JP2007219340A - Compound wire grid polarizer, compound optical element and polarized light source - Google Patents

Compound wire grid polarizer, compound optical element and polarized light source Download PDF

Info

Publication number
JP2007219340A
JP2007219340A JP2006041978A JP2006041978A JP2007219340A JP 2007219340 A JP2007219340 A JP 2007219340A JP 2006041978 A JP2006041978 A JP 2006041978A JP 2006041978 A JP2006041978 A JP 2006041978A JP 2007219340 A JP2007219340 A JP 2007219340A
Authority
JP
Japan
Prior art keywords
wire grid
grid polarizer
light
light source
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006041978A
Other languages
Japanese (ja)
Inventor
Takaaki Nishimori
隆明 西守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006041978A priority Critical patent/JP2007219340A/en
Publication of JP2007219340A publication Critical patent/JP2007219340A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a wire grid polarizer with which downsizing and weight reduction of a polarized light source for displaying an image are attained. <P>SOLUTION: A plurality of metallic grids 3a which are long in an X-axis direction and have width w1 and thickness h1 are arranged in parallel to the X-axis direction in a cycle p1 on a main surface of a light translucent substrate 2 on its almost upper half in a Z-axis direction to form a 1st wire grid polarizer 1a. A plurality of metallic grids 3b which are long in the Z-axis direction and have width w2 and thickness h2 are arranged in parallel to the Z-axis direction in a cycle p2 on the same surface as the 1st wire grid polarizer 1a on its almost lower half in the Z-axis direction while perpendicularly crossing the cycle p1 direction of the 1st wire grid polarizer 1a to form a 2nd wire grid polarizer 1b. Thus a compound wire grid polarizer 1 having two wire grid polarizers 1a, 1b which are orthogonally crossed on the main surface of the light translucent substrate 2 is constituted. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ワイヤーグリッド偏光子と偏光光源とに関し、特に同一基板上に互いに直交するワイヤーグリッド偏光子を形成した複合ワイヤーグリッド偏光子(複合偏光子)と、複合偏光子の裏面の一部に構造複屈折を備えた複合光学素子と、それを用いた画像表示用の偏光光源に関するものである。   The present invention relates to a wire grid polarizer and a polarized light source, and particularly to a composite wire grid polarizer (composite polarizer) in which wire grid polarizers orthogonal to each other are formed on the same substrate, and a part of the back surface of the composite polarizer. The present invention relates to a composite optical element having structural birefringence and a polarized light source for image display using the same.

最近、大画面画像表示装置の需要が急速に拡大するのに伴い、各種の光デバイスが開発され、実用に供されている。図4(a)は、特許文献1に開示されている従来の投影型液晶表示装置を模式的に示した図であって、光源10、1/4波長板11、偏光ビームスプリッタ12、光入射側及び出射側の偏光板13a、13bに挟まれた液晶表示パネル14、投影レンズ15、及びスクリーン16とで構成される。図4(b)は光源部の拡大図であり、光源10は超高圧水銀ランプやキセノンランプ等のランプ10aと反射鏡10b、例えば放物面反射鏡とからなり、光源10から出射される光は放物面反射鏡10bの光軸に略平行光となる。そして、光源10から出射される光は自然光(ランダム光)、即ちあらゆる状態の偏光を均等に含んだ光と見なされ、強度の等しい直交する2つの直線偏光の和で表現される。   Recently, various optical devices have been developed and put into practical use as the demand for large-screen image display devices rapidly expands. FIG. 4 (a) is a diagram schematically showing a conventional projection type liquid crystal display device disclosed in Patent Document 1, in which a light source 10, a quarter wavelength plate 11, a polarization beam splitter 12, and light incidence. The liquid crystal display panel 14, the projection lens 15, and the screen 16 are sandwiched between the polarizing plates 13 a and 13 b on the side and the emission side. FIG. 4B is an enlarged view of the light source unit. The light source 10 includes a lamp 10a such as an ultrahigh pressure mercury lamp or a xenon lamp and a reflecting mirror 10b, for example, a parabolic reflecting mirror. Becomes substantially parallel to the optical axis of the parabolic reflecting mirror 10b. The light emitted from the light source 10 is regarded as natural light (random light), that is, light that uniformly includes polarized light in all states, and is expressed as a sum of two orthogonal linearly polarized lights having equal intensities.

図4(b)に示すように、光源10と液晶表示パネル14との間に配置された偏光ビームスプリッタ12は、プリズムの斜面(接合面)に多層膜を施した三枚のプリズム12a、12b、12cから構成され、照射光のうちP偏光成分の光(P偏光光)を透過し、S偏光成分の光(S偏光光)を反射する作用を有する。また、光源10と偏光ビームスプリッタ12との間には、透過光を45°旋光させる1/4波長板を配置し、その光学軸をS偏光光の振動方向に対し45°の方向に合わせる。   As shown in FIG. 4B, the polarizing beam splitter 12 disposed between the light source 10 and the liquid crystal display panel 14 includes three prisms 12a and 12b in which a multilayer film is applied to the slope (joint surface) of the prism. 12c, and has the effect of transmitting the P-polarized component light (P-polarized light) in the irradiated light and reflecting the S-polarized component light (S-polarized light). Further, a quarter-wave plate for rotating the transmitted light by 45 ° is disposed between the light source 10 and the polarizing beam splitter 12, and the optical axis thereof is aligned with the direction of 45 ° with respect to the vibration direction of the S-polarized light.

光源10から出射するランダム光は、1/4波長板11を経て偏光ビームスプリッタ12に入射する。1/4波長板11を透過する際に旋光作用を受けるがランダム光のままである。そして、偏光ビームスプリッタ12に入射したランダム光は、偏光ビームスプリッタ12によりP偏光光とS偏光光に分離され、P偏光光は偏光ビームスプリッタ12を透過して液晶表示パネルに入射する。S偏光光は偏光ビームスプリッタ12の境界面の多層膜で2度反射され、光源10側に向かう。   Random light emitted from the light source 10 enters the polarization beam splitter 12 through the quarter-wave plate 11. While passing through the quarter-wave plate 11, it undergoes an optical rotation action but remains random light. The random light incident on the polarizing beam splitter 12 is separated into P-polarized light and S-polarized light by the polarizing beam splitter 12, and the P-polarized light passes through the polarizing beam splitter 12 and enters the liquid crystal display panel. The S-polarized light is reflected twice by the multilayer film on the boundary surface of the polarizing beam splitter 12 and travels toward the light source 10 side.

