JP2007223820A - カーボンナノ構造体の製造方法、触媒金属基材および触媒反応容器 - Google Patents
カーボンナノ構造体の製造方法、触媒金属基材および触媒反応容器 Download PDFInfo
- Publication number
- JP2007223820A JP2007223820A JP2006043734A JP2006043734A JP2007223820A JP 2007223820 A JP2007223820 A JP 2007223820A JP 2006043734 A JP2006043734 A JP 2006043734A JP 2006043734 A JP2006043734 A JP 2006043734A JP 2007223820 A JP2007223820 A JP 2007223820A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- space
- catalytic metal
- gas
- metal substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
【課題】 高純度で長尺のカーボンナノ構造体を安定して製造することが可能なカーボンナノ構造体の製造方法を提供する。
【解決手段】 密閉容器と、前記密閉容器の内部空間を第一の空間と第二の空間に仕切る触媒金属基材と、前記触媒金属基材を固定する固定部材と、を備えた触媒反応容器を用い、前記触媒金属基材は、前記第一の空間に接する第一の表面と前記第二の空間に接する第二の表面を有するように配置されており、かつ前記第二の表面の少なくとも一部に、前記触媒金属基材表面から成長させた炭素塊を備えており、前記第一の空間に少なくとも炭素を含む原料ガスを供給し、前記第一の表面から前記触媒金属基材の内部を通って前記第二の表面に達した炭素を、前記炭素塊を基点としてカーボンナノ構造体に成長させる。
【選択図】 図3
【解決手段】 密閉容器と、前記密閉容器の内部空間を第一の空間と第二の空間に仕切る触媒金属基材と、前記触媒金属基材を固定する固定部材と、を備えた触媒反応容器を用い、前記触媒金属基材は、前記第一の空間に接する第一の表面と前記第二の空間に接する第二の表面を有するように配置されており、かつ前記第二の表面の少なくとも一部に、前記触媒金属基材表面から成長させた炭素塊を備えており、前記第一の空間に少なくとも炭素を含む原料ガスを供給し、前記第一の表面から前記触媒金属基材の内部を通って前記第二の表面に達した炭素を、前記炭素塊を基点としてカーボンナノ構造体に成長させる。
【選択図】 図3
Description
本発明は、カーボンナノ構造体の製造方法と、カーボンナノ構造体の製造に使用する触媒金属基材および触媒反応容器に関する。
カーボンナノチューブに代表されるカーボンナノ構造体はその特性から、広い用途の応用が考えられている有望な材料である。しかしながら、その製造の困難さから、高純度かつ高効率で生産する方法の開発が望まれている。
カーボンナノチューブを生成させる方法としては、ナノメートルレベルの直径を有する触媒粒子を用いて、アルコール系、炭化水素系等の原料ガスを加熱炉内で熱分解し、触媒粒子上にカーボン結晶を成長させてカーボンナノチューブとする熱分解法が考案されている。熱分解法には、塗布等によって基材上に触媒を担持させる方法や、気相中に触媒を浮遊させる方法等がある。
たとえば特許文献1には、有機遷移金属化合物のガスとキャリアガスと有機化合物のガスとの混合ガスを800〜1300℃に加熱することにより浮遊状態で気相成長炭素繊維を生成する方法が提案されている。
特許文献2には、基板上に触媒金属膜を形成する段階と、該触媒金属膜を蝕刻して分離されたナノサイズの触媒金属粒子を形成する段階と、熱化学気相蒸着装置内へカーボンソースガスを供給して熱化学気相蒸着法で分離されたナノサイズの触媒金属粒子毎にカーボンナノチューブを成長させて基板上に垂直に整列した複数個のカーボンナノチューブを形成する段階を含み、分離されたナノサイズの触媒金属粒子を形成する段階は、アンモニアガス、水素ガスおよび水素化物ガスからなる群から選択されたいずれか1つの蝕刻ガスを熱分解させて使用するガス蝕刻法によって行われるカーボンナノチューブの合成方法が提案されている。
特許文献3には、耐熱性の多孔質担体に触媒微粒子を分散担持させた基板上に炭化水素ガスをキャリアガスとともに送り、該炭化水素ガスの熱分解を利用して、単層カーボンナノチューブを気相合成する方法が提案されている。
