JP2012173409A - Optical characteristic evaluation method and optical element inspection method - Google Patents

Optical characteristic evaluation method and optical element inspection method Download PDF

Info

Publication number
JP2012173409A
JP2012173409A JP2011033406A JP2011033406A JP2012173409A JP 2012173409 A JP2012173409 A JP 2012173409A JP 2011033406 A JP2011033406 A JP 2011033406A JP 2011033406 A JP2011033406 A JP 2011033406A JP 2012173409 A JP2012173409 A JP 2012173409A
Authority
JP
Japan
Prior art keywords
light
analyzer
transmittance
polarizer
transmission axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011033406A
Other languages
Japanese (ja)
Other versions
JP5724441B2 (en
Inventor
Tetsuji Mori
哲司 守
Takashi Sannomiya
俊 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2011033406A priority Critical patent/JP5724441B2/en
Publication of JP2012173409A publication Critical patent/JP2012173409A/en
Application granted granted Critical
Publication of JP5724441B2 publication Critical patent/JP5724441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical characteristic evaluation method capable of separating and evaluating a polarization characteristic in each minute region, and of grasping and evaluating an optical characteristic that cannot be obtained through a conventional technology.SOLUTION: An optical characteristic evaluation method includes: a step for arranging a polarizer 20 for converting an unpolarized light to a linearly-polarized light, a polarization element 10 having two mutually-perpendicular transmission axes, an analyzer 30 for transmitting a characteristic component of light emitted from the polarization element 10 and a detector 2 for detecting intensity of light emitted from the analyzer 30, on an optical path; a step for measuring a transmittance based on the intensity of the light emitted from the analyzer 30 by signal processing means 3 that is connected to the detector 2, by fixing the analyzer 30 at an angle of 45° with respect to each transmission axis and emitting light from a light source 1 while rotating the polarizer 20; and a step for calculating a transmittance of the polarization element 10 based on the measured transmittance.

Description

本発明は、ワイヤグリッド型偏光子などの平板型光学素子の光学特性を評価する方法及び評価した光学特性により光学素子を検査する方法に関する。   The present invention relates to a method for evaluating optical characteristics of a flat plate-type optical element such as a wire grid polarizer and a method for inspecting an optical element based on the evaluated optical characteristics.

近年の微細加工技術の進展に伴い、光の波長レベルのピッチを有する微細構造パターンを形成することが可能となり、特に光学分野では、微細構造パターンを応用した平板型光学素子の開発が進んでいる。
平板型光学素子の例としては偏光子があるが、かかる偏光子は、例えばプロジェクターでは、偏光ビームスプリッタや検光子としての利用のほか、偏光再利用のための反射型偏光子としても利用される(非特許文献1)。
さらに、平板型の偏光子の一例として、非特許文献2に示すような、平行な導電ワイヤアレイよりなるワイヤグリッド型の偏光子がある。
平行な導電ワイヤアレイによる無線波の偏光形成や、電磁スペクトルの赤外偏光子などは古くから知られてきたが、前述の微細加工技術の進展により、グリッドの間隔を100nm以下にすることも可能となり、実際に金属ナノ構造からなるワイヤグリッド偏光子を用いたプロジェクターなども開発されている(特許文献1、非特許文献3)。
With the progress of recent microfabrication technology, it is possible to form a fine structure pattern having a light wavelength level pitch. In the optical field, in particular, development of a flat plate type optical element using the fine structure pattern is progressing. .
An example of a flat plate-type optical element is a polarizer. Such a polarizer is used not only as a polarizing beam splitter or an analyzer in a projector, but also as a reflective polarizer for polarization reuse. (Non-Patent Document 1).
Furthermore, as an example of a flat plate type polarizer, there is a wire grid type polarizer composed of parallel conductive wire arrays as shown in Non-Patent Document 2.
Radio wave polarization formation using parallel conductive wire arrays and infrared polarizers in the electromagnetic spectrum have been known for a long time, but the grid spacing can be reduced to 100 nm or less with the advancement of the aforementioned microfabrication technology. Accordingly, a projector using a wire grid polarizer actually made of a metal nanostructure has been developed (Patent Document 1, Non-Patent Document 3).

図7は、ワイヤグリッド偏光子の原理を説明する図である。
また、図8は、従来用いられるワイヤグリッド偏光子の構成及びその光学特性の評価方法を説明する図である。
図7、図8に示すように、ワイヤグリッド偏光子に、実際にスポット光を当てることで、光の透過率、消光率など光学特性を検出して評価する。
ここでは、透過率の定義としては、[(試料有りでの光強度)−(ダーク光強度)]/[(試料無しでの光強度)−(ダーク光強度)]とする。
また、消光比(コントラスト)の定義としては、(TM波の透過率)/(TE波の透過率)とする。
FIG. 7 is a diagram for explaining the principle of the wire grid polarizer.
Moreover, FIG. 8 is a figure explaining the structure of the wire grid polarizer used conventionally, and the evaluation method of the optical characteristic.
As shown in FIGS. 7 and 8, optical characteristics such as light transmittance and extinction rate are detected and evaluated by actually applying spot light to the wire grid polarizer.
Here, the transmittance is defined as [(light intensity with sample) − (dark light intensity)] / [(light intensity without sample) − (dark light intensity)].
The definition of the extinction ratio (contrast) is (TM wave transmittance) / (TE wave transmittance).

図7において、ワイヤグリッドとは、金、銀、アルミニウムまたは銅等の導体で構成される金属細線(ワイヤー)51がフレーム50内に平行に多数張られた構成を有している。
ワイヤグリッドに入射する電磁波における、偏光面がワイヤー51に対して平行な偏波(TE波:Transverse Electric Wave、光の場合はS偏光)は反射され、ワイヤーに対して偏光面が垂直な偏波(TM波:Transverse Magnetic Wave、光の場合はP偏光)が透過されることで、無偏光光(ランダム偏光光)からTM偏光のみを取り出す偏光フィルター(偏光子)として機能する。
ただし、ワイヤグリッドが偏光フィルタとして機能するためには、金属細線の間隔または周期が、電磁波(光)の波長よりも小さいことが条件となる。
なお、図7に示す式において、Tは上記TE波の透過率、Tは上記TM波の透過率であり、各金属細線51(円筒状完全導体、半径a、格子定数d)からの散乱波(波長λ)を加えることで求められた強度透過率である。
図7に示すように、ワイヤグリッド素子における測定スポット光の照射側面(入射面)とは本体側の面(出射面)への透過TM波の透過率が1となる(TM波が全て透過・出射される)ことが理想的であり、逆に、スポット光の照射側で反射するTE波の透過率が0である(TE波が全て反射する、すなわち、TE波が出射されない)ことが理想的である。
In FIG. 7, the wire grid has a configuration in which a large number of fine metal wires (wires) 51 made of a conductor such as gold, silver, aluminum, or copper are stretched in parallel in the frame 50.
In an electromagnetic wave incident on the wire grid, a polarized wave having a plane of polarization parallel to the wire 51 (TE wave: Transverse Electric Wave, in the case of light, S-polarized light) is reflected and polarized with a plane of polarization perpendicular to the wire. By transmitting (TM wave: Transverse Magnetic Wave, P-polarized light in the case of light), it functions as a polarizing filter (polarizer) that extracts only TM polarized light from non-polarized light (random polarized light).
However, in order for the wire grid to function as a polarizing filter, it is a condition that the interval or period of the fine metal wires is smaller than the wavelength of the electromagnetic wave (light).
In the equation shown in FIG. 7, T p is the transmittance of the TE wave, T v is the transmittance of the TM wave, and from each metal thin wire 51 (cylindrical perfect conductor, radius a, lattice constant d). It is the intensity | strength transmittance calculated | required by adding a scattered wave (wavelength (lambda)).
As shown in FIG. 7, the measurement spot light irradiation side surface (incident surface) in the wire grid element has a transmittance of transmitted TM waves to the main body side surface (outgoing surface) of 1 (all TM waves are transmitted and transmitted). Ideally, the transmittance of the TE wave reflected on the spot light irradiation side is zero (the TE wave is totally reflected, that is, the TE wave is not emitted). Is.

