JP2007224396A - Film-forming method, and mask used in forming film - Google Patents

Film-forming method, and mask used in forming film Download PDF

Info

Publication number
JP2007224396A
JP2007224396A JP2006049527A JP2006049527A JP2007224396A JP 2007224396 A JP2007224396 A JP 2007224396A JP 2006049527 A JP2006049527 A JP 2006049527A JP 2006049527 A JP2006049527 A JP 2006049527A JP 2007224396 A JP2007224396 A JP 2007224396A
Authority
JP
Japan
Prior art keywords
mask
film
substrate
forming
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006049527A
Other languages
Japanese (ja)
Inventor
Takehiko Soda
岳彦 曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006049527A priority Critical patent/JP2007224396A/en
Publication of JP2007224396A publication Critical patent/JP2007224396A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make a mask tightly contact with a substrate so as not to form a gap between them when forming a film. <P>SOLUTION: This film-forming method includes the steps of: making the mask 20 closely contact with the substrate 10 which has been arranged so as to direct the surface to be film-formed downward; and forming an organic electroluminescent layer of an organic electroluminescent element on the substrate 10. The film-forming method also includes; setting the substrate 10 and the mask 20 so that a deflection quantity of the substrate 10 is larger than that of the mask 20, before making them closely contact with each other pressing the mask 20 to the substrate 10 to make the mask 20 closely contact with the substrate 10 along the deflection shape of the substrate 10; and forming the film with a vapor deposition technique in the state. The film-forming method makes the mask 20 closely contact with the substrate 10 by using the deflection due to the tare mass of the substrate 10 without using a permanent magnet or a pressing device, and can form a highly precise pattern without causing the deviation of the pattern. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機EL(エレクトロルミネッセンス)素子等を製造するための成膜方法および成膜用マスクに関するものである。   The present invention relates to a film forming method and a film forming mask for manufacturing an organic EL (electroluminescence) element and the like.

従来、有機EL素子の製造方法では、成膜用マスク(マスク)をガラス基板等の被成膜基材に密着させて成膜する方法が多く採用されている。このようにマスクを密着させたマスク成膜法により、有機EL層のパターンを精度良く形成することができる。近年、有機ELパネルの高解像化に伴い、パターニングの微細化が進んでいる。そのため、ガラス基板上の画素パターンとマスクのパターンのわずかな幾何学的な位置ずれや、ガラス基板とマスク間の密着不良によって品質が低下してしまう。   2. Description of the Related Art Conventionally, many organic EL element manufacturing methods employ a method in which a film formation mask (mask) is formed in close contact with a film formation substrate such as a glass substrate. Thus, the pattern of the organic EL layer can be formed with high accuracy by the mask film forming method in which the mask is closely attached. In recent years, patterning miniaturization has progressed with the increase in resolution of organic EL panels. For this reason, the quality deteriorates due to a slight geometric misalignment between the pixel pattern on the glass substrate and the mask pattern and poor adhesion between the glass substrate and the mask.

特に、ガラス基板とマスクの密着不良は、マスクの僅かなゆがみや自重によるマスク自身のたるみによっても生じてしまうことが知られている。この改善策として、特許文献1に開示されたように、マスクを吸引するためのマグネットを基板の裏側に配置することでマスクと基板を密着させる蒸着方法が知られている。マスクはマグネットに吸引されるために磁性材料を用いている。   In particular, it is known that poor adhesion between a glass substrate and a mask is caused by slight distortion of the mask or sagging of the mask itself due to its own weight. As an improvement measure, as disclosed in Patent Document 1, a deposition method is known in which a mask for attracting a mask is disposed on the back side of the substrate so that the mask and the substrate are in close contact with each other. The mask uses a magnetic material to be attracted to the magnet.

さらに、特許文献2では、基板をマスクに力学的に押圧することによって基板とマスクを密着させて蒸着する方法が開示されている。
特開2001-3155号公報 特開2005-281746号公報
Furthermore, Patent Document 2 discloses a method of depositing the substrate and the mask in close contact by dynamically pressing the substrate against the mask.
JP 2001-3155 A JP 2005-281746 A

しかしながら、特許文献1の蒸着方法は、マグネットを使用する方法であるために磁性マスクを用いる必要があり、マスク材料に制限が生じてしまう。また、磁力は基板やマスクに対して垂直方向だけでなく水平方向にも生じているので、基板からのマグネットあるいはマスクの脱着時に位置ずれが生じたり、基板上に被着した膜が剥がれてしまうおそれがある。   However, since the vapor deposition method of patent document 1 is a method using a magnet, it is necessary to use a magnetic mask, and the mask material is limited. In addition, since the magnetic force is generated not only in the vertical direction but also in the horizontal direction with respect to the substrate or mask, positional displacement occurs when the magnet or mask is detached from the substrate, or the film deposited on the substrate is peeled off. There is a fear.

特許文献2の蒸着方法は、基板を押圧するための装置が必要になるためにコストがかさむうえに、マスクと基板の位置精度を保つために押圧力をマスク毎に一定に制御する必要がある。   The vapor deposition method of Patent Document 2 requires a device for pressing the substrate, which increases the cost, and it is necessary to control the pressing force constant for each mask in order to maintain the positional accuracy of the mask and the substrate. .

