example, when the pressing part 90 is damaged, the composite material can be continuously molded without exchanging the molding die 10 by exchanging only the pressing part 90.
  • the molding method of the composite material 200 includes a step of arranging the carbon fibers 210 (step S1), a step of starting the mold closing of the molding die 10 (step S2), and the carbon fibers 210 as the molding die. 10 (step S3), a process of completing mold closing of the mold 10 (step S4), a process of performing vacuum suction (step S5), and a process of injecting resin 220 (step S3). Step S6 and Step S7), a step of curing the resin 220 (Step S8), and a step of demolding (Step S9).
  • the control unit 80 executes the processing of each step.
  • carbon fibers 210 are laminated, placed in the cavity 15 of the mold 10 and preformed (step S1). At this time, the inner surface of the mold facing the cavity 15 is degreased using a predetermined organic solvent, and is subjected to a mold release process using a mold release agent.
  • step S2 closing of the mold 10 is started (step S2).
  • a clamping pressure Pm to the mold 10 by the press unit 20
  • the upper mold 11 and the lower mold 12 approach the mold 10 and the mold closing proceeds.
  • the carbon fiber 210 is not displaced in the mold 10 (step S3). This prevents the carbon fiber 210 from being displaced in the cavity 15 by the force in the direction of the arrow shown in FIG. 6B when the mold 10 is closed. Therefore, the carbon fiber 210 is prevented from being displaced by contacting the mold 10 when the mold 10 is closed.
  • the carbon fiber 210 is pressed against the mold 10 by the pressing portion 90 provided in the mold 10, so that the carbon fiber 210 is not displaced in the mold 10.
  • the pressing portion 90 is provided in the mold 10 as a separate body from the mold 10.
  • step S4 the mold closing of the mold 10 is completed.
  • the mold closing of the mold 10 is completed.
  • an airtight cavity 15 is formed between the upper die 11 and the lower die 12.
  • step S5 air is sucked from the suction port 14 by the suction part 60, vacuuming is performed, and the inside of the cavity 15 is evacuated (step S5).
  • the control unit 80 adjusts the pressure so that the pressure becomes negative.
  • the suction port 14 is completely closed and kept closed until the end of molding.
  • the resin 220 is injected into the cavity 15 (step S6).
  • the carbon fiber 210 is not displaced in the mold 10 by step S2. Therefore, displacement of the carbon fiber 210 in the cavity 15 due to the force applied from the resin 220 is prevented. Therefore, the injection pressure Pi of the resin 220 can be increased without the carbon fiber 210 being displaced in the mold 10.
  • the resin 220 is formed by mixing the main agent and the curing agent in the mixing head 40 disposed in the mold 10. The time from when the main agent and the curing agent are mixed to form the resin 220 to when the resin 220 is injected into the cavity 15 is short. That is, the resin 220 is injected into the cavity 15 with a low viscosity.
  • step S7 When the specified amount of the resin 220 is injected into the cavity 15 (step S7: “Yes”), the resin 220 in the cavity 15 is left until it is sufficiently cured (step S8).
  • the entire mold 10 is temperature-adjusted in advance to the curing temperature of the resin 220 by the mold temperature adjusting unit 70.
  • step S9 When the mold 10 is opened and the molded composite material 200 is demolded, the molding is completed (step S9).
  • the carbon fiber 210 is not displaced in the molding die 10 before the injection of the resin 220 into the cavity 15 is started.
  • the injection pressure Pi of the resin 220 can be increased without causing the carbon fiber 210 to be displaced in the molding die 10. Accordingly, the molding time can be shortened while preventing molding defects.
  • the pressing portion 90 is provided in the molding die 10 as a separate body from the molding die 10.
  • the molding device 100 can be manufactured by attaching the pressing portion 90 manufactured separately from the molding die 10 to the molding die 10. Thereby, manufacture of the shaping
  • the resin 220 is formed by mixing the main agent and the curing agent in the mixing head 40 disposed in the molding die 10.
  • the time from when the main agent and the curing agent are mixed to form the resin 220 to when the resin 220 is injected into the cavity 15. Can be shortened.
  • the viscosity of the resin 220 increases with time from the mixing of the main agent and the curing agent. That is, the resin 220 can be injected into the cavity 15 with a low viscosity by shortening the time from when the main agent and the curing agent are mixed until the resin 220 is injected into the cavity 15.
  • pouring can be weakened. Therefore, the injection pressure Pi of the resin 220 can be further increased without causing the carbon fiber 210 to be displaced in the mold 10. Moreover, since the impregnation property to the carbon fiber 210 is higher when the viscosity is lower than when the viscosity is high, the injection amount Qi of the resin 220 can be increased even at the same injection pressure Pi. Therefore, the molding time can be further shortened while preventing molding defects.
  • the carbon fiber 210 is not displaced before the mold 10 is closed.
  • the carbon fiber 210 can be prevented from being displaced by contacting the molding die 10 when the die is closed. Therefore, the molding time can be shortened while preventing molding defects more reliably.
  • the mold 10 is evacuated after the mold 10 is closed and before the resin 220 is injected.
  • the inside of the cavity 220 is in a vacuum state before the resin 220 is injected. It is possible to prevent bubbles from forming, and to reduce voids and pits of the composite material 200 that is a molded product. Thereby, the mechanical characteristics and designability of the composite material 200 can be improved.
  • the carbon fiber 210 is pressed against the molding die 10 with an adjustable pressure different from the clamping pressure of the molding die 10.
  • the pressure when pressing the carbon fiber 210 can be adjusted independently of the pressure of clamping, so that the carbon fiber 210 is stabilized. Can be pressed. Therefore, the molding time can be shortened while preventing molding defects more reliably.
  • the reinforcing base 210 is formed from carbon fiber.
  • the use of carbon fiber for the reinforced base material results in a small coefficient of thermal expansion, excellent dimensional stability, and mechanical properties even at high temperatures.
  • the composite material 200 with little deterioration in characteristics can be formed.
  • the composite material 200 is used for an automobile part.
  • the automobile part of the composite material 200 suitable for mass production can be molded, and the weight of the vehicle body can be reduced.
  • the molding apparatus according to the second embodiment is different from the molding apparatus 100 according to the first embodiment in the following points. That is, the resin injection unit 30 of the molding apparatus 100 according to the first embodiment starts injecting the resin 220 into the cavity 15 after the mold 10 is closed. On the other hand, the resin injection part of the molding apparatus according to the second embodiment has the resin 220 into the cavity 15 after the carbon fiber 210 is not displaced in the mold 10 and before the mold 10 is closed. The molding apparatus 100 is different from the molding apparatus 100 according to the first embodiment in that the injection is started.
  • the resin injection unit starts injection of the resin 220 into the cavity 15 after the pressing unit 90 presses the carbon fiber 210 against the mold 10 and before the mold 10 is closed. To do. Thereby, the injection of the resin 220 can be started before the mold 10 is closed without the carbon fiber 210 being displaced in the mold 10.
  • the molding method according to the second embodiment is different from the molding method according to the first embodiment in the following points. That is, the resin injection (step S6) of the molding method according to the first embodiment was started after the mold closing of the mold 10 was completed (step S4). On the other hand, in the molding method according to the second embodiment, the resin injection (step S31) is started after the carbon fiber 210 is not displaced in the mold 10 and before the mold 10 is closed. However, it is different from the molding method according to the first embodiment.
  • FIG. 9 is a flowchart showing a molding method of the composite material 200 according to Embodiment 2 of the present invention.
  • the same steps as those in the molding method according to Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
  • step S31 resin 220 is injected.
  • Step S31 is performed after the carbon fiber 210 is not displaced in the mold 10 (step S3) and before the mold 10 is closed (step S4). That is, in the molding method according to the present embodiment, the injection of the resin 220 into the cavity 15 is started after the carbon fiber 210 is not displaced in the mold 10 and before the mold 10 is closed. The Specifically, injection of the resin 220 into the cavity 15 is started after the pressing unit 90 presses the carbon fiber 210 against the mold 10 and before the mold 10 is closed. Thereby, the injection of the resin 220 can be started before the mold closing of the mold 10 is completed without the carbon fiber 210 being displaced in the mold 10.
  • step S32 the resin 220 is continuously injected.
  • the injection of the resin 220 into the cavity 15 is continued until the resin 220 is completely filled in the cavity 15 after the mold closing of the mold 10 is completed (step S4) (step S7: “No”, step S32). ).
  • the resin 220 is injected after the carbon fiber 210 is not displaced in the mold 10 and before the mold 10 is closed. To start.
  • the injection of the resin 220 can be started before the mold 10 is closed without the carbon fiber 210 being displaced in the mold 10. . Therefore, the molding time can be further shortened while preventing molding defects.
  • the pressing unit 90 presses the carbon fiber 210 against the molding die 10 with an adjustable pressure different from the clamping pressure Pm of the molding die 10. Not only the configuration but also the configuration of the pressing portion can be changed as long as the carbon fiber 210 is pressed against the mold 10 before the resin 220 is injected into the cavity 15 by the resin injection portion.
  • FIG. 10 (A) and 10 (B) are schematic views showing a pressing portion 490 of a forming apparatus according to a modified example, and before and after attaching pressing jigs 491 and 492 described later, respectively.
  • 4 is an enlarged view showing a portion corresponding to a portion surrounded by a broken line portion A.
  • FIG. 11 (A) and 11 (B) are schematic views showing the pressing portion 490 of the molding apparatus, corresponding to portions surrounded by a broken line portion A in FIG. 1 before and during mold closing, respectively.
  • the forming die 410 has an upper die 411 provided with a groove 416 and a lower die 412 provided with a groove 417.
  • the upper mold 411 and the lower mold 412 are configured in the same manner as the upper mold 11 and the lower mold 12 except that the grooves 416 and 417 are provided.
  • the pressing part 490 has pressing jigs 491 and 492.
  • the pushing jigs 491 and 492 are detachably attached to the grooves 416 and 417, respectively.
  • the pushing jig 491 has a convex part 493, and the pushing jig 492 has a concave part 494.
  • the press part 490 can be comprised by the simple structure which attaches the pushing jig
  • the shapes and materials of the pushing jig 491 and the pushing jig 492 can be selected according to the shape of the composite material 200 to be molded and the types of materials constituting the carbon fiber 210 and the resin 220.
  • 12 (A) and 12 (B) are schematic views showing a pressing portion 590 of a molding apparatus according to another modified example, and are respectively shown by a broken line portion A in FIG. 1 before mold closing and during mold closing. It is an enlarged view which shows the part corresponding to the part enclosed.
  • the pressing portion 590 may be configured as a part of the mold 510.
  • the molding die 510 is configured to include an upper die 511 provided with a convex portion 591 and a lower die 512 provided with a concave portion 592.
  • the upper mold 511 and the lower mold 512 are configured in the same manner as the upper mold 11 and the lower mold 12 except that the convex portions 591 and the concave portions 592 are provided.
  • the pressing portion 590 may be constituted by a convex portion 591 provided on the upper mold 511 and a concave portion 592 provided on the lower mold 512.
  • the convex portion 591 pushes the carbon fiber 210 into the concave portion 592, so that the carbon fiber 210 is not displaced in the mold 510.
  • the press part 590 can be comprised by the simple structure which changes the shape of the shaping

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

[Problem] The objective of the present invention is to provide a composite material molding method and molding device which make it possible to reduce the molding time while preventing molding failures. [Solution] A method of molding a composite material, in which a composite material is molded by disposing carbon fibers in a cavity in a molding die which can be opened and closed, injecting resin into the cavity in a state in which a mold clamping pressure has been applied to the molding die, and curing the resin. In this method of molding, the molding die is provided with a pressing portion which presses a reinforcing substrate against the molding die, and by pressing the reinforcing substrate against the molding die using the pressing portion before starting to inject the resin into the cavity, the state of the reinforcing substrate is such that said reinforcing substrate does not become displaced within the molding die (S3).