ところで、ワイヤグリッド偏光子は、従来は、一方向のみのワイヤグリッドを備え、偏光子の透過軸を一方向のみ形成した偏光子としての用途が主だったが、前述の微細加工技術の進展にともない、複数方向のワイヤグリッドを形成し、異なる透過軸方向を混在させたデバイスも形成可能となり、その光学特性、および投影画像を情報として利用する技術が進んでいる。
特に近年では、図8(a)に示すような一方向のみのラインパターン(縦方向ワイヤグリッド60)だけではなく、図8(b)に示すような、直交する二方向のラインパターン領域(縦方向ワイヤグリッド60及び、横方向ワイヤグリッド61)が同一面内にて混在する偏光フィルタによって、互いに直交する直線偏光に分離して用いる技術が、高画質(高解像度)が必要なカメラやプロジェクターの分野にて求められてきている。
By the way, the wire grid polarizer has been mainly used as a polarizer having a wire grid in only one direction and having the transmission axis of the polarizer formed in only one direction. Along with this, it is possible to form a device in which wire grids in a plurality of directions are formed and different transmission axis directions are mixed, and a technique for using the optical characteristics and projection images as information is advancing.
Particularly in recent years, not only a line pattern (vertical wire grid 60) in only one direction as shown in FIG. 8 (a) but also a line pattern region (vertical direction) in two orthogonal directions as shown in FIG. 8 (b). The technology used by separating the linearly polarized light orthogonal to each other by a polarizing filter in which the directional wire grid 60 and the horizontal wire grid 61) are mixed in the same plane is used for cameras and projectors that require high image quality (high resolution). It has been sought in the field.

しかしながら、前述のような要望があるものの、図8の測定スポット62におけるプローブ光を用いて透過率や反射率を測定する従来のワイヤグリッド素子の評価方法では、図8(b)に示すような、直交する2方向のワイヤグリッドのラインパターンが同一面内にて混在したパターンを有する領域分割素子に対しては、透過率や反射率の光学特性(具体的には透過側の透過率としてTM透過率、遮断側の透過率としてTE透過率)を数値として導き出せず、実際に作製した素子を検査できないという問題があった。
具体的には、図8(a)に示す場合は、パターン領域(縦方向ワイヤグリッド60)は測定スポット62より充分大きく(ワイヤグリッド60>測定スポット62)、透過率などの光学特性の測定が可能であるが、図8(b)の場合では、測定スポット62が通常数mmはあるのに対し、区切られた各パターン領域(縦方向ワイヤグリッド60、横方向ワイヤグリッド61)は幅数μm(集光しても数十μm程度)と、これよりも遙かに小さいため(測定スポット62>ワイヤグリッド60、61)、測定スポット62の出射面側から出射する光には、各偏光成分が混在し、各パターン領域の特性を直接導くことはほぼ不可能である。
ワイヤグリッド領域を広くしたモニタパターンを近傍に設けたとしても、モニタパターンの幅と、領域分割箇所の縦横ラインのパターン幅が異なることが多く、モニタパターンと混在パターン(図8(b))にて特性が一致しないため、やはり正確な特性の評価は出来ず、領域分割パターンを非破壊にて直接評価する必要がある。
However, although there is such a demand as described above, a conventional wire grid element evaluation method for measuring transmittance and reflectance using probe light at the measurement spot 62 in FIG. 8 is as shown in FIG. For region dividing elements having a pattern in which line patterns of two orthogonal wire grids are mixed in the same plane, the optical characteristics of transmittance and reflectance (specifically, TM as the transmittance on the transmission side) The transmittance and TE transmittance as the cutoff side transmittance) could not be derived as numerical values, and there was a problem that an actually fabricated device could not be inspected.
Specifically, in the case shown in FIG. 8A, the pattern region (longitudinal wire grid 60) is sufficiently larger than the measurement spot 62 (wire grid 60> measurement spot 62), and optical characteristics such as transmittance can be measured. Although it is possible, in the case of FIG. 8 (b), the measurement spot 62 is usually several mm, whereas each divided pattern region (vertical wire grid 60, horizontal wire grid 61) is several μm in width. Since the light is emitted from the exit surface side of the measurement spot 62 (each of the polarized light components), it is much smaller than this (measurement spot 62> wire grids 60, 61). It is almost impossible to directly derive the characteristics of each pattern region.
Even if a monitor pattern with a wide wire grid area is provided in the vicinity, the width of the monitor pattern and the pattern width of the vertical and horizontal lines at the divided areas are often different, and the monitor pattern and the mixed pattern (FIG. 8B) Since the characteristics do not match, it is still impossible to accurately evaluate the characteristics, and it is necessary to directly evaluate the area division pattern in a non-destructive manner.

上記の特許文献1には、一方向の偏光子を作製する目的で、光学特性が良好な構成やその作製方法が開示されているが、直交する2方向の偏光子が入った素子に対して、光を用いて特性を検出しようとする手段も、装置もこれまでなかったため、上記に示すような問題を解決する手法はなんら開示されていない。
そこで、本発明は、図7中に示した通常の一方光パターンのワイヤグリッド素子等の偏光子の透過率を算出する数式を、二方向パターンにも適用することで、微小領域ごとに偏光特性が異なるパターンに対しても、各々の領域における偏光特性を分離して評価し、従来技術では取得できなかった光学特性を把握し、評価することが可能な光学特性の評価方法を提供することを目的とする。すなわち、測定対象のTE透過率やTM透過率、縦方向と横方向の光学特性の違いを判断できるようにすることを目的としている。
For the purpose of producing a unidirectional polarizer, the above-mentioned Patent Document 1 discloses a structure with good optical characteristics and a method for producing the same. Since there has been no means or device for detecting characteristics using light, no technique for solving the above-described problems has been disclosed.
Therefore, the present invention applies the formula for calculating the transmittance of a polarizer such as a wire grid element having a normal one-light pattern shown in FIG. To provide an optical property evaluation method that can evaluate and evaluate polarization characteristics in each region separately for different patterns, grasp optical properties that could not be obtained by conventional techniques, and evaluate them. Objective. That is, an object is to make it possible to determine the difference between the TE transmittance and TM transmittance of the measurement object and the optical characteristics in the vertical and horizontal directions.