偏光ビームスプリッタ12によって光源10側に反射されたS偏光光は、1/4波長板11を通過する際に旋光作用を受けて、円偏光となる。この円偏光光は放物面鏡10bで反射されて、再び1/4波長板に入射する。この円偏光光は1/4波長板の旋光作用により、45°旋光されてP偏光光となり、偏光ビームスプリッタ12に入射する。偏光ビームスプリッタ12に入射した光はP偏光光であるため、偏光ビームスプリッタ12を透過し、液晶パネル14に入射する。このようにランダム光のほぼ全ての光を液晶パネルに照射できるので、輝度の高い画像を表示させ、投影レンズ15によりスクリーン16上に拡大投影される投影画像を、コントラストの高い明るい画像とすることができる。   The S-polarized light reflected by the polarizing beam splitter 12 toward the light source 10 is subjected to an optical rotation action when passing through the quarter-wave plate 11 and becomes circularly polarized light. This circularly polarized light is reflected by the parabolic mirror 10b and is incident on the quarter-wave plate again. This circularly polarized light is rotated by 45 ° by the optical rotatory action of the ¼ wavelength plate to become P-polarized light and enters the polarization beam splitter 12. Since the light incident on the polarizing beam splitter 12 is P-polarized light, it passes through the polarizing beam splitter 12 and enters the liquid crystal panel 14. Since almost all of the random light can be irradiated onto the liquid crystal panel in this way, a high-luminance image is displayed, and the projection image enlarged and projected on the screen 16 by the projection lens 15 is a bright image with high contrast. Can do.

しかし、偏光ビームスプリッタを用いる偏光光源は、偏光ビームスプリッタの多層膜を形成する際に最適条件で多層膜を形成することが難しいという問題と、プリズムの形状から小型化に難点があり、またコスト面でも高価になるという問題があった。これを改善するものとして、ワイヤーグリッド偏光子が提案され、実用に供されるようになった。ワイヤーグリッド偏光子(ワイヤーグリッド偏光分離素子)は、特許文献2等に開示されている。ワイヤーグリッド偏光子20は、図5に示すように、ガラス基板21上にアルミニウムなどの金属で平行な金属格子22を形成したものである。金属格子22の幅をb、その厚さをh、配列周期(ピッチ)をdとする。入射光Aの波長に対して約1/5以下の十分小さい周期dで金属格子22を構成すると、グリッド周期方向23と垂直に振動する電界成分の光は反射し、平行に振動する電界成分の光は透過して、効率よく偏光分離することができる。   However, a polarization light source using a polarizing beam splitter has a problem that it is difficult to form a multilayer film under optimum conditions when forming the multilayer film of the polarizing beam splitter, and there is a difficulty in miniaturization due to the shape of the prism. There was also a problem that it was expensive. As an improvement, a wire grid polarizer has been proposed and put into practical use. A wire grid polarizer (wire grid polarization separation element) is disclosed in Patent Document 2 and the like. As shown in FIG. 5, the wire grid polarizer 20 is obtained by forming a parallel metal lattice 22 of a metal such as aluminum on a glass substrate 21. The width of the metal grating 22 is b, the thickness thereof is h, and the arrangement period (pitch) is d. When the metal grating 22 is configured with a sufficiently small period d of about 1/5 or less with respect to the wavelength of the incident light A, the light of the electric field component that oscillates perpendicularly to the grid period direction 23 is reflected and the electric field component that oscillates in parallel is reflected. Light is transmitted and can be polarized and separated efficiently.

特許文献3には、図6(a)に示すように透明で柔軟なポリマーフィルム基板31上に金属膜32を形成し、基板31と金属膜32とをX軸方向に延伸することにより、延伸方向と直交するY軸方向に金属の割れが発生し、図6(b)に示すように、金属の付いている部分と基材が露出した部分とが、ストライプ状に交互に配置された異方的な形状を有する構造が形成される。該構造の短軸が光の波長より小さく、長軸が光りの波長より長くすることにより、ワイヤーグリッド型の偏光子30が得られる。X軸方向に電場成分が振動する直線偏光は透過し、延伸方向と直交するY軸方向に電場が振動する直線偏光は反射される。   In Patent Document 3, a metal film 32 is formed on a transparent and flexible polymer film substrate 31 as shown in FIG. 6A, and the substrate 31 and the metal film 32 are stretched in the X-axis direction. As shown in FIG. 6 (b), metal cracks occur in the Y-axis direction perpendicular to the direction, and the metal-attached portions and the exposed portions of the base material are alternately arranged in stripes. A structure having a rectangular shape is formed. By making the short axis of the structure smaller than the wavelength of light and the long axis longer than the wavelength of light, the wire grid type polarizer 30 can be obtained. Linearly polarized light whose electric field component oscillates in the X-axis direction is transmitted, and linearly polarized light whose electric field oscillates in the Y-axis direction orthogonal to the stretching direction is reflected.

図6(b)に示した偏光子30と散乱性の反射板33とを図7に示すように配置することにより、光源の光の利用効率を上げることができることが開示されている。図示しない光源から放出された強度100の光のうち、強度50の光(直線偏光光)が偏光子30を透過し、残りの強度50の直線偏光光が反射板33の方向に反射される。この直線偏光が散乱性の反射板33により散乱され、偏光状態が乱され、自然光として何割かは再び偏光子30に入射し、偏光子30を透過する直線偏光光が含まれる。図7のように構成することにより、光源からの光の効率を上げることができる。   It is disclosed that the light use efficiency of the light source can be increased by arranging the polarizer 30 and the scattering reflector 33 shown in FIG. 6B as shown in FIG. Of light having an intensity of 100 emitted from a light source (not shown), light having an intensity of 50 (linearly polarized light) is transmitted through the polarizer 30, and the remaining linearly polarized light having an intensity of 50 is reflected in the direction of the reflector 33. This linearly polarized light is scattered by the scattering reflector 33, the polarization state is disturbed, and some of the natural light is incident on the polarizer 30 again and includes linearly polarized light that passes through the polarizer 30. By configuring as shown in FIG. 7, the efficiency of light from the light source can be increased.

