JP2007222896A - Method for measuring humidity in cavity, and die-casting apparatus - Google Patents

Method for measuring humidity in cavity, and die-casting apparatus Download PDF

Info

Publication number
JP2007222896A
JP2007222896A JP2006045532A JP2006045532A JP2007222896A JP 2007222896 A JP2007222896 A JP 2007222896A JP 2006045532 A JP2006045532 A JP 2006045532A JP 2006045532 A JP2006045532 A JP 2006045532A JP 2007222896 A JP2007222896 A JP 2007222896A
Authority
JP
Japan
Prior art keywords
humidity
cavity
measurement
measuring
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006045532A
Other languages
Japanese (ja)
Inventor
Shinsuke Ukai
伸介 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2006045532A priority Critical patent/JP2007222896A/en
Publication of JP2007222896A publication Critical patent/JP2007222896A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring the humidity in a cavity, having higher accuracy with a simple constitution, in a die casting process. <P>SOLUTION: The method for measuring the humidity in the cavity, is performed as the followings, that is, in the die casting apparatus provided with the cavity constituted in a die and a vacuum generating means for exhausting gas in the cavity, at a prescribed measuring range (24) in a gas exhausting flowing passage (31) communicating the cavity with vacuum-generating means (27, 28), a moisture measuring means (21) for measuring the moisture in the gas passed through the measuring range, a temperature measuring means (22) for measuring the temperature of the gas and a pressure measuring means (23) for measuring the pressure of the gas, are attached; and in this measuring method, a measuring process for obtaining measured wave-form in each measured value at each casting cycle in the die casting apparatus and a calculating process for calculating the ratio of water molecules in the gas passed through the measuring range during the casting cycle, based on the measured wave-form, are performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、キャビティ湿度計測方法とダイカスト装置とに関する。より詳しくは、真空ダイカスト鋳造工程において品質管理の目的で鋳造部材成型時のキャビティ内湿度を計測するキャビティ湿度計測方法と、この湿度計測方法を実現できるダイカスト装置に関する。   The present invention relates to a cavity humidity measuring method and a die casting apparatus. More specifically, the present invention relates to a cavity humidity measuring method for measuring the humidity in the cavity at the time of molding a cast member for the purpose of quality control in a vacuum die casting process, and a die casting apparatus capable of realizing this humidity measuring method.

複雑な形状の鋳造物を薄肉かつ高精度に鋳造する方法として、溶湯をキャビティへ射出する直前にキャビティ内の大気を真空ポンプなどの真空発生手段で吸引して、円滑な湯流れにより緻密なワークを形成する真空ダイカストが従来から知られている。   As a method for casting a complex-shaped casting with a thin wall and high accuracy, the air in the cavity is sucked by a vacuum generating means such as a vacuum pump just before the molten metal is injected into the cavity, and a dense work is produced by a smooth hot water flow. Conventionally, a vacuum die casting for forming is known.

真空ダイカストにおいては、ワークの取り出しを容易にするためにキャビティ内部へ予め離型剤を噴霧・塗布してから型を締め、真空手段による真空引きの後に溶湯の射出を行っている。この離型剤は、水を主成分として構成されており、噴霧・塗布によってキャビティ内部だけでなく、型の分割面や型に設けられたイジェクタピンのクリアランスなどにも浸透してしまう。このため、真空発生手段による真空引きの際に型の分割面などに浸透した離型剤がキャビティ内部へ吸い出され、この吸い出された離型剤と射出された溶湯が接触すると大量の水蒸気が発生してブローホール(空孔)などの内部欠陥を形成する場合があった。このため、離型剤からの水蒸気による内部欠陥の発生を予知するために、キャビティ内の湿度を測定する様々な技術が提案されている。   In vacuum die casting, in order to make it easy to take out a workpiece, a mold release agent is sprayed and applied in advance to the inside of the cavity, the mold is closed, and the molten metal is injected after evacuation by vacuum means. This mold release agent is composed mainly of water, and penetrates not only inside the cavity but also into the partition surface of the mold and the clearance of the ejector pins provided on the mold by spraying and coating. For this reason, when a vacuum is generated by the vacuum generating means, the release agent that has permeated into the mold dividing surface is sucked into the cavity, and a large amount of water vapor is brought into contact with the sucked release agent and the injected molten metal. May occur, and internal defects such as blow holes (holes) may be formed. For this reason, various techniques for measuring the humidity in the cavity have been proposed in order to predict the occurrence of internal defects due to water vapor from the release agent.

例えば、特許文献1には、キャビティ内の気体を真空ポンプにより型外に排出する場合に、キャビティと真空ポンプとを連通する配管上に湿度センサと、その湿度センサの金型側と真空ポンプ側にそれぞれ開閉弁を設け、真空吸引時にその開閉弁を適切に制御してキャビティ内から排出された気体を捕集した後、その捕集した気体の湿度を計測することを特徴とするキャビティ湿度計測方法が開示されている。そして、捕集した気体を所定の時間保持した後に湿度の計測を行うことで、鋳造工程を阻害することなく湿度センサの反応時間が経過するまで気体と接触することができるので、正確にキャビティ内の湿度計測を行うことができるとしている。   For example, in Patent Document 1, when the gas in a cavity is discharged out of a mold by a vacuum pump, a humidity sensor is provided on a pipe that communicates the cavity and the vacuum pump, and the mold side and the vacuum pump side of the humidity sensor. Cavity humidity measurement, characterized in that an open / close valve is provided in each, and the gas discharged from the cavity is collected by appropriately controlling the open / close valve during vacuum suction, and then the humidity of the collected gas is measured. A method is disclosed. By measuring the humidity after holding the collected gas for a predetermined time, it is possible to contact the gas until the reaction time of the humidity sensor elapses without hindering the casting process. Humidity can be measured.