特許文献4には、加熱した金属に対し炭素源となるガスを流して、化学気相成長法により該金属表面にカーボンナノチューブを製造する方法であって、該金属の表面にあらかじめ酸化物の微結晶を生成することにより金属表面に微細な凹凸を形成する処理がほどこされていることを特徴とする方法が提案されている。
特開昭60−54998号公報
特開2001−20071号公報
特開2002−255519号公報
特許第3421332号公報
しかし、特許文献1から4に記載されたような従来の方法では、カーボンナノチューブを製造するときに、カーボンナノチューブだけでなくアモルファスカーボンやグラファイト等が副生成物として生成されるという問題があった。また、触媒がアモルファスカーボン等で覆われてしまうことにより、カーボンナノチューブの成長が止まり、長さはせいぜい数mmであり、数cm以上に長尺化できないという問題があった。
本発明の目的は、上記課題を解決し、高純度で長尺のカーボンナノ構造体を安定して製造することが可能な、カーボンナノ構造体の新規な製造方法を提供することにある。さらに、本発明の他の目的は、カーボンナノ構造体の製造に使用する触媒金属基材および触媒反応容器を提供することにある。
本発明では、密閉容器と、密閉容器の内部空間を第一の空間と第二の空間に仕切る触媒金属基材と、触媒金属基材を固定する固定部材と、を備えた触媒反応容器を用いてカーボンナノ構造体を製造する。触媒金属基材は、第一の空間に接する第一の表面と第二の空間に接する第二の表面を有するように配置されており、かつ第二の表面の少なくとも一部に、触媒金属基材表面から成長させた炭素塊を備えている。密閉容器の第一の空間に少なくとも炭素を含む原料ガスを供給し、第一の表面から触媒金属基材の内部を通って第二の表面に達した炭素を、炭素塊を基点としてカーボンナノ構造体に成長させることによりカーボンナノ構造体を製造する(請求項1)。また、本発明は当該製造に用いる触媒金属基材(請求項4)と、触媒反応容器(請求項5)を提供する。
従来は触媒への炭素の供給部分とカーボンナノ構造体の成長部分が分離されていなかったが、本発明では触媒金属基材の炭素を含む原料ガスの供給面(第一の表面)とカーボンナノ構造体の成長面(第二の表面)を別々にし、炭素塊を基点としてカーボンナノ構造体を成長させている。このため、成長面がアモルファスカーボン等で覆われることが抑制され、高純度のカーボンナノ構造体を安定して成長させることができる。
なお、本発明における「カーボンナノ構造体」とは、主として炭素からなるチューブ状、渦巻状、ホーン状、球状などのナノメートルレベルの微小構造体をさす。「カーボンナノ構造体」の例としては、カーボンナノチューブ、カーボンナノコイル、カーボンナノホーン等があげられる。
また、本発明における「炭素塊」とは、主として炭素からなり、形状や大きさは特に限定されないが、太さが10μm以下の、さらに好ましくは1μm以下の円筒状、柱状、チューブ状、繊維状のものや、大きさが10μm以下の、さらに好ましくは1μm以下の円錐状、角錐状、球状、多角面体状のものなどである。ここで大きさとは、体積の立方根とする。また、炭素塊は結晶であっても非晶質であっても良く、またそれらの混合体であってもよい。
さらに、本発明において「触媒金属基材の表面に炭素塊が成長している」とは、触媒金属基材に溶け込んだ炭素が触媒金属基材表面から析出して成長して炭素塊となり、触媒金属基材から炭素塊へ炭素が拡散可能なように固定されている状態をいう。
本発明における触媒金属基材は板状であることが好ましい。板状とすることで、触媒金属基材の表裏の面を、第一の表面(原料ガスの供給面)と第二の表面(カーボンナノ構造体の成長面)とすることができ、密閉容器内部を仕切ることが容易となる。
また、触媒金属基材を板状とする場合、厚さは50μm以下とすることが好ましい(請求項2)。厚さを50μm以下とすることにより、触媒金属基材の第一の表面から触媒金属基材の内部を通して第二の表面へ炭素を供給する際に、炭素が成長部に達するまでの時間が短縮され、製造コストを節約できる。
また、触媒金属基材を板状とする場合、厚さは5μm以上とすることが好ましい。5μm以上とすることにより、金属基材の強度が上がり、カーボンナノ構造体の製造工程において穴が開くなどの破損が生じる可能性が小さくなる。
さらに、触媒金属基材は、鉄、コバルト、ニッケルのいずれか、又はこれらのうちの2種以上の合金からなることが好ましい。これらは炭素を含むガスを分解し、炭素を析出する触媒として適している材料である。このほか触媒基材としては、炭素ガスを分解して炭素を析出する触媒となる他の材料を使用することも可能である。
また、炭素塊は、触媒金属基材の表面上に複数点在することにより、複数のカーボンナノ構造体を同時に製造することができる(請求項3)。