また、マスクと基板の密着不良の課題に対しては、マスクのたわみだけでなく、基板自身のたわみも考慮する必要がある。マスクや基板の厚みや剛性によってたわみ量は異なるため、図5の(a)に示すように、基板110と成膜用マスク120が非接触の状態で基板110のたわみ量がマスク120のたわみ量より小さくなることがある。このような状況では、図5の(b)に示すように基板とマスクを密着させた場合に、基板110とマスク120の間に両者のたわみ量の差だけ隙間が生じて、密着不良が発生する。   In addition, regarding the problem of poor adhesion between the mask and the substrate, it is necessary to consider not only the deflection of the mask but also the deflection of the substrate itself. Since the amount of deflection differs depending on the thickness and rigidity of the mask and the substrate, the amount of deflection of the substrate 110 is the amount of deflection of the mask 120 when the substrate 110 and the deposition mask 120 are not in contact with each other, as shown in FIG. May be smaller. In such a situation, as shown in FIG. 5B, when the substrate and the mask are brought into close contact with each other, a gap is generated between the substrate 110 and the mask 120 by the difference in the amount of deflection between the two and the contact failure occurs. To do.

本発明は、上記従来の技術の有する未解決の課題に鑑みてなされたものであり、パターニング精度が高く、品質の良い有機EL素子等を製造することのできる成膜方法および成膜用マスクを提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and provides a film forming method and a film forming mask capable of manufacturing a high-quality organic EL element and the like with high patterning accuracy. It is intended to provide.

本発明の成膜方法は、成膜用マスクを用いた成膜方法であって、成膜面を下向きにした被成膜基材と成膜用マスクを対向させて支持する工程と、対向させた被成膜基材と成膜用マスクを互に密着させる工程と、密着させた成膜用マスクを介して被成膜基材に膜を成膜する工程と、を有し、互に密着させる前の被成膜基材の自重によるたわみ量が成膜用マスクの自重によるたわみ量より大であることを特徴とする。   The film-forming method of the present invention is a film-forming method using a film-forming mask, and includes a step of supporting a film-forming substrate with a film-forming surface facing downward and a film-forming mask so as to face each other. The film-forming substrate and the film-forming mask are in close contact with each other, and the film-forming film is formed on the film-forming substrate through the closely-attached film-forming mask. The amount of deflection due to the weight of the film forming substrate before the deposition is greater than the amount of deflection due to the weight of the film forming mask.

マグネット等の他の外力を用いることなく、被成膜基材と成膜用マスクとの密着性を向上させて、被成膜基材に配置された画素等との間にパターンずれが少なく、寸法精度のよい有機EL素子等を製造することが可能となる。   Without using other external force such as a magnet, the adhesion between the film formation substrate and the film formation mask is improved, and there is little pattern deviation between the pixels etc. arranged on the film formation substrate, It becomes possible to manufacture an organic EL element or the like with good dimensional accuracy.

成膜用マスクのフレームに薄肉部や開口部を形成することにより、成膜用マスクに使用する材料を削減し、コストの低減や環境への負担の軽減に貢献できる。また、成膜用マスクの軽量化により、成膜用マスクの搬送装置や取り扱いの負担を軽減することが可能になる。   By forming a thin-walled portion or an opening in the frame of the film-forming mask, the material used for the film-forming mask can be reduced, which can contribute to cost reduction and environmental burden reduction. In addition, by reducing the weight of the film formation mask, it is possible to reduce the burden of the film formation mask transfer device and handling.

本発明を実施するための最良の形態について図面を参照して説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1は、一実施の形態による成膜方法を用いて有機EL素子の有機EL層を蒸着によって成膜する工程を説明するものである。図1の(a)に示すように、支持手段1によって被蒸着面(成膜面)を下向きに支持した基板(被成膜基材)10の下側に、支持手段2によって支持したマスク(成膜用マスク)20を対向させ、(b)に示すように、基板10に密着させてマスク蒸着を行う。   FIG. 1 illustrates a process of forming an organic EL layer of an organic EL element by vapor deposition using a film forming method according to an embodiment. As shown in FIG. 1A, a mask (supported by a support unit 2) is supported on a lower side of a substrate (deposited substrate) 10 whose support surface 1 supports a deposition surface (film formation surface) downward. The film deposition mask) 20 is made to face and the mask deposition is performed while being in close contact with the substrate 10 as shown in FIG.

基板10をマスク20に密着させる前の状態で、自重による基板10のたわみ量よりもマスク20のたわみ量のほうが小さくなるように支持し、その状態で密着させると、基板10とマスク20を隙間無く密着させることが可能になる。   Before the substrate 10 is brought into close contact with the mask 20, it is supported so that the amount of deflection of the mask 20 is smaller than the amount of deflection of the substrate 10 due to its own weight. It becomes possible to make it adhere closely.

自重による基板10やマスク20のたわみ量を算出するためには、例えば有限要素法による演算処理を用いて計算すればよい。有限要素法による演算処理やその演算処理を利用した解析技術については、公知技術を利用して実現することができる。   In order to calculate the deflection amount of the substrate 10 or the mask 20 due to its own weight, for example, the calculation may be performed using arithmetic processing by a finite element method. The calculation process by the finite element method and the analysis technique using the calculation process can be realized using a known technique.

このようにして、密着させる前の基板10とマスク20のたわみ量を制御することによって、マグネットや押圧のような外力がなくても成膜時の基板10とマスク20を隙間無く密着させることが可能になる。   In this way, by controlling the amount of deflection between the substrate 10 and the mask 20 before being adhered, the substrate 10 and the mask 20 can be brought into close contact with each other without any external force such as a magnet or pressing. It becomes possible.

