JP2007226157A - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP2007226157A
JP2007226157A JP2006050388A JP2006050388A JP2007226157A JP 2007226157 A JP2007226157 A JP 2007226157A JP 2006050388 A JP2006050388 A JP 2006050388A JP 2006050388 A JP2006050388 A JP 2006050388A JP 2007226157 A JP2007226157 A JP 2007226157A
Authority
JP
Japan
Prior art keywords
light
emitted
phosphor
reflector
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006050388A
Other languages
English (en)
Other versions
JP2007226157A5 (ja
Inventor
Ichiyo Kotani
一葉 小谷
Yutaka Suenaga
豊 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEJIRO PREC KK
Mejiro Precision KK
Original Assignee
MEJIRO PREC KK
Mejiro Precision KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEJIRO PREC KK, Mejiro Precision KK filed Critical MEJIRO PREC KK
Priority to JP2006050388A priority Critical patent/JP2007226157A/ja
Publication of JP2007226157A publication Critical patent/JP2007226157A/ja
Publication of JP2007226157A5 publication Critical patent/JP2007226157A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

【課題】点光源等の光源を用いた表示装置であっても、拡散板等の拡散手段を用いることなく、液晶パネル等の被照射体を均一に近づけて照明することができ、表示面における輝度を均一に近づけることができる表示装置を提供する。
【解決手段】光源から紫外光を発し、光源から発せられた紫外光を蛍光物質によって他の波長の光へ変換して、変換した光の光量を制御する。
【選択図】 図1

Description

表示装置に用いられる光源は、ある一定の範囲から光が発せられるもの、例えば、点光源のような光源が用いられる。このような光源を用いた場合に、液晶パネル等の被照射体への照度に分布が生じてしまい、液晶パネル等の被照射体を均一に照明することが困難であり、表示装置の輝度ムラ等の原因となっていた。
このため、従来の表示装置では、光源から液晶パネル等の被照射体へ至るまでの間に拡散板を設けていた。拡散板を用いることによって、光源から発せられた光を拡散板で分散して、液晶パネル等の被照射体への照度を均一に近づけることができる(例えば、特許文献1参照)。しかしながら、拡散板は、拡散板に照射された光を拡散することによって照度を均一に近づけることができる一方、光を拡散させるため、被照射体に至る光の量が減ってしまい、表示装置の輝度を低下させざるを得なかった。
また、液晶パネル等の被照射体への照度を均一に近づけるには、光源と液晶パネル等の被照射体との距離を長くする必要もあり、表示装置が大型化せざるを得なかった。
特開2005−202315号公報
本発明は、上述の点に鑑みてなされたものであり、点光源等の光源を用いた表示装置であっても、拡散板等の拡散手段を用いたり、光源と液晶パネル等の被照射体との距離を長くしたりすることなく、液晶パネル等の被照射体を均一に近づけて照明することができ、表示面における輝度を均一に近づけることができる表示装置を提供する。
以上のような目的を達成するために、本発明においては、光源から紫外光を発し、光源から発せられた紫外光を蛍光物質によって他の波長の光へ変換して、変換した光の光量を制御する。
具体的には、本発明に係る表示装置は、
紫外光を発する少なくとも1つの光源と、
前記光源から発せられた紫外光が入射する入射面と、入射した紫外光を、他の波長の光であって可視光を含む光へ変換する蛍光物質と、変換された光を射出する射出面と、を含む蛍光層と、
前記蛍光層の前記射出面から発せられた光の光量を制御する制御層と、を含むことを特徴とする。
本発明に係る表示装置は、少なくとも1つの光源と蛍光層と制御層とを有する。
本発明に係る表示装置は、光源として光源を有する。光源は、紫外光を発する。この紫外光の波長は、240〜420nmのものが好ましい。この光源は、少なくとも1個以上設けられている。また、光源は、紫外光を発する発光ダイオードが好ましい。
蛍光層は、入射面と射出面とを含む。入射面には、光源から発せられた紫外光が入射する。蛍光層には、蛍光物質が含まれている。蛍光物質は、紫外光を他の波長の光に変換する。この他の波長の光には、可視光が含まれる。蛍光物質は、例えば、希土類の物質からなるものがある。蛍光物質によって変換された光が射出面から射出される。
蛍光層には、蛍光物質が含まれており、蛍光物質によって変換された光は、蛍光物質を中心として等方的に発せられる。変換された光同士が重なり合うことによって、変換された光の強度を均一に近づけることができ、均一に近づけた光を蛍光層から射出させることができる。
制御層は、蛍光層の射出面から発せられた光の光量を制御する。制御層は、発せられた光を透過させたり、遮ったりするものが好ましい。特に、制御層に電気的に接続された制御手段から制御層に電気信号が発せられ、その電気信号に応じて制御層が駆動されて、発せられた光を透過させたり、遮ったりするものがより好ましい。制御層は、液晶分子からなるものが望ましい。
本発明に係る表示装置は、
蛍光層が、互いに隣接しかつ前記他の波長の光へ変換する複数の領域からなり、かつ、
前記複数の領域が、紫外光を赤色光に変換する少なくとも1つの赤色変換領域と、紫外光を緑色光に変換する少なくとも1つの緑色変換領域と、紫外光を青色光に変換する少なくとも1つの青色変換領域と、を含むものが好ましい。
蛍光層は、複数の領域からなる。この複数の領域は、互いに隣接するように形成されている。この領域の各々で、紫外光が他の波長の光へ変換される。複数の領域は、赤色変換領域と緑色変換領域と青色変換領域とを含む。赤色変換領域は、複数の領域のうちの少なくとも1つの領域によって構成され、紫外光を赤色光に変換する。緑色変換領域は、複数の領域のうちの少なくとも1つの領域によって構成され、紫外光を緑色光に変換する。青色変換領域は、複数の領域のうちの少なくとも1つの領域によって構成され、紫外光を青色光に変換する。互いに隣接する領域では、異なる色に変換されるように配置されるのが好ましい。赤色変換領域の数と、緑色変換領域の数と、青色変換領域の数とは略同じとなるように複数の領域を構成するのが好ましい。
また、蛍光層から発せられた光の光量を制御する制御層は、複数の領域の各々に対応して制御できるものが好ましい。例えば、蛍光層の一の領域で変換された光を透過させるとともに、この一の領域に隣接した領域で変換された光は遮断するように制御することができるものが好ましい。このようにすることで、赤色のみ、緑色のみ、又は青色のみを表示することができたり、また、同じ赤色の領域でも、透過させる領域と遮断領域とに制御して、中間色を表示することもできる。