Description

複合材料の成形方法および成形装置Composite material molding method and molding apparatus
 本発明は、複合材料の成形方法および成形装置に関する。 The present invention relates to a molding method and molding apparatus for a composite material.
 近年、自動車の車体軽量化のために樹脂成形品が自動車部品として用いられている。樹脂成形品は、開閉可能な一対の下型(雌型)、上型(雄型)からなる成形型内のキャビティに樹脂を注入し、キャビティ内において樹脂を硬化させることによって得られる。樹脂成形品は、剛性を高めるために、強化基材とともに樹脂が硬化されてなる複合材料として形成される場合がある。この場合、キャビティ内に強化基材を設置した後に、樹脂の注入および硬化がなされる。 In recent years, resin molded products have been used as automobile parts to reduce the weight of automobile bodies. The resin molded product is obtained by injecting resin into a cavity in a mold composed of a pair of lower mold (female mold) and upper mold (male mold) that can be opened and closed, and curing the resin in the cavity. In order to increase rigidity, the resin molded product may be formed as a composite material obtained by curing a resin together with a reinforced base material. In this case, the resin is injected and cured after the reinforced substrate is installed in the cavity.
特開2002-59435号公報JP 2002-59435 A
 キャビティ内に樹脂を注入する際に、樹脂の注入圧力を高くすることによって成形時間を短縮することができる。しかしながら、樹脂を高圧で注入することによって、成形型内に配置した強化基材が所定の位置からずれてしまう。強化基材の位置がずれると、成形品の強度が設計通りにならないなどの成形不良の原因となる。そのため、樹脂の注入圧力を高めることができず、成形時間を短縮できないという問題が生じている。 When the resin is injected into the cavity, the molding time can be shortened by increasing the resin injection pressure. However, when the resin is injected at a high pressure, the reinforced substrate disposed in the mold is displaced from a predetermined position. If the position of the reinforced base material is shifted, it may cause molding defects such as the strength of the molded product not being as designed. Therefore, there is a problem that the injection pressure of the resin cannot be increased and the molding time cannot be shortened.
 そこで、本発明は、上記課題を解決するためになされたものであり、成形不良を防ぎつつ、成形時間の短縮を可能とする複合材料の成形方法および成形装置を提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a molding method and a molding apparatus for a composite material that can reduce molding time while preventing molding defects.
 上記目的を達成する本発明に係る複合材料の成形方法は、開閉可能な成形型内のキャビティに強化基材を配置し、成形型に型締圧力を負荷した状態においてキャビティ内に樹脂を注入し、樹脂を硬化させて複合材料を成形する成形方法である。当該成形方法では、強化基材を成形型に対して押圧する押圧部を成形型に設け、キャビティへの樹脂の注入開始前に、押圧部によって強化基材を成形型に対して押圧することにより、強化基材を成形型内で位置ずれしない状態にする。 The method for molding a composite material according to the present invention that achieves the above object is to place a reinforced substrate in a cavity in a mold that can be opened and closed, and to inject resin into the cavity in a state where a mold clamping pressure is applied to the mold. This is a molding method for curing a resin to mold a composite material. In the molding method, a pressing portion that presses the reinforcing base against the mold is provided in the molding die, and the reinforcing base is pressed against the molding die by the pressing portion before the injection of the resin into the cavity is started. Then, the reinforced base material is not displaced in the mold.
 また、上記目的を達成する本発明に係る複合材料の成形装置は、強化基材を配置するキャビティが形成された開閉可能な成形型と、成形型に型締圧力を負荷するプレス部と、キャビティ内に樹脂を注入する樹脂注入部と、を有する。当該成形装置は、成形型に設けられ、強化基材を成形型に対して押圧する押圧部をさらに有する。当該成形装置において、押圧部は、樹脂注入部によりキャビティ内に樹脂が注入される前に強化基材を成形型に対して押圧する。 In addition, the composite material molding apparatus according to the present invention that achieves the above object includes an openable / closable mold having a cavity in which a reinforcing substrate is disposed, a press section for applying a mold clamping pressure to the mold, and a cavity. And a resin injection portion for injecting the resin therein. The said shaping | molding apparatus is further provided in the shaping | molding die, and has a press part which presses a reinforcement base material with respect to a shaping | molding die. In the molding apparatus, the pressing unit presses the reinforcing base against the mold before the resin is injected into the cavity by the resin injection unit.
実施形態1に係る複合材料の成形装置の概略図である。1 is a schematic view of a composite material molding apparatus according to Embodiment 1. FIG. 同成形装置の樹脂注入部の構成を示す概略図である。It is the schematic which shows the structure of the resin injection | pouring part of the molding apparatus. 同成形装置の押圧部を示す概略図であって、図1の破線部Aによって囲まれる部分に対応する拡大図である。It is the schematic which shows the press part of the shaping | molding apparatus, Comprising: It is an enlarged view corresponding to the part enclosed by the broken-line part A of FIG. 同成形装置のダイレクトゲートから吐出される樹脂から炭素繊維に作用される力を説明する説明図であって、図1の破線部Cによって囲まれる部分に対応する拡大図である。It is explanatory drawing explaining the force acted on carbon fiber from the resin discharged from the direct gate of the shaping | molding apparatus, Comprising: It is an enlarged view corresponding to the part enclosed by the broken-line part C of FIG. 図5(A)、図5(B)は同成形装置の押圧部の作用を説明する説明図であって、それぞれ型閉じ前および型閉じ中の図1の破線部Aによって囲まれる部分に対応する部分の様子を示す拡大図である。5 (A) and 5 (B) are explanatory views for explaining the operation of the pressing portion of the molding apparatus, corresponding to the portions surrounded by the broken line portion A in FIG. 1 before and during mold closing, respectively. It is an enlarged view which shows the mode of the part to perform. 図6(A)、図6(B)は同成形装置の押圧部の作用を説明する説明図であって、それぞれ型閉じ前および型閉じ中の図1の破線部Bによって囲まれる部分に対応する部分の様子を示す拡大図である。6 (A) and 6 (B) are explanatory views for explaining the operation of the pressing portion of the molding apparatus, corresponding to the portions surrounded by the broken line portion B in FIG. 1 before and during mold closing, respectively. It is an enlarged view which shows the mode of the part to perform. 実施形態1に係る複合材料の成形方法を示すフローチャートである。3 is a flowchart illustrating a method for forming a composite material according to Embodiment 1. 図8(A)は、複合材料を使用した自動車部品を示す図であり、図8(B)は、部品を接合した車体を示す図である。FIG. 8A is a diagram showing an automobile part using a composite material, and FIG. 8B is a diagram showing a vehicle body in which the parts are joined. 実施形態2に係る複合材料の成形方法を示すフローチャートである。5 is a flowchart showing a method for molding a composite material according to Embodiment 2. 図10(A)、図10(B)は改変例に係る成形装置の押圧部を示す概略図であって、それぞれ押圧部を構成する押し込み治具を取り付ける前および取り付けた後の図1の破線部Aによって囲まれる部分に対応する部分を示す拡大図である。10 (A) and 10 (B) are schematic views showing a pressing portion of a molding apparatus according to a modified example, and before and after attaching a pressing jig constituting the pressing portion, broken lines in FIG. FIG. 6 is an enlarged view showing a part corresponding to a part surrounded by part A. 図11(A)、図11(B)は同成形装置の押圧部を示す概略図であって、それぞれ型閉じ前および型閉じ中の図1の破線部Aによって囲まれる部分に対応する部分を示す拡大図である。11 (A) and 11 (B) are schematic views showing a pressing portion of the molding apparatus, and portions corresponding to portions surrounded by a broken line portion A in FIG. 1 before and during mold closing, respectively. It is an enlarged view shown. 図12(A)、図12(B)は別の改変例に係る成形装置の押圧部を示す概略図であって、それぞれ型閉じ前および型閉じ中の図1の破線部Aによって囲まれる部分に対応する部分を示す拡大図である。12 (A) and 12 (B) are schematic views showing a pressing portion of a molding apparatus according to another modification, and are portions surrounded by a broken line portion A in FIG. 1 before and during mold closing, respectively. It is an enlarged view which shows the part corresponding to.
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、以下の記載は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the following description does not limit the technical scope and terms used in the claims. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios.
 (実施形態1)
 図1は、複合材料200の成形装置100の概略図である。図2は、樹脂注入部30の構成を示す概略図である。図3は、押圧部90を示す概略図であって、図1の破線部Aによって囲まれる部分に対応する拡大図である。図4は、ダイレクトゲート13から吐出される樹脂220から炭素繊維210に作用される力を説明する説明図であって、図1の破線部Cによって囲まれる部分に対応する拡大図である。図5(A)、図5(B)は押圧部90の作用を説明する説明図であって、それぞれ型閉じ前および型閉じ中の図1の破線部Aによって囲まれる部分に対応する部分の様子を示す拡大図である。図6(A)、図6(B)は押圧部90の作用を説明する説明図であって、それぞれ型閉じ前および型閉じ中の図1の破線部Bによって囲まれる部分に対応する部分の様子を示す拡大図である。図7は、複合材料200の成形方法を示すフローチャートである。図8(A)は、複合材料200を使用した自動車部品301~303を示す図であり、図8(B)は、部品301~303を接合した車体300を示す図である。
(Embodiment 1)
FIG. 1 is a schematic view of a molding apparatus 100 for a composite material 200. FIG. 2 is a schematic diagram illustrating the configuration of the resin injection unit 30. FIG. 3 is a schematic diagram showing the pressing portion 90, and is an enlarged view corresponding to a portion surrounded by a broken line portion A in FIG. FIG. 4 is an explanatory diagram for explaining the force applied to the carbon fiber 210 from the resin 220 discharged from the direct gate 13, and is an enlarged view corresponding to a portion surrounded by a broken line portion C in FIG. 5 (A) and 5 (B) are explanatory views for explaining the operation of the pressing portion 90, and are portions corresponding to portions surrounded by a broken line portion A in FIG. 1 before and after mold closing, respectively. It is an enlarged view which shows a mode. 6 (A) and 6 (B) are explanatory views for explaining the operation of the pressing portion 90, and are portions corresponding to portions surrounded by the broken line portion B in FIG. 1 before and during mold closing, respectively. It is an enlarged view which shows a mode. FIG. 7 is a flowchart showing a method for forming the composite material 200. FIG. 8A is a view showing automobile parts 301 to 303 using the composite material 200, and FIG. 8B is a view showing a vehicle body 300 to which the parts 301 to 303 are joined.
 以下、図面に基づいて本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施形態に係る成形方法および成形装置100によって得られる複合材料200は、強化基材210と、樹脂220と、によって構成されている。強化基材210と組み合わせることによって樹脂220単体に比べて高い強度および剛性を備える複合材料200となる。また、図8に示すように、自動車の車体300(図8(B)を参照)に使用される部品であるフロントサイドメンバー301やピラー302等の骨格部品、ルーフ303等の外板部品に複合材料200を使用することによって、鉄鋼材料を使用した場合に比べて車体の軽量化が可能となる。 The composite material 200 obtained by the molding method and the molding apparatus 100 according to the present embodiment is composed of a reinforced base material 210 and a resin 220. By combining with the reinforced substrate 210, the composite material 200 having higher strength and rigidity than the resin 220 alone is obtained. Further, as shown in FIG. 8, it is combined with a frame part such as a front side member 301 and a pillar 302, which are parts used in an automobile body 300 (see FIG. 8B), and an outer plate part such as a roof 303. By using the material 200, it is possible to reduce the weight of the vehicle body as compared with the case where a steel material is used.
 強化基材210は、炭素繊維、ガラス繊維、有機繊維等の織物シートによって形成され、積層された状態において成形型10に形成されたキャビティ15内に配置してプリフォームする。本実施形態においては、熱膨張係数が小さく寸法安定性に優れ、高温下においても機械的特性の低下が少ない炭素繊維を用いる。なお、プリフォームは成形型10以外の別型により行ってもよい。 The reinforced substrate 210 is formed of a woven sheet of carbon fiber, glass fiber, organic fiber or the like, and is placed in the cavity 15 formed in the mold 10 in a laminated state and preformed. In this embodiment, a carbon fiber having a small thermal expansion coefficient, excellent dimensional stability, and little deterioration in mechanical properties even at high temperatures is used. The preform may be performed by another mold other than the mold 10.
 樹脂220は、主剤と硬化剤とを混合することにより形成される。具体的には、樹脂220として、熱硬化性樹脂であるエポキシ樹脂、フェノール樹脂等が用いられる。本実施形態においては、機械的特性、寸法安定性に優れたエポキシ樹脂を用いる。エポキシ樹脂は2液タイプが主流であり、主剤はビスフェノールA型のエポキシ樹脂、硬化剤はアミン系のものが一般的に用いられるが、特にこれに限定されるものではなく、所望の材料特性に合わせて適宜選択できる。樹脂220の粘度は、主剤と硬化剤との混合から時間が経つにつれて増加する。 Resin 220 is formed by mixing a main agent and a curing agent. Specifically, an epoxy resin, a phenol resin, or the like that is a thermosetting resin is used as the resin 220. In the present embodiment, an epoxy resin having excellent mechanical characteristics and dimensional stability is used. Epoxy resins are mainly two-pack type, bisphenol A type epoxy resin is mainly used as the main agent, and amine-based one is used as the curing agent. They can be selected as appropriate. The viscosity of the resin 220 increases with time from the mixing of the main agent and the curing agent.