蒸着時と同じ条件で、マスクに対向させて支持した基板のたわみ量が、密着前のマスクのたわみ量よりも大きくなるためには、以下の条件を満たせばよい。すなわち、基板およびマスクを均質化したヤング率をEG 、EM 、比重をρG 、ρM 、基板面(成膜面)およびマスク面に垂直な方向の断面二次モーメントをIG 、IM 、基板およびマスクの幅をLC 、LM としたとき以下の式を満たせばよい。
G ×LG 3)/(EG ×IG )>(ρM ×LM 3 )/(EM ×IM ) ・・(1)
In order for the amount of deflection of the substrate supported opposite to the mask to be larger than the amount of deflection of the mask before adhesion under the same conditions as in vapor deposition, the following conditions may be satisfied. That is, the Young's modulus obtained by homogenizing the substrate and the mask is E G , E M , the specific gravity is ρ G, ρ M, and the cross-sectional second moment in the direction perpendicular to the substrate surface (deposition surface) and the mask surface is I G , I When M , the width of the substrate, and the mask are L C and L M , the following equation should be satisfied.
G × L G 3 ) / (E G × I G )> (ρ M × L M 3 ) / (E M × I M ) (1)

基板10の表面には画素部や電極が形成されており、マスク20は、図2に示すように、複数のマスク部21と、マスク部21を支持するフレーム22を有する。基板10やマスク20のヤング率、比重などの材料特性は異方性があり、基板10やマスク20全体としての材料特性には、公知の構造シミュレーションで得られる均質化した材料特性を当てはめることができる。   Pixel portions and electrodes are formed on the surface of the substrate 10, and the mask 20 includes a plurality of mask portions 21 and a frame 22 that supports the mask portions 21 as shown in FIG. 2. The material properties such as Young's modulus and specific gravity of the substrate 10 and the mask 20 are anisotropic, and the material properties of the substrate 10 and the mask 20 as a whole can be applied with the homogenized material properties obtained by a known structural simulation. it can.

ところで、一般的な平板のたわみ量は、平板に加わる重力をP、平板を支持する支持点間の距離をL、平板のヤング率をE、断面二次モーメントをIとすると、
たわみ量=(P×L3 )/(α×E×I) ・・・・(2)
で表すことができる。ここでαは平板の固定支持方法によって変わる定数である。いかなる物体においても、物体の質量に対して同等に荷重される重力Pは物体の比重に比例するので、基板とマスクのたわみ量を比較する場合は、重力Pを比重ρに置き換えることができる。また、蒸着時に基板とマスクを密着させて固定支持する場合は、基板とマスクのαは同じ値とすることができる。よって、基板のたわみ量がマスクのたわみ量より大きくなる条件式は(1)式のようになる。
By the way, the deflection amount of a general flat plate is as follows: P is the gravity applied to the flat plate, L is the distance between the support points supporting the flat plate, E is the Young's modulus of the flat plate, and I is the moment of inertia of the cross section.
Deflection amount = (P × L 3 ) / (α × E × I) (2)
It can be expressed as Here, α is a constant that varies depending on the method of fixing and supporting the flat plate. In any object, gravity P that is equally loaded with respect to the mass of the object is proportional to the specific gravity of the object, so that gravity P can be replaced with specific gravity ρ when comparing the deflection amount of the substrate and the mask. When the substrate and the mask are brought into close contact with each other during vapor deposition and fixedly supported, α of the substrate and the mask can be set to the same value. Therefore, the conditional expression that causes the deflection amount of the substrate to be larger than the deflection amount of the mask is expressed by equation (1).

(1)式を満たすように形成された基板とマスクを用いると、同じ条件で対向させて支持した場合の基板のたわみ量がマスクのたわみ量よりも大きくなり、蒸着時に基板とマスクを密着させることが可能になる。   When a substrate and a mask formed so as to satisfy the expression (1) are used, the amount of deflection of the substrate when opposed and supported under the same conditions becomes larger than the amount of deflection of the mask, and the substrate and the mask are brought into close contact during vapor deposition. It becomes possible.

マスク20は、前述のように、マスク部21と、マスク部21にテンションを加えて支持する厚みHのフレーム22から構成される。図2の(b)に示すように、フレーム22の対向した2辺上の領域で支持手段2によってマスク20を支持する場合は、マスク20の幅LM は支持した2辺間の距離に相当する。マスク部21は、マスク蒸着するための複数の蒸気通孔を有する。図2では、複数のマスク部21を有しているが、マスク蒸着が可能であればこの限りではなく、例えば単一のマスク部のみを有するマスクでもよい。また、マスク部21は、矩形のものに限らず、いかなる形状でも構わない。 As described above, the mask 20 includes the mask portion 21 and the frame 22 having a thickness H that supports the mask portion 21 by applying tension thereto. As shown in (b) of FIG. 2, when supporting the mask 20 by the support means 2 in the area on the two sides facing the frame 22, the width L M of the mask 20 corresponds to the distance between the support and the two sides To do. The mask unit 21 has a plurality of vapor holes for mask vapor deposition. In FIG. 2, the plurality of mask portions 21 are provided. However, this is not limited as long as mask vapor deposition is possible. For example, a mask having only a single mask portion may be used. Further, the mask portion 21 is not limited to a rectangular shape, and may have any shape.

マスク部21には、銅、ニッケル、ステンレス等の部材を用いることができる。また、ニッケル、ニッケル−コバルト合金、ニッケル−鉄合金であるインバー材、ニッケル−鉄−コバルト合金であるスーパーインバー材等のニッケル合金を用いて電鋳製法でマスク部21を作製してもよい。特に、インバー材、スーパーインバー材の熱膨張係数は1〜2×10-6/℃と他の金属に比べて小さいので、蒸着時における熱膨張によるマスク20の変形を抑えることができる。 For the mask portion 21, a member such as copper, nickel, and stainless steel can be used. Alternatively, the mask portion 21 may be formed by electroforming using a nickel alloy such as nickel, a nickel-cobalt alloy, an invar material that is a nickel-iron alloy, or a super invar material that is a nickel-iron-cobalt alloy. In particular, since the thermal expansion coefficient of Invar material and Super Invar material is 1-2 × 10 −6 / ° C., which is smaller than that of other metals, deformation of the mask 20 due to thermal expansion during vapor deposition can be suppressed.