上記の課題を解決するために、請求項1の発明は、互いに直交する第1の透過軸及び第2の透過軸を有し、光源から出射される光の径内に分布する各透過軸と直交する偏光成分及び平行な偏光成分の何れか一方を透過させる偏光素子における、光の透過率を測定する光学特性評価方法であって、無偏光光を直線偏光に変換する偏光子と、前記偏光素子と、前記偏光素子から出射される光の特定成分を透過させる検光子と、該検光子から出射された光の強度を検出する検出器と、を光路上に配置し、前記検光子の角度を前記各透過軸に対して45°に固定して、前記偏光子を回転させつつ前記光源から光を出射して前記検出器により前記検光子から出射される光の強度を検出し、前記検出器に接続された信号処理手段により、前記検光子から出射される光の強度に基づいて前記偏光素子における光の透過率を算出する光学特性評価方法を特徴とする。   In order to solve the above problems, the invention of claim 1 has a first transmission axis and a second transmission axis orthogonal to each other, and each transmission axis distributed within the diameter of the light emitted from the light source. An optical property evaluation method for measuring light transmittance in a polarizing element that transmits one of an orthogonal polarization component and a parallel polarization component, the polarizer converting non-polarized light into linearly polarized light, and the polarization An element, an analyzer that transmits a specific component of light emitted from the polarizing element, and a detector that detects the intensity of light emitted from the analyzer are arranged on an optical path, and the angle of the analyzer Is fixed at 45 ° with respect to each transmission axis, light is emitted from the light source while rotating the polarizer, and the intensity of light emitted from the analyzer is detected by the detector, and the detection is performed. Output from the analyzer by signal processing means connected to the detector. It is the characterized optical properties evaluation method for calculating a transmittance of light in the polarizing element on the basis of the intensity of light.

また、請求項2の発明は、互いに直交する第1の透過軸及び第2の透過軸を有し、光源から出射される光の径内に分布する各透過軸と直交する偏光成分及び平行な偏光成分の何れか一方を透過させる偏光素子における光の透過率を測定する光学特性評価方法であって、無偏光光を直線偏光に変換する偏光子と、前記偏光素子と、前記偏光素子から出射される光の特定成分を透過させる検光子と、該検光子から出射された光の強度を検出する検出器と、を光路上に配置し、前記検光子の角度を前記第1の透過軸の方向と同一に固定して、前記偏光子を回転させつつ前記光源から光を出射して前記検出器により前記検光子から出射される、前記第1の透過軸から透過した光の強度を検出し、信号処理手段により、当該強度に基づいて前記第1の透過軸における光の透過率を算出し、前記検光子の角度を前記第2の透過軸の方向と同一に固定して、前記偏光子を回転させつつ前記光源から光を出射して前記検出器により前記検光子から出射される、前記第2の透過軸から透過した光の強度を検出し、信号処理手段により、当該強度に基づいて第2の透過軸における光の透過率を算出する光学特性評価方法を特徴とする。   Further, the invention of claim 2 has a first transmission axis and a second transmission axis orthogonal to each other, and the polarization component orthogonal to each transmission axis distributed within the diameter of light emitted from the light source and parallel to each other. An optical property evaluation method for measuring light transmittance in a polarizing element that transmits any one of polarization components, a polarizer that converts non-polarized light into linearly polarized light, the polarizing element, and the output from the polarizing element An analyzer that transmits a specific component of the light to be transmitted and a detector that detects the intensity of light emitted from the analyzer are disposed on the optical path, and the angle of the analyzer is set on the first transmission axis. The intensity of light transmitted from the first transmission axis that is emitted from the light source by the detector while rotating the polarizer and is emitted from the analyzer by the detector is detected by fixing the same direction. Then, the signal processing means performs the first transmission based on the intensity. The light transmittance at the axis is calculated, the angle of the analyzer is fixed to be the same as the direction of the second transmission axis, the light is emitted from the light source while rotating the polarizer, and the detector Optical characteristic evaluation for detecting the intensity of light emitted from the analyzer and transmitted from the second transmission axis, and calculating the light transmittance at the second transmission axis based on the intensity by the signal processing means Features method.

また、請求項3の発明は、請求項1又は2に記載の光学特性評価方法により求められた光学特性から、前記偏光素子の面内における光学特性のばらつきを検出する光学素子の検査方法を特徴とする。   The invention of claim 3 is characterized by a method for inspecting an optical element that detects a variation in the optical characteristic in the plane of the polarizing element from the optical characteristic obtained by the optical characteristic evaluation method according to claim 1 or 2. And

上記のように構成したので、本発明によれば、微小領域(ワイヤグリッド領域)ごとに偏光特性が異なる試料(ワイヤグリッド偏光子)に対しても、試料全体のTE透過率やTM透過率といった光学特性を数値化し、従来ではできなかった光学特性把握が可能となる。   Since it was configured as described above, according to the present invention, the TE transmittance and TM transmittance of the entire sample can be obtained even for a sample (wire grid polarizer) having different polarization characteristics for each minute region (wire grid region). It is possible to digitize optical characteristics and grasp optical characteristics that could not be obtained conventionally.

検光子角度をx軸に固定した場合の透過率を導く光学系の概念及び各素子のジョーンズベクトルを示す図。The figure which shows the concept of the optical system which guide | induces the transmittance | permeability at the time of fixing an analyzer angle to x-axis, and the Jones vector of each element. 検光子角度をx軸に固定した場合の透過率を導く光学系の概念及び各素子のジョーンズベクトルを示す図。The figure which shows the concept of the optical system which guide | induces the transmittance | permeability at the time of fixing an analyzer angle to x-axis, and the Jones vector of each element. 検光子の角度を0°(縦方向とし)とし、偏光子の角度を変化させた場合の透過率を示すグラフ図。The graph which shows the transmittance | permeability at the time of making the angle of an analyzer into 0 degree (it shall be a vertical direction) and changing the angle of a polarizer. 検光子の角度を90°(横方向とし)とし、偏光子角度を変化させた場合の透過率を示すグラフ図。The graph which shows the transmittance | permeability at the time of making the angle of an analyzer into 90 degrees (it shall be a horizontal direction) and changing a polarizer angle. 検光子の角度を45°(縦方向、横方向から45°)とし、偏光子角度を変化させた場合の透過率を示すグラフ図。The graph which shows the transmittance | permeability at the time of making the angle of an analyzer into 45 degrees (vertical direction, 45 degrees from a horizontal direction), and changing a polarizer angle. 本発明における測定対象としてのワイヤグリッドと測定スポット径の関係の例を示す図。The figure which shows the example of the relationship between the wire grid as a measuring object in this invention, and a measurement spot diameter. ワイヤグリッド偏光子の原理を説明する図。The figure explaining the principle of a wire grid polarizer. 従来用いられるワイヤグリッド偏光子の光学特性の評価方法を説明する図。The figure explaining the evaluation method of the optical characteristic of the wire grid polarizer used conventionally.