また、図6(b)に示した偏光子30と、1/4波長板34と、反射板35とを図8に示すように配置することにより、光源の光の利用効率を上げることができることが開示されている。図示しない光源から出射した強度100の自然光のうち、電場成分がX軸方向に振動する強度50の直線偏光光は偏光子30を透過し、電場成分がY軸方向に振動する残りの強度50の直線偏光光が反射される。この反射された直線偏光光は、1/4波長板34を透過する際に、例えば右回りの円偏光に変換される。右回りの円偏光光は反射板35で反射されるときに左回りの円偏光光となり、再度1/4波長板34に入射し、X軸方向に電気ベクトルが振動する直線偏光光となり、偏光子30を透過することができる。図8のように構成することにより、光源からの光の効率を上げることができる。   Further, by arranging the polarizer 30, the quarter wavelength plate 34, and the reflection plate 35 shown in FIG. 6B as shown in FIG. 8, the light use efficiency of the light source can be increased. Is disclosed. Of natural light having an intensity of 100 emitted from a light source (not shown), linearly polarized light having an intensity of 50 in which the electric field component vibrates in the X-axis direction is transmitted through the polarizer 30 and the remaining intensity of 50 in which the electric field component vibrates in the Y-axis direction. Linearly polarized light is reflected. The reflected linearly polarized light is converted into, for example, clockwise circularly polarized light when passing through the quarter-wave plate 34. The clockwise circularly polarized light becomes counterclockwise circularly polarized light when reflected by the reflecting plate 35, enters the quarter wavelength plate 34 again, and becomes linearly polarized light whose electric vector vibrates in the X-axis direction. The child 30 can be transmitted. By configuring as shown in FIG. 8, the efficiency of light from the light source can be increased.

また、特許文献4には光学ガラス基板の両面にワイヤーグリッド偏光膜を形成し、各ワイヤーグリッド偏光膜は互いに平行ニコルの関係とした偏光子(反射型偏光子)が開示されている。図9に示すように、光学ガラス基板41の両主面部にはそれぞれワイヤーグリッド偏光膜42、43が形成され、該ワイヤーグリッド偏光膜42、43は互いに平行ニコル、つまりワイヤーグリッド偏光膜42、43のそれぞれにおいて反射される光速の偏光方向は互いに平行な方向である。この偏光子40に自然光が一方のワイヤーグリッド偏光膜42に入射すると、この入射光に含まれるS偏光成分はワイヤーグリッド偏光膜42によって反射される。そして、入射光のP偏光成分は反射面42を透過し、基板41を透過し、さらに、他方の主面上のワイヤーグリッド偏光膜43を透過する。   Patent Document 4 discloses a polarizer (reflective polarizer) in which a wire grid polarizing film is formed on both surfaces of an optical glass substrate, and each wire grid polarizing film has a parallel Nicol relationship. As shown in FIG. 9, wire grid polarizing films 42 and 43 are formed on both main surface portions of the optical glass substrate 41, respectively. The wire grid polarizing films 42 and 43 are parallel Nicols, that is, wire grid polarizing films 42 and 43, respectively. The polarization directions of the light speed reflected at each of these are parallel to each other. When natural light is incident on the polarizer 40 on one wire grid polarizing film 42, the S-polarized component contained in the incident light is reflected by the wire grid polarizing film 42. Then, the P-polarized component of the incident light is transmitted through the reflecting surface 42, transmitted through the substrate 41, and further transmitted through the wire grid polarizing film 43 on the other main surface.

この偏光子40では、入射光のうちワイヤーグリッド偏光膜42、43を透過する偏光成分は、基板41のいずれの主面側から入射する場合でも、基板41内における応力(歪み)による複屈折の影響が、出射する主面上のワイヤーグリッド偏光膜42、43を透過するときに遮断されるという特徴を有する。
特許第2720730号 特開2002−311382公報 特開2001−74935公報 特開2005−106940公報
In this polarizer 40, the polarized light component transmitted through the wire grid polarizing films 42 and 43 of the incident light is birefringent due to stress (strain) in the substrate 41 regardless of which main surface side of the substrate 41 is incident. The influence is cut off when it passes through the wire grid polarizing films 42 and 43 on the main surface to be emitted.
Japanese Patent No. 2720730 JP 2002-311382 A JP 2001-74935 A JP-A-2005-106940

しかしながら、図5に示すような従来のワイヤーグリッド偏光子では、画像表示用偏光光源を構成する際に光学部品の数が多く必要になるという問題があった。また、図6に示すポリマーフィルム基板状に形成されるワイヤーグリッド偏光子は、環境試験に対する耐久性に問題があり、また光学部品の点数の問題も解決されていない。また、図9に示すワイヤーグリッド偏光子は、内部に応力(歪み)が発生し、それによる複屈折の影響を受けても、出射光には複屈折の影響を受けた成分が遮断されるという特徴を有するものの、偏光光源を構成する際に光学部品の点数を削減するができないという問題があった。
本発明の複合偏光子は薄型であり、画像表示用偏光光源を構成する際に光学部品の点数を削減できる複合ワイヤーグリッド偏光子を提供することにある。
However, the conventional wire grid polarizer as shown in FIG. 5 has a problem that a large number of optical components are required when configuring a polarized light source for image display. Moreover, the wire grid polarizer formed in the polymer film substrate form shown in FIG. 6 has a problem in durability with respect to an environmental test, and the problem of the number of optical components has not been solved. In addition, the wire grid polarizer shown in FIG. 9 generates stress (strain) inside, and even if it is affected by the birefringence caused thereby, the component affected by the birefringence is blocked in the emitted light. Although having the characteristics, there is a problem that the number of optical components cannot be reduced when a polarized light source is configured.
The composite polarizer of the present invention is thin, and it is an object of the present invention to provide a composite wire grid polarizer that can reduce the number of optical components when forming a polarized light source for image display.

本発明に係る複合偏光子、複合光学素子は、画像表示用偏光光源の小型、軽量化を図るため、光透過性基板の主面のほぼ上半分に第1の金属格子を所定の周期で複数配列した第1のワイヤーグリッド偏光子と、前記基板の下半分に前記第1のワイヤーグリッド偏光子の周期方向と直交して、第2の金属格子を所定の周期で複数配列した第2のワイヤーグリッド偏光子と、を備えた複合ワイヤーグリッド偏光子構成する。このような複合ワイヤーグリッド偏光子を偏光光源に用いることにより、光学部品の点数を削減し、偏光光源の小型、軽量化を図ることができるというこう効果がある。   In the composite polarizer and composite optical element according to the present invention, in order to reduce the size and weight of the polarized light source for image display, a plurality of first metal gratings are provided on a substantially upper half of the main surface of the light-transmitting substrate at a predetermined period. A first wire grid polarizer arranged, and a second wire in which a plurality of second metal gratings are arranged at a predetermined cycle on the lower half of the substrate perpendicular to the periodic direction of the first wire grid polarizer A composite wire grid polarizer comprising a grid polarizer. By using such a composite wire grid polarizer for a polarized light source, the number of optical components can be reduced, and the polarized light source can be reduced in size and weight.