フレーム22は、マスク部21にテンションを加えた状態で固定支持するために大きい剛性を備えたものであり、その剛性を付与するために十分な厚みと幅を持たせている。特にフレーム22の最外周の幅を大きくすることが好ましいが、マスク部21の精度を保つことが可能であればこの限りではない。フレーム22には、ニッケル−鉄合金であるインバー材やニッケル−鉄−コバルト合金であるスーパーインバー材等の低熱膨張係数の材質を用いることができる。フレーム22に低熱膨張係数の材質を用いることで、マスク部21に用いた場合と同様に、熱膨張によるマスクの変形を抑える効果が得られる。   The frame 22 has a large rigidity for fixing and supporting the mask portion 21 in a state in which a tension is applied, and has a sufficient thickness and width to give the rigidity. In particular, it is preferable to increase the width of the outermost periphery of the frame 22, but this is not necessary as long as the accuracy of the mask portion 21 can be maintained. The frame 22 can be made of a material having a low thermal expansion coefficient such as an invar material that is a nickel-iron alloy or a super invar material that is a nickel-iron-cobalt alloy. By using a material having a low thermal expansion coefficient for the frame 22, the effect of suppressing deformation of the mask due to thermal expansion can be obtained as in the case of using the mask portion 21.

図3に示すように、マスク20の対向する2辺を支持して蒸着を行う場合は、対向する2辺に対して平行なフレーム部の厚みを残りのフレーム部の厚みよりも小さくした薄肉部22aを設けてもよい。   As shown in FIG. 3, when performing vapor deposition while supporting two opposite sides of the mask 20, a thin portion in which the thickness of the frame portion parallel to the two opposite sides is smaller than the thickness of the remaining frame portion 22a may be provided.

マスク20の断面二次モーメントIM はマスク20の厚みHの3乗に比例するので、(2)式より、厚みHを小さくすればたわみ量が大きくなることが明らかである。図3に示すように、マスク20を対向した2辺で支持する場合、その2辺に対して垂直方向のフレーム部の厚みは断面二次モーメント、つまりマスク20のたわみ量に大きく影響する。一方、支持する2辺に対して平行なフレーム部の厚みは、マスク20のたわみへの影響が小さい方向であるので、垂直方向のフレーム部の厚みほどたわみ量に大きく影響しない。従って、厚みを小さくした薄肉部22aを設けても、断面二次モーメントIM への影響は小さく、またフレームの厚みを小さくした分だけマスク20の比重ρM が小さくなるので、マスク20のたわみ量をより小さくすることができる。その結果、(1)式の右辺が小さくなり、(1)式を満たす方向に働くので、基板10とマスク20を密着させることが可能となる。 Since the secondary moment of inertia I M of the mask 20 is proportional to the cube of the thickness H of the mask 20, it is clear from the equation (2) that the amount of deflection increases as the thickness H is reduced. As shown in FIG. 3, when the mask 20 is supported by two opposing sides, the thickness of the frame portion in the direction perpendicular to the two sides greatly affects the cross-sectional second moment, that is, the deflection amount of the mask 20. On the other hand, the thickness of the frame portion parallel to the two sides to be supported is in a direction in which the influence on the deflection of the mask 20 is small, and therefore, the thickness of the frame portion in the vertical direction does not greatly affect the deflection amount. Therefore, even if the thin-walled portion 22a having a reduced thickness is provided, the influence on the cross-sectional secondary moment I M is small, and the specific gravity ρ M of the mask 20 is reduced by the reduction in the thickness of the frame. The amount can be made smaller. As a result, the right side of the equation (1) becomes small and works in a direction that satisfies the equation (1), so that the substrate 10 and the mask 20 can be brought into close contact with each other.

フレーム22の厚みを小さくする領域は特に限定しないが、マスク20のたわみ量をより小さくすることを目的としているため、好ましくはマスク20の重心に近い領域がよい。   The area in which the thickness of the frame 22 is reduced is not particularly limited, but the area close to the center of gravity of the mask 20 is preferable because it aims to reduce the amount of deflection of the mask 20.

あるいは、図4に示すように、フレーム22の2辺を支持して蒸着を行う場合に、支持する2辺に対して平行なフレーム部に開口部22bを形成してもよい。フレーム22の一部に開口部22bを形成しても、前述したようにマスク20のたわみへの影響が小さい方向であるので、垂直方向のフレーム部のようにたわみ量に大きく影響しない。すなわち、フレーム22に開口部22bを形成しても、断面二次モーメントIM への影響は小さく、またフレーム22に開口部22bを形成した分だけマスク20の比重ρM が小さくなるので、マスク20のたわみ量をより小さくすることが可能になる。その結果、(1)式の右辺が小さくなり、(1)式を満たす方向に働くので、基板10とマスク20を密着させることが可能となる。 Alternatively, as shown in FIG. 4, when vapor deposition is performed while supporting two sides of the frame 22, the opening 22 b may be formed in a frame portion parallel to the two supported sides. Even if the opening 22b is formed in a part of the frame 22, since the influence on the deflection of the mask 20 is small as described above, the deflection amount is not greatly affected unlike the frame portion in the vertical direction. That is, even if the opening 22b is formed in the frame 22, the influence on the cross-sectional secondary moment I M is small, and the specific gravity ρ M of the mask 20 is reduced by the amount of the opening 22b formed in the frame 22. The amount of deflection of 20 can be further reduced. As a result, the right side of the equation (1) becomes small and works in a direction that satisfies the equation (1), so that the substrate 10 and the mask 20 can be brought into close contact with each other.

開口部22bを形成する領域は特に限定しないが、マスク20のたわみ量をより小さくすることを目的としているため、好ましくはよりマスク20の重心に近い領域がよい。   The region in which the opening 22b is formed is not particularly limited, but it is intended to reduce the amount of deflection of the mask 20, so that a region closer to the center of gravity of the mask 20 is preferable.