しかし、この従来技術によれば、捕集した気体については正確な湿度を測定することが可能ではあるが、気体を捕集するために真空吸引管部分に開閉弁とバイパスとを設置する必要があり、設備的に複雑になってしまうという問題点がある。また、計測する湿度は相対湿度であるから配管部分の温度が変化すれば湿度の値も変化してしまう。従って、計測した相対湿度によって鋳造部材の良否を判定する場合には、配管内温度を考慮しなければならないという課題がある。   However, according to this prior art, it is possible to measure the exact humidity of the collected gas, but it is necessary to install an on-off valve and a bypass in the vacuum suction pipe portion in order to collect the gas. There is a problem that it becomes complicated in terms of equipment. Moreover, since the humidity to be measured is relative humidity, the value of humidity will change if the temperature of the pipe portion changes. Therefore, when determining the quality of the cast member based on the measured relative humidity, there is a problem that the temperature in the pipe must be taken into consideration.

また、特許文献2には、金型内に湿度センサを設置して、金型内の気体を排出する排出バルブ経路と湿度センサに連通する湿度センサ経路とを並列に設けたことを特徴とする湿度計測方法が開示されている。そして、湿度センサ経路は、専用冷却板を設けて溶湯の侵入を防止するようになっており、これにより気体の流れが安定するので反応の遅い一般的な湿度センサでも計測が可能であり、また、溶湯射出前後の湿度を容易に測定可能であるとしている。   Further, Patent Document 2 is characterized in that a humidity sensor is installed in a mold, and a discharge valve path for discharging gas in the mold and a humidity sensor path communicating with the humidity sensor are provided in parallel. A humidity measurement method is disclosed. The humidity sensor path is provided with a dedicated cooling plate to prevent the intrusion of the molten metal, which stabilizes the gas flow, so that even a general humidity sensor with a slow reaction can be measured. The humidity before and after the molten metal injection can be easily measured.

この従来技術によれば、金型内部の湿度を常時計測できる利点はあるが、湿度センサを金型内に設置しているため、湿度を管理する対象の金型毎に湿度センサを配置するか、あるいは金型交換毎に湿度センサも脱着する必要があり、金型が複雑になるとともに設備費用の増大を招くおそれがある。また、溶湯が金型内に充填されている最中のキャビティ内湿度が鋳造部材の内部欠陥発生に大きく影響するので、真空吸引終了後の湿度を溶湯充填後直ちに測定しても鋳造部材の内部品質を管理する上で有益であるとは言えない。
特開平7−68365号公報 特開2005−111478号公報
According to this prior art, there is an advantage that the humidity inside the mold can be constantly measured. Alternatively, it is necessary to remove the humidity sensor every time the mold is replaced, which may complicate the mold and increase the equipment cost. In addition, the humidity in the cavity while the molten metal is filled in the mold greatly affects the occurrence of internal defects in the cast member. It is not useful in managing quality.
JP-A-7-68365 JP 2005-111478 A

本発明は上記の事情に鑑みてなされたものであり、その第1の目的は、従来技術に比べて簡素な構成でより精度の高いキャビティ湿度計測方法を提供することである。また、その第2の目的は、このように精度の高いキャビティ湿度計測方法を実現できるダイカスト装置を提供することである。   The present invention has been made in view of the above circumstances, and a first object of the present invention is to provide a cavity humidity measuring method with a simpler configuration and higher accuracy than the prior art. A second object of the present invention is to provide a die casting apparatus that can realize a cavity humidity measuring method with high accuracy as described above.

前記のように従来技術では一定時間保持後の湿度センサによる計測値や、ある測定範囲での湿度の最大値などをキャビティ内湿度としているが、本発明者は、吸引中のキャビティ内気体の湿度のみならず温度や圧力の変化をも連続して測定して、それらの変化波形を利用して鋳造時のキャビティ内の湿度を推定することに着目した。そして、測定領域を通過した気体中の水分子の比率を推定することで、測定領域(例えば、配管内)の温度や真空吸引条件などの影響を排除できることを見出した。   As described above, in the prior art, the measured value by the humidity sensor after holding for a certain period of time or the maximum value of the humidity in a certain measurement range is defined as the humidity in the cavity. We focused not only on the continuous measurement of temperature and pressure changes, but also on the estimation of the humidity in the cavity during casting using these change waveforms. And it discovered that the influence of the temperature of a measurement area | region (for example, inside piping), vacuum suction conditions, etc. can be excluded by estimating the ratio of the water molecule in the gas which passed the measurement area | region.

本発明において測定領域の温度や真空吸引条件の影響を排除するようにしたのは、以下の理由による。一般的に湿度は相対湿度を表し、この湿度は温度や圧力によって大きく変化するため、例えば、測定領域が293Kの時に湿度40%であれば、同じ水蒸気分圧では303Kでは湿度は約20%前後となる(図2の温度と飽和水蒸気圧との関係参照)。   In the present invention, the influence of the temperature of the measurement region and the vacuum suction conditions is excluded for the following reason. In general, humidity represents relative humidity, and this humidity varies greatly depending on temperature and pressure. For example, if the measurement area is 293K and the humidity is 40%, the humidity is about 20% at 303K at the same water vapor partial pressure. (See the relationship between temperature and saturated water vapor pressure in FIG. 2).