前記光透過性基板に水晶、光学ガラス、ポリマーフィルムを用いて前記複合ワイヤーグリッド偏光子を構成する。偏光光源の用途に応じて水晶、光学ガラス、ポリマーフィルムのいずれかを用いることにより、用途が要求する小型化、軽量化、低コスト化のいずれかに重点を置く偏光光源が実現できるという効果がある。   The composite wire grid polarizer is configured using quartz, optical glass, or polymer film on the light transmissive substrate. By using either crystal, optical glass, or polymer film according to the application of the polarized light source, it is possible to realize a polarized light source that focuses on any of the downsizing, weight reduction, and cost reduction required by the application. is there.

光透過性基板の一方の主面のほぼ上半分に第1の金属格子を所定の周期で複数配列した第1のワイヤーグリッド偏光子と、第1のワイヤーグリッド偏光子と同一の面で且つその下半分に、前記第1のワイヤーグリッド偏光子の周期方向と直交して、第2の金属格子を所定の周期で複数配列した第2のワイヤーグリッド偏光子と、前記基板の他方の主面半分に第1の屈折率の第1の媒体と、第2の屈折率の第2の媒体とが所定の周期で形成された構造複屈折と、を備えた複合光学素子を構成する。このような複合光学素子を偏光光源に用いることにより、光学部品の点数を削減し、偏光光源の小型、軽量化を図ることができるという効果がある。   A first wire grid polarizer in which a plurality of first metal gratings are arranged on a substantially upper half of one main surface of the light-transmitting substrate at a predetermined period; and the same surface as the first wire grid polarizer and In the lower half, a second wire grid polarizer in which a plurality of second metal gratings are arranged with a predetermined period orthogonal to the periodic direction of the first wire grid polarizer, and the other main surface half of the substrate And a structural birefringence in which a first medium having a first refractive index and a second medium having a second refractive index are formed with a predetermined period. By using such a composite optical element for a polarized light source, the number of optical components can be reduced, and the polarized light source can be reduced in size and weight.

発光光源と、上記複合ワイヤーグリッド偏光子と、1/2波長板と、を備えた偏光光源であって、前記発光光源からの光束の一部は前記第1のワイヤーグリッド偏光子を透過し、他の一部は前記第1のワイヤーグリッド偏光子で反射され、該反射光は前記発光光源に備えた反射鏡により、第2のワイヤーグリッド偏光子に入射、透過し、第2のワイヤーグリッド偏光子の後方配置された1/2波長板で変換されて同一の偏光光とした偏光光源を構成する。画像表示用偏光光源をこのように構成することにより、光学部品の点数を削減できると共に、画像表示用偏光光源の小型、軽量化、低コスト化ができるという効果がある。   A polarized light source comprising a light emitting light source, the composite wire grid polarizer, and a half-wave plate, wherein a part of the light flux from the light emitting light source passes through the first wire grid polarizer, The other part is reflected by the first wire grid polarizer, and the reflected light is incident on and transmitted to the second wire grid polarizer by the reflecting mirror provided in the light emitting light source. A polarized light source converted into the same polarized light by being converted by a half-wave plate arranged behind the child is configured. By configuring the image display polarized light source in this manner, the number of optical components can be reduced, and the image display polarized light source can be reduced in size, weight, and cost.

発光光源と、上記の複合光学素子と、を備えた偏光光源であって、前記発光光源からの光束の一部は前記複合光学素子の第1のワイヤーグリッド偏光子を透過し、他の一部は第1のワイヤーグリッド偏光子で反射され、該反射光は前記発光光源に備えた反射鏡により、第2のワイヤーグリッド偏光子に入射、透過し、第2のワイヤーグリッド偏光子と対向する面に設けた構造複屈折により変換されて同一の偏光光とした偏光光源を構成する。画像表示用偏光光源を上記の複合光学素子を用いて構成することにより、光学部品の点数を削減できると共に、画像表示用偏光光源の小型、軽量化、低コスト化ができるという効果がある。   A polarized light source including a light emitting light source and the above-described composite optical element, wherein a part of a light beam from the light emitting light source transmits a first wire grid polarizer of the composite optical element and the other part Is reflected by the first wire grid polarizer, and the reflected light is incident on and transmitted through the second wire grid polarizer by the reflecting mirror provided in the light emitting light source, and faces the second wire grid polarizer. The polarized light source is converted into the same polarized light by being converted by the structural birefringence. By configuring the polarization light source for image display using the above-described composite optical element, the number of optical components can be reduced, and the polarization light source for image display can be reduced in size, weight, and cost.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は本発明に係る複合ワイヤーグリッド偏光子(複合偏光子)1の構成を示す概略斜視図であって、光透過性の基板2の主面でZ軸方向のほぼ上半分に、X軸方向に長い幅w1、厚さh1の金属格子3aを、周期p1でX軸方向に平行して複数配列し、第1のワイヤーグリッド偏光子1aを形成する。そして、第1のワイヤーグリッド偏光子1aと同一面上で、Z軸方向のほぼ下半分に、第1のワイヤーグリッド偏光子1aの周期p1方向と直交して、Z軸方向に長い幅w2、厚さh2の金属格子3bを周期p2でZ軸方向に平行して複数配列し、第2のワイヤーグリッド偏光子1bを形成し、光透過性の基板2の主面上に互いに直交する2つのワイヤーグリッド偏光子1a、1bを備えた複合ワイヤーグリッド偏光子1を構成する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic perspective view showing a configuration of a composite wire grid polarizer (composite polarizer) 1 according to the present invention. A plurality of metal gratings 3a having a width w1 and a thickness h1 that are long in the direction are arranged in parallel with the X-axis direction at a period p1 to form a first wire grid polarizer 1a. Then, on the same plane as the first wire grid polarizer 1a, a width w2 that is long in the Z-axis direction, orthogonal to the period p1 direction of the first wire grid polarizer 1a, substantially in the lower half of the Z-axis direction, A plurality of metal gratings 3b having a thickness h2 are arranged in parallel with the Z-axis direction at a period p2 to form a second wire grid polarizer 1b, and two orthogonal to each other on the main surface of the light-transmitting substrate 2 A composite wire grid polarizer 1 including wire grid polarizers 1a and 1b is configured.