 図1を参照して、本実施形態に係る成形装置100は、概説すると、炭素繊維210(強化基材に相当)を配置するキャビティ15が形成された開閉可能な成形型10と、成形型10に型締圧力Pmを負荷するプレス部20と、キャビティ15内に樹脂220を注入する樹脂注入部30と、を有する。成形装置100は、キャビティ15内の圧力Prを測定する圧力計50と、成形型10内を真空引きする吸引部60と、成形型10の温度を調整する成形型温度調整部70と、成形装置100全体の作動を制御する制御部80と、成形型10に設けられ、炭素繊維210を成形型10に対して押圧する押圧部90と、をさらに有する。以下、成形装置100について詳述する。 With reference to FIG. 1, the molding apparatus 100 according to this embodiment can be outlined as follows: a mold 10 that can be opened and closed in which a cavity 15 in which a carbon fiber 210 (corresponding to a reinforced base material) is disposed, and a mold 10. And a press part 20 for applying a mold clamping pressure Pm, and a resin injection part 30 for injecting a resin 220 into the cavity 15. The molding apparatus 100 includes a pressure gauge 50 that measures the pressure Pr in the cavity 15, a suction unit 60 that evacuates the mold 10, a mold temperature adjustment unit 70 that adjusts the temperature of the mold 10, and a molding apparatus. It further includes a control unit 80 that controls the operation of the entire 100 and a pressing unit 90 that is provided in the mold 10 and presses the carbon fibers 210 against the mold 10. Hereinafter, the molding apparatus 100 will be described in detail.
 成形型10は、開閉可能な一対の上型11(雄型)と、下型12(雌型)と、を有する。上型11と下型12の間に、密閉自在なキャビティ15を形成する。炭素繊維210は、積層してプリフォームした状態において予めキャビティ15内に配置する。上型11の上方部に、ダイレクトゲート13を設ける。ダイレクトゲート13を樹脂注入部30に連結し、上方からキャビティ15内に樹脂220を注入する。樹脂220は、炭素繊維210の上面から内部に含浸する。また、下型12の端部に、吸引口14を設ける。吸引口14を吸引部60に連結し、キャビティ15内を真空引きして空気を吸引除去する。さらに、上型11においてキャビティ15を形成する面の周辺部には溝16が設けられる。溝16は、後述する押圧部90が設置される。キャビティ15内を密閉状態にするために、上型11と下型12の合わせ面にシール部材等を設けてもよい。 The mold 10 has a pair of upper mold 11 (male mold) and a lower mold 12 (female mold) that can be opened and closed. A sealable cavity 15 is formed between the upper mold 11 and the lower mold 12. The carbon fiber 210 is placed in the cavity 15 in advance in a state of being laminated and preformed. A direct gate 13 is provided above the upper mold 11. The direct gate 13 is connected to the resin injection part 30 and the resin 220 is injected into the cavity 15 from above. The resin 220 is impregnated into the inside from the upper surface of the carbon fiber 210. A suction port 14 is provided at the end of the lower mold 12. The suction port 14 is connected to the suction part 60, and the inside of the cavity 15 is evacuated to suck and remove air. Further, a groove 16 is provided in the periphery of the surface of the upper mold 11 where the cavity 15 is formed. The groove 16 is provided with a pressing portion 90 described later. In order to seal the inside of the cavity 15, a sealing member or the like may be provided on the mating surface of the upper mold 11 and the lower mold 12.
 プレス部20は、成形型10の上型11に型締圧力Pmを負荷する。プレス部20は、油圧等の流体圧を用いたシリンダー21を有し、油圧等を制御することによって型締圧力Pmを調整する。 The pressing unit 20 applies a clamping pressure Pm to the upper mold 11 of the mold 10. The press unit 20 includes a cylinder 21 that uses fluid pressure such as hydraulic pressure, and adjusts the mold clamping pressure Pm by controlling the hydraulic pressure or the like.
 樹脂注入部30は、主剤を充填した主剤タンク31と、硬化剤を充填した硬化剤タンク32と、主剤および硬化剤の搬送流路を形成するチューブ33と、樹脂220のキャビティ15内への注入圧力Piを測定する圧力計34と、主剤と硬化剤とを混合するミキシングヘッド40(混合部に相当)と、を有する。圧力計34は、樹脂220の注入圧力Piを測定するため、ダイレクトゲート13に接続される。 The resin injecting unit 30 includes a main agent tank 31 filled with the main agent, a curing agent tank 32 filled with the curing agent, a tube 33 forming a conveyance path for the main agent and the curing agent, and injection of the resin 220 into the cavity 15. It has a pressure gauge 34 for measuring the pressure Pi, and a mixing head 40 (corresponding to a mixing unit) for mixing the main agent and the curing agent. The pressure gauge 34 is connected to the direct gate 13 in order to measure the injection pressure Pi of the resin 220.
 図2を参照して、樹脂注入部30は、主剤タンク31および硬化剤タンク32に連結されるチューブ33a、33bにそれぞれ配置されたポンプ35a、35bをさらに有する。ポンプ35a、35bは、主剤および硬化剤を一定圧力においてミキシングヘッド40に向けて吐出する。 Referring to FIG. 2, the resin injecting unit 30 further includes pumps 35a and 35b disposed in tubes 33a and 33b connected to the main agent tank 31 and the curing agent tank 32, respectively. The pumps 35a and 35b discharge the main agent and the curing agent toward the mixing head 40 at a constant pressure.
 ミキシングヘッド40は、主剤と硬化剤とを混合して樹脂220を形成する。本実施形態において、ミキシングヘッド40は上型11内に配置される。ミキシングヘッド40はダイレクトゲート13に接続され、ダイレクトゲート13を介して樹脂220をキャビティ15に吐出する。 The mixing head 40 forms a resin 220 by mixing a main agent and a curing agent. In the present embodiment, the mixing head 40 is disposed in the upper mold 11. The mixing head 40 is connected to the direct gate 13 and discharges the resin 220 to the cavity 15 through the direct gate 13.
 より具体的には、ミキシングヘッド40は、シリンダー41と、ピストン42と、を有する。シリンダー41は、ピストン42の基端部42aによって区画された2つのチャンバ41u、41dを有する。2つのチャンバ41u、41dに供給する空圧または油圧などの流体圧を調整することによって、ピストン42は図において上下方向に移動する。 More specifically, the mixing head 40 has a cylinder 41 and a piston 42. The cylinder 41 has two chambers 41 u and 41 d defined by a base end portion 42 a of the piston 42. By adjusting the fluid pressure such as pneumatic pressure or hydraulic pressure supplied to the two chambers 41u and 41d, the piston 42 moves in the vertical direction in the figure.
 シリンダー41は、上側吸入口44a、44bと、下側吐出口45a、45bと、を有する。ピストン42が図において上方に移動すると、下側吐出口45a、45bが開かれて主剤および硬化剤が吐出される。下側吐出口45a、45bのそれぞれから吐出した主剤および硬化剤は、混合されて樹脂220を形成する。形成された樹脂220は、ダイレクトゲート13に吐出される。ピストン42が図において下方に移動すると、上側吸入口44a、44bと下側吐出口45a、45bとが、ピストン42に形成した凹部43a、43bを介して連通する。主剤および硬化剤は、下側吐出口45a、45bから凹部43a、43bを通り、上側吸入口44a、44bから主剤タンク31および硬化剤タンク32に再び戻される。この動作によって、主剤および硬化剤は、一定の圧力においてチューブ33a、33b内を循環する。 The cylinder 41 has upper suction ports 44a and 44b and lower discharge ports 45a and 45b. When the piston 42 moves upward in the figure, the lower discharge ports 45a and 45b are opened, and the main agent and the curing agent are discharged. The main agent and the curing agent discharged from each of the lower discharge ports 45a and 45b are mixed to form the resin 220. The formed resin 220 is discharged to the direct gate 13. When the piston 42 moves downward in the figure, the upper suction ports 44a and 44b and the lower discharge ports 45a and 45b communicate with each other through the recesses 43a and 43b formed in the piston 42. The main agent and the curing agent pass through the recesses 43a and 43b from the lower discharge ports 45a and 45b, and are returned again to the main agent tank 31 and the curing agent tank 32 from the upper suction ports 44a and 44b. By this operation, the main agent and the curing agent circulate in the tubes 33a and 33b at a constant pressure.
 図2におけるピストン42の上下方向の移動量を調節することにより、主剤および硬化剤の流通経路の開度が調整される。流通経路の開度によって、樹脂220のキャビティ15内への注入量Qiを調整し、成形型10に搬送される樹脂220の注入圧力Piを調整する。なお、樹脂220が硬化する前の状態において粘度が200[mPa・s]以下のとき、キャビティ15内への樹脂220の注入量Qiと注入圧力Piは、Qi=A×Pi(Aは、流出係数、流路面積および流体密度によって決まる値)の式によって表される相関関係にあることが知られている。 By adjusting the amount of movement of the piston 42 in the vertical direction in FIG. 2, the opening degree of the flow path of the main agent and the curing agent is adjusted. The injection amount Qi of the resin 220 into the cavity 15 is adjusted according to the opening of the flow path, and the injection pressure Pi of the resin 220 conveyed to the mold 10 is adjusted. When the viscosity is 200 [mPa · s] or less in the state before the resin 220 is cured, the injection amount Qi and the injection pressure Pi of the resin 220 into the cavity 15 are Qi 2 = A × Pi (A is It is known that there is a correlation expressed by an equation of a value determined by an outflow coefficient, a flow path area, and a fluid density.
 上述したように、ミキシングヘッド40は成形型10内に配置される。これにより、成形型10内で炭素繊維210を位置ずれさせることなく、樹脂220の注入圧力Piをさらに高めることができる。 As described above, the mixing head 40 is disposed in the mold 10. Thereby, the injection pressure Pi of the resin 220 can be further increased without causing the carbon fiber 210 to be displaced in the mold 10.
 具体的には、図4に示すように、ダイレクトゲート13から吐出された樹脂220は、炭素繊維210に接触することにより、炭素繊維210を位置ずれさせようとする力を炭素繊維210に作用させる。炭素繊維210を位置ずれさせようとする力は、例えば、図4の矢印F1~F3で示す方向の力である。矢印F1またはF3で示される方向の力は、それぞれ図4において炭素繊維210を左または右に位置ずれさせ得る。また、矢印F2で示される方向の力は、図4において炭素繊維210を上下方向にばたつかせ得る。炭素繊維210が上下方向にばたつくことによって、炭素繊維210は位置ずれし得る。 Specifically, as shown in FIG. 4, the resin 220 discharged from the direct gate 13 is brought into contact with the carbon fiber 210, thereby causing the carbon fiber 210 to act on the carbon fiber 210. . The force for shifting the position of the carbon fiber 210 is, for example, a force in a direction indicated by arrows F1 to F3 in FIG. The force in the direction indicated by arrow F1 or F3 can cause carbon fiber 210 to shift to the left or right in FIG. 4, respectively. Further, the force in the direction indicated by the arrow F2 can cause the carbon fibers 210 to flutter in the vertical direction in FIG. As the carbon fibers 210 flutter in the vertical direction, the carbon fibers 210 can be displaced.
 樹脂220から作用される炭素繊維210を位置ずれさせようとする力は、樹脂220の粘度が低い方が、粘度が高い状態と比較して弱い。そして、樹脂220の粘度は、主剤と硬化剤とが混合されてから時間が経つにつれて増加する。本実施形態では、ミキシングヘッド40は成形型10内に配置されるから、主剤と硬化剤とが混合されて樹脂220が形成されてから、キャビティ15に樹脂220が注入されるまでの時間が短い。すなわち、樹脂220は粘度が低い状態でキャビティ15内に注入される。これにより、粘度が高い状態と比較して、注入時に樹脂220が接触することにより炭素繊維210に作用される炭素繊維210を位置ずれさせようとする力が弱い。そのため、成形型10内で炭素繊維210を位置ずれさせることなく、樹脂220の注入圧力Piを高めることができる。 The force to shift the position of the carbon fiber 210 applied from the resin 220 is weaker when the viscosity of the resin 220 is lower than when the viscosity is higher. The viscosity of the resin 220 increases as time passes after the main agent and the curing agent are mixed. In this embodiment, since the mixing head 40 is disposed in the mold 10, the time from when the main agent and the curing agent are mixed to form the resin 220 to when the resin 220 is injected into the cavity 15 is short. . That is, the resin 220 is injected into the cavity 15 with a low viscosity. Thereby, compared with a state with a high viscosity, the force which tries to position-shift the carbon fiber 210 which acts on the carbon fiber 210 when the resin 220 contacts at the time of injection | pouring is weak. Therefore, the injection pressure Pi of the resin 220 can be increased without causing the carbon fiber 210 to be displaced in the mold 10.
 また、粘度が低い場合の方が、粘度が高い場合と比較して炭素繊維210への含浸性が高い。そのため、同じ注入圧力Piであっても樹脂220の粘度を低くすることにより樹脂220の注入量Qiを高めることができる。 Also, the impregnation property of the carbon fiber 210 is higher when the viscosity is lower than when the viscosity is high. Therefore, the injection amount Qi of the resin 220 can be increased by reducing the viscosity of the resin 220 even at the same injection pressure Pi.
 図1を再び参照して、圧力計50は、ひずみゲージ等を備え、キャビティ15内の圧力Prを測定するために成形型10に配置される。 Referring to FIG. 1 again, the pressure gauge 50 includes a strain gauge and the like, and is disposed in the mold 10 for measuring the pressure Pr in the cavity 15.
 吸引部60は、真空ポンプ(図示せず)を有する。吸引部60は、成形型10の型閉じ後、かつ、樹脂220の注入開始前に、吸引口14からキャビティ15内の空気を吸引(真空引き)し、キャビティ15内を真空状態にする。 The suction unit 60 has a vacuum pump (not shown). The suction part 60 sucks (evacuates) the air in the cavity 15 from the suction port 14 after the mold 10 is closed and before the injection of the resin 220 is started, and the inside of the cavity 15 is evacuated.
 成形型温度調整部70は、加熱部材を有し、成形型10を樹脂220の硬化温度まで加熱し、キャビティ15内に注入された樹脂220を硬化させる。加熱部材は、電気ヒーターであり、直接的に成形型10を加熱する。なお、加熱部材はこれに限定されず、たとえば、油などの熱媒体を電気ヒーターによって加熱し、成形型10内に熱媒体を循環させることによって、成形型10の温度を調整してもよい。 The mold temperature adjusting unit 70 has a heating member, heats the mold 10 to the curing temperature of the resin 220, and cures the resin 220 injected into the cavity 15. The heating member is an electric heater and heats the mold 10 directly. The heating member is not limited to this. For example, the temperature of the mold 10 may be adjusted by heating a heat medium such as oil with an electric heater and circulating the heat medium in the mold 10.