さらに、複数の領域の各々によって画素を構成するものが好ましい。
本発明に係る表示装置は、
紫外光を反射する紫外光反射層が、前記蛍光層の前記射出面側に配置されたものが好ましい。
蛍光層の射出面側には、紫外光反射層が配置されている。紫外光反射層は、紫外光を反射させるとともに、可視光を透過させるものがより好ましい。紫外光反射層は、誘電体膜が好ましい。紫外光反射層は、略薄板状の形状を有するものが好ましい。紫外光反射層は、蛍光層の射出面に対して略平行に配置されているものが好ましい。紫外光反射層は、蛍光層の射出面に近接するように配置されても、蛍光層の射出面から離隔した位置に配置されてもよい。
紫外光反射層によって反射された紫外光は、蛍光層に戻り、蛍光物質によって他の波長の光へ変換される。変換された光が射出面から射出されて、被照射体を照明するので、光源の出力を高めることなく、被照射体への照度を高めて被照射体を照明することができる。
本発明に係る表示装置は、
可視光を反射する可視光反射層が、前記光源と前記蛍光層との間に配置されたものが好ましい。
光源と蛍光層との間には、可視光反射層が配置されている。可視光反射層は、可視光を反射しかつ紫外光を透過させるものがより好ましい。可視光反射層は、誘電体膜が好ましい。可視光反射層は、略薄板状の形状を有するものが好ましい。可視光反射層は、蛍光層の入射面に対して略平行に配置されているものが好ましい。可視光反射層は、蛍光層の入射面に近接するように配置されても、蛍光層の入射面から離隔した位置に配置されてもよい。
紫外光を発する少なくとも1つの光源と、
前記光源から発せられた紫外光が入射する入射面と、入射した紫外光を、他の波長の光であって可視光を含む光へ変換する蛍光物質と、変換された光を射出する射出面と、を含む蛍光層と、
前記蛍光層の前記射出面から発せられた光の光量を制御する制御層と、を含むことを特徴とする。
本発明に係る表示装置は、少なくとも1つの光源と蛍光層と制御層とを有する。
本発明に係る表示装置は、少なくとも1つの光源を有する。光源は、紫外光を発する。この紫外光の波長は、240〜420nmのものが好ましい。この光源は、少なくとも1個以上設けられている。また、光源は、紫外光を発する発光ダイオードが好ましい。
蛍光層は、入射面と射出面とを含む。入射面には、光源から発せられた紫外光が入射する。蛍光層には、蛍光物質が含まれている。蛍光物質は、紫外光を他の波長の光に変換する。この他の波長の光には、可視光が含まれる。蛍光物質は、例えば、希土類の物質からなるものがある。蛍光物質によって変換された光が射出面から射出される。この蛍光物質によって変換される光は、赤色の光と緑色の光と青色の光とを含む白色光が好ましい。
蛍光層には、蛍光物質が含まれており、蛍光物質によって変換された光は、蛍光物質を中心として等方的に発せられる。変換された光同士が重なり合うことによって、変換された光の強度を均一に近づけることができ、均一に近づけた光を蛍光層から射出させることができる。
制御層は、蛍光層の射出面から発せられた光の光量を制御する。制御層は、発せられた光を透過させたり、遮ったりするものが好ましい。特に、制御層に電気的に接続された制御手段から制御層に電気信号が発せられ、その電気信号に応じて制御層が駆動されて、発せられた光を透過させたり、遮ったりするものがより好ましい。制御層は、液晶分子からなるものが望ましい。
本発明に係る表示装置は、
前記制御層を通過した光のうち所定の波長範囲の光を透過させるカラーフィルタを含むものが好ましい。
カラーフィルタは、制御層を通過した光のうち所定の波長範囲の光を透過させる。カラーフィルタは、複数種類の領域からなり、これらの領域の各々で、透過させる光の波長範囲が異なるものが好ましい。特に、カラーフィルタは、赤色の光を透過させる領域と、緑色の光を透過させる領域と、青色の光を透過させる領域と、を含むものが好ましい。このようにすることで、制御層を通過した光を赤色光と緑色光と青色光とに分離することができる。
本発明に係る表示装置は、
紫外光を反射する紫外光反射層が、前記蛍光層の前記射出面側に配置されたものが好ましい。
蛍光層の射出面側には、紫外光反射層が配置されている。紫外光反射層は、紫外光を反射させるとともに、可視光を透過させるものがより好ましい。紫外光反射層は、誘電体膜が好ましい。紫外光反射層は、略薄板状の形状を有するものが好ましい。紫外光反射層は、蛍光層の射出面に対して略平行に配置されているものが好ましい。紫外光反射層は、蛍光層の射出面に近接するように配置されても、蛍光層の射出面から離隔した位置に配置されてもよい。
紫外光反射層によって反射された紫外光は、蛍光層に戻り、蛍光物質によって他の波長の光へ変換される。変換された光が射出面から射出されて、被照射体を照明するので、光源の出力を高めることなく、被照射体への照度を高めて被照射体を照明することができる。
本発明に係る表示装置は、
可視光を反射する可視光反射層が、前記光源と前記蛍光層との間に配置されたものが好ましい。
光源と蛍光層との間には、可視光反射層が配置されている。可視光反射層は、可視光を反射しかつ紫外光を透過させるものがより好ましい。可視光反射層は、誘電体膜が好ましい。可視光反射層は、略薄板状の形状を有するものが好ましい。可視光反射層は、蛍光層の入射面に対して略平行に配置されているものが好ましい。可視光反射層は、蛍光層の入射面に近接するように配置されても、蛍光層の入射面から離隔した位置に配置されてもよい。
点光源等の光源を用いた表示装置であっても、拡散板等の拡散手段を用いたり、光源と液晶パネル等の被照射体との距離を長くしたりすることなく、液晶パネル等の被照射体を均一に近づけて照明することができ、表示面における輝度を均一に近づけることができる。
以下に、本発明の実施例について図面に基づいて説明する。
<<<第1の実施の形態>>>
<<構成>>
図1は、第1の実施の形態による表示装置100の概略を示す構成図である。この第1の実施の形態による表示装置100は、光源110と、蛍光体120と、第1の反射体130と、液晶パネル150と、第2の反射体140と、を含む。これらの光源110と蛍光体120と第1の反射体130と液晶パネル150と第2の反射体140との各々は、所定の配置を保つように、表示装置100の筐体(図示せず)に支持されている。
<光源110>
光源110は、紫外光を発する。第1の実施の形態による表示装置100では、少なくとも1つの光源110が、後述する蛍光体120や液晶パネル150の平面方向(図1の左右方向並びに手前及び奥行き方向)に沿って配置されている。光源110の数や、隣り合う光源110の間隔や、光源110の配置の態様は、蛍光体120や液晶パネル150の平面方向の大きさや、光源110から発せられる紫外光の強度や、紫外光の広がり角度等に応じて適宜定めればよい。また、光源110と蛍光体120との間の距離も、光源110から発せられる紫外光の強度等に応じて適宜定めればよい。図1に示した例では、紫外光は、光源110の各々から、蛍光体120に向かって(図1の上方向に向かって)発せられる。光源110は、紫外光を発する発光ダイオードが好ましい。紫外光の波長は、240〜420nmのものが好ましいが、紫外光の波長は、後述する蛍光体120の材質に応じて選択すればよい。
<蛍光体120>
光源110から発せられた紫外光の進行方向(図4の上方)には、蛍光体120が配置されている。蛍光体120は、光源110から離隔した位置に配置されている。光源110と蛍光体120との間隔は、光源110の大きさや、光源110から発せられる紫外光の広がりや照度等に応じて適宜定めればよい。