また、吸引するキャビティの体積、即ち、排気流路の測定領域を通過した気体の体積が1000ccの場合と4000ccの場合を例にとると、その気体が同一時間内に測定領域を通過し、かつ気体中の水分子の含有率が同一比率である場合には、4000ccの場合の方が湿度センサの検出部に多くの水分子が衝突することになり、結果として湿度計測値が高くなる。つまり、キャビティ湿度の測定値のみでは、鋳造部材の大きさや形状、鋳造条件の相違などにより、何種類もの判定基準を設定しなければならない。   Further, taking the case where the volume of the cavity to be sucked, that is, the volume of the gas that has passed through the measurement region of the exhaust flow path is 1000 cc and 4000 cc, the gas passes through the measurement region within the same time, and When the content ratio of water molecules in the gas is the same ratio, in the case of 4000 cc, many water molecules collide with the detection part of the humidity sensor, and as a result, the humidity measurement value becomes high. That is, with only the measured value of the cavity humidity, various types of determination criteria must be set depending on the size and shape of the cast member and the difference in casting conditions.

そこで、本発明では湿度の絶対値ではなく、温度と圧力とを組み合わせた相対値を判定基準とすることとした。   Therefore, in the present invention, the relative value obtained by combining temperature and pressure is used as a criterion for determination, not the absolute value of humidity.

具体的には、キャビティ内部から排出された気体中の水分子の比率を精度よく推定するために、まず湿度と温度の波形データと飽和水蒸気圧曲線とから、各時刻における水蒸気分圧を算出して、この水蒸気分圧を鋳造1サイクル中の時間で積分することで、測定領域を通過した水分子数の程度を推定する。また、測定領域の圧力変化波形を鋳造1サイクル間で時間積分することで、測定領域を通過した気体の体積を算出する。そして、この二つの値の比を取り、キャビティ内部から排出された気体中に含まれる単位体積当たりの水分子数を推定する。なお、上記のようにして得られる水蒸気分圧や気体の体積および単位体積当たりの水分子数の値は必ずしも物理的には正確とは言えないが、鋳造サイクル毎、あるいは判定値などと相対的に比較できる値であればよい。   Specifically, in order to accurately estimate the ratio of water molecules in the gas discharged from the cavity, first, the water vapor partial pressure at each time is calculated from the waveform data of humidity and temperature and the saturated water vapor pressure curve. Then, the degree of the number of water molecules that have passed through the measurement region is estimated by integrating the water vapor partial pressure with the time during one casting cycle. Moreover, the volume of the gas which passed the measurement area | region is calculated by time-integrating the pressure change waveform of a measurement area | region between casting 1 cycle. Then, the ratio between these two values is taken to estimate the number of water molecules per unit volume contained in the gas discharged from the cavity. Although the water vapor partial pressure, gas volume and water molecule number per unit volume obtained as described above are not necessarily physically accurate, they are relative to each casting cycle or judgment value. Any value that can be compared with is acceptable.

以上のように湿度センサなどの計測データを演算処理することで、周囲の条件などに影響を受け難い湿度推測が可能となり、キャビティ内部から排出された気体中の水分子の比率をより精度よく推定できる。   As described above, by processing the measurement data of the humidity sensor, etc., it is possible to estimate the humidity that is not easily affected by the surrounding conditions, and more accurately estimate the ratio of water molecules in the gas discharged from the inside of the cavity. it can.

すなわち、本発明のキャビティ湿度計測方法は、キャビティを形成する金型と、このキャビティ内の気体を排出する真空発生手段と、キャビティと真空発生手段とを連通する排気流路とを備えるダイカスト装置のキャビティ湿度計測方法であって、キャビティ内を真空吸引する真空吸引工程と、排気流路に設けられる計測領域内において、少なくとも真空吸引工程を含む測定期間内における湿度及び温度並びに圧力の時間変化をそれぞれ計測して各測定値の時間変化波形を得る計測工程と、これらの時間変化波形に基づき、鋳造サイクル中に計測領域を通過した気体中の水分子の比率を算出する演算工程とを有することを特徴とする。   That is, the cavity humidity measuring method of the present invention is a die casting apparatus comprising a mold for forming a cavity, a vacuum generating means for discharging the gas in the cavity, and an exhaust passage for communicating the cavity and the vacuum generating means. Cavity humidity measurement method, in which a vacuum suction process for vacuum suction in a cavity and a time change of humidity, temperature, and pressure in a measurement period including at least a vacuum suction process in a measurement region provided in an exhaust passage, respectively A measurement step of measuring and obtaining a time change waveform of each measurement value, and a calculation step of calculating a ratio of water molecules in the gas that has passed through the measurement region during the casting cycle based on these time change waveforms. Features.

上記の計測工程における測定期間は、排気流路において計測領域の上流に設けた開閉弁の開弁時を測定開始点とし、この開閉弁の閉弁時を測定終了点とすることが望ましい。
また、上記の演算工程は、湿度の時間変化波形と温度の時間変化波形とから基準温度における換算湿度波形を得る第1ステップと、この換算湿度波形を測定期間で積分して水分子数の相対値(Sh)とする第2ステップと、圧力の時間変化波形を測定期間で積分して計測領域を通過した気体の分子数の相対値(Sg)とする第3ステップと、鋳造サイクル中に計測領域を通過した気体中の水分子の比率(H)を、H=Sh/Sgにより算出する第4ステップと、を有することができる。
In the measurement period in the above measurement process, it is desirable that the opening time of the opening / closing valve provided upstream of the measurement region in the exhaust flow path is a measurement start point, and the closing time of the opening / closing valve is a measurement end point.
Also, the above calculation step includes a first step of obtaining a converted humidity waveform at the reference temperature from the time change waveform of humidity and the time change waveform of temperature, and integrating the converted humidity waveform over the measurement period to obtain the relative number of water molecules. A second step for setting the value (Sh), a third step for integrating the time-varying waveform of the pressure in the measurement period and setting the relative value (Sg) of the number of molecules of the gas that has passed through the measurement region, and measurement during the casting cycle And a fourth step of calculating a ratio (H) of water molecules in the gas that has passed through the region by H = Sh / Sg.