なお、支持する2辺に対して平行なフレーム部の厚みを垂直方向のフレーム部の厚みよりも小さくした上で、開口部を設けてもよい。   The opening may be provided after the thickness of the frame part parallel to the two sides to be supported is made smaller than the thickness of the frame part in the vertical direction.

開口部は単一でも複数でもよく、また、フレームの容積を小さくする目的であれば、開口していない凹部形状でもよいし、開口部と凹部形状の両方が形成されていてもよい。   There may be a single opening or a plurality of openings. For the purpose of reducing the volume of the frame, the opening may have a recessed shape that is not open, or both the opening and the recessed shape may be formed.

ここでは、有機EL層を蒸着するための蒸着用マスクについて説明したが、CVDによって有機EL素子の保護膜を成膜するためのマスクについても同様である。   Although the vapor deposition mask for depositing the organic EL layer has been described here, the same applies to the mask for depositing the protective film of the organic EL element by CVD.

基板には、400mm×500mmの大きさで0.7mm厚の無水アルカリガラス基板(ヤング率7×1010Pa、比重2.5)を用いた。この基板上に定法によって薄膜トランジスタと電極配線、および画素電極がマトリクス状に形成されている。有機EL層の蒸着用のマスクは、まずインバー材(ヤング率14.4×1010Pa、比重8.85)からなる400mm×500mmの大きさで1mm厚のフレームの基板側の面に対して、マスク部をパターン精度を調整しながら電鋳製法によって形成した。マスク部は、40mm×60mmの大きさで20μm厚であり、ひとつのマスクに対して6×7個の合計42個のマトリックス状に配列させた。 An anhydrous alkali glass substrate (Young's modulus 7 × 10 10 Pa, specific gravity 2.5) having a size of 400 mm × 500 mm and a thickness of 0.7 mm was used as the substrate. Thin film transistors, electrode wirings, and pixel electrodes are formed in a matrix on this substrate by a conventional method. The mask for vapor deposition of the organic EL layer is a size of 400 mm × 500 mm made of Invar material (Young's modulus 14.4 × 10 10 Pa, specific gravity 8.85), and is 1 mm thick on the substrate side surface. The mask portion was formed by electroforming while adjusting the pattern accuracy. The mask portion was 40 mm × 60 mm in size and 20 μm thick, and was arranged in a total of 42 matrices of 6 × 7 for one mask.

この基板の対向する長辺を支持して基板のたわみ量を測定すると、支持した辺から最も下向きにたわんだ基板の領域までのたわみ量は、4.2mmであった。同様に、マスクの対向する長辺を支持してマスクのたわみ量を測定すると、支持した辺から最も下向きにたわんだマスクの領域までのたわみ量は、1.6mmであり、基板のたわみ量のほうがマスクのたわみ量よりも大きい値であった。   When the amount of deflection of the substrate was measured while supporting the opposing long sides of the substrate, the amount of deflection from the supported side to the region of the substrate that bent most downward was 4.2 mm. Similarly, when the amount of deflection of the mask is measured while supporting the opposite long sides of the mask, the amount of deflection from the supported side to the area of the mask that is most bent downward is 1.6 mm, which is the amount of deflection of the substrate. The value was larger than the amount of deflection of the mask.

有限要素法を用いた公知の構造計算によって、マスクの均質化したヤング率と比重はそれぞれ、14.0×1010Paと4.4と求まった。これらの材料特性値をもとに、(1)式の左辺と右辺の比を求めると、約3:1となり、基板とマスクのそれぞれのたわみ量の測定値である、4.2mmと1.6mmの比とほぼ同じになった。 The known Young's modulus and specific gravity of the mask were found to be 14.0 × 10 10 Pa and 4.4, respectively, by a known structural calculation using the finite element method. Based on these material characteristic values, the ratio of the left side and the right side of Equation (1) is found to be about 3: 1, which is a measured value of the deflection amount of each of the substrate and the mask, 4.2 mm and 1. It became almost the same as the ratio of 6 mm.

マスクのパターン部の蒸気通孔部と基板上の画素パターンが一致するように位置合わせを行い、基板とマスクの対向する長辺を支持して密着させた。   Position alignment was performed so that the vapor passage hole portion of the pattern portion of the mask and the pixel pattern on the substrate coincided, and the long sides facing the substrate and the mask were supported and adhered.

このように、マスクと基板の密着性を向上させて公知の発光材料を用いて真空蒸着することで、基板上に寸法精度のよい有機EL層のパターンが形成された有機EL素子を製造することが可能となり、表示ムラのない有機EL表示装置を実現することができた。   Thus, the organic EL element in which the pattern of the organic EL layer with good dimensional accuracy is formed on the substrate is manufactured by improving the adhesion between the mask and the substrate and performing vacuum deposition using a known light emitting material. Thus, an organic EL display device free from display unevenness could be realized.

マスクの対向した長辺に対して平行なフレーム部の厚みを0.5mmとし、他の領域のフレーム部の厚みを0.7mmとした以外は、実施例1と同様の条件で有機EL層を蒸着した。   The organic EL layer was formed under the same conditions as in Example 1 except that the thickness of the frame portion parallel to the opposing long sides of the mask was 0.5 mm and the thickness of the frame portion in other regions was 0.7 mm. Vapor deposited.