蛍光体120は、略薄板状の形状を有し、略平行に形成された入射面122と射出面124とを含む。蛍光体120には、蛍光物質が含まれている。蛍光体120のあらゆる箇所に、蛍光物質が散在するように、蛍光体120は形成されている。蛍光物質は、入射面122から入射された紫外光を、入射された紫外光の波長とは異なる他の波長の光に変換する。特に、蛍光物質は、入射された紫外光を可視光に変換するものが好ましく、例えば、希土類の物質からなるものがある。なお、蛍光物質は、光源110から発せられる紫外光の波長と変換する光の波長との関係で適宜定めればよい。以下では、1つの例として、蛍光物質によって変換される光が、可視光である場合について説明する。
蛍光体120の厚さは、紫外光を可視光に変換でき、かつ、蛍光体120の内部で変換された可視光が吸収されない程度にするのが好ましい。なお、蛍光体120の厚さは、光源110の出力や、光源110が配置される位置等の光源110の関係に応じて適宜定めればよい。また、蛍光体120は、光源110から発せられた紫外光を十分に入射できる程度の面積の入射面を有する。
蛍光体120の蛍光物質によって、入射面122から入射された紫外光の全てを可視光に変換するものが最も望ましいが、光源110の強度や、蛍光体120の厚さ等によっては、十分に変換できない場合もある。このため、蛍光体120の射出面124から、変換された可視光と、変換されなかった紫外光との双方が射出される場合がある。
第1の実施の形態の表示装置100の蛍光体120は、複数の領域(図示せず)から構成される。複数の領域の各々が画素の1つ1つに対応する。複数の領域の各々は、さらに、3つの小領域から構成される。この3つの小領域は、赤色変換領域と緑色変換領域と青色変換領域とに分類できる(図2参照)。赤色変換領域は、蛍光体120に入射された紫外光を赤色光に変換する。緑色変換領域は、蛍光体120に入射された紫外光を緑色光に変換する。青色変換領域は、蛍光体120に入射された紫外光を青色光に変換する。
蛍光物質によって発光される可視光は、蛍光体120の蛍光物質の励起に基づいて発せられるため、蛍光物質の各々を中心として等方的に発せられる。また、上述したように、蛍光物質は、蛍光体120の赤色変換領域と緑色変換領域と青色変換領域とのあらゆる箇所に散在しているため、蛍光物質による発光は、赤色変換領域と緑色変換領域と青色変換領域との各々の領域の全体に亘って生ずる。このように、各色の領域の全体で発光が起こり、その発光された赤色の光、緑色の光及び青色の光は、等方的に発せられるので、発せられた赤色の光同士、緑色の光同士、及び青色の光同士が重なり合うことによって、赤色の光、緑色の光及び青色の光の各々の強度を均一に近づけることができる。
蛍光物質によって等方的に発光された赤色の光、緑色の光及び青色の光のうち、射出面124に向かって発光されたものは、射出面124から射出される。また、蛍光物質によって等方的に発光された赤色の光、緑色の光及び青色の光のうち、入射面122に向かって発光されたものは、入射面122から射出される。
<第1の反射体130>
蛍光体120の射出面124から発せられた光の進行方向には、第1の反射体130が配置されている。第1の反射体130は、略薄板状の形状を有し、略平行に形成された入射面132と射出面134とを含む。第1の反射体130は、上述した蛍光体120と略平行となるように配置される。特に、第1の反射体130の入射面132が、蛍光体120の射出面124に、なるべく近接するように第1の反射体130を配置するのが好ましい。
第1の反射体130は、紫外光を反射させるとともに、可視光を透過させる。第1の反射体130は、誘電体膜が好ましい。誘電体膜の材料と厚さは、紫外光を反射させ、かつ、可視光を十分に透過させることができる波長特性を有するものを適宜選択すればよい。上述したように、蛍光体120によって、紫外光が赤色の光、緑色の光及び青色の可視光に変換されるので、第1の反射体130は、これらの赤色の光、緑色の光及び青色の光を透過させるとともに、紫外光を反射させることができるような材料と厚さを選択すればよい。
<第2の反射体140>
光源110と蛍光体120との間には、第2の反射体140が配置されている。第2の反射体140は、略薄板状の形状を有し、略平行に形成された入射面142と射出面144とを含む。第2の反射体140は、上述した蛍光体120や第1の反射体130と略平行となるように配置される。特に、第2の反射体140の射出面144が、蛍光体120の入射面122に、なるべく近接するように第2の反射体140を配置するのが好ましい。
第2の反射体140は、可視光を反射させるとともに、紫外光を透過させる。第2の反射体140は、誘電体膜が好ましい。誘電体膜の材料と厚さは、可視光を反射させ、かつ、紫外光を十分に透過させることができる波長特性を有するものを適宜選択すればよい。上述したように、蛍光体120によって、紫外光が赤色、緑色及び青色の可視光に変換されるので、第2の反射体140は、紫外光を透過させるとともに、赤色、緑色及び青色の可視光を反射させることができるような材料と厚さを選択すればよい。
<液晶パネル150>
第1の反射体130の射出面134から発せられた光の進行方向には、液晶パネル150が配置されている。液晶パネル150は、略薄板状の形状を有し、略平行に形成された入射面152と射出面154とを含む。液晶パネル150は、蛍光体120や第1の反射体130や第2の反射体140と略平行となるように配置される。特に、液晶パネル150を第1の反射体130に、なるべく近接するように配置するのが好ましい。
液晶パネル150は、2枚のガラス基板(図示せず)の間に液晶層が封入されたものである。この2枚のガラス基板の各々には、偏光板と透明電極と配向膜とが形成されている(図示せず)。すなわち、液晶パネル150は、第1のガラス基板と、液晶層と、第2のガラス基板と、からなる。第1のガラス基板は、第1の反射体130の射出面134に向かい合うように配置され、第2のガラス基板が表示面として配置される。また、第1のガラス基板には、第1の偏光板と第1の透明電極と第1の配向膜とが形成され、第2のガラス基板には、第2の偏光板と第2の透明電極と第2の配向膜とが形成されている。第1の偏光板を通過できる光の偏光の向きと、第2の偏光板を通過できる光の偏光の向きとが、所定の角、例えば90度となるように、第1の偏光板と第2の偏光板とは配置される。
第1の反射体130から射出された光は、第1のガラス基板→液晶層→第2のガラス基板の順に進行する。より詳細には、第1の反射体130から射出された光は、第1の偏光板→第1の透明電極→第1の配向膜→液晶層→第2の配向膜→第2の透明電極→第2の偏光板の順に進行する。なお、図1〜図3では、液晶パネル150として液晶層のみを概略的に示したが、液晶パネル150の入射面152が、第1のガラス基板の入射面に対応し、液晶パネル150の射出面154が、第2のガラス基板の射出面に対応する。この液晶パネル150の射出面154が、表示装置100の表示面となる。
第1の透明電極と第2の透明電極とには、液晶層に電圧を印加するための電源が接続されている。液晶層に電圧が印加されていないときには、液晶層を構成する液晶分子は、第1の配向膜と第2の配向膜との間で、第1の配向膜と第2の配向膜とに平行に、かつ、徐々にねじれて、全体で、所定の角度、例えば90度ねじれたらせん状となるように配置される。液晶層を構成する液晶分子がこのように配置されているときには、第1の反射体130から射出されて第1の偏光板を通過した光の振動方向は、液晶分子の配列のねじれに沿って次第に変化できるので、第1の偏光板を通過した光は、第2の偏光板を通過することができる。
一方、液晶層に電圧が印加されたときには、液晶層を構成する液晶分子は、第1のガラス基板と第2のガラス基板に垂直に並ぶ。このときには、第1の反射体130から射出されて第1の偏光板を通過した光の振動方向は、液晶分子によって変化せず、第1の偏光板を通過した光は、第2の偏光板を通過することができない。