 制御部80は、成形装置100全体の動作を制御する。制御部80は、記憶部81と、演算部82と、入出力部83と、を有する。入出力部83は、圧力計34、50と、プレス部20と、バルブ40と、吸引部60と、成形型温度調整部70とに接続される。記憶部81は、ROMやRAMから構成される。演算部82は、CPUを主体に構成され、入出力部83を介して圧力計34、50からの樹脂220の注入圧力Pi、キャビティ15内の圧力Pr、およびプレス部20からの成形型10の開閉状態のデータを受信する。演算部82は、記憶部81から読み出したデータおよび入出力部83から受信したデータを基にミキシングヘッド40のピストン42位置、吸引部60の吸入圧および成形型温度調整部70による成形型10の加熱温度を算出する。算出データを基にした制御信号は、入出力部83を介してミキシングヘッド40、吸引部60および成形型温度調整部70に送信する。このようにして、制御部80は、樹脂220の注入圧力Pi、樹脂220の注入タイミング、真空引き時のキャビティ15内の圧力Pr、成形型温度等を制御する。 The control unit 80 controls the overall operation of the molding apparatus 100. The control unit 80 includes a storage unit 81, a calculation unit 82, and an input / output unit 83. The input / output unit 83 is connected to the pressure gauges 34 and 50, the press unit 20, the valve 40, the suction unit 60, and the mold temperature adjusting unit 70. The storage unit 81 includes a ROM and a RAM. The calculation unit 82 is mainly composed of a CPU, and via the input / output unit 83, the injection pressure Pi of the resin 220 from the pressure gauges 34 and 50, the pressure Pr in the cavity 15, and the mold 10 from the press unit 20. Receives open / closed data. The calculation unit 82 is based on the data read from the storage unit 81 and the data received from the input / output unit 83, the position of the piston 42 of the mixing head 40, the suction pressure of the suction unit 60, and the mold temperature adjustment unit 70. Calculate the heating temperature. A control signal based on the calculated data is transmitted to the mixing head 40, the suction unit 60, and the mold temperature adjusting unit 70 via the input / output unit 83. In this way, the control unit 80 controls the injection pressure Pi of the resin 220, the injection timing of the resin 220, the pressure Pr in the cavity 15 during evacuation, the mold temperature, and the like.
 押圧部90は、成形型10に設けられ、炭素繊維210を成形型10に対して押圧する。具体的には、押圧部90は、樹脂注入部30によりキャビティ15内に樹脂220が注入される前に炭素繊維210を成形型10に対して押圧する。より具体的には、押圧部90は、成形型10の型閉じ前に炭素繊維210を成形型10に対して押圧する。さらに具体的には、押圧部90は、成形型10の型締圧力Pmとは異なる調整自在の圧力により炭素繊維210を成形型10に対して押圧する。実施形態1にあっては、押圧部90は、成形型10とは別体として成形型10に設けられる。 The pressing unit 90 is provided in the mold 10 and presses the carbon fiber 210 against the mold 10. Specifically, the pressing unit 90 presses the carbon fiber 210 against the mold 10 before the resin 220 is injected into the cavity 15 by the resin injection unit 30. More specifically, the pressing unit 90 presses the carbon fiber 210 against the mold 10 before the mold 10 is closed. More specifically, the pressing unit 90 presses the carbon fiber 210 against the mold 10 with an adjustable pressure different from the mold clamping pressure Pm of the mold 10. In the first embodiment, the pressing portion 90 is provided in the molding die 10 as a separate body from the molding die 10.
 図3に示すように、押圧部90は、本実施形態において、成形型10とは別体として形成される弾性部材91と、押圧要素92と、により構成される。弾性部材91は、一端が上型11の溝16の底部に取り付けられ、他端が押圧要素92の上面に取り付けられる。 As shown in FIG. 3, the pressing portion 90 includes an elastic member 91 and a pressing element 92 that are formed separately from the mold 10 in the present embodiment. One end of the elastic member 91 is attached to the bottom of the groove 16 of the upper mold 11, and the other end is attached to the upper surface of the pressing element 92.
 図5(A)および図5(B)を参照して、成形型10の型閉じ開始前において、弾性部材91の長さは自然長の状態にある。そして、成形型10の型閉じが進むと、押圧要素92が炭素繊維210に接触する。さらに、成形型10の型閉じが進むと、弾性部材91の長さは図5(B)の矢印の方向に収縮していく。弾性部材91の長さが収縮することにより、押圧要素92には弾性部材91から弾性力が作用される。これにより、押圧要素92は炭素繊維210を成形型10に対して押圧する。 5A and 5B, the length of the elastic member 91 is in a natural length state before the mold 10 starts closing. When the mold 10 is closed, the pressing element 92 contacts the carbon fiber 210. Furthermore, as the mold 10 is closed, the length of the elastic member 91 contracts in the direction of the arrow in FIG. When the length of the elastic member 91 contracts, an elastic force is applied from the elastic member 91 to the pressing element 92. Accordingly, the pressing element 92 presses the carbon fiber 210 against the mold 10.
 図6(A)および図6(B)を参照して、成形型10を型閉じするとき上型11の側部Sは炭素繊維210に接触する。このとき、炭素繊維210は、上型11の側部Sから図6(B)の矢印方向に力を受ける。炭素繊維210は、上型11の側部Sから作用する力によって位置ずれし得る。この位置ずれを防止するために、上型11および下型12には一般に抜き勾配が設けられる。本実施形態において、弾性部材91の長さの収縮は、成形型10の型閉じ完了前に始まる。すなわち、押圧要素92への弾性部材91からの弾性力の作用は、成形型10の型閉じ完了前に始まる。そのため、押圧要素92は、成形型10の型閉じ完了前に炭素繊維210を成形型10に対して押圧する。これにより、図6(B)に示す矢印方向の力によって炭素繊維210が位置ずれするのを防止できる。また、抜き勾配を小さく設定できるため、上型11および下型12の形状の設計の自由度が増す。 6 (A) and 6 (B), when the mold 10 is closed, the side S of the upper mold 11 contacts the carbon fiber 210. At this time, the carbon fiber 210 receives a force in the direction of the arrow in FIG. The carbon fiber 210 can be displaced by a force acting from the side portion S of the upper mold 11. In order to prevent this displacement, the upper mold 11 and the lower mold 12 are generally provided with a draft angle. In the present embodiment, the contraction of the length of the elastic member 91 starts before the mold 10 is closed. That is, the action of the elastic force from the elastic member 91 on the pressing element 92 starts before the mold closing of the mold 10 is completed. Therefore, the pressing element 92 presses the carbon fiber 210 against the mold 10 before the mold closing of the mold 10 is completed. Thereby, it is possible to prevent the carbon fiber 210 from being displaced due to the force in the arrow direction shown in FIG. Further, since the draft angle can be set small, the degree of freedom in designing the shapes of the upper mold 11 and the lower mold 12 is increased.
 また、弾性部材91の長さの収縮は、上述したように成形型10の型閉じ完了前に始まる。そして、制御部80は、上述したように成形型10の型閉じ完了後に樹脂220の注入を開始する。すなわち、押圧要素92は、樹脂注入部30によりキャビティ15内に樹脂220が注入される前に炭素繊維210を成形型10に対して押圧する。これにより、注入圧力Piが付加された樹脂220がキャビティ15内に注入されたときに、樹脂220から受ける力によって炭素繊維210がキャビティ15内で位置ずれするのを防ぐことができる。すなわち、成形型10内で炭素繊維210を位置ずれさせることなく、樹脂220の注入圧力Piを高めることができる。注入圧力Piを高めることにより成形時間を短縮できるから、成形不良を防ぎつつ成形時間を短縮できる。 Further, the contraction of the length of the elastic member 91 starts before the mold 10 is closed as described above. Then, the control unit 80 starts injecting the resin 220 after the mold closing of the mold 10 is completed as described above. That is, the pressing element 92 presses the carbon fiber 210 against the mold 10 before the resin 220 is injected into the cavity 15 by the resin injection portion 30. Thereby, when the resin 220 to which the injection pressure Pi is applied is injected into the cavity 15, it is possible to prevent the carbon fiber 210 from being displaced in the cavity 15 due to the force received from the resin 220. That is, the injection pressure Pi of the resin 220 can be increased without causing the carbon fiber 210 to be displaced in the mold 10. Since the molding time can be shortened by increasing the injection pressure Pi, the molding time can be shortened while preventing molding defects.
 また、押圧部90による炭素繊維210の押圧は、上述したように成形型10の型締圧力Pmとは異なり弾性要素91の弾性力によりなされる。すなわち、押圧部90は、成形型10の型締圧力Pmとは異なる調整自在の圧力により炭素繊維210を成形型10に対して押圧する。これにより、炭素繊維210を押圧するときの圧力を型締圧力Pmとは独立して調整できるため、炭素繊維210を安定して押圧できる。具体的には、型締圧力Pmは非常に大きな圧力のため、炭素繊維210を安定して押圧するように圧力の大きさを制御するのは難しい。また、上型11と下型12の接触は、上型11と上型12の成形誤差等の影響により均等になされるとは限らない。そのため、成形型10の型締圧力Pmとは異なる調整自在の圧力により炭素繊維210を成形型10に対して押圧することにより、炭素繊維210に均等に圧力を負荷することが容易になる。すなわち、炭素繊維210を安定して押圧できる。 Further, the pressing of the carbon fiber 210 by the pressing portion 90 is performed by the elastic force of the elastic element 91 unlike the mold clamping pressure Pm of the mold 10 as described above. That is, the pressing unit 90 presses the carbon fiber 210 against the mold 10 with an adjustable pressure different from the mold clamping pressure Pm of the mold 10. Thereby, since the pressure when pressing the carbon fiber 210 can be adjusted independently of the mold clamping pressure Pm, the carbon fiber 210 can be pressed stably. Specifically, since the mold clamping pressure Pm is a very large pressure, it is difficult to control the magnitude of the pressure so as to stably press the carbon fiber 210. Further, the contact between the upper mold 11 and the lower mold 12 is not necessarily made evenly due to the influence of molding errors between the upper mold 11 and the upper mold 12. Therefore, by pressing the carbon fiber 210 against the mold 10 with an adjustable pressure different from the mold clamping pressure Pm of the mold 10, it becomes easy to load the carbon fiber 210 evenly. That is, the carbon fiber 210 can be pressed stably.
 さらに、押圧部90は、成形型10とは別体として成形型10に設けられる。これにより、成形装置100の製造が容易になるとともに成形装置100の製造コストを抑えることができる。例えば、押圧部90を備えていない既存の成形型に、当該成形型とは別体として製造された押圧部90を当該成形型に取り付ける簡易な方法によって、成形装置100を製造できる。これにより、成形装置100の製造が容易になるとともに製造コストを抑えることができる。 Furthermore, the pressing portion 90 is provided in the mold 10 as a separate body from the mold 10. Thereby, manufacture of the shaping | molding apparatus 100 becomes easy and the manufacturing cost of the shaping | molding apparatus 100 can be held down. For example, the molding apparatus 100 can be manufactured by a simple method of attaching a pressing portion 90 manufactured separately from the molding die to an existing molding die that does not include the pressing portion 90. Thereby, manufacture of the shaping | molding apparatus 100 becomes easy and manufacturing cost can be held down.
 また、成形型10を変更することなく押圧部90のみを設計変更できる。これにより、成形型10内で炭素繊維210が位置ずれしないように、成形装置100を最適に設計し易くなる。例えば、強化基材210の形状や材質、および強化基材210の押圧位置等に応じて、弾性部材91の弾性力や押圧要素92の形状等を最適に設計しやすくなる。 Also, the design of only the pressing part 90 can be changed without changing the mold 10. Thereby, it becomes easy to design the shaping | molding apparatus 100 optimally so that the carbon fiber 210 may not position-shift within the shaping | molding die 10. FIG. For example, it becomes easy to optimally design the elastic force of the elastic member 91, the shape of the pressing element 92, and the like according to the shape and material of the reinforcing base 210, the pressing position of the reinforcing base 210, and the like.
 さらに、成形型10と押圧部90とをそれぞれ独立して交換できる。これにより、成形装置100のメンテンス性が向上する。例えば、押圧部90が損傷した場合、押圧部90のみを交換することにより、成形型10を交換することなく複合材料の成形を続けることができる。 Furthermore, the mold 10 and the pressing part 90 can be exchanged independently. Thereby, the maintainability of the molding apparatus 100 is improved. For example, when the pressing part 90 is damaged, the composite material can be continuously molded without exchanging the molding die 10 by exchanging only the pressing part 90.
 以下、図7を参照して複合材料200の成形方法の手順について説明する。 Hereinafter, the procedure of the molding method of the composite material 200 will be described with reference to FIG.
 図7に示すように、複合材料200の成形方法は、炭素繊維210を配置する工程(ステップS1)と、成形型10の型閉じを開始する工程(ステップS2)と、炭素繊維210を成形型10内で位置ずれしない状態にする工程(ステップS3)と、成形型10の型閉じを完了する工程(ステップS4)と、真空吸引を行う工程(ステップS5)と、樹脂220を注入する工程(ステップS6およびステップS7)と、樹脂220を硬化させる工程(ステップS8)と、脱型する工程(ステップS9)と、を有する。以下、各工程について詳述する。なお、ステップS1、S8、S9の操作を除き、制御部80が各ステップの処理を実行する。 As shown in FIG. 7, the molding method of the composite material 200 includes a step of arranging the carbon fibers 210 (step S1), a step of starting the mold closing of the molding die 10 (step S2), and the carbon fibers 210 as the molding die. 10 (step S3), a process of completing mold closing of the mold 10 (step S4), a process of performing vacuum suction (step S5), and a process of injecting resin 220 (step S3). Step S6 and Step S7), a step of curing the resin 220 (Step S8), and a step of demolding (Step S9). Hereinafter, each process is explained in full detail. Note that, except for the operations of steps S1, S8, and S9, the control unit 80 executes the processing of each step.
 まず、炭素繊維210を積層し、成形型10のキャビティ15内に配置してプリフォームする(ステップS1)。このとき、キャビティ15に臨む型内面を、所定の有機溶剤を用いて脱脂処理し、離型剤を用いて離型処理を施しておく。 First, carbon fibers 210 are laminated, placed in the cavity 15 of the mold 10 and preformed (step S1). At this time, the inner surface of the mold facing the cavity 15 is degreased using a predetermined organic solvent, and is subjected to a mold release process using a mold release agent.
 次に、成形型10の型閉じを開始する(ステップS2)。本実施形態では、プレス部20により成形型10に型締圧力Pmを負荷することにより成形型10の上型11と下型12が接近して型閉じが進行する。 Next, closing of the mold 10 is started (step S2). In this embodiment, by applying a clamping pressure Pm to the mold 10 by the press unit 20, the upper mold 11 and the lower mold 12 approach the mold 10 and the mold closing proceeds.
 次に、炭素繊維210を成形型10内で位置ずれしない状態にする(ステップS3)。これにより、成形型10を型閉じするときに、図6(B)に示す矢印方向の力によって炭素繊維210がキャビティ15内で位置ずれすることが防止される。そのため、成形型10を型閉じするときに成形型10に接触することによって炭素繊維210が位置ずれすることが防止される。本実施形態では、成形型10に設けられた押圧部90によって炭素繊維210を成形型10に対して押圧することにより、炭素繊維210を成形型10内で位置ずれしない状態にする。上述したように、実施形態1にあっては、押圧部90を、成形型10とは別体として成形型10に設ける。 Next, the carbon fiber 210 is not displaced in the mold 10 (step S3). This prevents the carbon fiber 210 from being displaced in the cavity 15 by the force in the direction of the arrow shown in FIG. 6B when the mold 10 is closed. Therefore, the carbon fiber 210 is prevented from being displaced by contacting the mold 10 when the mold 10 is closed. In the present embodiment, the carbon fiber 210 is pressed against the mold 10 by the pressing portion 90 provided in the mold 10, so that the carbon fiber 210 is not displaced in the mold 10. As described above, in the first embodiment, the pressing portion 90 is provided in the mold 10 as a separate body from the mold 10.