以下に、図面を参照して、本発明の実施の形態を詳細に説明する。
また、ワイヤグリッド偏光子自体の構成は、従来と同様であるので、図8(b)も本願適用可能な偏光子として参照するものとする。
上記に説明したように、本来、ワイヤーの方向(透過軸の方向)が同一面内に混在している場合には測定不能であるワイヤグリッド偏光子の光学特性であるが、ワイヤーの方向がランダムではなく、直交する2方向である場合には、測定方法を工夫することにより光学特性を測定することが出来る。
本発明では、直交するxy2方向のワイヤグリッドをもつ素子(x方向(横方向)ワイヤグリッド61領域とy方向(縦方向)ワイヤグリッド60領域)の光学特性を、以下に説明する2つの方法により透過率を把握することにより評価する。
なお、以下に説明するワイヤグリッド偏光子の光学特性の測定は、下記図1、図2に示す、スポット光を出射する光源1、光源1からから出射された無偏光光を直線偏光に変換する偏光子(1/2位相差板)20、試料としてのワイヤグリッド素子10を設置する不図示の試料ステージ、直交するワイヤグリッド領域で透過されて偏光子10から出射された光の特定成分を透過させる他の偏光子である検光子30、検光子30からの出射光の強度を検出する検出器(ディテクター)2、出射光の電場ベクトルから透過率等の光学特性を計算する信号処理部3を備えたシステムを用いる。
Embodiments of the present invention will be described below in detail with reference to the drawings.
Further, since the configuration of the wire grid polarizer itself is the same as the conventional one, FIG. 8B is also referred to as a polarizer applicable to the present application.
As described above, it is an optical characteristic of a wire grid polarizer that cannot be measured when the wire direction (transmission axis direction) is mixed in the same plane, but the wire direction is random. Instead, when the two directions are orthogonal, the optical characteristics can be measured by devising the measurement method.
In the present invention, the optical characteristics of the elements (x-direction (lateral direction) wire grid 61 region and y-direction (vertical direction) wire grid 60 region) having wire grids in the xy2 directions perpendicular to each other are determined by the following two methods. Evaluate by grasping the transmittance.
In addition, the measurement of the optical characteristics of the wire grid polarizer described below is performed by converting the non-polarized light emitted from the light source 1 and the light source 1 that emits the spot light shown in FIGS. 1 and 2 to linearly polarized light. A polarizer (1/2 retardation plate) 20, a sample stage (not shown) on which a wire grid element 10 as a sample is installed, a specific component of light transmitted through the orthogonal wire grid region and emitted from the polarizer 10 is transmitted. An analyzer 30 which is another polarizer to be made, a detector (detector) 2 for detecting the intensity of light emitted from the analyzer 30, and a signal processing unit 3 for calculating optical characteristics such as transmittance from the electric field vector of the emitted light. Use the system provided.

[実施例1]
まず、第1の方法について説明する。
方法(1):検光子30をx軸(縦方向ワイヤグリッド60の方向)で固定(x成分:x軸から透過するTM波を透過)し、偏光子20を光源からの出射光の光軸1aを中心に回転させる(φdeg)。
方法(1)の場合、2次元パターン(縦方向ワイヤグリッド60、横方向ワイヤグリッド61)の片側成分のTE波の透過率とTM波の透過率の平均透過率を取得可能である。これは、ワイヤグリッド偏光子30から出射される透過TM波には、ワイヤグリッド60及びワイヤグリッド61で透過した、互いに偏波面が直交するTM波が混在しているが、検光子30をx軸で固定している(実際は、光学軸がx軸に対する角度が45°)ので、縦方向ワイヤグリッド60から透過したTM波のみが通過するからである。
なお、強度は、透過TM波>>透過TE波のため、おおよそのTM成分がわかる。
[Example 1]
First, the first method will be described.
Method (1): The analyzer 30 is fixed on the x-axis (the direction of the longitudinal wire grid 60) (x component: TM wave transmitted from the x-axis is transmitted), and the polarizer 20 is the optical axis of the emitted light from the light source. Rotate around 1a (φdeg).
In the case of the method (1), it is possible to obtain the average transmittance of the TE wave transmittance and the TM wave transmittance of one-side components of the two-dimensional pattern (vertical wire grid 60, horizontal wire grid 61). This is because TM waves transmitted from the wire grid 60 and the wire grid 61 and TM waves having mutually orthogonal planes of polarization are mixed in the transmitted TM wave emitted from the wire grid polarizer 30. This is because only the TM wave transmitted from the longitudinal wire grid 60 passes through (in fact, the optical axis is at an angle of 45 ° with respect to the x-axis).
In addition, since the intensity is transmitted TM wave >> transmitted TE wave, an approximate TM component is known.

図1は、方法(1)の場合、すなわち、検光子角度をx軸に固定した場合の透過率を導く光学系の概念及び各素子のジョーンズベクトルを示す図である。
なお、透過率の算出は、検出器2に接続されたPC(Personal Computer)などの信号処理装置(信号処理手段)で行うものとする。
ここで、x方向ワイヤグリッド領域61と、y方向ワイヤグリッド領域60の透過係数は均一と仮定した。
検光子30を透過して検出器2に入光した光の電場ベクトルは次式(1)で与えられる。

Figure 2012173409
…式(1)
したがって、検光子30を透過した光の電場ベクトルは次式(2)で与えられる。ただし、x方向ワイヤグリッド領域と、y方向ワイヤグリッド領域を透過した光の干渉項は無視した。
Figure 2012173409
…式(2)
上式より、t TM+t TE〜t TM(tTM>>tTE)とすれば、cos成分の振幅の大きさ(もしくは振動中心)がワイヤグリッド偏光子20の透過側成分の透過率(t TM)に一致する。 FIG. 1 is a diagram showing the concept of an optical system for deriving transmittance and the Jones vector of each element in the case of the method (1), that is, when the analyzer angle is fixed to the x-axis.
The transmittance is calculated by a signal processing device (signal processing means) such as a PC (Personal Computer) connected to the detector 2.
Here, it is assumed that the transmission coefficients of the x-direction wire grid region 61 and the y-direction wire grid region 60 are uniform.
The electric field vector of the light that has passed through the analyzer 30 and entered the detector 2 is given by the following equation (1).
Figure 2012173409
... Formula (1)
Therefore, the electric field vector of the light transmitted through the analyzer 30 is given by the following equation (2). However, the interference term of the light transmitted through the x-direction wire grid region and the y-direction wire grid region was ignored.
Figure 2012173409
... Formula (2)
From the above equation, if t 2 TM + t 2 TE ~t 2 TM (t TM >> t TE), the magnitude of the amplitude of the cos component (or vibration center) the transmission of the transmission side components of the wire grid polarizer 20 It corresponds to the rate (t 2 TM ).

次に、第2の方法について説明する。
方法(2):検光子30をx軸y軸に対して45°で固定(45°成分透過(実際は、光学軸のx軸に対する角度が90°となる))し、偏光子20を、光軸1aを中心に回転させる(φdeg)
方法(2)の場合、直流成分と振動成分が得られ、それぞれの大きさからTE波とTM波の透過率、すなわち透過率と消光比が算出可能である。
Next, the second method will be described.
Method (2): The analyzer 30 is fixed at 45 ° with respect to the x-axis and y-axis (45 ° component transmission (actually, the angle of the optical axis with respect to the x-axis is 90 °)), and the polarizer 20 Rotate around axis 1a (φdeg)
In the case of the method (2), the direct current component and the vibration component are obtained, and the transmittance of the TE wave and the TM wave, that is, the transmittance and the extinction ratio can be calculated from the respective sizes.