このような構成としたことにより、液晶パネル150は、第1の反射体130から射出された光を通過させたり、遮断したりすることができるシャッターとして機能する。上述した液晶パネル150の構造は、一例を示したに過ぎず、液晶パネル150として、第1の反射体130から射出された光を通過させたり遮断したりすることができるものであればよく、ツイストネマティック型(TN型)液晶や、スーパーTN型(STN型)液晶、トリプルSTN型(TSTN型)液晶や、フィルムSTN型(FSTN型)液晶等の各種の液晶を用いることができる。
<蛍光体120と液晶パネル150との配置>
図2は、上述した蛍光体120と、第1の反射体130と、第2の反射体140と、液晶パネル150とを、1つの画素について拡大して示した拡大斜視図である。画素は、表示装置100に表示される画像を構成する最小の単位要素である。なお、図2では、蛍光体120と、第1の反射体130と、第2の反射体140と、液晶パネル150との各々を明確に示すために、互いに離隔した位置に示した。
上述したように、蛍光体120は、赤色変換領域と緑色変換領域と青色変換領域との3種類の領域から構成される。1つの画素については、図2に示すように、単一の赤色変換領域126Rと、単一の緑色変換領域126Gと、単一の青色変換領域126Bとからなる。
液晶パネル150は、蛍光体120の赤色変換領域126Rと、緑色変換領域126Gと、青色変換領域126Bとの各々に1つの液晶シャッターが対応するように、構成されている。図2に示すように、蛍光体120の赤色変換領域126Rには、液晶シャッター156Rが対応し、蛍光体120の緑色変換領域126Gには、液晶シャッター156Gが対応し、蛍光体120の青色変換領域126Bには、液晶シャッター156Bが対応する。すなわち、蛍光体120の赤色変換領域126Rに、液晶シャッター156Rが重畳するように構成され、蛍光体120の緑色変換領域126Gに、液晶シャッター156Gが重畳するように構成され、蛍光体120の青色変換領域126Bに、液晶シャッター156Bが重畳するように構成される。また、液晶シャッター156Rと、液晶シャッター156Gと、液晶シャッター156Bとの各々に対して、独立して電圧を印加できるように構成されており、各々を別個に通過状態又は遮断状態にすることができる。
このようにしたことにより、液晶シャッター156Rのみを通過状態にし、液晶シャッター156Gと156Bとを遮断状態にしたときには、その画素では赤色が表示されることになる。また、液晶シャッター156Gのみを通過状態にし、液晶シャッター156Rと156Bとを遮断状態にしたときには、その画素では緑色が表示される。同様に、液晶シャッター156Bのみを通過状態にし、液晶シャッター156Rと156Gとを遮断状態にしたときには、その画素では青色が表示される。
<<表示装置100の概要>>
上述したように、光源110から紫外光が発せられる。光源110から発せられた紫外光は、第2の反射体140の入射面142に入射する。上述したように、第2の反射体140は、可視光を反射させるとともに、紫外光を透過させる波長特性を有する。このため、第2の反射体140の入射面142に入射した紫外光は、第2の反射体140を透過して、第2の反射体140の射出面144から射出される。第2の反射体140から射出された紫外光は、蛍光体120の入射面122に入射する。
蛍光体120に入射した紫外光は、蛍光体120の蛍光物質の発光機構によって可視光が発せられる。すなわち、蛍光体120の蛍光物質によって紫外光が可視光に変換される。上述したように、蛍光物質の発光機構によって発光される可視光は、蛍光物質を中心として等方的に発せられる。上述したように、蛍光体120は、画素の各々について、赤色変換領域126Rと、緑色変換領域126Gと、青色変換領域126Bとからなる。赤色変換領域126Rでは、蛍光物質によって紫外光が赤色の可視光に変換されて等方的に発せられる。緑色変換領域126Gでは、蛍光物質によって紫外光が緑色の可視光に変換されて等方的に発せられる。青色変換領域126Bでは、蛍光物質によって紫外光が青色の可視光に変換されて等方的に発せられる。蛍光物質から等方的に発せられた赤色の光、緑色の光及び青色の光のうち、射出面124に向かって発光されたものが、射出面124から射出される。また、蛍光物質から等方的に発せられた赤色の光、緑色の光及び青色の光のうち、入射面122に向かって発光されたものが、入射面122から射出される。
蛍光物質は、蛍光体120の赤色変換領域126R、緑色変換領域126G、及び青色変換領域126Bの全体に亘って散在する。このため、赤色変換領域126R、緑色変換領域126G、及び青色変換領域126Bの全体の領域で発光が起こり、発光された可視光は、等方的に発せられる。したがって、蛍光体120内の赤色変換領域126Rの各々では、発光された赤色の光同士が、互いに重なり合うため、その強度は均一に近づく。また、蛍光体120内の緑色変換領域126Gの各々では、発光された緑色の光同士が、互いに重なり合うため、その強度は均一に近づく。蛍光体120内の青色変換領域126Bの各々では、発光された青色の光同士が、互いに重なり合うため、その強度は均一に近づく。
また、蛍光体120の蛍光物質によって、紫外光を、赤色、緑色又は青色の可視光に十分に変換できない場合があり、この場合には、射出面124からは、変換されなかった紫外光も射出される。このため、蛍光体120の射出面124から射出される光には、赤色、緑色又は青色の可視光だけでなく紫外光も含まれる場合がある。
射出面124から射出された光は、第1の反射体130の入射面132に入射する。この第1の反射体130は、紫外光を反射させるとともに、可視光を透過させるので、第1の反射体130の入射面132に入射された光のうちの赤色の光、緑色の光又は青色の光のみが、第1の反射体130を透過し、第1の反射体130の射出面134から射出できる。第1の反射体130の入射面132に入射した赤色の光、緑色の光又は青色の光は、その強度が均一に近づいているので、第1の反射体130の射出面134からも、強度が均一に近づいた可視光を射出させることができる。また、蛍光体120の射出側に第1の反射体130を配置することで、第1の反射体130の射出面134から紫外光を射出させることなく、赤色の光、緑色の光又は青色の光のみを射出させることができる。
一方、第1の反射体130の入射面132に入射された光のうちの紫外光は、第1の反射体130によって反射されて、蛍光体120の射出面124に入射する。蛍光体120の射出面124に入射した紫外光は、入射面122から入射した紫外光と同様に、蛍光物質の発光機構によって赤色の光、緑色の光又は青色の光へ変換される。このときも、変換される赤色の光、緑色の光又は青色の光は、等方的に発せられるため、上述したように、射出面124に向かって発光された赤色の光、緑色の光又は青色の光は、強度が均一に近づいて、射出面124から射出される。また、変換される赤色の光、緑色の光又は青色の光は、等方的に発せられるため、入射面122に向かって発光されるものもある。入射面122に向かって発光された赤色の光、緑色の光又は青色の光は、強度が均一に近づいて、蛍光体120の入射面122から射出される。
上述したように、光源110と蛍光体120との間には、第2の反射体140が配置されており、蛍光体120の入射面122から射出された赤色の光、緑色の光又は青色の光は、第2の反射体140の射出面144に入射する。第2の反射体140は、これらの可視光を反射させるとともに、紫外光を透過させる波長特性を有する。このため、第2の反射体140に入射した可視光は、第2の反射体140によって反射される。第2の反射体140によって反射された可視光は、反射されて再び蛍光体120に入射する。蛍光体120に入射した光は、既に可視光に変換されているので、蛍光体120の蛍光物質による発光機構は作用せず、そのまま蛍光体120を透過して、蛍光体120の射出面124から射出される。蛍光体120から射出された赤色の光、緑色の光又は青色の光は、第1の反射体130に入射する。第1の反射体130は、可視光を透過させる波長特性を有するので、第1の反射体130に入射したこれらの可視光は、第1の反射体130の射出面134から射出されて、表示装置100から射出される。