 次に、成形型10の型閉じを完了する(ステップS4)。成形型10の上型11が下型12に接触すると成形型10の型閉じが完了となる。このとき、上型11と下型12の間に、密閉自在なキャビティ15が形成される。 Next, the mold closing of the mold 10 is completed (step S4). When the upper mold 11 of the mold 10 contacts the lower mold 12, the mold closing of the mold 10 is completed. At this time, an airtight cavity 15 is formed between the upper die 11 and the lower die 12.
 次に、吸引部60によって吸引口14から空気を吸引し、真空引きを行い、キャビティ15内を真空状態にする(ステップS5)。このとき、圧力が負圧となるように圧力計50のデータを基に制御部80によって調整する。真空引き終了後、吸引口14は完全に閉じ、成形終了まで閉じた状態にしておく。真空引きを行うことによって、表面に発生する気泡を防止し、成形品である複合材料200のボイドやピットを減らすことができ、複合材料200の機械的特性や意匠性を向上させることができる。 Next, air is sucked from the suction port 14 by the suction part 60, vacuuming is performed, and the inside of the cavity 15 is evacuated (step S5). At this time, the control unit 80 adjusts the pressure so that the pressure becomes negative. After completion of evacuation, the suction port 14 is completely closed and kept closed until the end of molding. By performing evacuation, bubbles generated on the surface can be prevented, voids and pits of the composite material 200 which is a molded product can be reduced, and mechanical properties and design properties of the composite material 200 can be improved.
 次に、樹脂220をキャビティ15内に注入する(ステップS6)。このとき、ステップS2によって、炭素繊維210は成形型10内で位置ずれしない状態にされている。そのため、樹脂220から作用される力による炭素繊維210のキャビティ15内での位置ずれが防止される。そのため、炭素繊維210が成形型10内で位置ずれすることなく、樹脂220の注入圧力Piを高めることができる。また、樹脂220は、成形型10内に配置されたミキシングヘッド40において主剤と硬化剤とを混合することにより形成される。主剤と硬化剤とが混合されて樹脂220が形成されてから、キャビティ15に樹脂220が注入されるまでの時間が短い。すなわち、樹脂220は粘度が低い状態でキャビティ15内に注入される。これにより、粘度が高い状態と比較して、注入時に樹脂220が接触することにより炭素繊維210に作用される炭素繊維210を位置ずれさせようとする力が弱い。そのため、成形型10内で炭素繊維210を位置ずれさせることなく、樹脂220の注入圧力Piを高めることができる。また、粘度が低い場合の方が、粘度が高い場合と比較して炭素繊維210への含浸性が高いから、同じ注入圧力Piであっても樹脂220の注入量Qiを高めることができる。樹脂220のキャビティ15内への注入は、キャビティ15内に樹脂220が完全に充填されるまで継続される(ステップS7:「No」、ステップS6)。 Next, the resin 220 is injected into the cavity 15 (step S6). At this time, the carbon fiber 210 is not displaced in the mold 10 by step S2. Therefore, displacement of the carbon fiber 210 in the cavity 15 due to the force applied from the resin 220 is prevented. Therefore, the injection pressure Pi of the resin 220 can be increased without the carbon fiber 210 being displaced in the mold 10. The resin 220 is formed by mixing the main agent and the curing agent in the mixing head 40 disposed in the mold 10. The time from when the main agent and the curing agent are mixed to form the resin 220 to when the resin 220 is injected into the cavity 15 is short. That is, the resin 220 is injected into the cavity 15 with a low viscosity. Thereby, compared with a state with a high viscosity, the force which tries to position-shift the carbon fiber 210 which acts on the carbon fiber 210 when the resin 220 contacts at the time of injection | pouring is weak. Therefore, the injection pressure Pi of the resin 220 can be increased without causing the carbon fiber 210 to be displaced in the mold 10. Moreover, since the impregnation property to the carbon fiber 210 is higher when the viscosity is lower than when the viscosity is high, the injection amount Qi of the resin 220 can be increased even at the same injection pressure Pi. The injection of the resin 220 into the cavity 15 is continued until the resin 220 is completely filled in the cavity 15 (Step S7: “No”, Step S6).
 キャビティ15内に樹脂220を規定量注入し終えると(ステップS7:「Yes」)、キャビティ15内の樹脂220が十分硬化するまで放置する(ステップS8)。なお、成形型10全体は、成形型温度調整部70によって樹脂220の硬化温度に予め温度調節してある。 When the specified amount of the resin 220 is injected into the cavity 15 (step S7: “Yes”), the resin 220 in the cavity 15 is left until it is sufficiently cured (step S8). The entire mold 10 is temperature-adjusted in advance to the curing temperature of the resin 220 by the mold temperature adjusting unit 70.
 成形型10を開き、成形された複合材料200を脱型すると、成形が完了する(ステップS9)。 When the mold 10 is opened and the molded composite material 200 is demolded, the molding is completed (step S9).
 以上説明したように、本実施形態に係る成形装置100および成形方法では、炭素繊維210は、キャビティ15への樹脂220の注入開始前に成形型10内で位置ずれしない状態にされる。 As described above, in the molding apparatus 100 and the molding method according to the present embodiment, the carbon fiber 210 is not displaced in the molding die 10 before the injection of the resin 220 into the cavity 15 is started.
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、成形型10内で炭素繊維210を位置ずれさせることなく、樹脂220の注入圧力Piを高めることができる。従って、成形不良を防ぎつつ成形時間を短縮できる。 According to the molding apparatus 100 configured as described above and the molding method using the molding apparatus 100, the injection pressure Pi of the resin 220 can be increased without causing the carbon fiber 210 to be displaced in the molding die 10. Accordingly, the molding time can be shortened while preventing molding defects.
 また、本実施形態に係る成形装置100および成形装置100を使用する成形方法では、押圧部90は、成形型10とは別体として成形型10に設けられる。 In the molding apparatus 100 and the molding method using the molding apparatus 100 according to the present embodiment, the pressing portion 90 is provided in the molding die 10 as a separate body from the molding die 10.
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、成形型10とは別体として製造された押圧部90を成形型10に取り付けることによって成形装置100を製造できる。これにより、成形装置100の製造が容易になるとともに成形装置100の製造コストを抑えることができる。また、成形型10を変更することなく押圧部90のみを設計変更できる。これにより、成形型10内で炭素繊維210が位置ずれしないように、成形装置100を最適に設計し易くなる。さらに、成形型10と押圧部90とをそれぞれ独立して交換できる。これにより、成形装置100のメンテンス性が向上する。従って、成形不良を防ぎつつ成形時間を短縮できる成形装置を最適かつ低コストに製造できるとともに、当該成形装置のメンテナンス性が向上する。 According to the molding device 100 configured as described above and the molding method using the molding device 100, the molding device 100 can be manufactured by attaching the pressing portion 90 manufactured separately from the molding die 10 to the molding die 10. Thereby, manufacture of the shaping | molding apparatus 100 becomes easy and the manufacturing cost of the shaping | molding apparatus 100 can be held down. Further, the design of only the pressing portion 90 can be changed without changing the mold 10. Thereby, it becomes easy to design the shaping | molding apparatus 100 optimally so that the carbon fiber 210 may not position-shift within the shaping | molding die 10. FIG. Furthermore, the mold 10 and the pressing part 90 can be exchanged independently. Thereby, the maintainability of the molding apparatus 100 is improved. Therefore, it is possible to manufacture a molding apparatus that can reduce molding time while preventing molding defects optimally and at low cost, and the maintainability of the molding apparatus is improved.
 また、本実施形態に係る成形装置100および成形装置100を使用する成形方法では、樹脂220は、成形型10内に配置されたミキシングヘッド40において主剤と硬化剤とが混合されることにより形成される。 In the molding apparatus 100 and the molding method using the molding apparatus 100 according to the present embodiment, the resin 220 is formed by mixing the main agent and the curing agent in the mixing head 40 disposed in the molding die 10. The
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、主剤と硬化剤とが混合されて樹脂220が形成されてから、キャビティ15に樹脂220が注入されるまでの時間を短くできる。樹脂220の粘度は、主剤と硬化剤との混合から時間が経つにつれて増加する。すなわち、主剤と硬化剤とが混合されてから樹脂220がキャビティ15内に注入されるまでの時間を短くすることにより、粘度が低い状態で樹脂220をキャビティ15内に注入できる。これにより、粘度が高い状態と比較して、注入時に樹脂220が接触することにより炭素繊維210に作用される炭素繊維210を位置ずれさせようとする力を弱めることができる。そのため、成形型10内で炭素繊維210を位置ずれさせることなく、樹脂220の注入圧力Piをさらに高めることができる。また、粘度が低い場合の方が、粘度が高い場合と比較して炭素繊維210への含浸性が高いから、同じ注入圧力Piであっても樹脂220の注入量Qiを高めることができる。従って、成形不良を防ぎつつ成形時間をさらに短縮できる。 According to the molding apparatus 100 configured as described above and a molding method using the molding apparatus 100, the time from when the main agent and the curing agent are mixed to form the resin 220 to when the resin 220 is injected into the cavity 15. Can be shortened. The viscosity of the resin 220 increases with time from the mixing of the main agent and the curing agent. That is, the resin 220 can be injected into the cavity 15 with a low viscosity by shortening the time from when the main agent and the curing agent are mixed until the resin 220 is injected into the cavity 15. Thereby, compared with a state with a high viscosity, the force which tries to position-shift the carbon fiber 210 which acts on the carbon fiber 210 when the resin 220 contacts at the time of injection | pouring can be weakened. Therefore, the injection pressure Pi of the resin 220 can be further increased without causing the carbon fiber 210 to be displaced in the mold 10. Moreover, since the impregnation property to the carbon fiber 210 is higher when the viscosity is lower than when the viscosity is high, the injection amount Qi of the resin 220 can be increased even at the same injection pressure Pi. Therefore, the molding time can be further shortened while preventing molding defects.
 また、本実施形態に係る成形装置100および成形装置100を使用する成形方法では、炭素繊維210は、成形型10の型閉じ前に位置ずれしない状態にされる。 In the molding apparatus 100 and the molding method using the molding apparatus 100 according to the present embodiment, the carbon fiber 210 is not displaced before the mold 10 is closed.
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、型閉じするときに成形型10に接触することによって炭素繊維210が位置ずれすることを防止できる。従って、成形不良をより確実に防ぎつつ成形時間を短縮できる。 According to the molding device 100 configured as described above and the molding method using the molding device 100, the carbon fiber 210 can be prevented from being displaced by contacting the molding die 10 when the die is closed. Therefore, the molding time can be shortened while preventing molding defects more reliably.
 また、本実施形態に係る成形装置100および成形装置100を使用する成形方法では、成形型10の型閉じ後、かつ、樹脂220を注入する前に、成形型10内を真空引きする。 In the molding apparatus 100 and the molding method using the molding apparatus 100 according to the present embodiment, the mold 10 is evacuated after the mold 10 is closed and before the resin 220 is injected.
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、樹脂220の注入前にキャビティ15内を真空状態にすることによって、樹脂220の注入後に樹脂220内および表面に発生する気泡を防止し、成形品である複合材料200のボイドやピットを減らすことができる。これによって、複合材料200の機械的特性や意匠性を向上させることができる。 According to the molding apparatus 100 configured as described above and a molding method using the molding apparatus 100, the inside of the cavity 220 is in a vacuum state before the resin 220 is injected. It is possible to prevent bubbles from forming, and to reduce voids and pits of the composite material 200 that is a molded product. Thereby, the mechanical characteristics and designability of the composite material 200 can be improved.
 また、本実施形態に係る成形装置100および成形装置100を使用する成形方法では、成形型10の型締めの圧力とは異なる調整自在の圧力により炭素繊維210を成形型10に対して押圧する。 In the molding apparatus 100 and the molding method using the molding apparatus 100 according to the present embodiment, the carbon fiber 210 is pressed against the molding die 10 with an adjustable pressure different from the clamping pressure of the molding die 10.
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、炭素繊維210を押圧するときの圧力を型締めの圧力とは独立して調整できるため、炭素繊維210を安定して押圧できる。従って、成形不良をより確実に防ぎつつ成形時間を短縮できる。 According to the molding apparatus 100 configured as described above and the molding method using the molding apparatus 100, the pressure when pressing the carbon fiber 210 can be adjusted independently of the pressure of clamping, so that the carbon fiber 210 is stabilized. Can be pressed. Therefore, the molding time can be shortened while preventing molding defects more reliably.
 また、本実施形態に係る成形装置100および成形装置100を使用する成形方法では、強化基材210は炭素繊維から形成されてなる。 In the molding apparatus 100 and the molding method using the molding apparatus 100 according to the present embodiment, the reinforcing base 210 is formed from carbon fiber.
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、炭素繊維を強化基材に使用することによって、熱膨張係数が小さく寸法安定性に優れ、高温下においても機械的特性の低下が少ない複合材料200を成形することができる。 According to the molding apparatus 100 configured as described above and the molding method using the molding apparatus 100, the use of carbon fiber for the reinforced base material results in a small coefficient of thermal expansion, excellent dimensional stability, and mechanical properties even at high temperatures. The composite material 200 with little deterioration in characteristics can be formed.
 また、本実施形態に係る成形装置100および成形装置100を使用する成形方法では、複合材料200は自動車部品に使用される。 In the molding apparatus 100 and the molding method using the molding apparatus 100 according to the present embodiment, the composite material 200 is used for an automobile part.