本発明によれば、炭素塊を基点としてカーボンナノ構造体を成長させる新規の製造方法が提供される。また、原料ガスの熱分解によって生じた炭素の触媒金属基材への溶解と触媒金属基材からの炭素の析出によるカーボンナノ構造体の成長が、触媒金属基材の異なる特定の部位で生じるため、高純度で長尺のカーボンナノ構造体を安定して製造することができる。
(1)触媒金属基材の作製
図1は触媒金属基材を作製する装置の断面模式図である。図1には、密閉容器13と加熱炉18の断面模式図が示されている。直径20mmφ、厚さ50μmで、純度が99.99%以上の鉄からなる円板状の金属基材14を、円筒状の密閉容器13の内部に固定部材15で固定して設置する。金属基材14の厚さは、反応時間や強度を考慮して適宜選択することができる。
図1は触媒金属基材を作製する装置の断面模式図である。図1には、密閉容器13と加熱炉18の断面模式図が示されている。直径20mmφ、厚さ50μmで、純度が99.99%以上の鉄からなる円板状の金属基材14を、円筒状の密閉容器13の内部に固定部材15で固定して設置する。金属基材14の厚さは、反応時間や強度を考慮して適宜選択することができる。
密閉容器13の内部は、金属基材14により第一の空間11と第二の空間12に分離されており、炭素を含む原料ガスは第二の空間12にのみ供給される。第二の空間12に接している第二の表面17には炭素が供給され、炭素塊が成長する。第一の空間11に接している金属基材の第一の表面16には炭素ができるだけ付着したり析出しないように、第一の空間11に供給するガス種類は選択される。
炭素を含むガスとしては、COガスや、メタンガスやアセチレンガスなどの炭化水素ガスなどが使用できる。また、原料ガスに、希釈のための不活性ガスや、酸化防止のための還元性ガスを混合することもできる。圧力、流量や、2種以上の混合ガスを供給するときの流量比は、炭素塊の構造・形状などを制御するため適宜調整することができる。
空間11に供給するガスは、Arガスなどの不活性ガスだけでも良いが、表面の酸化を防止するための水素ガスなどの還元性ガスを混合することもできる。また、カーボンナノ構造体を成長させる前に予め浸炭させておくため、炭素を含むガスを混合することも可能である。圧力、流量や、2種以上の混合ガスを供給するときの流量比は、適宜調整することができる。さらには、空間11にはガスを供給せずに、ロータリーポンプなどの真空ポンプで排気しつづけ、真空状態とすることもできる。
炭素塊の成長させるための加熱時間や温度などの成長条件は、炭素塊の組成・構造・形状などを制御するため、適宜調整することができるが、触媒反応容器の内部の温度は炭素の鉄に対する溶解度が大きくなりすぎないように、727℃未満とすることが好ましい。
また炭素塊はできるだけ小さいことが好ましい。触媒金属基材の表面と平行な方向の径は1μm以下が好ましく、触媒金属基材の表面からの高さは10nm以下が好ましい。炭素塊が小さく、触媒金属基材の表面からの炭素塊の高さは低いほうが、カーボンナノ構造体は成長しやすい。加熱時間を短くしたり、温度を下げたりすることなどにより、炭素塊のサイズを調整する。
炭素塊の成長方法の一例を以下に示す。空間12に供給する原料ガスはCOガスとし、Arガスおよび水素ガスを混合して供給し、空間12の圧力は1気圧で、COガスの流量は200ml/分、Arガスの流量は50ml/分、水素ガスの流量は50ml/分とする。
また、空間11に供給するガスはArガスと水素ガスの混合ガスで、圧力は1気圧とする。Arガスの流量は250ml/分、水素ガスの流量は50ml/分とする。
上記のようにガスを供給した状態で、加熱炉18により触媒反応容器の内部の温度を650℃に加熱し、15分間保持することにより、第二の表面17に炭素塊を成長させ、カーボンナノ構造体の製造に用いる触媒金属基材とする。比較的低温で、短時間処理のため、金属基材14の第二の表面17にのみ炭素塊が成長する。
図2は、上記のようにして作製した触媒金属基材の断面模式図である。板状の鉄製の金属基材24の一方の面に、柱状の複数の炭素塊29がランダムに点在して成長している様子を示している。
(2)カーボンナノ構造体の作製
図3はカーボンナノ構造体の製造装置の断面模式図である。図3には、触媒反応容器と加熱炉の断面模式図が示されている。上記で作製した触媒金属基材34を用い、触媒金属基材34の作製に使用した装置でカーボンナノ構造体を作製する。
図3はカーボンナノ構造体の製造装置の断面模式図である。図3には、触媒反応容器と加熱炉の断面模式図が示されている。上記で作製した触媒金属基材34を用い、触媒金属基材34の作製に使用した装置でカーボンナノ構造体を作製する。
図1と図3の比較から容易に理解できるように、触媒金属基材を作製するための装置とカーボンナノ構造体を作製するための装置は同じ構造でよく、温度やガスの供給などの使用方法を変えるだけでよい。したがって、作製した触媒金属基材をいったん取り外して別の装置でカーボンナノ構造体を作製しても良いが、そのまま同じ装置でカーボンナノ構造体を作製して、触媒金属基材作製とカーボンナノ構造体作製の両工程を効率よく行うことが可能である。
触媒金属基材34を、円筒状の密閉容器33の内部に固定部材35で固定して設置する。密閉容器33の内部は、触媒金属基材34により第一の空間31と第二の空間32に分離されており、炭素を含む原料ガスは第一の空間31に供給される。第一の空間31に接している第一の表面36には炭素が供給され、触媒金属基材34の内部を炭素が通って、第二の空間32に接している触媒金属基材34の第二の表面37に達し、炭素塊39の先端よりカーボンナノ構造体310が成長する。
炭素を含むガスとしては、COガスや、メタンガスやアセチレンガスなどの炭化水素ガスなどが使用できる。また、原料ガスに、希釈のための不活性ガスや、酸化防止のための還元性ガスを混合することもできる。圧力、流量や、2種以上の混合ガスを供給するときの流量比は、カーボンナノ構造体の成長を制御するために適宜調整することができる。
空間32に供給するガスは、不活性ガスだけでも良いが、カーボンナノ構造体の成長を促進するように2種以上の混合ガスを使用することもできる。特に、酸化を防止するため、水素ガスなどの還元性ガスを混合しても良いし、還元性ガスのみとしてもよい。また、結晶化促進のために、炭素を含むガスを微量混合してもよい。圧力、流量や、2種以上の混合ガスを供給するときの流量比は、適宜調整することができる。さらには、空間32にはガスを供給せずに、ロータリーポンプなどの真空ポンプで排気しつづけ、真空状態とすることもできる。
カーボンナノ構造体を成長させるときの触媒反応容器の内部の温度は、炭素の鉄に対する溶解度が大きくなるように730℃以上とすることが好ましい。処理時間を長くして、連続的あるいは断続的に成長させることにより、長尺のカーボンナノ構造体を成長させることができる。加熱時間や温度などの成長条件は適宜調整することができる。
カーボンナノ構造体の成長方法の一例を以下に示す。空間31に供給する原料ガスはCOガスとし、Arガスおよび水素ガスを混合する。空間31の圧力は1気圧とし、COガスの流量は100ml/分、Arガスの流量は100ml/分、水素ガスの流量は100ml/分とする。
空間32に供給するガスはArガスと水素ガスの混合ガスで、圧力は1気圧とする。Arガスの流量は290ml/分、水素ガスの流量は10ml/分とする。
上記のようにガスを供給した状態で、加熱炉38により触媒反応容器の内部の温度を850℃に加熱し、2時間保持することにより、炭素塊39の先端よりカーボンナノ構造体310を成長させることができる。
カーボンナノ構造体であることは、電子顕微鏡などで観察したり、ラマン分光をおこなう等で、確認することができる。
上記に述べた方法は、触媒金属基材表面から成長させた炭素塊を基点としてカーボンナノ構造体を成長させるという新規のカーボンナノ構造体の製造方法である。また、金属基材に炭素塊を成長させた同じ装置で、炭素塊を成長させた後に、基材を取り外さずに続けてカーボンナノ構造体を作製することができる。さらに、触媒がアモルファスカーボン等で覆われて成長が止まることがないため、長尺のカーボンナノ構造体を作製することができる。
今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
11,31 第一の空間、 12,32 第二の空間、 13,33 密閉容器
14 金属基材、 24,34 触媒金属基材、 15,35 固定部材
16 金属基材の第一の表面、 17 金属基材の第二の表面
36 触媒金属基材の第一の表面、 37 触媒金属基材の第二の表面
18,38 加熱炉、 29,39 炭素塊、 310 カーボンナノ構造体
14 金属基材、 24,34 触媒金属基材、 15,35 固定部材
16 金属基材の第一の表面、 17 金属基材の第二の表面
36 触媒金属基材の第一の表面、 37 触媒金属基材の第二の表面
18,38 加熱炉、 29,39 炭素塊、 310 カーボンナノ構造体
Claims (5)
- 密閉容器と、前記密閉容器の内部空間を第一の空間と第二の空間に仕切る触媒金属基材と、前記触媒金属基材を固定する固定部材と、を備えた触媒反応容器を用い、
前記触媒金属基材は、前記第一の空間に接する第一の表面と前記第二の空間に接する第二の表面を有するように配置されており、かつ前記第二の表面の少なくとも一部に、前記触媒金属基材表面から成長させた炭素塊を備えており、
前記第一の空間に少なくとも炭素を含む原料ガスを供給し、
前記第一の表面から前記触媒金属基材の内部を通って前記第二の表面に達した炭素を、前記炭素塊を基点としてカーボンナノ構造体に成長させることを特徴とする、カーボンナノ構造体の製造方法。 - 前記触媒金属基材は板状であって、その厚さは50μm以下である請求項1に記載のカーボンナノ構造体の製造方法。
- 前記炭素塊が、前記触媒金属基材の表面上に複数点在する請求項1または請求項2に記載のカーボンナノ構造体の製造方法。
- 板状の触媒金属基材であって、少なくとも一方の表面から成長させた炭素塊を備えている、カーボンナノ構造体製造用の触媒金属基材。
- 密閉容器と、前記密閉容器の内部空間を第一の空間と第二の空間に仕切る触媒金属基材と、前記触媒金属基材を固定する固定部材と、を備える触媒反応容器であって、
前記触媒金属基材は、前記第一の空間に接する第一の表面と前記第二の空間に接する第二の表面を有するように配置されており、かつ前記第二の表面の少なくとも一部に炭素塊を備えている、カーボンナノ構造体製造用の触媒反応容器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006043734A JP2007223820A (ja) | 2006-02-21 | 2006-02-21 | カーボンナノ構造体の製造方法、触媒金属基材および触媒反応容器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006043734A JP2007223820A (ja) | 2006-02-21 | 2006-02-21 | カーボンナノ構造体の製造方法、触媒金属基材および触媒反応容器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007223820A true JP2007223820A (ja) | 2007-09-06 |
Family
ID=38545973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006043734A Pending JP2007223820A (ja) | 2006-02-21 | 2006-02-21 | カーボンナノ構造体の製造方法、触媒金属基材および触媒反応容器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007223820A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007222959A (ja) * | 2006-02-21 | 2007-09-06 | Sumitomo Electric Ind Ltd | カーボンナノ構造体の製造方法、触媒金属基材および触媒反応容器 |
JP2009184906A (ja) * | 2008-02-01 | 2009-08-20 | Qinghua Univ | カーボンナノチューブ構造体及びその製造方法 |
JP2013037860A (ja) * | 2011-08-05 | 2013-02-21 | Fujikura Ltd | カーボンナノファイバ複合電極 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005330175A (ja) * | 2004-04-23 | 2005-12-02 | Sumitomo Electric Ind Ltd | カーボンナノ構造体の製造方法 |
-
2006
- 2006-02-21 JP JP2006043734A patent/JP2007223820A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005330175A (ja) * | 2004-04-23 | 2005-12-02 | Sumitomo Electric Ind Ltd | カーボンナノ構造体の製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007222959A (ja) * | 2006-02-21 | 2007-09-06 | Sumitomo Electric Ind Ltd | カーボンナノ構造体の製造方法、触媒金属基材および触媒反応容器 |
JP2009184906A (ja) * | 2008-02-01 | 2009-08-20 | Qinghua Univ | カーボンナノチューブ構造体及びその製造方法 |
JP2013037860A (ja) * | 2011-08-05 | 2013-02-21 | Fujikura Ltd | カーボンナノファイバ複合電極 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumar | Carbon nanotube synthesis and growth mechanism | |
Hong et al. | Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts | |
Kumar et al. | Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production | |
US9073045B2 (en) | Carbon nano-tube manfuacturing method and carbon nano-tube manufacturing apparatus | |
Chattopadhyay et al. | Nanotips: growth, model, and applications | |
JP6335561B2 (ja) | 垂直方向に向きが揃ったカーボンナノチューブをダイアモンド基板上に成長させる方法 | |
US20110027164A1 (en) | Method and apparatus for synthesizing carbon nanotubes using ultrasonic evaporation | |
Guellati et al. | CNTs’ array growth using the floating catalyst-CVD method over different substrates and varying hydrogen supply | |
JP4834957B2 (ja) | 触媒構造体およびこれを用いたカーボンナノチューブの製造方法 | |
Das et al. | Carbon nanotubes synthesis | |
JP4983042B2 (ja) | カーボンナノ構造体の製造方法、および触媒反応容器 | |
JP2006520733A (ja) | 気相成長法による二重壁炭素ナノチューブの大量合成方法 | |
Chen et al. | The base versus tip growth mode of carbon nanotubes by catalytic hydrocarbon cracking: Review, challenges and opportunities | |
JP2007223820A (ja) | カーボンナノ構造体の製造方法、触媒金属基材および触媒反応容器 | |
CN104357841A (zh) | 一种铁族碳化物纳米晶体-石墨烯纳米带复合材料、制备及其应用 | |
KR101679693B1 (ko) | 탄소나노튜브 제조방법 및 하이브리드 탄소나노튜브 복합체 | |
JP5176277B2 (ja) | カーボンナノ構造体の製造方法および触媒基体 | |
KR100827951B1 (ko) | 니켈 포일에 직접 탄소나노튜브를 합성하는 방법 | |
US20140199546A1 (en) | Multi-branched n-doped carbon nanotubes and the process for making same | |
KR20040082949A (ko) | 기상합성법에 의한 단일벽 탄소 나노튜브의 대량 합성 방법 | |
Govindaraj et al. | Synthesis, growth mechanism and processing of carbon nanotubes | |
KR101287890B1 (ko) | 액상촉매전구체를 사용하여 탄소나노튜브를 제조하는 방법 | |
JP5067598B2 (ja) | カーボンナノ構造体の製造方法、触媒金属基材および触媒反応容器 | |
Firdaus et al. | Effect of Reaction Time and Catalyst Feed Rate towards Carbon Nanotubes Yields and Purity by Using Rotary Reactor | |
Zhang et al. | Evolution of catalyst design for controlled synthesis of chiral single-walled carbon nanotubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111025 |