図2は、方法(2)の場合、すなわち、検光子角度を45°に固定した場合の透過率を導く光学系の概念及び各素子のジョーンズベクトルを示す図である。
検光子30を透過した光の電場ベクトルは次式(3)で与えられる。

Figure 2012173409
…式(3)
検光子30を透過した光の電場ベクトルは次式(4)で与えられる。ただし、x方向ワイヤグリッド領域61と、y方向ワイヤグリッド領域62を透過した光の干渉項は無視した。
Figure 2012173409
…式(4)
上式(3)、(4)より、偏光子角度に対する振動成分と直流成分を抽出すれば、tTM、tTEの連立方程式から各成分が算出できる。連立方程式の解を用いて透過率および消光比を導出すると、以下のように求められる。
Figure 2012173409
さらに、検光子30の角度を90°(実際は、光学軸のx軸に対する角度が135°)に固定して、同様に偏光子20を回転させて透過率を測定する。
つまり、直交する二方向のワイヤグリッドであっても、検光子30の角度を特定の角度(0°、45°、90°)とし、偏光子20を回転させて透過率を測定することにより、TM透過率、TE透過率、おおよその消光比などの値を得られる。 FIG. 2 is a diagram showing the concept of the optical system for guiding the transmittance in the case of method (2), that is, when the analyzer angle is fixed at 45 °, and the Jones vector of each element.
The electric field vector of the light transmitted through the analyzer 30 is given by the following equation (3).
Figure 2012173409
... Formula (3)
The electric field vector of the light transmitted through the analyzer 30 is given by the following equation (4). However, the interference term of the light transmitted through the x-direction wire grid region 61 and the y-direction wire grid region 62 was ignored.
Figure 2012173409
... Formula (4)
If the vibration component and the direct current component with respect to the polarizer angle are extracted from the above equations (3) and (4), each component can be calculated from the simultaneous equations of t TM and t TE . When the transmittance and the extinction ratio are derived using the solution of the simultaneous equations, they are obtained as follows.
Figure 2012173409
Further, the transmittance of the analyzer 30 is measured by fixing the angle of the analyzer 30 to 90 ° (actually, the angle of the optical axis with respect to the x-axis is 135 °) and rotating the polarizer 20 in the same manner.
In other words, even in the case of two orthogonal wire grids, the angle of the analyzer 30 is set to a specific angle (0 °, 45 °, 90 °), and the transmittance is measured by rotating the polarizer 20. Values such as TM transmittance, TE transmittance, and approximate extinction ratio can be obtained.

透過率の測定結果の一例を以下に示す。測定対象は直交する2つの方向(縦と横)をもつワイヤグリッド素子である。なお、光の波長は、いずれも550nmとする。
なお、以下の説明では、上記のxy座標軸において、縦方向(y軸)を0°とした場合について説明する。
図3は、検光子30の角度を0°(縦方向)とし、偏光子20の角度を変化させた場合の透過率の変化を示すグラフ図である。
図3は、検光子30の角度が0°(縦方向ワイヤグリッド60から透過した偏光のみ透過)であるため、偏光子20の角度も0°の場合には、縦方向の偏光は透過する。
したがって、検光子30、偏光子20の角度がともに0°の場合の透過率は、測定試料10の中で縦方向のワイヤグリッド領域60の透過機能(特性)を示していると言える。
An example of the measurement result of transmittance is shown below. The object to be measured is a wire grid element having two orthogonal directions (vertical and horizontal). Note that the light wavelength is 550 nm.
In the following description, a case where the vertical direction (y-axis) is 0 ° in the xy coordinate axis will be described.
FIG. 3 is a graph showing the change in transmittance when the angle of the analyzer 30 is 0 ° (vertical direction) and the angle of the polarizer 20 is changed.
In FIG. 3, since the angle of the analyzer 30 is 0 ° (only the polarized light transmitted from the vertical wire grid 60 is transmitted), the polarized light in the vertical direction is transmitted when the angle of the polarizer 20 is also 0 °.
Therefore, it can be said that the transmittance when the angles of the analyzer 30 and the polarizer 20 are both 0 ° indicates the transmission function (characteristic) of the wire grid region 60 in the vertical direction in the measurement sample 10.

図4は、検光子の角度を90°(横方向)とし、偏光子角度を変化させた場合の透過率を示すグラフ図である。
図4は、検光子30の角度が90°(横方向ワイヤグリッド61から透過した偏光のみ透過)であるため、偏光子20の角度も90°の場合には、横方向の偏光は透過する。したがって、検光子30、偏光子20がともに90°の場合の透過率は、測定試料10の中で横方向のワイヤグリッドの透過機能(特性)を示していると言える。
FIG. 4 is a graph showing the transmittance when the angle of the analyzer is 90 ° (lateral direction) and the polarizer angle is changed.
In FIG. 4, since the angle of the analyzer 30 is 90 ° (only the polarized light transmitted from the horizontal wire grid 61 is transmitted), the polarized light in the horizontal direction is transmitted when the angle of the polarizer 20 is also 90 °. Therefore, it can be said that the transmittance when the analyzer 30 and the polarizer 20 are both 90 ° indicates the transmission function (characteristic) of the horizontal wire grid in the measurement sample 10.

図5は、検光子の角度を45°(縦方向、横方向から45°)とし、偏光子角度を変化させた場合の透過率を示すグラフ図である。
図5は、検光子30の角度が45°の場合の、透過率の偏光子角度依存性であるため、図2について先に示した計算により、試料としてのワイヤグリッド素子10全体のTM透過率、TE透過率を計算することができる。
このように、検光子45°の測定値のみからでもワイヤグリッド素子10全体のTM透過率、TE透過率を算出することが可能である。
測定結果に近似式をもとめ、その値から換算すると、TM透過率は83%、TE透過率は2.5%と求まった。
この値は、試料全体にて縦方向と横方向の透過率が一致するという仮定により求められているが、さらに厳密な計算により、縦方向のみ、横方向のみのTM透過率、TE透過率を求めることも可能である。
したがって、測定手順としては、まず、検光子角度を0°として、偏光子を回転させて透過率を測定し、その後、45°、90°にて同じ測定を行う。
透過率測定装置に、透過率の値を計算処理する機構を組み合わせることで、即座に試料の光学特性を把握できる。
ここで、検光子30の角度を0°、45°、90°として透過率を取得する手順はどの角度からでも良い。
FIG. 5 is a graph showing the transmittance when the angle of the analyzer is 45 ° (vertical direction, 45 ° from the horizontal direction) and the polarizer angle is changed.
FIG. 5 shows the dependence of the transmittance on the polarizer angle when the angle of the analyzer 30 is 45 °. Therefore, the TM transmittance of the entire wire grid element 10 as a sample is calculated by the calculation shown in FIG. , TE transmittance can be calculated.
Thus, it is possible to calculate the TM transmittance and the TE transmittance of the entire wire grid element 10 only from the measured value of the analyzer 45 °.
When an approximate expression was found in the measurement results and converted from the values, the TM transmittance was found to be 83% and the TE transmittance was found to be 2.5%.
This value is calculated based on the assumption that the transmittance in the vertical direction and the horizontal direction is the same for the entire sample, but the TM transmittance and the TE transmittance in only the vertical direction and only in the horizontal direction are calculated by more rigorous calculation. It is also possible to ask for it.
Therefore, as a measurement procedure, first, the transmittance is measured by rotating the polarizer with the analyzer angle set to 0 °, and then the same measurement is performed at 45 ° and 90 °.
By combining the transmittance measuring device with a mechanism for calculating the transmittance value, the optical characteristics of the sample can be immediately grasped.
Here, the procedure for acquiring the transmittance with the angle of the analyzer 30 being 0 °, 45 °, and 90 ° may be from any angle.