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、量産に適した複合材料200の自動車部品を成形することができ、車体の軽量化が可能となる。 According to the molding apparatus 100 configured as described above and the molding method using the molding apparatus 100, the automobile part of the composite material 200 suitable for mass production can be molded, and the weight of the vehicle body can be reduced.
 (実施形態2)
 実施形態2に係る成形装置は、次の点で実施形態1に係る成形装置100と異なる。すなわち、実施形態1に係る成形装置100の樹脂注入部30は、成形型10の型閉じ後にキャビティ15への樹脂220の注入を開始した。一方、実施形態2に係る成形装置の樹脂注入部は、炭素繊維210を成形型10内で位置ずれしない状態にした後、かつ、成形型10の型閉じ前に、キャビティ15内への樹脂220の注入を開始する点において実施形態1に係る成形装置100と異なる。
(Embodiment 2)
The molding apparatus according to the second embodiment is different from the molding apparatus 100 according to the first embodiment in the following points. That is, the resin injection unit 30 of the molding apparatus 100 according to the first embodiment starts injecting the resin 220 into the cavity 15 after the mold 10 is closed. On the other hand, the resin injection part of the molding apparatus according to the second embodiment has the resin 220 into the cavity 15 after the carbon fiber 210 is not displaced in the mold 10 and before the mold 10 is closed. The molding apparatus 100 is different from the molding apparatus 100 according to the first embodiment in that the injection is started.
 上述した相違点に係る構成について以下に説明する。実施形態1に係る成形装置100の構成と同一の構成については同一の符号を付して説明を省略する。 The configuration related to the above differences will be described below. The same components as those of the molding apparatus 100 according to the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施形態に係る樹脂注入部は、押圧部90が炭素繊維210を成形型10に対して押圧した後、かつ、成形型10の型閉じ前に、キャビティ15内への樹脂220の注入を開始する。これにより、炭素繊維210が成形型10内で位置ずれすることなく、樹脂220の注入を成形型10の型閉じ前に開始できる。 The resin injection unit according to the present embodiment starts injection of the resin 220 into the cavity 15 after the pressing unit 90 presses the carbon fiber 210 against the mold 10 and before the mold 10 is closed. To do. Thereby, the injection of the resin 220 can be started before the mold 10 is closed without the carbon fiber 210 being displaced in the mold 10.
 次に本実施形態に係る複合材料200の成形方法について説明する。実施形態2に係る成形方法は、次の点で実施形態1に係る成形方法と異なる。すなわち、実施形態1に係る成形方法の樹脂の注入(ステップS6)は、成形型10の型閉じ完了(ステップS4)後に開始された。一方、実施形態2に係る成形方法は、炭素繊維210を成形型10内で位置ずれしない状態にした後、かつ、成形型10の型閉じ前に、樹脂の注入(ステップS31)を開始する点において実施形態1に係る成形方法と異なる。 Next, a method for forming the composite material 200 according to this embodiment will be described. The molding method according to the second embodiment is different from the molding method according to the first embodiment in the following points. That is, the resin injection (step S6) of the molding method according to the first embodiment was started after the mold closing of the mold 10 was completed (step S4). On the other hand, in the molding method according to the second embodiment, the resin injection (step S31) is started after the carbon fiber 210 is not displaced in the mold 10 and before the mold 10 is closed. However, it is different from the molding method according to the first embodiment.
 上述した相違点に係る構成について以下に説明する。 The configuration related to the above differences will be described below.
 図9は、本発明の実施形態2に係る複合材料200の成形方法を示すフローチャートである。実施形態1に係る成形方法と同一のステップについては同一の符号を付して説明を省略する。 FIG. 9 is a flowchart showing a molding method of the composite material 200 according to Embodiment 2 of the present invention. The same steps as those in the molding method according to Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
 ステップS31では、樹脂220を注入する。ステップS31は、炭素繊維210を成形型10内で位置ずれしない状態にした(ステップS3)後、かつ、成形型10の型閉じ完了(ステップS4)前に実施される。すなわち、本実施形態に係る成形方法では、炭素繊維210を成形型10内で位置ずれしない状態にした後、かつ、成形型10の型閉じ前に、キャビティ15への樹脂220の注入が開始される。具体的には、押圧部90が炭素繊維210を成形型10に対して押圧した後、かつ、成形型10の型閉じ前に、キャビティ15内への樹脂220の注入が開始される。これにより、炭素繊維210が成形型10内で位置ずれすることなく、樹脂220の注入を成形型10の型閉じ完了前に開始できる。 In step S31, resin 220 is injected. Step S31 is performed after the carbon fiber 210 is not displaced in the mold 10 (step S3) and before the mold 10 is closed (step S4). That is, in the molding method according to the present embodiment, the injection of the resin 220 into the cavity 15 is started after the carbon fiber 210 is not displaced in the mold 10 and before the mold 10 is closed. The Specifically, injection of the resin 220 into the cavity 15 is started after the pressing unit 90 presses the carbon fiber 210 against the mold 10 and before the mold 10 is closed. Thereby, the injection of the resin 220 can be started before the mold closing of the mold 10 is completed without the carbon fiber 210 being displaced in the mold 10.
 ステップS32では、樹脂220の注入が継続される。樹脂220のキャビティ15内への注入は、成形型10の型閉じ完了(ステップS4)後、キャビティ15内に樹脂220が完全に充填されるまで継続される(ステップS7:「No」、ステップS32)。 In step S32, the resin 220 is continuously injected. The injection of the resin 220 into the cavity 15 is continued until the resin 220 is completely filled in the cavity 15 after the mold closing of the mold 10 is completed (step S4) (step S7: “No”, step S32). ).
 以上説明したように、本実施形態に係る成形装置および成形方法では、炭素繊維210を成形型10内で位置ずれしない状態にした後、かつ、成形型10の型閉じ前に、樹脂220の注入を開始する。 As described above, in the molding apparatus and the molding method according to the present embodiment, the resin 220 is injected after the carbon fiber 210 is not displaced in the mold 10 and before the mold 10 is closed. To start.
 このように構成した成形装置および当該成形装置を使用する成形方法によれば、炭素繊維210が成形型10内で位置ずれすることなく、樹脂220の注入を成形型10の型閉じ前に開始できる。従って、成形不良を防ぎつつ成形時間をさらに短縮できる。 According to the molding apparatus configured as described above and a molding method using the molding apparatus, the injection of the resin 220 can be started before the mold 10 is closed without the carbon fiber 210 being displaced in the mold 10. . Therefore, the molding time can be further shortened while preventing molding defects.
 (その他の改変例)
 実施形態1及び実施形態2において、押圧部90は、成形型10の型締めの圧力Pmとは異なる調整自在の圧力により炭素繊維210を成形型10に対して押圧した。当該構成に限らず、押圧部の構成は、樹脂注入部によりキャビティ15内に樹脂220が注入される前に炭素繊維210を成形型10に対して押圧する限りにおいて変更することが可能である。
(Other modifications)
In the first embodiment and the second embodiment, the pressing unit 90 presses the carbon fiber 210 against the molding die 10 with an adjustable pressure different from the clamping pressure Pm of the molding die 10. Not only the configuration but also the configuration of the pressing portion can be changed as long as the carbon fiber 210 is pressed against the mold 10 before the resin 220 is injected into the cavity 15 by the resin injection portion.
 図10(A)、図10(B)は改変例に係る成形装置の押圧部490を示す概略図であって、それぞれ後述する押し込み治具491、492を取り付ける前および取り付けた後の図1の破線部Aによって囲まれる部分に対応する部分を示す拡大図である。図11(A)、図11(B)は同成形装置の押圧部490を示す概略図であって、それぞれ型閉じ前および型閉じ中の図1の破線部Aによって囲まれる部分に対応する部分を示す拡大図である。 10 (A) and 10 (B) are schematic views showing a pressing portion 490 of a forming apparatus according to a modified example, and before and after attaching pressing jigs 491 and 492 described later, respectively. 4 is an enlarged view showing a portion corresponding to a portion surrounded by a broken line portion A. FIG. 11 (A) and 11 (B) are schematic views showing the pressing portion 490 of the molding apparatus, corresponding to portions surrounded by a broken line portion A in FIG. 1 before and during mold closing, respectively. FIG.
 図10(A)、図10(B)を参照して、成形型410は、溝416が設けられた上型411と、溝417が設けられた下型412と、を有する。上型411および下型412は、溝416、417が設けられる点を除いて、上型11および下型12と同様に構成される。 10A and 10B, the forming die 410 has an upper die 411 provided with a groove 416 and a lower die 412 provided with a groove 417. The upper mold 411 and the lower mold 412 are configured in the same manner as the upper mold 11 and the lower mold 12 except that the grooves 416 and 417 are provided.
 押圧部490は、押し込み治具491、492を有する。押し込み治具491、492は、溝416、417にそれぞれ着脱可能に取り付けられる。押し込み治具491は凸部493を有し、押し込み治具492は凹部494を有する。 The pressing part 490 has pressing jigs 491 and 492. The pushing jigs 491 and 492 are detachably attached to the grooves 416 and 417, respectively. The pushing jig 491 has a convex part 493, and the pushing jig 492 has a concave part 494.
 図11(A)、図11(B)を参照して、成形型410を型閉じするに従って、押し込み治具491の凸部493が押し込み治具492の凹部494に炭素繊維210を押し込む。これにより、炭素繊維210が成形型10内で位置ずれしない状態にされる。当該構成によれば、押し込み治具491、492を成形型410に着脱可能に取り付ける簡易な構成によって押圧部490を構成できる。押し込み治具491および押し込み治具492の形状や材質は、成形される複合材料200の形状や、炭素繊維210および樹脂220を構成する材料の種類に応じて選択可能である。 11A and 11B, as the mold 410 is closed, the convex portion 493 of the pushing jig 491 pushes the carbon fiber 210 into the concave portion 494 of the pushing jig 492. As a result, the carbon fiber 210 is not displaced in the mold 10. According to the said structure, the press part 490 can be comprised by the simple structure which attaches the pushing jig | tool 491,492 to the shaping | molding die 410 so that attachment or detachment is possible. The shapes and materials of the pushing jig 491 and the pushing jig 492 can be selected according to the shape of the composite material 200 to be molded and the types of materials constituting the carbon fiber 210 and the resin 220.
 また、図12(A)、図12(B)は別の改変例に係る成形装置の押圧部590を示す概略図であって、それぞれ型閉じ前および型閉じ中の図1の破線部Aによって囲まれる部分に対応する部分を示す拡大図である。 12 (A) and 12 (B) are schematic views showing a pressing portion 590 of a molding apparatus according to another modified example, and are respectively shown by a broken line portion A in FIG. 1 before mold closing and during mold closing. It is an enlarged view which shows the part corresponding to the part enclosed.
 図12(A)、図12(B)を参照して、押圧部590を、成形型510の一部として構成してもよい。具体的には、成形型510を、凸部591が設けられた上型511と、凹部592が設けられた下型512と、を有するように構成する。このとき、上型511および下型512は、凸部591および凹部592が設けられる点を除いて、上型11および下型12と同様に構成される。そして、押圧部590を、上型511に設けられた凸部591と、下型512に設けられた凹部592と、によって構成してもよい。凸部591が凹部592に炭素繊維210を押し込むことによって炭素繊維210が成形型510内で位置ずれしない状態にされる。当該構成によれば、成形型510の形状を変更する簡易な構成によって押圧部590を構成できる。 12A and 12B, the pressing portion 590 may be configured as a part of the mold 510. Specifically, the molding die 510 is configured to include an upper die 511 provided with a convex portion 591 and a lower die 512 provided with a concave portion 592. At this time, the upper mold 511 and the lower mold 512 are configured in the same manner as the upper mold 11 and the lower mold 12 except that the convex portions 591 and the concave portions 592 are provided. The pressing portion 590 may be constituted by a convex portion 591 provided on the upper mold 511 and a concave portion 592 provided on the lower mold 512. The convex portion 591 pushes the carbon fiber 210 into the concave portion 592, so that the carbon fiber 210 is not displaced in the mold 510. According to the said structure, the press part 590 can be comprised by the simple structure which changes the shape of the shaping | molding die 510. FIG.
 以上、実施形態および改変例を通じて複合材料200の成形方法および成形装置を説明したが、本発明は実施形態において説明した構成のみに限定されることはなく、特許請求の範囲の記載に基づいて適宜変更することが可能である。 As mentioned above, although the shaping | molding method and shaping | molding apparatus of the composite material 200 were demonstrated through embodiment and the modification, this invention is not limited only to the structure demonstrated in embodiment, Based on description of a claim suitably It is possible to change.
10、410、510  成形型、
11、411、511  上型、
12、412、512  下型、
13  ダイレクトゲート、
14  吸引口、
15  キャビティ、
16、416、417 溝、
20  プレス部、
30  樹脂注入部、
31  主剤タンク、
32  硬化剤タンク、
33  チューブ、
34、50 圧力計、
35  ポンプ、
40  ミキシングヘッド(混合部)、
41  シリンダー、
42  ピストン、
60  吸引部、
70  成形型温度調整部、
80  制御部、
90、490、590  押圧部、
91  弾性部材、
92  押圧要素、
100 成形装置、
200 複合材料、
210 炭素繊維(強化基材)、
220 樹脂、
300 車体、
301、302、303 自動車部品、
491、492 押し込み治具、
493、591 凸部、
416、417、494、592 凹部、
Pm  型締圧力、
Pr  キャビティ内の圧力、
Pi  注入圧力、
Qi  注入量、
S   側部。
10, 410, 510 Mold,
11, 411, 511 Upper mold,
12, 412, 512 Lower mold,
13 Direct gate,
14 Suction port,
15 cavities,
16, 416, 417 groove,
20 Press department,
30 resin injection part,
31 Main agent tank,
32 Hardener tank,
33 tubes,
34, 50 pressure gauge,
35 pump,
40 mixing head (mixing part),
41 cylinders,
42 piston,
60 suction part,
70 Mold temperature controller,
80 control unit,
90, 490, 590 pressing part,
91 elastic member,
92 pressing elements,
100 molding equipment,
200 composite materials,
210 carbon fiber (reinforced substrate),
220 resin,
300 body,
301, 302, 303 Auto parts,
491, 492 pushing jig,
493, 591 convex part,
416, 417, 494, 592 recess,
Pm mold clamping pressure,
The pressure in the Pr cavity,
Pi injection pressure,
Qi injection amount,
S side.