基板の対向する長辺を支持して基板のたわみ量を測定すると、支持した辺から最も下向きにたわんだ領域までのたわみ量は、4.2mmであった。同様に、マスクの対向する長辺を支持してマスクのたわみ量を測定すると、支持した辺から最も下向きにたわんだ領域までのたわみ量は、4.1mmであり、基板のたわみ量のほうがマスクのたわみ量よりも大きい値であった。   When the amount of deflection of the substrate was measured while supporting the opposing long sides of the substrate, the amount of deflection from the supported side to the most downwardly bent region was 4.2 mm. Similarly, when the amount of deflection of the mask is measured while supporting the opposing long sides of the mask, the amount of deflection from the supported side to the most downwardly deflected region is 4.1 mm, and the amount of deflection of the substrate is greater than that of the mask. The value was larger than the amount of deflection.

マスクのパターン部の蒸気通孔部と基板上の画素パターンが一致するように位置合わせを行い、基板とマスクの対向する長辺を支持して密着させた。   Position alignment was performed so that the vapor passage hole portion of the pattern portion of the mask and the pixel pattern on the substrate coincided, and the long sides facing the substrate and the mask were supported and adhered.

このように、マスクと基板の密着性を向上させて公知の発光材料を用いて真空蒸着することで、基板上に寸法精度のよい有機EL層のパターンが形成された有機EL素子を製造することが可能となり、表示ムラのない有機EL表示装置を実現することができた。   Thus, the organic EL element in which the pattern of the organic EL layer with good dimensional accuracy is formed on the substrate is manufactured by improving the adhesion between the mask and the substrate and performing vacuum deposition using a known light emitting material. Thus, an organic EL display device free from display unevenness could be realized.

マスクの対向した長辺に対して平行なフレーム部の厚みを0.5mmとし、1mm×30mmの開口部をマスクの重心に近いフレーム内に合計12箇所設け、他の領域のフレーム部の厚みを0.7mmとした以外は、実施例1と同様の条件で有機EL層を蒸着した。   The thickness of the frame part parallel to the opposing long sides of the mask is 0.5 mm, and a total of 12 openings of 1 mm × 30 mm are provided in the frame near the center of gravity of the mask. An organic EL layer was deposited under the same conditions as in Example 1 except that the thickness was 0.7 mm.

基板の対向する長辺を支持して基板のたわみ量を測定すると、支持した辺から最も下向きにたわんだ領域までのたわみ量は、4.2mmであった。同様に、このマスクの対向する長辺を支持してマスクのたわみ量を測定すると、支持した辺から最も下向きにたわんだ領域までのたわみ量は、4.0mmであり、基板のたわみ量のほうがマスクのたわみ量よりも大きい値であった。   When the amount of deflection of the substrate was measured while supporting the opposing long sides of the substrate, the amount of deflection from the supported side to the most downwardly bent region was 4.2 mm. Similarly, when the amount of deflection of the mask is measured while supporting the opposing long sides of the mask, the amount of deflection from the supported side to the most downwardly deflected region is 4.0 mm, and the amount of substrate deflection is greater. The value was larger than the deflection amount of the mask.

マスクのパターン部の蒸気通孔部と基板上の画素パターンが一致するように位置合わせを行い、基板とマスクの対向する長辺を支持して密着させた。   Position alignment was performed so that the vapor passage hole portion of the pattern portion of the mask and the pixel pattern on the substrate coincided, and the long sides facing the substrate and the mask were supported and adhered.

このように、マスクと基板の密着性を向上させて公知の発光材料を用いて真空蒸着することで、基板上に寸法精度のよい有機EL層のパターンが形成された有機EL素子を製造することが可能となり、表示ムラのない有機EL表示装置を実現することができた。   Thus, the organic EL element in which the pattern of the organic EL layer with good dimensional accuracy is formed on the substrate is manufactured by improving the adhesion between the mask and the substrate and performing vacuum deposition using a known light emitting material. Thus, an organic EL display device free from display unevenness could be realized.

(比較例)
蒸着用のマスクのフレーム全体の厚みを0.5mmとした以外は実施例1と同様の条件で有機EL層を蒸着した。
(Comparative example)
The organic EL layer was deposited under the same conditions as in Example 1 except that the thickness of the entire frame of the deposition mask was 0.5 mm.

基板の対向する長辺を支持して基板のたわみ量を測定すると、支持した辺から最も下向きにたわんだ領域までのたわみ量は、4.2mmであった。同様に、マスクの対向する長辺を支持してマスクのたわみ量を測定すると、支持した辺から最も下向きにたわんだ領域までのたわみ量は、11.5mmであり、基板のたわみ量のほうがマスクのたわみ量よりも小さい値であった。   When the amount of deflection of the substrate was measured while supporting the opposing long sides of the substrate, the amount of deflection from the supported side to the most downwardly bent region was 4.2 mm. Similarly, when the amount of deflection of the mask is measured while supporting the opposite long sides of the mask, the amount of deflection from the supported side to the most downwardly deflected region is 11.5 mm, and the amount of deflection of the substrate is larger than that of the mask. The value was smaller than the amount of deflection.

マスクのパターン部の蒸気通孔部と基板上の画素パターンが一致するように位置合わせを行い、基板とマスクの対向する長辺を支持して密着させた。   Position alignment was performed so that the vapor passage hole portion of the pattern portion of the mask and the pixel pattern on the substrate coincided, and the long sides facing the substrate and the mask were supported and adhered.

この蒸着方法では、基板のたわみ量よりもマスクのたわみ量のほうが大きくて、マスクと基板を厳密に隙間無く密着させることが困難であった。公知の発光材料を用いて真空蒸着すると、基板上に形成された有機EL層のパターンにずれが生じ、得られた有機EL素子に表示ムラが生じた。   In this vapor deposition method, the deflection amount of the mask is larger than the deflection amount of the substrate, and it is difficult to closely adhere the mask and the substrate without a gap. When vacuum deposition was performed using a known light emitting material, the pattern of the organic EL layer formed on the substrate was shifted, and display unevenness occurred in the obtained organic EL element.