この表示装置100によれば、第1の反射体130と第2の反射体140とを設けたことによって、光源110から発せられた紫外光は、3つの態様で、表示装置100の表示面から射出される。図3(a)には、この3つの態様を、符号A,B及びCで示した。なお、図3(a)では、実線の矢印は、紫外光を示し、破線の矢印は、可視光を示す。なお、以下では、赤色、緑色及び青色の可視光を単に可視光と称する。
第1の態様(図3(a)のA)は、光源110から発せられた紫外光が、蛍光体120によって、直ちに可視光に変換された場合であり、変換された可視光は、第1の反射体130を透過して、表示装置100から射出される。
第2及び第3の態様(図3(a)のB及びC)は、光源110から発せられた紫外光が、蛍光体120によって、可視光に変換されずに、紫外光のまま、第1の反射体130に向い、第1の反射体130によって反射されて、蛍光体120に戻る場合である。紫外光が、蛍光体120に戻ったときには、蛍光体120の蛍光物質によって可視光に変換される。このとき、可視光は、蛍光物質を中心として等方的に発せられる。
第2の態様(図3(a)のB)は、等方的に発せられた可視光のうち射出面124に向かったものである。この可視光は、射出面124から射出されて、第1の反射体130を透過して、表示装置100から射出される。
第3の態様(図3(a)のC)は、等方的に発せられた可視光のうち入射面122に向かったものである。この可視光は、入射面122から射出され、第2の反射体140によって反射されて、蛍光体120と第1の反射体130とを透過して、表示装置100から射出される。
このように3つの態様で、表示装置100から可視光を射出するので、光源110の出力を高めることなく、表示装置100の輝度を高めることができる。また、表示装置100の輝度を従前のものと同じ程度でよい場合には、光源110の出力を低くすることができるので、表示装置100の消費電力を下げることができる。
また、第1の反射体130の射出面134から射出される可視光は、既に、その強度が均一に近づいているので、光源110が点光源であるような場合であっても、光源110と蛍光体120との間の距離を長くすることなく、表示装置100の輝度を均一に近づけることができる。また、光源110と蛍光体120との間の距離を長くする必要がないので、表示装置100を薄型化することができる。
上述したように、射出面134から射出される可視光の強度を均一に近づけることができるので、光の強度を均一化できる一方、強度を低下させるような拡散板等の手段を用いる必要がなく、表示装置100の構成を簡素にできるとともに、さらに、薄型化することができる。
さらに、蛍光体120の後に液晶パネル150を配置したので、光源110から発せられた紫外光によって液晶層を損傷させることを防止することができる。また、蛍光体120と液晶パネル150との間に第1の反射体130を配置したことによって、蛍光体120で可視光に変換できず、蛍光体120から紫外光が液晶パネル150に向かって射出された場合であっても、紫外光は、第1の反射体130によって反射されるので液晶パネル150には到達せず、紫外光によって液晶層を損傷させることを防止することもできる。
上述した第1の実施の形態の表示装置100では、第1の反射体130と、第2の反射体140とを含むものを示したが、第1の反射体130と、第2の反射体140との双方を省略してもよい。このようにした場合であっても、上述したように、蛍光体120の蛍光物質の発光機構によって発光される可視光は、蛍光物質を中心として等方的に発せられる。蛍光体120内の赤色変換領域126Rの各々では、発光された赤色の光同士が、互いに重なり合うため、赤色の光の強度は均一に近づく。同様に、緑色変換領域126Gの各々では、緑色の光の強度は均一に近づき、青色変換領域126Bの各々では、青色の光の強度は均一に近づく。このようにすることで、表示面における輝度を均一に近づけることができるとともに、拡散板等の拡散手段を用いる必要がないので、表示装置100を薄型化することができる。
また、第1の反射体130と、第2の反射体140とのうち、第2の反射体140を省略してもよい。上述したように、光源110から発せられた紫外光を、蛍光体120の蛍光物質によって、赤色、緑色又は青色の可視光に十分に変換できない場合であっても、第1の反射体130によって、再び、変換されなかった紫外光を蛍光体120に戻して、改めて、赤色、緑色又は青色の可視光に変換できる機会を増やすことができるので、光源110の出力を高めることなく、表示装置100の輝度を高めることができる。また、表示装置100の輝度が従前のものと同様でよい場合には、光源110の出力を低くすることができるので、表示装置100の消費電力を下げることができる。
<<<第2の実施の形態>>>
<<構成>>
図1は、第2の実施の形態による表示装置200の概略を示す構成図である。この第2の実施の形態による表示装置200は、光源210と、蛍光体220と、第1の反射体230と、液晶パネル250と、カラーフィルタ260と、第2の反射体240と、を含む。これらの光源210と蛍光体220と第1の反射体230と液晶パネル250とカラーフィルタ260と第2の反射体240との各々は、所定の配置を保つように、表示装置200の筐体(図示せず)に支持されている。
<光源210>
光源210は、紫外光を発する。第2の実施の形態による表示装置200では、少なくとも2つの光源210が、後述する蛍光体220や液晶パネル250の平面方向(図4の左右方向並びに手前及び奥行き方向)に沿って配置されている。光源210の数や、隣り合う光源210の間隔や、光源210の配置の態様は、蛍光体220や液晶パネル250の平面方向の大きさや、光源210から発せられる紫外光の強度や、紫外光の広がり角度等に応じて適宜定めればよい。また、光源210と蛍光体220との間の距離も、光源210から発せられる紫外光の強度等に応じて適宜定めればよい。図4に示した例では、紫外光は、光源210の各々から、蛍光体220に向かって(図4の上方向に向かって)発せられる。光源210は、紫外光を発する発光ダイオードが好ましい。紫外光の波長は、240〜420nmのものが好ましいが、紫外光の波長は、後述する蛍光体220の材質に応じて選択すればよい。
<蛍光体220>
光源210から発せられた紫外光の進行方向(図4の上方)には、蛍光体220が配置されている。蛍光体220は、光源210から離隔した位置に配置されている。光源210と蛍光体220との間隔は、光源110の大きさや、光源110から発せられる紫外光の広がりや照度等に応じて適宜定めればよい。
蛍光体220は、略薄板状の形状を有し、略平行に形成された入射面222と射出面224とを含む。蛍光体220には、蛍光物質が含まれている。蛍光体220のあらゆる箇所に、蛍光物質が散在するように、蛍光体220は形成されている。蛍光物質は、入射面222から入射された紫外光を、入射された紫外光の波長とは異なる他の波長の光に変換する。特に、蛍光物質は、入射された紫外光を可視光に変換するものが好ましい。なお、蛍光物質は、光源210から発せられる紫外光の波長と変換する光の波長との関係で適宜定めればよい。以下では、1つの例として、蛍光物質によって変換される光が、可視光である場合について説明する。
蛍光体220の厚さは、紫外光を可視光に変換でき、かつ、蛍光体220の内部で変換された可視光が吸収されない程度にするのが好ましい。なお、蛍光体220の厚さは、光源210の出力や、光源210が配置される位置等の光源210の関係に応じて適宜定めればよい。また、蛍光体220は、光源210から発せられた紫外光を十分に入射できる程度の面積の入射面を有する。