Claims (18)

  1.  開閉可能な成形型内のキャビティに強化基材を配置し、前記成形型に型締圧力を負荷した状態において前記キャビティ内に樹脂を注入し、前記樹脂を硬化させて複合材料を成形する成形方法であって、
     前記強化基材を前記成形型に対して押圧する押圧部を、前記成形型に設け、
     前記キャビティへの前記樹脂の注入開始前に、前記押圧部によって前記強化基材を前記成形型に対して押圧することにより、前記強化基材を前記成形型内で位置ずれしない状態にする、複合材料の成形方法。
    A molding method in which a reinforced base material is disposed in a cavity in a mold that can be opened and closed, a resin is injected into the cavity in a state where a clamping pressure is applied to the mold, and the resin is cured to mold a composite material. Because
    A pressing part for pressing the reinforced substrate against the mold is provided in the mold.
    Before starting the injection of the resin into the cavity, the reinforced base material is pressed against the mold by the pressing portion, so that the reinforced base material is not displaced in the mold. Material forming method.
  2.  前記押圧部を、前記成形型とは別体として前記成形型に設ける、請求項1に記載の成形方法。 The molding method according to claim 1, wherein the pressing portion is provided in the molding die as a separate body from the molding die.
  3.  少なくとも異なる2液を混合する混合部を前記成形型内に配置し、
     前記混合部において主剤と硬化剤とを混合することにより前記樹脂を形成する、請求項1または請求項2に記載の成形方法。
    A mixing part for mixing at least two different liquids is disposed in the mold,
    The shaping | molding method of Claim 1 or Claim 2 which forms the said resin by mixing a main ingredient and a hardening | curing agent in the said mixing part.
  4.  前記成形型の型閉じ前に前記強化基材を前記成形型内で位置ずれしない状態にし、
     前記成形型の型閉じ後に前記キャビティへの前記樹脂の注入を開始する、請求項1~3のいずれか1項に記載の成形方法。
    Before closing the mold, the reinforced base material is not displaced in the mold,
    The molding method according to any one of claims 1 to 3, wherein injection of the resin into the cavity is started after the mold is closed.
  5.  前記成形型の型閉じ前に前記強化基材を前記成形型内で位置ずれしない状態にし、
     前記強化基材を前記成形型内で位置ずれしない状態にした後、かつ、前記成形型の型閉じ前に、前記キャビティへの前記樹脂の注入を開始する、請求項1~3のいずれか1項に記載の成形方法。
    Before closing the mold, the reinforced base material is not displaced in the mold,
    The injection of the resin into the cavity is started after the reinforced base material is not displaced in the mold and before the mold of the mold is closed. The forming method according to item.
  6.  前記成形型の型閉じ後、かつ、前記樹脂の注入開始前に、前記成形型内を真空引きする、請求項1~4のいずれか1項に記載の成形方法。 The molding method according to any one of claims 1 to 4, wherein the inside of the mold is evacuated after the mold is closed and before the injection of the resin is started.
  7.  前記押圧部によって前記強化基材を前記成形型に対して押圧するときは、前記成形型の型締めの圧力とは異なる調整自在の圧力により押圧する、請求項1~6のいずれか1項に記載の成形方法。 The press according to any one of claims 1 to 6, wherein when the reinforcing base is pressed against the molding die by the pressing portion, the pressing is performed by an adjustable pressure different from the clamping pressure of the molding die. The forming method as described.
  8.  前記強化基材は炭素繊維から形成されてなる、請求項1~7のいずれか1項に記載の成形方法。 The molding method according to any one of claims 1 to 7, wherein the reinforcing base is formed of carbon fiber.
  9.  前記複合材料は自動車部品に使用される、請求項1~8のいずれか1項に記載の成形方法。 The molding method according to any one of claims 1 to 8, wherein the composite material is used for automobile parts.
  10.  強化基材を配置するキャビティが形成された開閉可能な成形型と、
     前記成形型に型締圧力を負荷するプレス部と、
     前記キャビティ内に樹脂を注入する樹脂注入部と、
     前記成形型に設けられ、前記強化基材を前記成形型に対して押圧する押圧部と、を有し、
     前記押圧部は、前記樹脂注入部により前記キャビティ内に前記樹脂が注入される前に前記強化基材を前記成形型に対して押圧する、複合材料の成形装置。
    A mold that can be opened and closed in which a cavity for placing a reinforced substrate is formed,
    A press part for applying a clamping pressure to the mold,
    A resin injection portion for injecting resin into the cavity;
    A pressing portion that is provided on the mold and presses the reinforcing base against the mold;
    The pressing unit is a composite material molding apparatus that presses the reinforcing base against the mold before the resin is injected into the cavity by the resin injection unit.
  11.  前記押圧部は、前記成形型とは別体として前記成形型に設けられる、請求項10に記載の成形装置。 The molding apparatus according to claim 10, wherein the pressing portion is provided in the molding die as a separate body from the molding die.
  12.  少なくとも異なる2液を混合する混合部を前記成形型内に備え、
     前記樹脂は、前記混合部において主剤と硬化剤とが混合されることにより形成される、請求項10または請求項11に記載の成形装置。
    A mixing unit for mixing at least two different liquids is provided in the mold,
    The molding apparatus according to claim 10 or 11, wherein the resin is formed by mixing a main agent and a curing agent in the mixing unit.
  13.  前記押圧部は、前記成形型の型閉じ前に前記強化基材を前記成形型に対して押圧し、
     前記樹脂注入部は、前記成形型の型閉じ後に前記キャビティへの前記樹脂の注入を開始する、請求項10~12のいずれか1項に記載の成形装置。
    The pressing portion presses the reinforced substrate against the mold before closing the mold.
    The molding apparatus according to any one of claims 10 to 12, wherein the resin injection unit starts injection of the resin into the cavity after the mold is closed.
  14.  前記押圧部は、前記成形型の型閉じ前に前記強化基材を前記成形型に対して押圧し、
     前記樹脂注入部は、前記押圧部が前記強化基材を前記成形型に対して押圧した後、かつ、前記成形型の型閉じ前に、前記キャビティへの前記樹脂の注入を開始する、請求項10~12のいずれか1項に記載の成形装置。
    The pressing portion presses the reinforced substrate against the mold before closing the mold.
    The resin injection portion starts injection of the resin into the cavity after the pressing portion presses the reinforcing base against the mold and before closing the mold. The molding apparatus according to any one of 10 to 12.
  15.  前記成形型内を真空引きする吸引部をさらに有し、
     前記吸引部は、前記成形型の型閉じ後、かつ、前記樹脂の注入開始前に、前記成形型内を真空引きする、請求項10~13のいずれか1項に記載の成形装置。
    A suction part for evacuating the inside of the mold;
    The molding apparatus according to any one of claims 10 to 13, wherein the suction section evacuates the mold after the mold is closed and before the injection of the resin is started.
  16.  前記押圧部は、前記成形型の型締めの圧力とは異なる調整自在の圧力により前記強化基材を前記成形型に対して押圧する、請求項10~15のいずれか1項に記載の成形装置。 The molding apparatus according to any one of claims 10 to 15, wherein the pressing portion presses the reinforcing base against the molding die with an adjustable pressure different from a clamping pressure of the molding die. .
  17.  前記強化基材は炭素繊維から形成されてなる、請求項10~16のいずれか1項に記載の成形装置。 The molding apparatus according to any one of claims 10 to 16, wherein the reinforcing base is formed of carbon fiber.
  18.  前記複合材料は自動車部品用の材料である、請求項10~17のいずれか1項に記載の成形装置。 The molding apparatus according to any one of claims 10 to 17, wherein the composite material is a material for automobile parts.
PCT/JP2014/082848 2014-12-11 2014-12-11 Composite material molding method and molding device WO2016092670A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016563353A JP6332470B2 (en) 2014-12-11 2014-12-11 Composite material molding method and molding apparatus
PCT/JP2014/082848 WO2016092670A1 (en) 2014-12-11 2014-12-11 Composite material molding method and molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/082848 WO2016092670A1 (en) 2014-12-11 2014-12-11 Composite material molding method and molding device