本発明のダイカスト装置は、キャビティを形成する金型と、このキャビティ内の気体を排出する真空発生手段と、キャビティと真空発生手段とを連通する排気流路と、この排気流路に設けられる計測領域と、鋳造サイクル中における計測領域内の湿度の時間変化を測定する湿度測定手段と、鋳造サイクル中における計測領域内の温度の時間変化を測定する温度測定手段と、鋳造サイクル中における計測領域内の圧力の時間変化を測定する圧力測定手段と、湿度測定手段と、温度測定手段と、圧力測定手段とにより得られる各測定値の時間変化波形に基づき、鋳造サイクル中に計測領域を通過した気体中の水分子の比率を算出する演算手段とを有することを特徴とする。   The die casting apparatus of the present invention includes a mold for forming a cavity, a vacuum generating means for discharging the gas in the cavity, an exhaust flow path communicating the cavity and the vacuum generating means, and a measurement provided in the exhaust flow path. A humidity measuring means for measuring the time variation of the humidity in the measuring area during the casting cycle, a temperature measuring means for measuring the time variation of the temperature in the measuring area during the casting cycle, and in the measuring area during the casting cycle The gas that passed through the measurement area during the casting cycle based on the time change waveform of each measured value obtained by the pressure measuring means, the humidity measuring means, the temperature measuring means, and the pressure measuring means for measuring the time change of the pressure of And an arithmetic means for calculating a ratio of water molecules therein.

本発明のダイカスト装置は、キャビティと真空ポンプとを連通する排気流路に測定領域を設けて、この測定領域に湿度測定手段、温度測定手段及び負圧を計測可能な圧力測定手段を設置している。従って、気体の湿度、温度、及び圧力の時間変化波形を同一時間軸で得ることができる。   In the die casting apparatus of the present invention, a measurement region is provided in an exhaust passage that communicates a cavity and a vacuum pump, and a humidity measurement unit, a temperature measurement unit, and a pressure measurement unit capable of measuring negative pressure are installed in the measurement region. Yes. Therefore, the time change waveform of the humidity, temperature, and pressure of the gas can be obtained on the same time axis.

また、得られた各測定値の時間変化波形から、演算手段により測定領域を通過した気体分子の総数と水分子の数の多少を絶対値ではなく、相対的な値として容易に推定することができる。そして、この2つの推定値を用いて、測定領域を通過した気体中の水分子の比率(H)を推定する。   In addition, it is possible to easily estimate the total number of gas molecules and the number of water molecules that have passed through the measurement region by calculation means as relative values rather than absolute values from the time-varying waveforms of the respective measured values obtained. it can. Then, using these two estimated values, the ratio (H) of water molecules in the gas that has passed through the measurement region is estimated.

従って、本発明のキャビティ湿度計測方法およびダイカスト装置によれば、測定領域周辺の温度や真空吸引条件などの影響を排除することが可能であり、形状や大きさの異なる鋳造部材の品質管理においても同一の判定値(H)を用いて判定することができる。   Therefore, according to the cavity humidity measuring method and the die casting apparatus of the present invention, it is possible to eliminate the influence of the temperature around the measurement region, vacuum suction conditions, etc., and also in quality control of cast members having different shapes and sizes. Determination can be made using the same determination value (H).

本発明の好適な実施の形態について図1〜4を参照しながら説明する。   A preferred embodiment of the present invention will be described with reference to FIGS.

本実施形態のダイカスト装置1は、固定盤11に固定された固定型13(金型)と可動盤12に固定された可動型14(金型)とによって空間であるキャビティ18を画成している。キャビティ18の下端側は射出スリーブ16に連通しており、スリーブ16の内周には溶湯を射出するプランジャー17が摺動自在に配置されている。なお、29は型開き後に凝固した鋳造部材を外部へ押し出す押出機構である。   The die casting apparatus 1 of the present embodiment defines a cavity 18 that is a space by a fixed mold 13 (mold) fixed to the fixed platen 11 and a movable mold 14 (mold) fixed to the movable platen 12. Yes. The lower end side of the cavity 18 communicates with the injection sleeve 16, and a plunger 17 for injecting molten metal is slidably disposed on the inner periphery of the sleeve 16. Reference numeral 29 denotes an extruding mechanism for extruding the cast member solidified after the mold is opened.

キャビティ18の上端側には油圧シリンダなどによって開閉駆動される排気バルブ(真空バルブともいう)20が設置されており、この排気バルブ20にはキャビティ18内の気体を排気する排気回路30が接続されている。また、キャビティ18の上端部には、溶湯の先端を検知する溶湯検知センサ19が埋設されている。   An exhaust valve (also referred to as a vacuum valve) 20 that is driven to open and close by a hydraulic cylinder or the like is installed on the upper end side of the cavity 18, and an exhaust circuit 30 that exhausts the gas in the cavity 18 is connected to the exhaust valve 20. ing. A melt detection sensor 19 for detecting the tip of the melt is embedded in the upper end portion of the cavity 18.

排気回路30はキャビティ18と真空タンク27とを連通する排気流路31とを有し、排気流路31には開閉弁26が配設され、開閉弁26の下流には、湿度測定手段21、温度測定手段22および圧力測定手段23を近接して介挿する測定領域24が設けられている。各測定手段21,22,23は測定領域24を流通する空気またはガス(以下、気体という)の湿度、温度、圧力を測定して測定結果をコントローラ25(演算手段)へ出力する。コントローラ25には、後述する計測工程及び演算工程を実行するプログラムが格納されている。真空タンク27はポンプ28に連通しており、真空タンク27の内部は常時所定の圧力に減圧されている。ここで、真空タンク27とポンプ28とが真空発生手段である。   The exhaust circuit 30 has an exhaust passage 31 that communicates the cavity 18 and the vacuum tank 27, and an opening / closing valve 26 is disposed in the exhaust passage 31, and humidity measuring means 21, downstream of the opening / closing valve 26, A measurement region 24 is provided in which the temperature measurement means 22 and the pressure measurement means 23 are inserted in close proximity. Each measuring means 21, 22, 23 measures the humidity, temperature, and pressure of air or gas (hereinafter referred to as gas) flowing through the measurement region 24 and outputs the measurement result to the controller 25 (calculation means). The controller 25 stores a program for executing a measurement process and a calculation process described later. The vacuum tank 27 communicates with a pump 28, and the inside of the vacuum tank 27 is always depressurized to a predetermined pressure. Here, the vacuum tank 27 and the pump 28 are vacuum generating means.