本発明の成膜方法および成膜用マスクは、基板やマスクのたわみが問題になる蒸着プロセスやCVDプロセス等でマスクを用いる成膜工程で幅広く適用できる。   The film formation method and the film formation mask of the present invention can be widely applied in a film formation process using a mask in a vapor deposition process, a CVD process, or the like in which the deflection of the substrate or the mask is a problem.

一実施の形態による成膜方法を説明する工程図である。It is process drawing explaining the film-forming method by one Embodiment. マスクの構成を示すもので、(a)はその斜視図、(b)は平面図である。The structure of a mask is shown, (a) is the perspective view, (b) is a top view. 実施例1および実施例2によるマスクを示す平面図である。It is a top view which shows the mask by Example 1 and Example 2. FIG. 実施例3によるマスクを示す平面図である。10 is a plan view showing a mask according to Example 3. FIG. 従来例を説明する工程図である。It is process drawing explaining a prior art example.

符号の説明Explanation of symbols

1、2 支持手段
10 基板
20 マスク
21 マスク部
22 フレーム
22a 薄肉部
22b 開口部
1, 2 Support means 10 Substrate 20 Mask 21 Mask part 22 Frame 22a Thin part 22b Opening part

Claims (4)

成膜用マスクを用いた成膜方法であって、
成膜面を下向きにした被成膜基材と成膜用マスクを対向させて支持する工程と、
対向させた被成膜基材と成膜用マスクを互に密着させる工程と、
密着させた成膜用マスクを介して被成膜基材に膜を成膜する工程と、を有し、
互に密着させる前の被成膜基材の自重によるたわみ量が成膜用マスクの自重によるたわみ量より大であることを特徴とする成膜方法。
A film forming method using a film forming mask,
A process of supporting the deposition target substrate with the deposition surface facing downward and the deposition mask facing each other;
A step of closely attaching the deposition target substrate and the deposition mask facing each other;
Forming a film on the substrate to be deposited through a film-forming mask adhered thereto, and
A film forming method characterized in that the amount of deflection due to the weight of the film forming substrates before being adhered to each other is larger than the amount of deflection due to the weight of the film forming mask.
成膜面を下向きにした被成膜基材に成膜する成膜方法に用いる成膜用マスクであって、
前記被成膜基材を均質化したヤング率をEG 、比重をρG 、前記被成膜基材の前記成膜面に垂直な方向の断面二次モーメントをIG 、前記被成膜基材の幅をLG とし、前記成膜用マスクを均質化したヤング率をEM 、比重をρM 、前記成膜用マスクのマスク面に垂直な方向の断面二次モーメントをIM 、前記成膜用マスクの幅をLM としたとき、
G ×LG 3)/(EG ×IG )>(ρM ×LM 3)/(EM ×IM
を満たすことを特徴とする成膜用マスク。
A film formation mask used in a film formation method for forming a film on a film formation substrate with a film formation surface facing downward,
The Young's modulus obtained by homogenizing the film-forming substrate is E G , the specific gravity is ρ G, the cross-sectional second moment in the direction perpendicular to the film-forming surface of the film-forming substrate is I G , and the film-forming substrate the width of the wood and L G, said the film formation mask homogenized Young's modulus E M, specific gravity [rho M, the perpendicular direction of the second moment to the mask surface of the film formation mask I M, the when the width of the film formation mask was L M,
G × L G 3 ) / (E G × I G )> (ρ M × L M 3 ) / (E M × I M )
A film forming mask characterized by satisfying the above.
前記成膜用マスクのフレームの対向した2辺上の領域を支持するように構成されており、前記フレームが、前記2辺に対して平行に延在する薄肉部または開口部を備えることを特徴とする請求項2記載の成膜用マスク。   The film-forming mask is configured to support regions on two opposite sides of the frame, and the frame includes a thin portion or an opening that extends in parallel to the two sides. The film-forming mask according to claim 2. 請求項1記載の成膜方法を用いて有機EL素子を製造することを特徴とする有機EL素子の製造方法。   An organic EL device is produced using the film forming method according to claim 1, wherein the organic EL device is produced.
JP2006049527A 2006-02-27 2006-02-27 Film-forming method, and mask used in forming film Pending JP2007224396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049527A JP2007224396A (en) 2006-02-27 2006-02-27 Film-forming method, and mask used in forming film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049527A JP2007224396A (en) 2006-02-27 2006-02-27 Film-forming method, and mask used in forming film

Publications (1)

Publication Number Publication Date
JP2007224396A true JP2007224396A (en) 2007-09-06

Family

ID=38546468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049527A Pending JP2007224396A (en) 2006-02-27 2006-02-27 Film-forming method, and mask used in forming film

Country Status (1)

Country Link
JP (1) JP2007224396A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038178A (en) * 2006-08-03 2008-02-21 Tokki Corp Plasma type mask cvd system
WO2009090839A1 (en) * 2008-01-16 2009-07-23 Tokki Corporation Film-forming apparatus
US20100260938A1 (en) * 2007-12-13 2010-10-14 Tokki Corporation Mask for film formation and mask-affixing method
JP2013160581A (en) * 2012-02-03 2013-08-19 Yokogawa Electric Corp Coating dimension measuring device
WO2014132831A1 (en) * 2013-02-26 2014-09-04 東レエンジニアリング株式会社 Substrate treatment apparatus, method for positioning mask, apparatus for forming film, and method for forming film
JP2014161815A (en) * 2013-02-26 2014-09-08 Toray Eng Co Ltd Coating device and coating method
JP2014161814A (en) * 2013-02-26 2014-09-08 Toray Eng Co Ltd Substrate treatment apparatus, film forming apparatus, and setting method of mask
US9653706B2 (en) 2013-11-14 2017-05-16 Kabushiki Kaisha Toshiba Organic electroluminescent element, lighting device, lighting system, and method for manufacturing organic electroluminescent element
JP2019516867A (en) * 2016-05-24 2019-06-20 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Shadow mask with plasma resistant coating
JP2020158829A (en) * 2019-03-26 2020-10-01 株式会社アルバック Vacuum apparatus, transportation apparatus and alignment method
JP2020164943A (en) * 2019-03-29 2020-10-08 株式会社アルバック Vacuum device, conveyor and alignment method
JP2021080567A (en) * 2021-01-28 2021-05-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Shadow mask with plasma resistant coating
JP2021143408A (en) * 2020-03-13 2021-09-24 キヤノントッキ株式会社 Mask attachment device, film deposition apparatus, mask attachment method, film deposition method, method of manufacturing electronic device, mask, substrate carrier, and set of substrate carrier and mask