蛍光体220の蛍光物質によって、入射面222から入射された紫外光の全てを可視光に変換するものが最も望ましいが、光源210の強度や、蛍光体220の厚さ等によっては、十分に変換できない場合もある。このため、蛍光体220の射出面224から、変換された可視光と、変換されなかった紫外光との双方が射出される場合がある。
蛍光物質によって発光される可視光は、蛍光体220の蛍光物質の励起に基づいて発せられるため、蛍光物質の各々を中心として等方的に発せられる。また、上述したように、蛍光物質は、蛍光体220のあらゆる箇所に散在しているため、蛍光物質による発光は、蛍光体220の全体に亘って生ずる。このように、蛍光体220の全体で発光が起こり、その発光された可視光は、等方的に発せられるので、発せられた可視光同士が重なり合うことによって、可視光の強度を均一に近づけることができる。
蛍光物質によって等方的に発光された可視光のうち、射出面224に向かって発光されたものは、射出面224から射出される。また、蛍光物質によって等方的に発光された可視光のうち、入射面222に向かって発光されたものは、入射面222から射出される。
<第1の反射体230>
蛍光体220の射出面224から発せられた光の進行方向には、第1の反射体230が配置されている。第1の反射体230は、略薄板状の形状を有し、略平行に形成された入射面232と射出面234とを含む。第1の反射体230は、上述した蛍光体220と略平行となるように配置される。特に、第1の反射体230の入射面232が、蛍光体220の射出面224に、なるべく近接するように第1の反射体230を配置するのが好ましい。
第1の反射体230は、紫外光を反射させるとともに、可視光を透過させる。第1の反射体230は、誘電体膜が好ましい。誘電体膜の材料と厚さは、紫外光を反射させ、かつ、可視光を十分に透過させることができる波長特性を有するものを適宜選択すればよい。
<第2の反射体240>
光源210と蛍光体220との間には、第2の反射体240が配置されている。第2の反射体240は、略薄板状の形状を有し、略平行に形成された入射面242と射出面244とを含む。第2の反射体240は、上述した蛍光体220や第1の反射体230と略平行となるように配置される。特に、第2の反射体240の射出面244が、蛍光体220の入射面222に、なるべく近接するように第2の反射体240を配置するのが好ましい。
第2の反射体240は、可視光を反射させるとともに、紫外光を透過させる。第2の反射体240は、誘電体膜が好ましい。誘電体膜の材料と厚さは、可視光を反射させ、かつ、紫外光を十分に透過させることができる波長特性を有するものを適宜選択すればよい。
<液晶パネル250>
第1の反射体230の射出面234から発せられた光の進行方向には、液晶パネル250が配置されている。液晶パネル250は、略薄板状の形状を有し、略平行に形成された入射面252と射出面254とを含む。液晶パネル250は、蛍光体220や第1の反射体230や第2の反射体240と略平行となるように配置される。特に、液晶パネル250を第1の反射体230に、なるべく近接するように配置するのが好ましい。この液晶パネル250の構造や機能は、第1の実施の形態の液晶パネル150と同様である。
<カラーフィルタ260>
液晶パネル250から射出された光の進行方向には、カラーフィルタ260が配置されている。カラーフィルタ260は、略薄板状の形状を有し、略平行に形成された入射面262と射出面264とを含む。カラーフィルタ260は、上述した液晶パネル250と略平行となるように配置される。特に、カラーフィルタ260の入射面262が、液晶パネル250の射出面254に、なるべく近接するようにカラーフィルタ260を配置するのが好ましい。
カラーフィルタ260は、複数の領域(図示せず)から構成される。複数の領域の各々が画素の1つ1つに対応する。複数の領域の各々は、さらに、3つの小領域から構成される。この3つの小領域は、赤色透過領域と緑色透過領域と青色透過領域とに分類できる(図5参照)。赤色透過領域は、液晶パネル250を通過した可視光のうち赤色の光のみを透過させる。緑色透過領域は、液晶パネル250を通過した可視光のうち緑色の光のみを透過させる。青色変換領域は、液晶パネル250を通過した可視光のうち青色の光のみを透過させる。
<液晶パネル250とカラーフィルタ260の配置>
図5は、上述した蛍光体220と、第1の反射体230と、第2の反射体240と、液晶パネル250と、カラーフィルタ260とを、1つの画素について拡大して示した拡大斜視図である。画素は、表示装置200に表示される画像を構成する最小の単位要素である。なお、図5では、蛍光体220と、第1の反射体230と、第2の反射体240と、液晶パネル250と、カラーフィルタ260との各々を明確に示すために、互いに離隔した位置に示した。
上述したように、蛍光体220は、赤色透過領域と緑色透過領域と青色透過領域との3種類の領域から構成される。1つの画素については、図5に示すように、単一の赤色透過領域266Rと、単一の緑色透過領域266Gと、単一の青色透過領域266Bとからなる。
液晶パネル250は、カラーフィルタ260の赤色透過領域266Rと、緑色透過領域266Gと、青色透過領域266Bとの各々に1つの液晶シャッターが対応するように、構成されている。図5に示すように、カラーフィルタ260の赤色透過領域266Rには、液晶シャッター256Rが対応し、カラーフィルタ260の緑色透過領域266Gには、液晶シャッター256Gが対応し、カラーフィルタ260の青色透過領域266Bには、液晶シャッター256Bが対応する。すなわち、カラーフィルタ260の赤色透過領域266Rに、液晶シャッター256Rが重畳するように構成され、カラーフィルタ260の緑色透過領域266Gに、液晶シャッター256Gが重畳するように構成され、カラーフィルタ260の青色透過領域266Bに、液晶シャッター256Bが重畳するように構成される。また、液晶シャッター256Rと、液晶シャッター256Gと、液晶シャッター256Bとの各々に対して、独立して電圧を印加できるように構成されており、各々を別個に通過状態又は遮断状態にすることができる。
このようにしたことにより、液晶シャッター256Rのみを通過状態にし、液晶シャッター256Gと256Bとを遮断状態にしたときには、その画素では赤色が表示されることになる。また、液晶シャッター256Gのみを通過状態にし、液晶シャッター256Rと256Bとを遮断状態にしたときには、その画素では緑色が表示される。同様に、液晶シャッター256Bのみを通過状態にし、液晶シャッター256Rと256Gとを遮断状態にしたときには、その画素では青色が表示される。
<<表示装置200の概要>>
上述したように、光源210から紫外光が発せられる。光源210から発せられた紫外光は、第2の反射体240の入射面242に入射する。上述したように、第2の反射体240は、可視光を反射させるとともに、紫外光を透過させる波長特性を有する。このため、第2の反射体240の入射面242に入射した紫外光は、第2の反射体240を透過して、第2の反射体240の射出面244から射出される。第2の反射体240から射出された紫外光は、蛍光体220の入射面222に入射する。
蛍光体220に入射した紫外光は、蛍光体220の蛍光物質の発光機構によって可視光が発せられる。すなわち、蛍光体220の蛍光物質によって紫外光が可視光に変換される。上述したように、蛍光物質の発光機構によって発光される可視光は、蛍光物質を中心として等方的に発せられる。上述したように、蛍光体220の全体で、蛍光物質によって紫外光が可視光に変換されて等方的に発せられる。蛍光物質から等方的に発せられた可視光のうち、射出面224に向かって発光されたものが、射出面224から射出される。また、蛍光物質から等方的に発せられた可視光のうち、入射面222に向かって発光されたものが、入射面222から射出される。