なお、本発明において、湿度測定手段は特に制約はなく、一般的に用いられる周知の湿度センサを用いることができ、温度測定手段も熱電対など周知の温度センサを使用することができる。また、圧力測定手段としては、一般的に用いられる負圧を計測可能な周知の圧力センサを使用することができる。   In the present invention, the humidity measuring means is not particularly limited, and a commonly used well-known humidity sensor can be used, and a well-known temperature sensor such as a thermocouple can also be used as the temperature measuring means. Moreover, as a pressure measurement means, the well-known pressure sensor which can measure the negative pressure generally used can be used.

以上のように構成されたダイカスト装置1の鋳造1サイクル(型締からダイカスト部材取出まで)の動作を説明する。なお、括弧内は図3における時刻である。   The operation of one cycle of casting (from mold clamping to die casting member removal) of the die casting apparatus 1 configured as described above will be described. The time in parentheses is the time in FIG.

まず、図示しないダイプレートを駆動して予め離型剤が塗布された固定型13と可動型14とを型締めし(ta)キャビティ18を形成する。キャビティ18形成と同時に排気バルブ20を開弁する。   First, a die plate (not shown) is driven to clamp the fixed mold 13 and the movable mold 14 previously applied with a release agent (ta) to form a cavity 18. Simultaneously with the formation of the cavity 18, the exhaust valve 20 is opened.

次に、スリーブ16内に所定の溶湯を注湯してプランジャー17でキャビティ18内に溶湯を低速で押し出す(tb)。プランジャー17が前進して所定のストロークまで達したところで開閉弁26を開弁する。これにより真空吸引工程が開始される(矢印t)。 Next, a predetermined molten metal is poured into the sleeve 16, and the molten metal is pushed out into the cavity 18 by the plunger 17 at a low speed (tb). When the plunger 17 moves forward and reaches a predetermined stroke, the on-off valve 26 is opened. Thereby, a vacuum suction process is started (arrow t 0 ).

真空吸引開始(t)と同時にプランジャー17の前進速度を増速して溶湯を高速射出する。溶湯の先端が溶湯検知センサ19に到達したら排気バルブ20を閉弁して(tc)キャビティ18と真空吸引回路(排気回路)30とを遮断し、各種センサを配置した測定領域24を真空タンク27及びポンプ28によって減圧する。これにより真空吸引工程が終了する。 Simultaneously with the start of vacuum suction (t 0 ), the forward speed of the plunger 17 is increased to inject the molten metal at a high speed. When the tip of the molten metal reaches the molten metal detection sensor 19, the exhaust valve 20 is closed (tc), the cavity 18 and the vacuum suction circuit (exhaust circuit) 30 are shut off, and the measurement region 24 in which various sensors are arranged in the vacuum tank 27. The pressure is reduced by the pump 28. This completes the vacuum suction process.

キャビティ内へ充填された溶湯が凝固したら(tc〜td)、固定型13と可動型14とを開放し(te)押出機構29により鋳造凝固したダイカスト部材を押し出し、同時に開閉弁26を閉弁する(矢印t)。 When the molten metal filled in the cavity is solidified (tc to td), the fixed mold 13 and the movable mold 14 are opened (te), and the die-cast member cast and solidified is pushed out by the extrusion mechanism 29, and at the same time the on-off valve 26 is closed. (Arrow t 1 ).

ここで、時刻tで開閉弁26を開弁して真空吸引を開始してから、時刻tで開閉弁26を閉弁するまでが測定期間である。そして、この測定期間において、湿度、温度、圧力の時間変化波形を測定する計測工程が行われる。 Here, from the start of the vacuum suction by opening the on-off valve 26 at time t 0, a measurement period until the closed-off valve 26 at time t 1. And in this measurement period, the measurement process which measures the time change waveform of humidity, temperature, and pressure is performed.

このような鋳造1サイクル動作中の湿度測定手段21、温度測定手段22および圧力測定手段23による各計測波形の一例を図3に示す。図3は、各計測波形を射出速度の変化とともに同一時間軸に並記したものである。図3から吸引開始と同時に測定領域内の圧力が上昇しており、測定領域内をキャビティ内の気体が通過していることが分かる。そして湿度測定手段21による湿度測定値は圧力測定値よりもより数秒遅れて上昇しているが、これは、湿度センサ自体の応答性の問題である。また、測定領域内の温度は、この鋳造1サイクル間ではほとんど変化はなく一定であった。   An example of each measurement waveform by the humidity measuring means 21, the temperature measuring means 22 and the pressure measuring means 23 during the casting one cycle operation is shown in FIG. FIG. 3 shows each measurement waveform along with the change in injection speed on the same time axis. It can be seen from FIG. 3 that the pressure in the measurement region increases simultaneously with the start of suction, and the gas in the cavity passes through the measurement region. The humidity measurement value obtained by the humidity measuring means 21 rises several seconds later than the pressure measurement value, but this is a problem of the responsiveness of the humidity sensor itself. Further, the temperature in the measurement region remained constant with almost no change during one casting cycle.

次に、上記のようにして得られた各測定値の時間波形から排気バルブ20を経由して排出されたキャビティ18内の気体中に含まれる水分子数(相対値)を演算で求める。   Next, the number of water molecules (relative value) contained in the gas in the cavity 18 discharged via the exhaust valve 20 is obtained by calculation from the time waveform of each measurement value obtained as described above.

この演算工程は、得られた湿度計測波形を基準温度における湿度波形に換算する第1ステップと、この換算湿度波形を積分して水分子数の相対値(Sh)を算出する第2ステップと、得られた圧力変化波形を積分して通過した気体の分子数の相対値(Sg)を算出する第3ステップと、H=Sh/Sgで定義される鋳造サイクル中に計測領域を通過した気体中の水分子の比率(H)を算出する第4ステップとからなる。   The calculation step includes a first step of converting the obtained humidity measurement waveform into a humidity waveform at a reference temperature, a second step of calculating the relative value (Sh) of the number of water molecules by integrating the converted humidity waveform, A third step of calculating the relative value (Sg) of the number of molecules of the gas passed by integrating the obtained pressure change waveform; and in the gas passed through the measurement region during the casting cycle defined by H = Sh / Sg And a fourth step of calculating the ratio (H) of water molecules.

ここで、時刻t(sec)における相対湿度計測値(%)をF(t)、流路内温度計測値(K)をF(t)、流路内圧力計測値(hPa)をF(t)、換算湿度計算値(%)をF´(t)、温度T(K)における飽和水蒸気圧(hPa)をP(t)、換算湿度を計算する基準温度(K)をTsとする。 Here, the relative humidity measurement value (%) at time t (sec) is F H (t), the channel temperature measurement value (K) is F T (t), and the channel pressure measurement value (hPa) is F. P (t), converted humidity calculation value (%) is F ′ H (t), saturated water vapor pressure (hPa) at temperature T (K) is P (t), and reference temperature (K) for calculating converted humidity is Ts. And

ステップ1では、まず時刻tにおける水蒸気分圧Pt(hPa)を次の(1)式を用いて算出する。   In step 1, first, the water vapor partial pressure Pt (hPa) at time t is calculated using the following equation (1).

Figure 2007222896
Figure 2007222896

次に、ボイル−シャルルの法則により(2)式のように基準温度Tsにおける見かけの水蒸気分圧Pt‘を算出する。   Next, the apparent water vapor partial pressure Pt ′ at the reference temperature Ts is calculated according to Boyle-Charle's law as shown in equation (2).

Figure 2007222896
Figure 2007222896

上記の結果から(3)式を用いて換算湿度F´(t)を算出する。 From the above result, the converted humidity F ′ H (t) is calculated using the formula (3).

Figure 2007222896
Figure 2007222896

図3に示す領域内温度のように安定鋳造時の場合には1サイクル中の温度変化は極めて少ないので、換算湿度F´(t)は図3の湿度波形とほぼ同様の波形になる。しかし、領域内温度は鋳造開始時や不安定鋳造時などには1サイクルの間でも大きく変化するので、換算湿度は計測された湿度波形とは異なる波形となる。その一例を概念的に図4(a)に示す。図4(a)では太線Aが相対湿度計測値(%):F(t)であり、細線Bが換算湿度計算値:F´(t)である。 In the case of stable casting such as the temperature in the region shown in FIG. 3, the temperature change during one cycle is extremely small, and the converted humidity F ′ H (t) has a waveform substantially similar to the humidity waveform in FIG. However, since the temperature in the region changes greatly even during one cycle at the start of casting or unstable casting, the converted humidity has a waveform different from the measured humidity waveform. An example is conceptually shown in FIG. In FIG. 4A, the thick line A is the relative humidity measurement value (%): F H (t), and the thin line B is the converted humidity calculation value: F ′ H (t).

ステップ2では、この換算湿度波形F´(t)を(4)式のように開閉弁26の開弁時刻tから開閉弁26の閉弁時刻tまで積分して換算湿度波形の面積(図4(b)の斜線部)、すなわち、水分子数の相対値(Sh)を算出する。このようにして排気バルブ20を経由して排出されたキャビティ18内の気体中に含まれる水分子数の大小を推定することができる。 In step 2, the converted humidity waveform F ′ H (t) is integrated from the valve opening time t 0 of the on-off valve 26 to the valve closing time t 1 of the on-off valve 26 as shown in equation (4), and the area of the converted humidity waveform is obtained. (The shaded area in FIG. 4B), that is, the relative value (Sh) of the number of water molecules is calculated. In this way, the number of water molecules contained in the gas in the cavity 18 discharged via the exhaust valve 20 can be estimated.

Figure 2007222896
Figure 2007222896

続いてステップ3では、圧力変化波形F(t)を(5)式のように開閉弁26の開弁時刻tから開閉弁26の閉弁時刻tまで積分して、圧力変化波形の面積、すなわち、通過した気体の分子数の相対値(Sg)を算出する。 Subsequently, in step 3, the pressure change waveform F P (t) is integrated from the valve opening time t 0 of the on-off valve 26 to the valve closing time t 1 of the on-off valve 26 as shown in equation (5), and the pressure change waveform The area, that is, the relative value (Sg) of the number of molecules of the gas passed through is calculated.

Figure 2007222896
Figure 2007222896

ステップ4では、(6)式で定義される鋳造サイクル中に排気流路中の測定領域を通過した気体中の水分子の比率Hを算出する。   In step 4, the ratio H of water molecules in the gas that has passed through the measurement region in the exhaust passage during the casting cycle defined by equation (6) is calculated.