光透過性の基板2としては光学ガラス、水晶、ポリマーフィルム例えば、ポリカーボネート、ポリエチレン、ポリエチレンテレフタレート、ポリ塩化ビニル等が利用できる。金属格子の材料としては種々の金属が用いられるが、例えば、アルミニウムは安価であり、光の反射効率もよいので多く用いられている。そして、金属格子の形成法としては、真空蒸着法、スパッターリング法等を用いて、基板上に所定の厚さの金属膜を形成し、フォトリソグラフィ技法とエッチング手法を用いて形成することができる。また、サブミクロンの微細な金属格子は、基板上に数nmのアルミニウム下地を形成し、電子線描画によりレジストパターンを作成する。そして、所定の膜厚のアルミニウムを蒸着し、リフトオフにより選択的に不要なアルミニウムを除去し、金属格子を形成する。さらに、金属格子以外に残存する下地膜をエッチングにより除去する。
最近ではナノインプリントと称して、金型をレジスト膜に押しつけ、金型のパターンを転写し、レジスト膜の残膜を除去し、そこに金属膜を成膜して、金属格子を形成する技術が開発されている。
As the light-transmitting substrate 2, optical glass, crystal, polymer film such as polycarbonate, polyethylene, polyethylene terephthalate, polyvinyl chloride and the like can be used. Various metals are used as the material of the metal grid. For example, aluminum is often used because it is inexpensive and has good light reflection efficiency. As a method for forming the metal grid, a metal film having a predetermined thickness can be formed on the substrate using a vacuum deposition method, a sputtering method, or the like, and can be formed using a photolithography technique and an etching technique. . In addition, a submicron fine metal lattice forms an aluminum base of several nm on a substrate, and creates a resist pattern by electron beam drawing. Then, aluminum having a predetermined thickness is vapor-deposited, and unnecessary aluminum is selectively removed by lift-off to form a metal lattice. Further, the remaining base film other than the metal lattice is removed by etching.
Recently, a technology called nanoimprint has been developed that presses the mold against the resist film, transfers the pattern of the mold, removes the remaining resist film, and forms a metal film on it to form a metal lattice. Has been.

ワイヤーグリッド偏光子の作用は、周知のように、入射光の波長に対して約1/5以下の十分小さい周期で金属格子を構成すると、グリッド周期方向と垂直に振動する電界成分の光は反射し、平行に振動する電界成分の光は透過するという特性がある。従って、図1に示すように互いに周期方向が直交する2つのワイヤーグリッド偏光子1a、1bを同一基板上に形成した複合ワイヤーグリッド偏光子においては、上半分と下半分とでは透過、反射の偏光光が互いに異なることになる。図1に示した複合ワイヤーグリッド偏光子1を用いる際には、ワイヤーグリッド偏光子1a、1bのそれぞれの金属格子の幅w1、w2、厚さh1、h2、周期p1、p2をほぼ等しく構成して用いるのが一般的である。   As is well known, when the metal grid is formed with a sufficiently small period of about 1/5 or less with respect to the wavelength of the incident light, the action of the wire grid polarizer reflects the light of the electric field component that oscillates perpendicularly to the grid period direction. However, there is a characteristic that light of an electric field component that vibrates in parallel is transmitted. Therefore, as shown in FIG. 1, in the composite wire grid polarizer in which two wire grid polarizers 1a and 1b whose period directions are orthogonal to each other are formed on the same substrate, transmission and reflection polarization are performed in the upper half and the lower half. The light will be different from each other. When the composite wire grid polarizer 1 shown in FIG. 1 is used, the widths w1, w2, thicknesses h1, h2, and periods p1, p2 of the metal grids of the wire grid polarizers 1a, 1b are substantially equal. Is generally used.

図2は本発明に係る複合ワイヤーグリッド偏光子1を用いた画像表示用偏光光源の構成を示す概略図である。画像表示用偏光光源は、発光光源4と、複合ワイヤーグリッド偏光子1と、1/2波長板7と、を備えた偏光光源である。発光光源4は超高圧水銀ランプやキセノンランプ等のランプ5と反射鏡6、例えば放物面反射鏡とからなり、ランプ5から出射される光は放物面反射鏡6の光軸に略平行光となる。そして、ランプ5から発せられる光は自然光(ランダム光)であり、強度の等しい直交する2つの直線偏光(P偏光、S偏光)の和で表せる。   FIG. 2 is a schematic diagram showing the configuration of a polarized light source for image display using the composite wire grid polarizer 1 according to the present invention. The polarized light source for image display is a polarized light source including a light emitting light source 4, a composite wire grid polarizer 1, and a half-wave plate 7. The light emitting light source 4 includes a lamp 5 such as an ultra-high pressure mercury lamp or a xenon lamp and a reflecting mirror 6, for example, a parabolic reflecting mirror, and light emitted from the lamp 5 is substantially parallel to the optical axis of the parabolic reflecting mirror 6. It becomes light. The light emitted from the lamp 5 is natural light (random light), and can be represented by the sum of two orthogonal linearly polarized light (P-polarized light and S-polarized light) having the same intensity.

図2に示す複合ワイヤーグリッド偏光子1は、図1に示すように構成されているものとする。まず、発光光源4からの平行光束が複合ワイヤーグリッド偏光子1の上半分に入射する場合を考える。平行光束のうちS偏光光は複合ワイヤーグリッド偏光子1のワイヤーグリッド偏光子1aを透過し、液晶パネル8に入射する。平行光束のうちP偏光光はワイヤーグリッド偏光子1aにより反射され、発光光源4の方向に戻り、放物面反射鏡6に2度反射して複合ワイヤーグリッド偏光子1の下半分に入射する。複合ワイヤーグリッド偏光子1の下半分に形成されたワイヤーグリッド偏光子1bは、上半分に形成されたワイヤーグリッド偏光子1aとは、周期方向が互いに直交しているので、P偏光光を透過し、複合ワイヤーグリッド偏光子1の後方に配置された1/2波長板7により90°旋光され、S偏光光に変換されて液晶パネル8に入射する。   The composite wire grid polarizer 1 shown in FIG. 2 is configured as shown in FIG. First, consider a case where a parallel light beam from the light source 4 is incident on the upper half of the composite wire grid polarizer 1. Of the parallel light flux, S-polarized light passes through the wire grid polarizer 1 a of the composite wire grid polarizer 1 and enters the liquid crystal panel 8. Of the parallel light flux, the P-polarized light is reflected by the wire grid polarizer 1 a, returns to the direction of the light emitting light source 4, is reflected twice by the parabolic reflector 6, and enters the lower half of the composite wire grid polarizer 1. The wire grid polarizer 1b formed in the lower half of the composite wire grid polarizer 1 transmits P-polarized light because the periodic directions are perpendicular to the wire grid polarizer 1a formed in the upper half. Then, it is rotated 90 ° by the half-wave plate 7 arranged behind the composite wire grid polarizer 1, converted into S-polarized light, and incident on the liquid crystal panel 8.

次に発光光源4からの平行光束が複合ワイヤーグリッド偏光子1の下半分に入射する場合を考える。平行光束のうちP偏光光は複合ワイヤーグリッド偏光子1のワイヤーグリッド偏光子1bを透過し、液晶パネル8に入射する。そして、後方に配置した1/2波長板によりS偏光に変換されて液晶パネル8に入射する。
平行光束のうちS偏光光はワイヤーグリッド偏光子1bにより反射され、発光光源4の方向に戻り、放物面反射鏡6に2度反射して複合ワイヤーグリッド偏光子1の上半分に入射する。複合ワイヤーグリッド偏光子1の上半分に形成されたワイヤーグリッド偏光子1aは、S偏光光を透過し、液晶パネル8に入射する。
Next, consider the case where the parallel light beam from the light source 4 is incident on the lower half of the composite wire grid polarizer 1. Of the parallel light flux, the P-polarized light passes through the wire grid polarizer 1 b of the composite wire grid polarizer 1 and enters the liquid crystal panel 8. Then, the light is converted into S-polarized light by a half-wave plate disposed at the rear and is incident on the liquid crystal panel 8.
Of the parallel light flux, the S-polarized light is reflected by the wire grid polarizer 1 b, returns to the direction of the light emitting light source 4, is reflected twice by the parabolic reflector 6, and enters the upper half of the composite wire grid polarizer 1. The wire grid polarizer 1 a formed in the upper half of the composite wire grid polarizer 1 transmits S-polarized light and enters the liquid crystal panel 8.

本発明に係る複合ワイヤーグリッド偏光子は、同一基板上に互いに周期方向が直交するワイヤーグリッド偏光子を形成してあるので、画像表示用偏光光源を構成するにあたり、光学部品を少なくすることが可能であり、また小型化、薄型化に効果を奏する。   In the composite wire grid polarizer according to the present invention, wire grid polarizers whose periodic directions are orthogonal to each other are formed on the same substrate, so that it is possible to reduce the number of optical components when configuring a polarized light source for image display. It is also effective in reducing the size and thickness.

図3(a)は本発明に係る平板状の複合光学素子10の断面図であって、図中左側の主面には、同図(b)に示すような互いに直交するワイヤーグリッド偏光子11、12が形成されており、図中右側の主面の下半分には図3(c)に示すような構造複屈折の1/2波長板が形成されている。誘電体の構造複屈折を利用した光学波長板は、屈折率が互いに異なる第1の媒体1(第1の屈折率n1)と、第2の媒体2(第2の屈折率n2)とからなり、第1の媒体1と第2の媒体2とにより、境界面Aが周期的に変化する屈折率周期構造を形成している。波長λがピッチpに比べて十分に小さい領域では、周期構造の溝(境界面A)に平行な偏光に対する屈折率naと、溝に直交する方向の屈折率nbとが異なる値を持ち、この周期構造が複屈折結晶として機能する。屈折率na、nbは媒体1、2の屈折率n1、n2とを用いて次式で与えられる。
na={n1 2+n2 2(1−q)}1/2・・・(1)
nb={(1/n12q+(1/n22(1−q)}-1/2・・・(2)
ここでqはw/pである。複屈折の大きさΔnは次式で与えられる。
Δn=|na−nb|・・・(3)
また、偏光方向が周期構造の溝に平行な光と垂直な光との位相差(遅延量)Reは周期構造の深さをdとすると、
Re=dΔn・・・(4)
となる。1/2波長板は位相差が波長の1/2にとなる場合だけでなく、1/2波長の奇数倍であれば1/2波長板として機能する。
FIG. 3A is a cross-sectional view of a planar composite optical element 10 according to the present invention, and a wire grid polarizer 11 orthogonal to each other as shown in FIG. 12 are formed in the lower half of the main surface on the right side of the figure, as shown in FIG. 3C. The optical wave plate using the structural birefringence of the dielectric includes a first medium 1 (first refractive index n 1 ) and a second medium 2 (second refractive index n 2 ) having different refractive indexes. The first medium 1 and the second medium 2 form a refractive index periodic structure in which the boundary surface A changes periodically. In a region where the wavelength λ is sufficiently smaller than the pitch p, the refractive index na for polarized light parallel to the periodic structure groove (boundary surface A) and the refractive index nb in the direction perpendicular to the groove have different values. The periodic structure functions as a birefringent crystal. The refractive indexes na and nb are given by the following equations using the refractive indexes n 1 and n 2 of the media 1 and 2 .
na = {n 1 2 + n 2 2 (1-q)} 1/2 (1)
nb = {(1 / n 1 ) 2 q + (1 / n 2 ) 2 (1-q)} −1/2 (2)
Here, q is w / p. The birefringence magnitude Δn is given by the following equation.
Δn = | na−nb | (3)
Further, the phase difference (delay amount) Re between the light whose polarization direction is parallel to the grooves of the periodic structure and the light perpendicular thereto is d, where the depth of the periodic structure is d
Re = dΔn (4)
It becomes. The half-wave plate functions as a half-wave plate not only when the phase difference is ½ of the wavelength, but also when it is an odd multiple of ½ wavelength.

図3に示すような平行な平板光学ガラスの一方の面に2つの互いに直交するワイヤーグリッド偏光子を、他方の面の半分に構造複屈折を用いた1/2波長板を形成した複合光学部品を用いることにより偏光光源を小型化することができる。
このように、一方の面に互いに直交する2つのワイヤーグリッド偏光子を形成し、他方の面の半分に構造複屈折の1/2波長板を形成した複合光学素子を用いると、画像表示用偏光光源を構成するにあたり、光学部品を少なくすることが可能であり、また小型化、薄型化に効果を奏する。
A composite optical component in which two mutually orthogonal wire grid polarizers are formed on one surface of a parallel flat optical glass as shown in FIG. 3 and a half-wave plate using structural birefringence is formed on the other half. By using this, the polarized light source can be reduced in size.
As described above, when a composite optical element in which two wire grid polarizers orthogonal to each other are formed on one surface and a half-wave plate having a structural birefringence is formed on the other half, polarization for image display is used. In constructing the light source, it is possible to reduce the number of optical components, and it is effective for miniaturization and thinning.

本発明に係る複合ワイヤーグリッド偏光子の構造を示した概略図。Schematic which showed the structure of the composite wire grid polarizer which concerns on this invention. 本発明に係る画像表示用偏光光源の構成を示した概略図。Schematic which showed the structure of the polarized light source for image displays which concerns on this invention. (a)は本発明に係る複合光学部品の断面図、(b)は一方の面の平面図、(c)は他方の面の詳細な断面図。(A) is sectional drawing of the composite optical component which concerns on this invention, (b) is a top view of one surface, (c) is detailed sectional drawing of the other surface. (a)は液晶表示装置の側面図、(b)は光源部の拡大図。(A) is a side view of a liquid crystal display device, (b) is an enlarged view of a light source part. ワイヤーグリッド偏光子の構造を示した概略図。Schematic which showed the structure of the wire grid polarizer. (a)は偏光子を延伸する前の図、(b)は偏光子を示す図。(A) is a figure before extending | stretching a polarizer, (b) is a figure which shows a polarizer. 偏光子と、光源と、拡散性の反射板とからなる偏光光源を示す図。The figure which shows the polarized light source which consists of a polarizer, a light source, and a diffusive reflecting plate. 偏光子と、光源と、位相差板とからなる偏光光源を示す図。The figure which shows the polarized light source which consists of a polarizer, a light source, and a phase difference plate. 偏光子の構成を示す側面図。The side view which shows the structure of a polarizer.