蛍光物質は、蛍光体220の全体に亘って散在する。このため、蛍光体220の全体の領域で発光が起こり、発光された可視光は、等方的に発せられる。したがって、蛍光体220内の全体で、可視光同士が互いに重なり合うため、その強度は均一に近づく。
また、蛍光体220の蛍光物質によって、紫外光を可視光に十分に変換できない場合があり、この場合には、射出面224からは、変換されなかった紫外光も射出される。このため、蛍光体220の射出面224から射出される光には、可視光だけでなく紫外光も含まれる場合がある。
射出面224から射出された光は、第1の反射体230の入射面232に入射する。この第1の反射体230は、紫外光を反射させるとともに、可視光を透過させるので、第1の反射体230の入射面232に入射された光のうちの可視光のみが、第1の反射体230を透過し、第1の反射体230の射出面234から射出できる。第1の反射体230の入射面232に入射した可視光は、その強度が均一に近づいているので、第1の反射体230の射出面234からも、強度が均一に近づいた可視光を射出させることができる。また、蛍光体220の射出側に第1の反射体230を配置することで、第1の反射体230の射出面234から紫外光を射出させることなく、可視光のみを射出させることができる。
一方、第1の反射体230の入射面232に入射された光のうちの紫外光は、第1の反射体230によって反射されて、蛍光体220の射出面224に入射する。蛍光体220の射出面224に入射した紫外光は、入射面222から入射した紫外光と同様に、蛍光物質の発光機構によって可視光へ変換される。このときも、変換される可視光は、等方的に発せられるため、上述したように、射出面224に向かって発光された可視光は、強度が均一に近づいて、射出面224から射出される。また、変換される可視光は、等方的に発せられるため、入射面222に向かって発光されるものもある。入射面222に向かって発光された可視光は、強度が均一に近づいて、蛍光体220の入射面222から射出される。
上述したように、光源210と蛍光体220との間には、第2の反射体240が配置されており、蛍光体220の入射面222から射出された可視光は、第2の反射体240の射出面244に入射する。第2の反射体240は、これらの可視光を反射させるとともに、紫外光を透過させる波長特性を有する。このため、第2の反射体240に入射した可視光は、第2の反射体240によって反射される。第2の反射体240によって反射された可視光は、反射されて再び蛍光体220に入射する。蛍光体220に入射した光は、既に可視光に変換されているので、蛍光体220の蛍光物質による発光機構は作用せず、そのまま蛍光体220を透過して、蛍光体220の射出面224から射出される。蛍光体220から射出された可視光は、第1の反射体230に入射する。第1の反射体230は、可視光を透過させる波長特性を有するので、第1の反射体230に入射したこれらの可視光は、第1の反射体230の射出面234から射出されて、液晶パネル250の入射面252に入射される。
この表示装置200によれば、第1の反射体230と第2の反射体240とを設けたことによって、光源210から発せられた紫外光は、3つの態様で、表示装置200の表示面から射出される。図6(a)には、この3つの態様を、符号A,B及びCで示した。なお、図6(a)では、実線の矢印は、紫外光を示し、破線の矢印は、可視光を示す。
第1の態様(図6(a)のA)は、光源210から発せられた紫外光が、蛍光体220によって、直ちに可視光に変換された場合であり、変換された可視光は、第1の反射体230を透過して、表示装置200から射出される。
第2及び第3の態様(図6(a)のB及びC)は、光源210から発せられた紫外光が、蛍光体220によって、可視光に変換されずに、紫外光のまま、第1の反射体230に向い、第1の反射体230によって反射されて、蛍光体220に戻る場合である。紫外光が、蛍光体220に戻ったときには、蛍光体220の蛍光物質によって可視光に変換される。このとき、可視光は、蛍光物質を中心として等方的に発せられる。
第2の態様(図6(a)のB)は、等方的に発せられた可視光のうち射出面224に向かったものである。この可視光は、射出面224から射出されて、第1の反射体230を透過して、表示装置200から射出される。
第3の態様(図6(a)のC)は、等方的に発せられた可視光のうち入射面222に向かったものである。この可視光は、入射面222から射出され、第2の反射体240によって反射されて、蛍光体220と第1の反射体230とを透過して、表示装置200から射出される。
このように3つの態様で、表示装置200から可視光を射出するので、光源210の出力を高めることなく、表示装置200の輝度を高めることができる。また、表示装置200の輝度を従前のものと同じ程度でよい場合には、光源210の出力を低くすることができるので、表示装置200の消費電力を下げることができる。
また、第1の反射体230の射出面234から射出される可視光は、既に、その強度が均一に近づいているので、光源210が点光源であるような場合であっても、光源210と蛍光体220との間の距離を長くすることなく、表示装置200の輝度を均一に近づけることができる。また、光源210と蛍光体220との間の距離を長くする必要がないので、表示装置200を薄型化することができる。
上述したように、射出面234から射出される可視光の強度を均一に近づけることができるので、光の強度を均一化できる一方、強度を低下させるような拡散板等の手段を用いる必要がなく、表示装置200の構成を簡素にできるとともに、さらに、薄型化することができる。
さらに、蛍光体220の後に液晶パネル250を配置したので、光源210から発せられた紫外光によって液晶層を損傷させることを防止することができる。また、蛍光体220と液晶パネル250との間に第1の反射体230を配置したことによって、蛍光体220で可視光に変換できず、蛍光体220から紫外光が液晶パネル250に向かって射出された場合であっても、紫外光は、第1の反射体230によって反射されるので液晶パネル250には到達せず、紫外光によって液晶層を損傷させることを防止することもできる。
上述した第2の実施の形態の表示装置200では、第1の反射体230と、第2の反射体240とを含むものを示したが、第1の反射体230と、第2の反射体240との双方を省略してもよい。このようにした場合であっても、上述したように、蛍光体220の蛍光物質の発光機構によって発光される可視光は、蛍光物質を中心として等方的に発せられる。蛍光体220内の全体で、発光された可視光同士が、互いに重なり合うため、可視光の強度は均一に近づく。このようにすることで、表示面における輝度を均一に近づけることができるとともに、拡散板等の拡散手段を用いる必要がないので、表示装置200を薄型化することができる。
また、第1の反射体230と、第2の反射体240とのうち、第2の反射体240を省略してもよい。上述したように、光源210から発せられた紫外光を、蛍光体220の蛍光物質によって、可視光に十分に変換できない場合であっても、第1の反射体230によって、再び、変換されなかった紫外光を蛍光体220に戻して、改めて可視光に変換できる機会を増やすことができるので、光源210の出力を高めることなく、表示装置200の輝度を高めることができる。また、表示装置200の輝度が従前のものと同様でよい場合には、光源210の出力を低くすることができるので、表示装置200の消費電力を下げることもできる。