また、上記したように、原理的には検光子角度を45°とし、偏光子を回転させる透過率結果のみでもTM透過率、TE透過率を計算することができる。
また、実施例では波長550nmの値を取り出したが、ハロゲン光源を用いた場合には、これらの特性の波長依存性を求めることができる。
また、直交する二方向(縦方向と横方向)の光学特性の違いを判断でき、最終的に作製される素子の検査を行うことができ、光学素子としての性能を判別できるという効果を奏する。
測定の注意事項としては、図8(b)のように光源からのレーザ光がワイヤグリッドの2方向の領域(x方向ワイヤグリッド領域と、y方向ワイヤグリッド領域)をほぼ同面積(同割合)で照射している必要がある。したがって、測定スポットの中に、2方向の領域が同割合で存在している必要がある。
レーザ光を用いた場合には、ホモナイザーなどを用いて、ビームを均質強度となるように広げる必要がある。
Further, as described above, in principle, the TM transmittance and the TE transmittance can be calculated only by the transmittance result obtained by rotating the polarizer with the analyzer angle set to 45 °.
Moreover, although the value of wavelength 550nm was taken out in the Example, when a halogen light source is used, the wavelength dependence of these characteristics can be calculated | required.
Further, it is possible to determine the difference in optical characteristics between two orthogonal directions (vertical direction and horizontal direction), to inspect the finally manufactured element, and to determine the performance as an optical element.
As a precaution for measurement, as shown in FIG. 8B, the laser light from the light source covers almost the same area (same ratio) in the two areas of the wire grid (the x-direction wire grid area and the y-direction wire grid area). It is necessary to irradiate with. Therefore, it is necessary that the two-direction areas exist in the measurement spot at the same rate.
When laser light is used, it is necessary to use a homogenizer or the like to widen the beam so as to have a uniform intensity.

図6は、本発明における測定対象としてのワイヤグリッドと測定スポット径の関係の例を示す図である。
図6(a)では、縦横方向のワイヤグリッド11、12が、同面積にて交互に存在している。
また、図6(b)は二方向(縦横方向)ワイヤグリッド11、12が同面積にて、平行四辺形にて交互に連続する場合である。
いずれも、パターン領域の一辺に対して測定スポット13の径が十分大きい場合には、スポット径内に縦と横のワイヤグリッド素子が同じ領域で入る。
レーザなど指向性の強い光を集光して、測定するという方法についても補足しておく。
各領域(x方向(横方向)ワイヤグリッド領域11、y方向(縦方向)ワイヤグリッド領域12)の幅が数マイクロメーターのような場合には、レーザ光では測定できない。
逆に10μm以上の大きさを持つ場合には、レーザ光を対物レンズなどで集光することにより各領域ごとの透過率を求めることも可能となり、本内容のような測定手法は必要とならない。
したがって、レーザを集光しても測定が困難な領域のサイズをもつもの、具体的には数μm以下の領域が交互に存在するような測定試料に対して本手法が効果をなす。
FIG. 6 is a diagram illustrating an example of a relationship between a wire grid as a measurement target and a measurement spot diameter in the present invention.
In FIG. 6A, the vertical and horizontal wire grids 11 and 12 are alternately present in the same area.
FIG. 6B shows a case where the two-direction (longitudinal and lateral directions) wire grids 11 and 12 are alternately continuous in a parallelogram with the same area.
In any case, when the diameter of the measurement spot 13 is sufficiently large with respect to one side of the pattern area, the vertical and horizontal wire grid elements are included in the same area within the spot diameter.
A supplementary description is given of a method of collecting and measuring light having a strong directivity such as a laser.
When the width of each region (x direction (horizontal direction) wire grid region 11 and y direction (vertical direction) wire grid region 12) is several micrometers, it cannot be measured with laser light.
On the other hand, when it has a size of 10 μm or more, it is possible to obtain the transmittance for each region by condensing the laser beam with an objective lens or the like, and the measurement method as in this content is not necessary.
Therefore, this method is effective for a sample having a size that is difficult to measure even when the laser is focused, specifically, a measurement sample in which regions of several μm or less exist alternately.

[実施例2]
実施例1と同様のワイヤグリッド素子に対し、検光子30を45°とした場合の透過率に加え、0°、90°とした場合の透過率を測定し、その値から、TM透過率、TE透過率を算出した。
例えば、ある試料を取り上げた場合には、縦方向のワイヤグリッドラインに対して、TM透過率85.0%、TE透過率0.4%であり、横方向のワイヤグリッドラインに対して、TM透過率86.5%、TE透過率が0.5%であった。
検光子が0°、90°の場合の測定値も測定済みの場合には、より多くの計算値を用いることになるため、TM透過率、TE透過率の算出の精度を向上させることができる。
[Example 2]
For the same wire grid element as in Example 1, in addition to the transmittance when the analyzer 30 is 45 °, the transmittance when the analyzer 30 is 0 ° and 90 ° is measured, and the TM transmittance, TE transmittance was calculated.
For example, when a sample is picked up, the TM transmittance is 85.0% and the TE transmittance is 0.4% with respect to the vertical wire grid line, and the TM transmittance is 0.4% with respect to the horizontal wire grid line. The transmittance was 86.5% and the TE transmittance was 0.5%.
When the measured values when the analyzer is 0 ° and 90 ° are also measured, more calculated values are used, so that the accuracy of calculating the TM transmittance and the TE transmittance can be improved. .