符号の説明Explanation of symbols

1 複合ワイヤーグリッド偏光子、1a、1b、11、12 ワイヤーグリッド偏光子、2 基板、3a、3b 金属格子、w1、w2 金属格子の幅、h1、h2 金属格子の厚さ、p1、p2、 金属格子の周期、4 光源、5 ランプ、6 反射板、7 1/2波長板、8 液晶パネル、9a、9b 偏光板、10 複合光学部品、13 構造複屈折、p 構造複屈折の周期、w 媒体1の幅、n1 媒体1の屈折率、n2 媒体2の屈折率   1 Composite wire grid polarizer, 1a, 1b, 11, 12 Wire grid polarizer, 2 Substrate, 3a, 3b Metal grid, w1, w2 Metal grid width, h1, h2 Metal grid thickness, p1, p2, Metal Period of grating, 4 light source, 5 lamp, 6 reflector, 7 1/2 wavelength plate, 8 liquid crystal panel, 9a, 9b polarizing plate, 10 composite optical component, 13 structure birefringence, p structure birefringence period, w medium 1 width, n1 medium 1 refractive index, n2 medium 2 refractive index

Claims (7)

光透過性基板の主面のほぼ上半分の範囲内に所定の周期で複数配列された第1の金属格子から成る第1のワイヤーグリッド偏光子と、
前記光透過性基板のほぼ下半分の範囲内に前記第1のワイヤーグリッド偏光子の周期方向と直交した状態で所定の周期にて複数配列された第2の金属格子から成る第2のワイヤーグリッド偏光子と、
を備えたことを特徴とする複合ワイヤーグリッド偏光子。
A first wire grid polarizer comprising a plurality of first metal gratings arranged in a predetermined period within a substantially upper half of the main surface of the light transmissive substrate;
A second wire grid comprising a plurality of second metal gratings arranged in a predetermined cycle in a state orthogonal to the periodic direction of the first wire grid polarizer within a range of substantially the lower half of the light transmissive substrate. A polarizer,
A composite wire grid polarizer characterized by comprising:
前記光透過性基板の材質として水晶を用いたことを特徴とする請求項1に記載の複合ワイヤーグリッド偏光子。   The composite wire grid polarizer according to claim 1, wherein quartz is used as a material of the light transmissive substrate. 前記光透過性基板の材質として光学ガラスを用いたことを特徴とする請求項1に記載の複合ワイヤーグリッド偏光子。   The composite wire grid polarizer according to claim 1, wherein optical glass is used as a material of the light transmissive substrate. 前記光透過性基板としてポリマーフィルムを用いたことを特徴とする請求項1に記載の複合ワイヤーグリッド偏光子。   The composite wire grid polarizer according to claim 1, wherein a polymer film is used as the light transmissive substrate. 光透過性基板の一方の主面のほぼ上半分の範囲内に所定の周期で複数配列された第1の金属格子から成る第1のワイヤーグリッド偏光子と、
第1のワイヤーグリッド偏光子と同一の面で且つそのほぼ下半分の範囲内に、前記第1のワイヤーグリッド偏光子の周期方向と直交した状態で所定の周期にて複数配列された第2の金属格子から成る第2のワイヤーグリッド偏光子と、
前記光透過性基板の他方の主面のほぼ半分の範囲内に、第1の屈折率を有した第1の媒体と、第2の屈折率を有した第2の媒体とが所定の周期で形成された構造複屈折と、
を備えたことを特徴とする複合光学素子。
A first wire grid polarizer comprising a plurality of first metal gratings arranged in a predetermined cycle within a substantially upper half of one main surface of the light transmissive substrate;
A plurality of second arrays arranged at a predetermined cycle in a state orthogonal to the periodic direction of the first wire grid polarizer, in the same plane as the first wire grid polarizer and in a substantially lower half range thereof. A second wire grid polarizer comprising a metal grid;
A first medium having a first refractive index and a second medium having a second refractive index are within a predetermined period within a range approximately half of the other main surface of the light transmissive substrate. The formed structural birefringence,
A composite optical element comprising:
発光光源と、請求項1乃至4に記載の複合ワイヤーグリッド偏光子と、1/2波長板と、を備えた偏光光源であって、
前記発光光源からの光束の一部は前記第1のワイヤーグリッド偏光子を透過し、他の一部は前記第1のワイヤーグリッド偏光子で反射され、該反射光は前記発光光源に備えた反射鏡により、第2のワイヤーグリッド偏光子に入射、透過し、第2のワイヤーグリッド偏光子の後方配置された1/2波長板で変換されて同一の偏光光としたことを特徴とする偏光光源。
A polarized light source comprising a light emitting source, the composite wire grid polarizer according to claim 1, and a half-wave plate,
A part of the light flux from the light emitting light source is transmitted through the first wire grid polarizer, and the other part is reflected by the first wire grid polarizer, and the reflected light is reflected by the light emitting light source. A polarized light source characterized in that it is incident on and transmitted through a second wire grid polarizer by a mirror and converted by a half-wave plate disposed behind the second wire grid polarizer to be the same polarized light. .
発光光源と、請求項5に記載の複合光学素子と、を備えた偏光光源であって、
前記発光光源からの光束の一部は前記複合光学素子の第1のワイヤーグリッド偏光子を透過し、他の一部は第1のワイヤーグリッド偏光子で反射され、該反射光は前記発光光源に備えた反射鏡により、第2のワイヤーグリッド偏光子に入射、透過し、第2のワイヤーグリッド偏光子と対向する面に設けた構造複屈折により変換されて同一の偏光光としたことを特徴とする偏光光源。
A polarized light source comprising: a light emitting source; and the composite optical element according to claim 5,
A part of the light flux from the light emitting light source passes through the first wire grid polarizer of the composite optical element, the other part is reflected by the first wire grid polarizer, and the reflected light is transmitted to the light emitting light source. It is characterized in that it is incident on and transmitted through the second wire grid polarizer by the reflecting mirror provided and converted by the structural birefringence provided on the surface facing the second wire grid polarizer to be the same polarized light. A polarized light source.
JP2006041978A 2006-02-20 2006-02-20 Compound wire grid polarizer, compound optical element and polarized light source Withdrawn JP2007219340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041978A JP2007219340A (en) 2006-02-20 2006-02-20 Compound wire grid polarizer, compound optical element and polarized light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041978A JP2007219340A (en) 2006-02-20 2006-02-20 Compound wire grid polarizer, compound optical element and polarized light source