Publications (1)

Publication Number Publication Date
WO2016092670A1 true WO2016092670A1 (en) 2016-06-16

Family

ID=56106917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082848 WO2016092670A1 (en) 2014-12-11 2014-12-11 Composite material molding method and molding device

Country Status (2)

Country Link
JP (1) JP6332470B2 (en)
WO (1) WO2016092670A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018199254A (en) * 2017-05-26 2018-12-20 日産自動車株式会社 Molding method of composite material, and molding apparatus thereof
CN109763279A (en) * 2019-03-06 2019-05-17 佛山市石金科技有限公司 A kind of carbon fiber processing discharging device
JP2019084786A (en) * 2017-11-09 2019-06-06 トヨタ紡織株式会社 Method for manufacturing fiber-reinforced resin molding, and fiber-reinforced resin molding
JP7468116B2 (en) 2020-04-21 2024-04-16 日産自動車株式会社 Composite material molding equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059435A (en) * 2000-08-22 2002-02-26 Sekisui Chem Co Ltd Water-resistant container-shaped molded object and method for manufacturing the same
JP2003011136A (en) * 2001-06-28 2003-01-15 Toray Ind Inc Method for manufacturing large-sized planar object made of frp
JP2006231848A (en) * 2005-02-28 2006-09-07 Toray Ind Inc Fiber reinforced counter boring structure and its manufacturing method
JP2007230175A (en) * 2006-03-03 2007-09-13 Toyota Industries Corp Manufacturing method of fiber reinforced resin molded article
JP2011000847A (en) * 2009-06-22 2011-01-06 Toyota Motor Corp Fiber-reinforced resin, and manufacturing method and device therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373321B2 (en) * 2008-05-30 2013-12-18 日産自動車株式会社 Fiber reinforced plastic molded article and stress relaxation method for fiber reinforced plastic molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059435A (en) * 2000-08-22 2002-02-26 Sekisui Chem Co Ltd Water-resistant container-shaped molded object and method for manufacturing the same
JP2003011136A (en) * 2001-06-28 2003-01-15 Toray Ind Inc Method for manufacturing large-sized planar object made of frp
JP2006231848A (en) * 2005-02-28 2006-09-07 Toray Ind Inc Fiber reinforced counter boring structure and its manufacturing method
JP2007230175A (en) * 2006-03-03 2007-09-13 Toyota Industries Corp Manufacturing method of fiber reinforced resin molded article
JP2011000847A (en) * 2009-06-22 2011-01-06 Toyota Motor Corp Fiber-reinforced resin, and manufacturing method and device therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018199254A (en) * 2017-05-26 2018-12-20 日産自動車株式会社 Molding method of composite material, and molding apparatus thereof
JP2019084786A (en) * 2017-11-09 2019-06-06 トヨタ紡織株式会社 Method for manufacturing fiber-reinforced resin molding, and fiber-reinforced resin molding
JP7003584B2 (en) 2017-11-09 2022-02-10 トヨタ紡織株式会社 Manufacturing method of fiber reinforced resin molded product and fiber reinforced resin molded product
CN109763279A (en) * 2019-03-06 2019-05-17 佛山市石金科技有限公司 A kind of carbon fiber processing discharging device
CN109763279B (en) * 2019-03-06 2021-11-02 佛山市石金科技有限公司 Carbon fiber processing discharging device
JP7468116B2 (en) 2020-04-21 2024-04-16 日産自動車株式会社 Composite material molding equipment

Also Published As

Publication number Publication date
JPWO2016092670A1 (en) 2017-07-27
JP6332470B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
EP3006180B1 (en) Method and device for manufacturing fiber-reinforced plastic
JP6332470B2 (en) Composite material molding method and molding apparatus
JP5702773B2 (en) Method of manufacturing molded product using mold and mold apparatus
JP5557997B2 (en) Fiber reinforced composite material manufacturing method and fiber reinforced composite material manufacturing apparatus
CN108349174A (en) Method for manufacturing component by fibrous composite
JP6402775B2 (en) Composite material molding method and molding apparatus
JP6750735B2 (en) Composite material molding method and composite material molding apparatus
JP6402776B2 (en) Composite material molding method and molding apparatus
JP6796280B2 (en) Method for manufacturing fiber-reinforced thermoplastic resin molded product
JP6497084B2 (en) Composite material molding method, composite material molding apparatus, and composite material
JP6357984B2 (en) Composite material molding method and molding apparatus
JP6451345B2 (en) Composite material molding method and molding apparatus
JP2009039955A (en) Molding method of composite material
JP2018043367A (en) Molding device and molding method
JP2021171945A (en) Molding apparatus for composite material
JP2016083780A (en) Molding method and molding device for composite material
JP6520173B2 (en) Method and apparatus for forming composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907658

Country of ref document: EP

Kind code of ref document: A1