[実施例3]
本実施例では、ウェハ面内光学測定を行った。実施例1と同様の素子が4インチウェハ内に8×8個、一定間隔に配置されたウェハを用意した。
試料ステージに、ウェハを自動で送れる機構を付加し、ウェハを光学特性測定位置に搬送した。
偏光子の方向をカメラ画像で把握し、方向をアライメントした。その後、各素子に対して、TM透過率、TE透過率を測定した。測定結果に対し、仕様として設定した値(例えば、縦横各方向に対して、TM透過率85.0%以上、TE透過率0.8%以下)を良・不良の境界とすることにより、良品と不良品の区別が可能であることを確かめた。各素子のデータをコンピュータで処理し、その結果、8×8個の素子をもつウェハ面が、どのような光学特性分布をしているかを確認できた。
ウェハ内での測定位置の自動移動機構と、測定値の判別機構を設けることにより、検査装置としての利用も可能であることを確かめた。
2次元パターンをもつ偏光子が多数配列したウェハにおいてもその偏光透過率をはじめとする光学特性を取得し、光学特性が所定の値かどうかの検査工程として利用できる。
[Example 3]
In this example, in-plane optical measurement was performed. A wafer was prepared in which 8 × 8 elements similar to those in Example 1 were arranged at regular intervals in a 4-inch wafer.
A mechanism capable of automatically feeding the wafer was added to the sample stage, and the wafer was transported to the optical property measurement position.
The direction of the polarizer was grasped by a camera image, and the direction was aligned. Thereafter, TM transmittance and TE transmittance were measured for each element. By setting the values set as specifications for the measurement results (for example, TM transmittance of 85.0% or more and TE transmittance of 0.8% or less in each of the vertical and horizontal directions) as a good / bad boundary, It was confirmed that it was possible to distinguish between defective products and defective products. The data of each element was processed by a computer, and as a result, it was confirmed what optical characteristic distribution the wafer surface having 8 × 8 elements had.
It was confirmed that it can also be used as an inspection device by providing an automatic movement mechanism for the measurement position in the wafer and a measurement value discrimination mechanism.
Even on a wafer in which a large number of polarizers having a two-dimensional pattern are arranged, the optical characteristics including the polarization transmittance can be acquired and used as an inspection process for checking whether the optical characteristics are a predetermined value.

1 光源、2 検出器、3 信号処理部、10 ワイヤグリッド素子、20 偏光子、30 検光子、50 フレーム、60 横方向ワイヤグリッド、61 縦方向ワイヤグリッド、62 測定スポット DESCRIPTION OF SYMBOLS 1 Light source, 2 Detector, 3 Signal processing part, 10 Wire grid element, 20 Polarizer, 30 Analyzer, 50 frames, 60 Horizontal wire grid, 61 Vertical wire grid, 62 Measurement spot

特表2003−502708公報Special Table 2003-502708

‘Simulation of sub-100nm gratings incorporated in LCD stack’, M. Paukshto, K. Lovetsky, A. Zhukov, V. Smirnov, D. Kibalov, and G. King’, SID 06 DIGEST, 848 (2006).‘Simulation of sub-100nm gratings incorporated in LCD stack’, M. Paukshto, K. Lovetsky, A. Zhukov, V. Smirnov, D. Kibalov, and G. King ’, SID 06 DIGEST, 848 (2006). 「第3・光の鉛筆」、鶴田匡夫著、p.278,新技術コミュニケーションズ“3rd Pencil of Light”, Tatsuo Tatsuo, p. 278, New Technology Communications ‘30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography’, J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, Appl.Phys.Lett. 89, 141105 (2006).'30 -nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography ', JJ Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng , Appl.Phys.Lett. 89, 141105 (2006).

Claims (3)

互いに直交する第1の透過軸及び第2の透過軸を有し、光源から出射される光の径内に分布する各透過軸と直交する偏光成分及び平行な偏光成分の何れか一方を透過させる偏光素子における、光の透過率を測定する光学特性評価方法であって、
無偏光光を直線偏光に変換する偏光子と、前記偏光素子と、前記偏光素子から出射される光の特定成分を透過させる検光子と、該検光子から出射された光の強度を検出する検出器と、を光路上に配置し、
前記検光子の角度を前記各透過軸に対して45°に固定して、前記偏光子を回転させつつ前記光源から光を出射して前記検出器により前記検光子から出射される光の強度を検出し、
前記検出器に接続された信号処理手段により、前記検光子から出射される光の強度に基づいて前記偏光素子における光の透過率を算出することを特徴とする光学特性評価方法。
It has a first transmission axis and a second transmission axis that are orthogonal to each other, and transmits either one of the polarization component orthogonal to each transmission axis distributed within the diameter of the light emitted from the light source or the parallel polarization component. An optical property evaluation method for measuring light transmittance in a polarizing element,
A polarizer that converts non-polarized light into linearly polarized light, the polarizing element, an analyzer that transmits a specific component of the light emitted from the polarizing element, and a detection that detects the intensity of the light emitted from the analyzer Placed on the optical path,
The angle of the analyzer is fixed at 45 ° with respect to each transmission axis, the light is emitted from the light source while rotating the polarizer, and the intensity of the light emitted from the analyzer by the detector is adjusted. Detect
A method for evaluating optical characteristics, comprising: calculating light transmittance of the polarizing element based on intensity of light emitted from the analyzer by signal processing means connected to the detector.
互いに直交する第1の透過軸及び第2の透過軸を有し、光源から出射される光の径内に分布する各透過軸と直交する偏光成分及び平行な偏光成分の何れか一方を透過させる偏光素子における光の透過率を測定する光学特性評価方法であって、
無偏光光を直線偏光に変換する偏光子と、前記偏光素子と、前記偏光素子から出射される光の特定成分を透過させる検光子と、該検光子から出射された光の強度を検出する検出器と、を光路上に配置し、
前記検光子の角度を前記第1の透過軸の方向と同一に固定して、前記偏光子を回転させつつ前記光源から光を出射して前記検出器により前記検光子から出射される、前記第1の透過軸から透過した光の強度を検出し、
信号処理手段により、当該強度に基づいて前記第1の透過軸における光の透過率を算出し、
前記検光子の角度を前記第2の透過軸の方向と同一に固定して、前記偏光子を回転させつつ前記光源から光を出射して前記検出器により前記検光子から出射される、前記第2の透過軸から透過した光の強度を検出し、
信号処理手段により、当該強度に基づいて第2の透過軸における光の透過率を算出することを特徴とする光学特性評価方法。
It has a first transmission axis and a second transmission axis that are orthogonal to each other, and transmits either one of the polarization component orthogonal to each transmission axis distributed within the diameter of the light emitted from the light source or the parallel polarization component. An optical property evaluation method for measuring light transmittance in a polarizing element,
A polarizer that converts non-polarized light into linearly polarized light, the polarizing element, an analyzer that transmits a specific component of the light emitted from the polarizing element, and a detection that detects the intensity of the light emitted from the analyzer Placed on the optical path,
The angle of the analyzer is fixed to be the same as the direction of the first transmission axis, the light is emitted from the light source while rotating the polarizer, and the detector emits the light from the analyzer. Detect the intensity of light transmitted from the transmission axis of 1,
The signal processing means calculates the light transmittance in the first transmission axis based on the intensity,
The angle of the analyzer is fixed to be the same as the direction of the second transmission axis, the light is emitted from the light source while rotating the polarizer, and the detector emits the light from the analyzer. 2 detects the intensity of light transmitted from the transmission axis of
An optical property evaluation method, characterized in that the signal processing means calculates the light transmittance at the second transmission axis based on the intensity.
請求項1又は2に記載の光学特性評価方法により求められた光学特性から、前記偏光素子の面内における光学特性のばらつきを検出する光学素子の検査方法。   An optical element inspection method for detecting variations in optical characteristics within the plane of the polarizing element from optical characteristics obtained by the optical characteristic evaluation method according to claim 1.
JP2011033406A 2011-02-18 2011-02-18 Optical characteristic evaluation method and optical element inspection method Expired - Fee Related JP5724441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033406A JP5724441B2 (en) 2011-02-18 2011-02-18 Optical characteristic evaluation method and optical element inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033406A JP5724441B2 (en) 2011-02-18 2011-02-18 Optical characteristic evaluation method and optical element inspection method