Figure 2007222896
Figure 2007222896

以上のような計測工程と演算工程とを有する本発明のダイカスト鋳造工程に、鋳造されたダイカスト部材の良否を自動判定する判定選別工程を組み合わせ、鋳造1サイクル毎に得られたHの値を予め設定されている判定値と比較することで、鋳造部材の内部品質管理が可能となる。本発明によれば、別途特別な検査工程を経ることなく高精度にかつ迅速に良否判定を行うことができる。   The die casting process of the present invention having the above measurement process and calculation process is combined with a determination and selection process for automatically determining the quality of the cast die cast member, and the value of H obtained for each casting cycle is preliminarily determined. By comparing with the set judgment value, the internal quality control of the cast member becomes possible. According to the present invention, it is possible to make a pass / fail judgment with high accuracy and speed without going through a special inspection process.

本発明の湿度測定方法は、真空ダイカスト部品の内部品質管理に好適に用いることができる。   The humidity measuring method of the present invention can be suitably used for internal quality control of vacuum die cast parts.

実施の形態の湿度測定機構を有する真空ダイカスト装置を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the vacuum die-casting apparatus which has a humidity measurement mechanism of embodiment. 飽和水蒸気圧の温度変化を示すグラフである。It is a graph which shows the temperature change of saturated water vapor pressure. 1鋳造サイクル中における湿度、温度、圧力の変化波形の一例を示す図である。It is a figure which shows an example of the change waveform of humidity, temperature, and pressure in 1 casting cycle. 換算湿度計算値:F´(t)を説明するグラフの一例であり、(a)は相対湿度計測値(%):F(t)との関係を示し、(b)は算出すべき面積Shを示す。Conversion humidity Calculated: an example of a graph illustrating F'H a (t), (a) the relative humidity measured value (%): shows the relationship between F H (t), (b) should be calculated The area Sh is shown.

符号の説明Explanation of symbols

13:固定型(金型) 14:可動型(金型) 16:射出スリーブ 17:プランジャー 18:キャビティ 19:溶湯検知センサ 20:排気バルブ(真空バルブ) 21:湿度測定手段 22:温度測定手段 23:圧力測定手段 24:測定領域 25:コントローラ(演算手段) 26:開閉弁 27:真空タンク 28:真空ポンプ 30:排気回路 31:排気流路 13: Fixed mold (mold) 14: Movable mold (mold) 16: Injection sleeve 17: Plunger 18: Cavity 19: Molten metal detection sensor 20: Exhaust valve (vacuum valve) 21: Humidity measuring means 22: Temperature measuring means 23: Pressure measurement means 24: Measurement area 25: Controller (calculation means) 26: On-off valve 27: Vacuum tank 28: Vacuum pump 30: Exhaust circuit 31: Exhaust flow path

Claims (4)

キャビティを形成する金型と、前記キャビティ内の気体を排出する真空発生手段と、前記キャビティと前記真空発生手段とを連通する排気流路と、を備えるダイカスト装置のキャビティ湿度計測方法であって、
前記キャビティ内を真空吸引する真空吸引工程と、
前記排気流路に設けられる計測領域内において、少なくとも前記真空吸引工程を含む測定期間内における湿度及び温度並びに圧力の時間変化をそれぞれ計測して各測定値の時間変化波形を得る計測工程と、
前記時間変化波形に基づき、鋳造サイクル中に前記計測領域を通過した前記気体中の水分子の比率を算出する演算工程と、を有することを特徴とするキャビティ湿度計測方法。
A cavity humidity measuring method for a die casting apparatus, comprising: a mold that forms a cavity; a vacuum generating means that discharges gas in the cavity; and an exhaust passage that communicates the cavity and the vacuum generating means,
A vacuum suction step of vacuum suction inside the cavity;
In the measurement region provided in the exhaust flow path, a measurement step of measuring time change of humidity and temperature and pressure in a measurement period including at least the vacuum suction step to obtain a time change waveform of each measurement value;
And a calculation step of calculating a ratio of water molecules in the gas that has passed through the measurement region during a casting cycle based on the time change waveform.
前記測定期間は、前記排気流路において前記計測領域の上流に設けた開閉弁の開弁時を測定開始点とし、該開閉弁の閉弁時を測定終了点とする請求項1に記載のキャビティ湿度計測方法。   2. The cavity according to claim 1, wherein the measurement period is a measurement start point when the on-off valve provided upstream of the measurement region in the exhaust passage is opened, and a measurement end point when the on-off valve is closed. Humidity measurement method. 前記演算工程は、湿度の前記時間変化波形と温度の前記時間変化波形とから基準温度における換算湿度波形を得る第1ステップと、
該換算湿度波形を前記測定期間で積分して水分子数の相対値(Sh)とする第2ステップと、
圧力の前記時間変化波形を前記測定期間で積分して前記計測領域を通過した前記気体の分子数の相対値(Sg)とする第3ステップと、
前記鋳造サイクル中に前記計測領域を通過した前記気体中の水分子の比率(H)を、H=Sh/Sgにより算出する第4ステップと、を有する請求項1又は2に記載のキャビティ湿度計測方法。
The calculating step includes a first step of obtaining a converted humidity waveform at a reference temperature from the time change waveform of humidity and the time change waveform of temperature;
A second step of integrating the converted humidity waveform in the measurement period to obtain a relative value (Sh) of the number of water molecules;
A third step of integrating the time-varying waveform of pressure over the measurement period to obtain a relative value (Sg) of the number of molecules of the gas that has passed through the measurement region;
The cavity humidity measurement according to claim 1, further comprising a fourth step of calculating a ratio (H) of water molecules in the gas that has passed through the measurement region during the casting cycle by H = Sh / Sg. Method.
キャビティを形成する金型と、
前記キャビティ内の気体を排出する真空発生手段と、
前記キャビティと前記真空発生手段とを連通する排気流路と、
前記排気流路に設けられる計測領域と、
鋳造サイクル中における前記計測領域内の湿度の時間変化を測定する湿度測定手段と、
鋳造サイクル中における前記計測領域内の温度の時間変化を測定する温度測定手段と、
鋳造サイクル中における前記計測領域内の圧力の時間変化を測定する圧力測定手段と、
前記湿度測定手段と、前記温度測定手段と、前記圧力測定手段とにより得られる各測定値の時間変化波形に基づき、鋳造サイクル中に前記計測領域を通過した前記気体中の水分子の比率を算出する演算手段と、を有することを特徴とするダイカスト装置。
A mold for forming a cavity;
A vacuum generating means for discharging the gas in the cavity;
An exhaust passage communicating the cavity and the vacuum generating means;
A measurement region provided in the exhaust flow path;
A humidity measuring means for measuring a time change of humidity in the measurement region during a casting cycle;
Temperature measuring means for measuring a temporal change in temperature within the measurement region during a casting cycle;
Pressure measuring means for measuring a time change of pressure in the measurement region during a casting cycle;
Based on the time change waveform of each measurement value obtained by the humidity measuring means, the temperature measuring means, and the pressure measuring means, the ratio of water molecules in the gas that has passed through the measurement region during the casting cycle is calculated. A die-casting device comprising:
JP2006045532A 2006-02-22 2006-02-22 Method for measuring humidity in cavity, and die-casting apparatus Pending JP2007222896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006045532A JP2007222896A (en) 2006-02-22 2006-02-22 Method for measuring humidity in cavity, and die-casting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006045532A JP2007222896A (en) 2006-02-22 2006-02-22 Method for measuring humidity in cavity, and die-casting apparatus