Publications (1)

Publication Number Publication Date
JP2007219340A true JP2007219340A (en) 2007-08-30

Family

ID=38496698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041978A Withdrawn JP2007219340A (en) 2006-02-20 2006-02-20 Compound wire grid polarizer, compound optical element and polarized light source

Country Status (1)

Country Link
JP (1) JP2007219340A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184635A1 (en) * 2008-11-11 2010-05-12 Samsung SDI Co., Ltd. Backlight unit with integral wire grid polarizer
WO2012032939A1 (en) * 2010-09-07 2012-03-15 ソニー株式会社 Solid-state imaging element, solid-state imaging device, imaging apparatus, and method for producing polarizing element
JP2012113280A (en) * 2010-11-05 2012-06-14 Asahi Kasei E-Materials Corp Wire grid polarizer and optical sensor
JP2012173409A (en) * 2011-02-18 2012-09-10 Ricoh Co Ltd Optical characteristic evaluation method and optical element inspection method
KR101471859B1 (en) * 2008-11-27 2014-12-11 삼성전자주식회사 Light emitting diode
JP2015222258A (en) * 2011-10-31 2015-12-10 日本精工株式会社 Manufacturing method of optical sensor
JP2015225113A (en) * 2014-05-26 2015-12-14 リコー光学株式会社 Optical element, molding type, manufacturing method and optical device
WO2016060170A1 (en) * 2014-10-15 2016-04-21 綜研化学株式会社 Polarizing plate, method for manufacturing same, and medium
CN108681134A (en) * 2018-03-29 2018-10-19 上海天马微电子有限公司 Display panel, manufacturing method thereof and display device
CN113917591A (en) * 2021-10-15 2022-01-11 中国人民解放军国防科技大学 Random polarization conversion super surface and method for polarization conversion of random polarization light

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184635A1 (en) * 2008-11-11 2010-05-12 Samsung SDI Co., Ltd. Backlight unit with integral wire grid polarizer
KR101471859B1 (en) * 2008-11-27 2014-12-11 삼성전자주식회사 Light emitting diode
US9064763B2 (en) 2010-09-07 2015-06-23 Sony Corporation Solid-state imaging element, solid-state imaging device, imaging apparatus, and method of manufacturing polarizing element
WO2012032939A1 (en) * 2010-09-07 2012-03-15 ソニー株式会社 Solid-state imaging element, solid-state imaging device, imaging apparatus, and method for producing polarizing element
CN102402106A (en) * 2010-09-07 2012-04-04 索尼公司 Solid-state imaging element, solid-state imaging device, solid-state imaging apparatus, and method for producing polarizing element
JP2012080065A (en) * 2010-09-07 2012-04-19 Sony Corp Solid state image sensor, solid state image pickup device, image pickup equipment, and manufacturing method of polarization element
CN102402106B (en) * 2010-09-07 2015-11-18 索尼公司 The manufacture method of solid photographic element, device, equipment and polarizer
JP2012113280A (en) * 2010-11-05 2012-06-14 Asahi Kasei E-Materials Corp Wire grid polarizer and optical sensor
JP2012173409A (en) * 2011-02-18 2012-09-10 Ricoh Co Ltd Optical characteristic evaluation method and optical element inspection method
JP2015222258A (en) * 2011-10-31 2015-12-10 日本精工株式会社 Manufacturing method of optical sensor
US9726560B2 (en) 2011-10-31 2017-08-08 Nsk Ltd. Optical sensor, method for manufacturing optical sensor, optical encoder, torque detection apparatus, and electric power steering apparatus
JP2015225113A (en) * 2014-05-26 2015-12-14 リコー光学株式会社 Optical element, molding type, manufacturing method and optical device
WO2016060170A1 (en) * 2014-10-15 2016-04-21 綜研化学株式会社 Polarizing plate, method for manufacturing same, and medium
CN106796320A (en) * 2014-10-15 2017-05-31 综研化学株式会社 Polarizer and its manufacture method, medium
JPWO2016060170A1 (en) * 2014-10-15 2017-07-27 綜研化学株式会社 Polarizing plate, manufacturing method thereof, medium
EP3208641A4 (en) * 2014-10-15 2017-12-06 Soken Chemical & Engineering Co., Ltd. Polarizing plate, method for manufacturing same, and medium
CN108681134A (en) * 2018-03-29 2018-10-19 上海天马微电子有限公司 Display panel, manufacturing method thereof and display device
CN113917591A (en) * 2021-10-15 2022-01-11 中国人民解放军国防科技大学 Random polarization conversion super surface and method for polarization conversion of random polarization light

Similar Documents

Publication Publication Date Title
JP2007219340A (en) Compound wire grid polarizer, compound optical element and polarized light source
US6947215B2 (en) Optical element, optical functional device, polarization conversion device, image display apparatus, and image display system
US7573546B2 (en) Wire grid polarizer having dual layer structure and method of fabricating the same
EP1818696A2 (en) Projector with fine structured birefringent polarizer inclined to the projector axis
EP1826593B1 (en) Optical element and image projecting apparatus
JPH1010514A (en) Liquid crystal projection type display system
JP2008145457A (en) Optical element and image projection apparatus
JP2006003384A (en) Polarizing beam splitter and liquid crystal projector device
JP2011033762A5 (en)
JP4125114B2 (en) Optical element, optical modulation element, and image display device
JP5206029B2 (en) Liquid crystal display
JP2009223074A (en) Polarization converting element
JP2006047829A (en) Liquid crystal display device
JP4212562B2 (en) Projection type screen and image projection system
JPH03241311A (en) Polarization light source device
JP2008185768A (en) Wavelength plate and optical device
JP2010197783A (en) Screen
JP3595142B2 (en) Linear polarized light source
JP2007093964A (en) Polarization conversion element
JP4449841B2 (en) Wire grid polarizer manufacturing method, liquid crystal device, projector
JP2006235312A (en) Reflective liquid crystal display device
JP2007114375A (en) Light irradiation device, liquid crystal display apparatus and liquid crystal projection apparatus
JP2011090256A (en) Screen for projector and projection system
JP2004354935A (en) Laminated wave length plate and projector using the same
JP6175800B2 (en) Screen and projection system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512