第1の実施の形態による表示装置100を示す概略図である。 第1の実施の形態による表示装置100の蛍光体120と、第1の反射体130と、第2の反射体140と、液晶パネル150とを、1つの画素について拡大して示した拡大斜視図である。 第1の実施の形態による表示装置100の光源110から発せられた紫外光の進行の態様を示す図である。 第2の実施の形態による表示装置200を示す概略図である。 第2の実施の形態による表示装置200の蛍光体220と、第1の反射体230と、第2の反射体240と、液晶パネル250と、カラーフィルタ260とを、1つの画素について拡大して示した拡大斜視図である。 第2の実施の形態による表示装置200の光源210から発せられた紫外光の進行の態様を示す図である。
符号の説明
110,210 光源
120,220 蛍光体(蛍光層)
130,230 第1の反射体(紫外光反射層)
140,240 第2の反射体(可視光反射層)
150,250 液晶パネル(制御層)
260 カラーフィルタ

Claims (8)

  1. 紫外光を発する少なくとも1つの光源と、
    前記光源から発せられた紫外光が入射する入射面と、入射した紫外光を、他の波長の光であって可視光を含む光へ変換する蛍光物質と、変換された光を射出する射出面と、を含む蛍光層と、
    前記蛍光層の前記射出面から発せられた光の光量を制御する制御層と、を含むことを特徴とする表示装置。
  2. 蛍光層は、互いに隣接しかつ前記他の波長の光へ変換する複数の領域からなり、かつ、
    前記複数の領域は、紫外光を赤色光に変換する少なくとも1つの赤色変換領域と、紫外光を緑色光に変換する少なくとも1つの緑色変換領域と、紫外光を青色光に変換する少なくとも1つの青色変換領域と、を含む請求項1記載の表示装置。
  3. 紫外光を反射する紫外光反射層が、前記蛍光層の前記射出面側に配置された請求項1又は2記載の表示装置。
  4. 可視光を反射する可視光反射層が、前記光源と前記蛍光層との間に配置された請求項1ないし3のいずれか1に記載の表示装置。
  5. 紫外光を発する少なくとも1つの光源と、
    前記光源から発せられた紫外光が入射する入射面と、入射した紫外光を、他の波長の光であって可視光を含む光へ変換する蛍光物質と、変換された光を射出する射出面と、を含む蛍光層と、
    前記蛍光層の前記射出面から発せられた光の光量を制御する制御層と、を含むことを特徴とする表示装置。
  6. 前記制御層を通過した光のうち所定の波長範囲の光を透過させるカラーフィルタを含む請求項5記載の表示装置。
  7. 紫外光を反射する紫外光反射層が、前記蛍光層の前記射出面側に配置された請求項5又は6記載の表示装置。
  8. 可視光を反射する可視光反射層が、前記光源と前記蛍光層との間に配置された請求項5ないし7のいずれかに記載の表示装置。
JP2006050388A 2006-02-27 2006-02-27 表示装置 Pending JP2007226157A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050388A JP2007226157A (ja) 2006-02-27 2006-02-27 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006050388A JP2007226157A (ja) 2006-02-27 2006-02-27 表示装置

Publications (2)

Publication Number Publication Date
JP2007226157A true JP2007226157A (ja) 2007-09-06
JP2007226157A5 JP2007226157A5 (ja) 2009-02-12

Family

ID=38548012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050388A Pending JP2007226157A (ja) 2006-02-27 2006-02-27 表示装置

Country Status (1)

Country Link
JP (1) JP2007226157A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315221A (ja) * 1986-07-08 1988-01-22 Toshiba Corp 液晶表示装置
JPH0792465A (ja) * 1993-09-21 1995-04-07 Matsushita Electric Ind Co Ltd 透過形カラー画像表示装置
JPH09159994A (ja) * 1995-12-12 1997-06-20 Sony Corp 表示装置
JP2004287323A (ja) * 2003-03-25 2004-10-14 Seiko Instruments Inc 半透過型液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315221A (ja) * 1986-07-08 1988-01-22 Toshiba Corp 液晶表示装置
JPH0792465A (ja) * 1993-09-21 1995-04-07 Matsushita Electric Ind Co Ltd 透過形カラー画像表示装置
JPH09159994A (ja) * 1995-12-12 1997-06-20 Sony Corp 表示装置
JP2004287323A (ja) * 2003-03-25 2004-10-14 Seiko Instruments Inc 半透過型液晶表示装置

Similar Documents

Publication Publication Date Title
KR101401125B1 (ko) 후면 조명 장치
KR100506088B1 (ko) 액정표시장치
TW556026B (en) Blue backlight and phosphor layer for a color LCD
US20100172153A1 (en) Illumination system for luminaires and display devices
JP2001356701A (ja) 光学素子、光源ユニットおよび表示装置
JP2004311353A (ja) 面状光源装置および該装置を用いた液晶表示装置
TWI390158B (zh) 光源裝置及顯示裝置
JP2004508587A (ja) 表示装置
EP2450742B1 (en) Backlight source and thinning method for the same and liquid crystal device with the same
JP2007232966A (ja) 表示装置
JP2002014344A (ja) 液晶表示装置
JP2006162910A (ja) 表示パネル及び表示装置
CN107367865B (zh) 液晶显示装置
WO2011027590A1 (ja) バックライト装置および画像表示装置
JP2007226157A (ja) 表示装置
JP2006012722A (ja) バックライト装置、およびそれを備えた液晶表示装置
JP2009009739A (ja) カラー液晶表示装置
JP4476620B2 (ja) カラー液晶表示装置
JP2006126731A (ja) 発光装置、液晶バックライト装置および液晶ディスプレイ装置
TWI424229B (zh) 具有背光之顯示器
JP2002023160A (ja) 光学素子および該光学素子を備えた表示装置
JP4192553B2 (ja) 面光源
KR200200978Y1 (ko) 반사형 액정표시소자
JP2000075292A (ja) 反射型表示装置
JP2004294801A (ja) 液晶表示装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025