Publications (1)

Publication Number Publication Date
JP2007222896A true JP2007222896A (en) 2007-09-06

Family

ID=38545188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006045532A Pending JP2007222896A (en) 2006-02-22 2006-02-22 Method for measuring humidity in cavity, and die-casting apparatus

Country Status (1)

Country Link
JP (1) JP2007222896A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532339B1 (en) * 2013-09-06 2015-06-29 주식회사 포스코 Continuous casting apparatus and continuous casting method
PT108340A (en) * 2014-04-14 2015-10-14 Fondarex Sa DEVICE AND PROCESS FOR MEASURING HUMIDITY IN MOLDS FOR PRESSURE MOLDING
CN106670406A (en) * 2015-11-11 2017-05-17 成都兴宇精密铸造有限公司 Die for measuring casting temperature
WO2018082939A3 (en) * 2016-11-04 2018-08-16 Magna BDW technologies GmbH Device, control system and filter module for producing die-cast parts, and method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532339B1 (en) * 2013-09-06 2015-06-29 주식회사 포스코 Continuous casting apparatus and continuous casting method
PT108340A (en) * 2014-04-14 2015-10-14 Fondarex Sa DEVICE AND PROCESS FOR MEASURING HUMIDITY IN MOLDS FOR PRESSURE MOLDING
CN104972079A (en) * 2014-04-14 2015-10-14 方达雷克斯公司 Device and Method For Measuring The Moisture In Die Casting Molds
FR3019772A1 (en) * 2014-04-14 2015-10-16 Fondarex Sa DEVICE AND METHOD FOR MEASURING HUMIDITY IN PRESSURE CASTING MOLDS
JP2015215340A (en) * 2014-04-14 2015-12-03 フォンダレックス エスアーFondarex S.A. Device and method for measuring humidity inside die casting mold
CN106670406A (en) * 2015-11-11 2017-05-17 成都兴宇精密铸造有限公司 Die for measuring casting temperature
WO2018082939A3 (en) * 2016-11-04 2018-08-16 Magna BDW technologies GmbH Device, control system and filter module for producing die-cast parts, and method therefor
US10994330B2 (en) 2016-11-04 2021-05-04 Magna BDW technologies GmbH Device, control system and filter module for producing die-cast parts, and method therefor
US10994329B2 (en) 2016-11-04 2021-05-04 Magna BDW technologies GmbH Device, control system and filter module for producing die-cast parts, and method therefor

Similar Documents

Publication Publication Date Title
JP3994735B2 (en) Die casting method and die casting machine
JP2007222896A (en) Method for measuring humidity in cavity, and die-casting apparatus
JP6424900B2 (en) Low pressure casting apparatus and low pressure casting method
JP5770012B2 (en) Quality control device and die casting machine
CN116748492A (en) Die casting machine and method for checking air tightness of die assembled in die casting machine
JP6707718B1 (en) Die casting mold and its depressurization path conductance setting method
ATE444131T1 (en) VACUUM DIE CASTING SYSTEM AND METHOD OF OPERATION
JP2013184165A (en) Die casting device
JPH05329864A (en) On-line resin viscosity measuring method and quality discriminating method of molded product
JP2008254011A (en) Casting method and die casting machine
JPH0966351A (en) Vacuum die casting method
JPH1034309A (en) Instrument for monitoring pressure of cavity in die for die casting
JP6134974B2 (en) Gas filter, mold apparatus, mold internal information measuring sensor, degassing method in mold and injection molded product manufacturing method
JP2015150617A (en) Metallic mold spray method, and metallic mold spray system
JP5570309B2 (en) Gas assist injection mold apparatus and method for producing molded product
JP4140498B2 (en) Humidity measuring mechanism and humidity measuring method in casting process
JP2018114532A (en) Method of cooling
JP2012196870A (en) Device and method for detecting resin clogging
JP2008179105A (en) Applicator of powdered mold release and applying method of powdered mold release
JPWO2008088064A1 (en) Casting method and die casting machine
KR20090099375A (en) Temperature control system of pouring slurry for diecasting and method for the same
JP2008073714A (en) Casting method and casting device
JP2006315022A (en) Apparatus and method for measuring ambient atmosphere inside die
JP6348003B2 (en) Mold cooling method and mold cooling system
JP2006026698A (en) Instrument for measuring inner pressure of cavity in die for die casting