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038178A (en) * 2006-08-03 2008-02-21 Tokki Corp Plasma type mask cvd system
US20100260938A1 (en) * 2007-12-13 2010-10-14 Tokki Corporation Mask for film formation and mask-affixing method
WO2009090839A1 (en) * 2008-01-16 2009-07-23 Tokki Corporation Film-forming apparatus
JP2009167471A (en) * 2008-01-16 2009-07-30 Tokki Corp Film deposition apparatus
US8359999B2 (en) 2008-01-16 2013-01-29 Tokki Corporation Film forming device
JP2013160581A (en) * 2012-02-03 2013-08-19 Yokogawa Electric Corp Coating dimension measuring device
WO2014132831A1 (en) * 2013-02-26 2014-09-04 東レエンジニアリング株式会社 Substrate treatment apparatus, method for positioning mask, apparatus for forming film, and method for forming film
JP2014161815A (en) * 2013-02-26 2014-09-08 Toray Eng Co Ltd Coating device and coating method
JP2014161814A (en) * 2013-02-26 2014-09-08 Toray Eng Co Ltd Substrate treatment apparatus, film forming apparatus, and setting method of mask
CN105026051A (en) * 2013-02-26 2015-11-04 东丽工程株式会社 Substrate treatment apparatus, method for positioning mask, apparatus for forming film, and method for forming film
US9653706B2 (en) 2013-11-14 2017-05-16 Kabushiki Kaisha Toshiba Organic electroluminescent element, lighting device, lighting system, and method for manufacturing organic electroluminescent element
JP2019516867A (en) * 2016-05-24 2019-06-20 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Shadow mask with plasma resistant coating
US11566322B2 (en) 2016-05-24 2023-01-31 Applied Materials, Inc. Shadow mask with plasma resistant coating
JP2020158829A (en) * 2019-03-26 2020-10-01 株式会社アルバック Vacuum apparatus, transportation apparatus and alignment method
JP7292913B2 (en) 2019-03-26 2023-06-19 株式会社アルバック Vacuum device, Conveyor, Alignment method
JP2020164943A (en) * 2019-03-29 2020-10-08 株式会社アルバック Vacuum device, conveyor and alignment method
JP7263082B2 (en) 2019-03-29 2023-04-24 株式会社アルバック Vacuum device, Conveyor, Alignment method
JP2021143408A (en) * 2020-03-13 2021-09-24 キヤノントッキ株式会社 Mask attachment device, film deposition apparatus, mask attachment method, film deposition method, method of manufacturing electronic device, mask, substrate carrier, and set of substrate carrier and mask
JP7113861B2 (en) 2020-03-13 2022-08-05 キヤノントッキ株式会社 Mask mounting device, film forming device, mask mounting method, film forming method, electronic device manufacturing method
JP2021080567A (en) * 2021-01-28 2021-05-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Shadow mask with plasma resistant coating

Similar Documents

Publication Publication Date Title
JP2007224396A (en) Film-forming method, and mask used in forming film
US7572338B2 (en) Mask for depositing thin film of flat panel display and method of fabricating the mask
JP4773834B2 (en) Mask film forming method and mask film forming apparatus
TWI500784B (en) Mask plate component
US7915073B2 (en) Method of manufacturing the organic electroluminescent display and organic electroluminescent display manufactured by the method
US8343278B2 (en) Mask assembly and deposition and apparatus for a flat panel display using the same
JP5238393B2 (en) Film forming apparatus and film forming method using the same
CN101280411B (en) Mask frame assembly for thin film deposition of flat panel display and depositing equipment of the same
KR20100000129A (en) A deposition mask unit for fabrication of organic light emitting display device
TW201909237A (en) Multi-layer mask
JP2005154879A (en) Metal mask for vapor deposition, and method of producing vapor deposition pattern using the same
JP2005174843A (en) Deposition mask and its manufacturing method
JP2013055039A (en) Manufacturing method of el light-emitting device and vapor deposition device
JP2009009777A (en) Film forming mask
TW201420785A (en) Mask strips and method for manufacturing organic light emitting diode display using the same
JP2017538864A (en) Mask configuration for masking a substrate in a processing chamber, apparatus for depositing a layer on a substrate, and method for aligning a mask configuration for masking a substrate in a processing chamber
JP2014194062A (en) Mask frame unit, mask apparatus, and processing method
JP4401040B2 (en) Evaporation mask
JP2008184670A (en) Method for producing organic el element, and mask for film deposition
JP2011214051A (en) Metal mask for vapor deposition and apparatus therefor
TWI500785B (en) Mask plate component for large-size oled evaporation
US20150299840A1 (en) Mask frame
JP2008198500A (en) Manufacturing method and apparatus of organic el display
JP2005276480A (en) Mask, manufacturing method of mask, forming method of thin film pattern, manufacturing method of electro-optical device, and electronic apparatus
KR100603400B1 (en) Mask for depositing thin film in flat panel display device