Publications (2)

Publication Number Publication Date
JP2012173409A true JP2012173409A (en) 2012-09-10
JP5724441B2 JP5724441B2 (en) 2015-05-27

Family

ID=46976387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033406A Expired - Fee Related JP5724441B2 (en) 2011-02-18 2011-02-18 Optical characteristic evaluation method and optical element inspection method

Country Status (1)

Country Link
JP (1) JP5724441B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059154A (en) * 2012-09-14 2014-04-03 Ricoh Co Ltd Inspection method of optical element and inspection device of optical element
JP2015069401A (en) * 2013-09-30 2015-04-13 株式会社寺岡精工 Merchandise sales data processor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237812A (en) * 1995-12-28 1997-09-09 Fujitsu Ltd Workpiece dimension measuring method, semiconductor device manufacturing method and quality control method
JPH09257641A (en) * 1996-03-26 1997-10-03 Seiko Epson Corp Method and device for inspecting display surface of liquid crystal panel
JP2001013476A (en) * 1999-06-30 2001-01-19 Ricoh Co Ltd Display unevenness inspection device and display unevenness inspection method
JP2004046156A (en) * 2002-06-05 2004-02-12 Eastman Kodak Co Projection display using wire grid polarization beam splitter with compensator
JP2006153698A (en) * 2004-11-30 2006-06-15 Toppan Printing Co Ltd Device and method for measuring contrast ratio
JP2007128086A (en) * 2005-10-31 2007-05-24 Toshiba Corp Short-wavelength polarizing element and method of manufacturing polarizing element
JP2007219340A (en) * 2006-02-20 2007-08-30 Epson Toyocom Corp Compound wire grid polarizer, compound optical element and polarized light source
JP2008026824A (en) * 2006-07-25 2008-02-07 Fujifilm Corp Method of forming optical compensation film, optical compensation film, polarizing plate and liquid crystal display apparatus
JP2009031212A (en) * 2007-07-30 2009-02-12 Nikon Corp Surface inspection device and method
JP2009169096A (en) * 2008-01-16 2009-07-30 Fujifilm Corp Imaging device
JP2010204059A (en) * 2009-03-06 2010-09-16 Ricoh Co Ltd Raindrop detection apparatus and on-vehicle monitoring apparatus
JP2010243956A (en) * 2009-04-09 2010-10-28 Sony Corp Liquid crystal shutter and image display observation system
US20100283885A1 (en) * 2009-05-11 2010-11-11 Shih-Schon Lin Method for aligning pixilated micro-grid polarizer to an image sensor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237812A (en) * 1995-12-28 1997-09-09 Fujitsu Ltd Workpiece dimension measuring method, semiconductor device manufacturing method and quality control method
JPH09257641A (en) * 1996-03-26 1997-10-03 Seiko Epson Corp Method and device for inspecting display surface of liquid crystal panel
JP2001013476A (en) * 1999-06-30 2001-01-19 Ricoh Co Ltd Display unevenness inspection device and display unevenness inspection method
JP2004046156A (en) * 2002-06-05 2004-02-12 Eastman Kodak Co Projection display using wire grid polarization beam splitter with compensator
JP2006153698A (en) * 2004-11-30 2006-06-15 Toppan Printing Co Ltd Device and method for measuring contrast ratio
JP2007128086A (en) * 2005-10-31 2007-05-24 Toshiba Corp Short-wavelength polarizing element and method of manufacturing polarizing element
JP2007219340A (en) * 2006-02-20 2007-08-30 Epson Toyocom Corp Compound wire grid polarizer, compound optical element and polarized light source
JP2008026824A (en) * 2006-07-25 2008-02-07 Fujifilm Corp Method of forming optical compensation film, optical compensation film, polarizing plate and liquid crystal display apparatus
JP2009031212A (en) * 2007-07-30 2009-02-12 Nikon Corp Surface inspection device and method
JP2009169096A (en) * 2008-01-16 2009-07-30 Fujifilm Corp Imaging device
JP2010204059A (en) * 2009-03-06 2010-09-16 Ricoh Co Ltd Raindrop detection apparatus and on-vehicle monitoring apparatus
JP2010243956A (en) * 2009-04-09 2010-10-28 Sony Corp Liquid crystal shutter and image display observation system
US20100283885A1 (en) * 2009-05-11 2010-11-11 Shih-Schon Lin Method for aligning pixilated micro-grid polarizer to an image sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王子計測機器株式会社, 偏光測定に関連するキーワードの説明, vol. [平成26年11月18日検索], JPN6014050159, October 2010 (2010-10-01), JP, ISSN: 0003016787 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059154A (en) * 2012-09-14 2014-04-03 Ricoh Co Ltd Inspection method of optical element and inspection device of optical element
JP2015069401A (en) * 2013-09-30 2015-04-13 株式会社寺岡精工 Merchandise sales data processor

Also Published As

Publication number Publication date
JP5724441B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
KR102315741B1 (en) Nanoparticle analyzer
WO2020215199A1 (en) Surface defect detection system and method
US10410335B2 (en) Inspection method and inspection apparatus
TWI677679B (en) Methods and apparatus for speckle suppression in laser dark-field systems
US9310318B2 (en) Defect inspection method and defect inspection device
JP5899630B2 (en) Surface inspection method and surface inspection apparatus for steel sheet with resin coating
US10197507B2 (en) Inspection apparatus
US8045179B1 (en) Bright and dark field scatterometry systems for line roughness metrology
JP5517000B2 (en) Particle size measuring device and particle size measuring method
TWI749029B (en) Composite inspection system
JP2015516574A (en) Variable polarization wafer inspection
JP2007303905A (en) Surface inspection device
CN108982374A (en) A kind of device and method measuring one-dimensional material multipole rate
WO2013118543A1 (en) Surface measurement device
JP5724441B2 (en) Optical characteristic evaluation method and optical element inspection method
US20160153915A1 (en) Surface Inspecting Method
JP2011002305A (en) Circuit pattern defect detection apparatus, circuit pattern defect detection method, and program therefor
KR102550966B1 (en) Apparatus for Metrology of Semiconductor Pattern, and System Using the Same
JP3746433B2 (en) Glass product manufacturing method and manufacturing apparatus
KR20220032922A (en) Apparatus and method for pupil ellipsometry, and method for fabricating semiconductor device using the method
JP2013174575A (en) Pattern inspection device, and method for controlling exposure equipment using the same
JP2006275867A (en) Terahertz light inspection apparatus
TWI831744B (en) X-ray based measurements in patterned structure
KR20130065186A (en) The measurement device and the method of the principle axis and retardation of the 3-dimensional film
JP5648937B2 (en) Evaluation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R151 Written notification of patent or utility model registration

Ref document number: 5724441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees