JP2007219022A - Roll-shaped retardation film and elliptically polarizing plate, and method for manufacturing them - Google Patents

Roll-shaped retardation film and elliptically polarizing plate, and method for manufacturing them Download PDF

Info

Publication number
JP2007219022A
JP2007219022A JP2006037168A JP2006037168A JP2007219022A JP 2007219022 A JP2007219022 A JP 2007219022A JP 2006037168 A JP2006037168 A JP 2006037168A JP 2006037168 A JP2006037168 A JP 2006037168A JP 2007219022 A JP2007219022 A JP 2007219022A
Authority
JP
Japan
Prior art keywords
roll
film
polarizing plate
retardation film
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006037168A
Other languages
Japanese (ja)
Inventor
Kazuki Ofusa
一樹 大房
Hideki Hayashi
秀樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Sumitomo Chemical Co Ltd
Original Assignee
Toagosei Co Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd, Sumitomo Chemical Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2006037168A priority Critical patent/JP2007219022A/en
Publication of JP2007219022A publication Critical patent/JP2007219022A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a roll-shaped continuously laminated retardation film which is manufactured with a simple method, has excellent productivity and causes little loss of an optical film, and a method for manufacturing it, and also to provide an elliptically polarizing plate using the same, and a method for manufacturing the elliptically polarizing plate. <P>SOLUTION: The roll-shaped continuously laminated retardation film includes sheets continuously taken out from a roll-shaped retardation film of which the slow axis is substantially parallel to its longitudinal direction, and which is cut in such a way that at least an edge of a quadrangle forms a predetermined angle with the slow axis of the film, and continuously laminated to a roll-shaped adhesive film for transportation in such a way that the slow axes of the sheets form a predetermined angle with the longitudinal direction of the film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ロール状の位相差フィルム連続貼合フィルムとその製造方法ならびにそれを用いる楕円偏光板とその製造方法に関する。   The present invention relates to a roll-like retardation film continuous laminated film, a production method thereof, an elliptically polarizing plate using the same, and a production method thereof.

液晶表示装置等に用いられる楕円偏光板は、偏光板と位相差フィルムとを積層することにより構成されている。すなわち、偏光板の吸収軸と位相差フィルムの遅相軸とが所定の角度をなすように、偏光板及び位相差フィルムが粘着剤や接着剤等を用いて接着されている。   An elliptically polarizing plate used for a liquid crystal display device or the like is configured by laminating a polarizing plate and a retardation film. That is, the polarizing plate and the retardation film are bonded using an adhesive or an adhesive so that the absorption axis of the polarizing plate and the slow axis of the retardation film form a predetermined angle.

近年、液晶表示装置はワープロやパソコンの画面だけでなく、自動車用のナビゲーションシステム・携帯電話・PDA等の小型電子機器にも普及している。小型化・薄型化・軽量化の市場要求は年々高まっており、それらに付随して楕円偏光板を従来よりもさらに薄くする要望も強くなってきている。また、柔軟性がかなり向上する点からも薄型化は有利である。   In recent years, liquid crystal display devices are widely used not only in word processors and personal computer screens but also in small electronic devices such as automobile navigation systems, mobile phones, and PDAs. The market demand for downsizing, thinning, and weight reduction is increasing year by year, and accompanying this, there is an increasing demand for making the elliptically polarizing plate thinner than before. In addition, the reduction in thickness is advantageous in that the flexibility is considerably improved.

上記のような背景から、偏光板の薄型化の提案が従来からなされている。例えば、偏光板に使用されている保護フィルムの薄膜化や、特許文献1には偏光板の保護フィルムを片側だけに貼り付けた構造の偏光板が提案されている。また、偏光板だけでなく、接着層を薄膜化することでも楕円偏光板の薄型化は可能である。   From the background as described above, proposals have conventionally been made to make the polarizing plate thinner. For example, a protective film used for a polarizing plate is thinned, and Patent Document 1 proposes a polarizing plate having a structure in which a protective film for a polarizing plate is attached to only one side. Further, not only the polarizing plate but also the elliptical polarizing plate can be thinned by reducing the thickness of the adhesive layer.

しかし、偏光板の薄型化は寸法安定性を悪化させ、特に熱または湿熱条件下では伸縮による寸法変化が大きくなるという問題点がある。そのため、接着層において発泡や、フィルムの浮き、剥がれ等が発生し易くなる。また、接着層の薄膜化によっても発泡、浮き、剥がれ等が発生し易くなる。これは、粘着剤による積層の場合に特に顕著である。   However, the thinning of the polarizing plate deteriorates the dimensional stability, and there is a problem that the dimensional change due to expansion and contraction becomes large particularly under heat or wet heat conditions. Therefore, foaming, film floating, peeling, and the like are likely to occur in the adhesive layer. Further, foaming, floating, peeling and the like are likely to occur even when the adhesive layer is thinned. This is particularly noticeable in the case of lamination with an adhesive.

以上述べたように、楕円偏光板の薄型化の要求に対応できる薄型偏光板と、発泡、浮き、剥がれ等の起こりにくい薄膜化可能な粘着剤または接着剤が、市場から求められているのである。   As described above, there is a demand from the market for thin polarizing plates that can meet the demands for thin elliptical polarizing plates, and adhesives or adhesives that can be thinned that are unlikely to foam, float, and peel. .

一方、市場からの品質向上、低価格化の要求も年々高まりをみせている。そのため、楕円偏光板の製造に際しては、積層角度の精度向上、積層工程の連続化、歩留まりの向上、材料ロスの低減等が大きな課題となっている。   On the other hand, the demand for quality improvement and price reduction from the market is increasing year by year. Therefore, when manufacturing an elliptically polarizing plate, there are major issues such as improving the accuracy of the lamination angle, continuation of the lamination process, improving the yield, and reducing material loss.

特許文献2には、偏光板と位相差フィルムの枚葉体を所定の角度になるように角度を調整して接着し、得られた積層体の縁部を切除して楕円偏光板とする方法が提案されている。   Patent Document 2 discloses a method in which a polarizing plate and a sheet of retardation film are bonded by adjusting the angle so as to be a predetermined angle, and an edge of the obtained laminate is cut to form an elliptically polarizing plate. Has been proposed.

しかし、上記の方法では、偏光板の裁断工程、位相差フィルムの裁断工程及び偏光板と位相差フィルムの接着工程の3工程を別々に行う必要があり、作業工程が煩雑になり、作業工程上のロスも多くコストアップにつながっていた。   However, in the above method, it is necessary to separately perform the three steps of the polarizing plate cutting step, the retardation film cutting step, and the polarizing plate and retardation film bonding step, which complicates the work steps and increases the work steps. There was also a lot of loss that led to increased costs.

特許文献3には、偏光板及び位相差フィルムのいずれか一方の長尺体を、その光軸に対して所定角をもつよう裁断して枚葉体を得、もう一方の長尺体にそれぞれの光軸が所定角θをなすように連続的に貼り合わせて、楕円偏光板を製造する方法が提案されている。   In Patent Document 3, a long sheet of either a polarizing plate or a retardation film is cut so as to have a predetermined angle with respect to the optical axis to obtain a sheet, There has been proposed a method of manufacturing an elliptically polarizing plate by continuously laminating the optical axes so as to form a predetermined angle θ.

しかし、上記の方法では、ロール状の光学フィルムに、もう一方の光学フィルムの枚葉体を正確に角度制御して貼合する必要があるため、生産能力が上がらないという問題点がある。また、角度がずれてしまった場合は偏光板及び位相差フィルムのいずれも不良品となってしまうため、大幅なコストアップにつながっていた。さらに上記製法の場合、粘着剤による積層は可能であるが、接着剤による積層は、硬化前の接着剤が液体であるため、光学フィルム枚葉体の位置ずれが生じるという問題点がある。   However, the above-described method has a problem that the production capacity does not increase because it is necessary to bond the sheet of the other optical film to the roll-shaped optical film with accurate angle control. Further, when the angle is shifted, both the polarizing plate and the retardation film are defective, leading to a significant cost increase. Furthermore, in the case of the above production method, lamination with a pressure-sensitive adhesive is possible, but lamination with an adhesive has a problem in that the optical film sheet is displaced because the adhesive before curing is liquid.

特許文献4には、筒状に延伸された位相差フィルムを延伸方向に対して所定の角度で連続的に切断して長尺状の位相差フィルムを得、それを長手方向に延伸した透明フィルムを重ねて貼り合せる製造方法が提案されている。   In Patent Document 4, a retardation film stretched in a cylindrical shape is continuously cut at a predetermined angle with respect to the stretching direction to obtain a long retardation film, and a transparent film obtained by stretching it in the longitudinal direction A manufacturing method has been proposed in which layers are laminated and bonded together.

しかし、上記の方法では筒状フィルムの製造機(ブロー成型機)が必要となり、また、筒状延伸フィルムの所定角度での連続裁断は、角度を精度良く裁断することが難しく、ロール状フィルムを延伸して作製する位相差フィルムより工程が煩雑であり、かなりのコストアップとなり実用的ではなかった。   However, the above method requires a cylindrical film manufacturing machine (blow molding machine), and continuous cutting of a cylindrical stretched film at a predetermined angle makes it difficult to accurately cut the roll film. The process is more complicated than the retardation film produced by stretching, and the cost is considerably increased, which is not practical.

特許文献5には、長尺の偏光板を長手方向(光学軸)に対して所定角度になるようにバイヤス状に切断し、該バイヤス切断板を切断縁が上下平行線となるように置き換えた状態で継合する方法が提案されている。   In Patent Document 5, a long polarizing plate is cut into a bias shape so as to be at a predetermined angle with respect to the longitudinal direction (optical axis), and the bias cutting plate is replaced so that the cutting edge is a vertical line. A method of joining in state has been proposed.

しかし、上記の方法ではバイヤス切断板を継合する工程が必要となり生産能力が上がらず、位相差フィルムと積層した時に角度制御の精度が低く低歩留まりで、大幅なコストアップにつながっていた。また、継合する部位が例えば粘着テープで継合されるため、その部分が製品時にはロスとなるという問題や、継合部位に粘着テープによる段差が生じ、偏光板との貼合不良の原因となるといった問題があった。   However, the above method requires a step of joining the biased cutting plates, and the production capacity does not increase, and when laminated with a retardation film, the angle control accuracy is low and the yield is low, leading to a significant cost increase. In addition, since the parts to be joined are joined with, for example, an adhesive tape, a problem that the part is lost at the time of product, a step due to the adhesive tape occurs at the joint part, and causes of poor bonding with the polarizing plate There was a problem of becoming.

特許文献6には、偏光板と位相差フィルムのいずれか一方の長尺状物から、矩形の隣接する2辺のそれぞれが延伸軸と所定の角度をもつように裁断して矩形状物とし、該矩形状物を長尺状のキャリアフィルムに連続して固定すると共に、他方のフィルムの長尺状物を上記キャリアフィルム上の矩形状物と接着させて所定の形状に裁断することを特徴とする楕円偏光板の製造方法が提案されている。   In Patent Document 6, from either one of the elongated material of the polarizing plate and the retardation film, the rectangular adjacent material is cut so that each of the two adjacent sides of the rectangle has a predetermined angle with the stretching axis, The rectangular object is continuously fixed to a long carrier film, and the long object of the other film is bonded to the rectangular object on the carrier film and cut into a predetermined shape. A method of manufacturing an elliptically polarizing plate has been proposed.

しかし、上記の方法では、矩形の隣接する2辺のそれぞれが延伸軸と所定の角度をもつように裁断して矩形状の枚葉体を取り出すため、必然的に裁断されずに残る面積が大きくなり、それはそのまま高価な光学フィルムのロスとなるため、かなりのコストアップにつながっていた。   However, in the above method, each of the two adjacent sides of the rectangle is cut so as to have a predetermined angle with respect to the extending axis, and the rectangular sheet is taken out. As a result, it is a loss of an expensive optical film, which leads to a considerable cost increase.

特開2001−108830号公報JP 2001-108830 A 特開平4−123008号公報JP 4-123008 A 特開平10−206631号公報Japanese Patent Laid-Open No. 10-206631 特開昭55−59407号公報JP-A-55-59407 特開平6−289221号公報JP-A-6-289221 特開平6−300918号公報JP-A-6-300918

本発明は、上述した従来技術における問題点の解決を課題として検討した結果達成されたもので、高効率なロール状の位相差フィルム連続貼合フィルムとその製造方法ならびにそれを用いる楕円偏光板とその製造方法を提供することを目的とする。   The present invention has been achieved as a result of studying the solution of the above-described problems in the prior art as a subject, a highly efficient roll-like retardation film continuous laminated film, a production method thereof, and an elliptically polarizing plate using the same, and It aims at providing the manufacturing method.

そこで本発明者等は、かかる課題を解決すべく鋭意研究を重ねた結果、遅相軸或いは進相軸(以下、単に遅相軸という)が長手方向と実質平行であるロール状の位相差フィルムから、平行四辺形または台形の少なくとも一辺がフィルムの遅相軸に対して所定角(0°<θ<180°)をもつように裁断して枚葉体を連続して取り出し、その枚葉体をロール状の搬送用粘着フィルムに、フィルムの長手方向に対して枚葉体の遅相軸が所定角(0°<θ<180°)になるように連続して貼合することで、遅相軸が長手方向に対して所定角(0°<θ<180°)をもつロール状の位相差フィルム連続貼合フィルムを製造し、その位相差フィルム連続貼合フィルムと、吸収軸或いは透過軸(以下、単に吸収軸という)が長手方向と実質平行であるロール状の直線偏光板とを、互いの長手方向が実質平行になるよう接着してロール状の楕円偏光板を製造することができることを見出し、その方法が、製造ライン上で連続的にロール状の楕円偏光板を材料のロスも少なく、工程上も比較的容易に製造できることを見出し、本発明を完成するに至った。   Accordingly, the present inventors have conducted extensive research to solve such problems, and as a result, a roll-like retardation film whose slow axis or fast axis (hereinafter simply referred to as slow axis) is substantially parallel to the longitudinal direction. To cut out at least one side of the parallelogram or trapezoid so that at least one side of the parallelogram or trapezoid has a predetermined angle (0 ° <θ <180 °) with respect to the slow axis of the film. Is bonded to a roll-like pressure-sensitive adhesive film continuously so that the slow axis of the sheet body becomes a predetermined angle (0 ° <θ <180 °) with respect to the longitudinal direction of the film. A roll-like retardation film continuous bonding film having a phase axis having a predetermined angle (0 ° <θ <180 °) with respect to the longitudinal direction is manufactured, and the retardation film continuous bonding film and an absorption axis or transmission axis A roll whose (hereinafter simply referred to as absorption axis) is substantially parallel to the longitudinal direction. It is found that a roll-shaped elliptically polarizing plate can be manufactured by bonding the linearly polarizing plates so that their longitudinal directions are substantially parallel to each other. The present inventors have found that a polarizing plate can be produced relatively easily in the process with little material loss, and the present invention has been completed.

また、発明者らの検討結果によると、上記方法での楕円偏光板の作製において、偏光板と位相差フィルムを接着する際に、熱或いは活性エネルギー線の照射により硬化・接着する硬化性接着剤を用いることが効果的であることを見出した。すなわち、強固に接着する硬化性接着剤によって偏光板と位相差フィルムを固定し、熱または湿熱条件下での寸法変化を抑制して発泡、浮き、剥がれ等を防止するのである。   Further, according to the examination results of the inventors, in the production of the elliptically polarizing plate by the above method, a curable adhesive that is cured and bonded by irradiation of heat or active energy rays when the polarizing plate and the retardation film are bonded. It has been found that it is effective to use. That is, the polarizing plate and the retardation film are fixed by a curable adhesive that adheres firmly, and the dimensional change under heat or wet heat conditions is suppressed to prevent foaming, floating, peeling, and the like.

本発明によれば、以下に説明するように、0度以外の貼合角度で積層した積層体を高精度に、かつ高速、簡便に連続的に生産性よく製造することが可能となる。   According to the present invention, as will be described below, it is possible to manufacture a laminated body laminated at a bonding angle other than 0 degrees with high accuracy, at high speed, simply and continuously with high productivity.

本発明は、遅相軸が長手方向と実質平行であるロール状の位相差フィルムから、四角形の少なくとも一辺がフィルムの遅相軸に対して所定角(0°<θ<180°)をもつように裁断して枚葉体を連続して取り出し、その枚葉体をロール状の搬送用粘着フィルムに、該フィルムの長手方向に対して枚葉体の遅相軸が所定角(0°<θ<180°)になるように連続して貼合することで、遅相軸或いは進相軸が長手方向に対して所定角(0°<θ<180°)をもつロール状の位相差フィルムが連続的に貼合されたフィルムであり、上記四角形の枚葉体が平行四辺形または台形である位相差フィルム連続貼合フィルム(以下、第1発明という)に関する。   According to the present invention, at least one side of a quadrilateral has a predetermined angle (0 ° <θ <180 °) with respect to the slow axis of the film from a roll-like retardation film whose slow axis is substantially parallel to the longitudinal direction. The sheet is continuously taken out, and the sheet is taken into a roll-like adhesive film for conveyance, and the slow axis of the sheet is relative to the longitudinal direction of the film at a predetermined angle (0 ° <θ By laminating continuously such that <180 °), a roll-like retardation film having a slow axis or a fast axis having a predetermined angle (0 ° <θ <180 °) with respect to the longitudinal direction is obtained. The present invention relates to a retardation film continuous bonding film (hereinafter referred to as a first invention), which is a film bonded continuously, and in which the rectangular sheet is a parallelogram or trapezoid.

位相差フィルムとしては、種々のものが使用でき、一軸または二軸延伸等の加工が施された光学用フィルム、ないしは液晶性の化合物等を基材に塗布し、配向、固定化の加工をした光学用フィルム等が挙げられ、三次元屈折率の大小関係(屈折率楕円体)を使用条件に合わせて制御したものである。主に、液晶ディスプレイの液晶層の着色による補償や視野角による位相差の変化を補償するために用いられる。
位相差フィルムの具体例を挙げると、延伸等の加工が施される光学フィルムの素材としてはポリエチレン、ポリプロピレン、環状ポリオレフィンのようなポリオレフィンや、ポリカーボネート、ポリビニルアルコール、ポリスチレン、ポリメチルメタクリレート、ポリアリレート、ポリアミド等が例示できる。また、液晶性の化合物等を基材に塗布し、配向、固定化の加工をした光学用フィルムとしては、“WVフィルム”(富士写真フイルム株式会社製)、“LCフィルム”、“NHフィルム”(いずれも新日本石油株式会社製)等が挙げられる。
Various types of retardation films can be used. Optical films that have been processed such as uniaxial or biaxial stretching, or liquid crystal compounds are applied to a substrate and processed for orientation and fixation. An optical film or the like is used, and the magnitude relationship (refractive index ellipsoid) of the three-dimensional refractive index is controlled in accordance with the use conditions. It is mainly used to compensate for coloration of the liquid crystal layer of a liquid crystal display and to compensate for changes in phase difference due to viewing angle.
As a specific example of the retardation film, as an optical film material subjected to processing such as stretching, polyolefin such as polyethylene, polypropylene, cyclic polyolefin, polycarbonate, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polyarylate, Examples thereof include polyamide. In addition, “WV film” (manufactured by Fuji Photo Film Co., Ltd.), “LC film”, “NH film” can be used as optical films that are prepared by applying a liquid crystalline compound or the like to a substrate and then processing the alignment and fixation. (Both made by Nippon Oil Corporation).

第1発明の一実施態様について、図1及び2を例に挙げ説明する。
まず、図1に示すように遅相軸(12)が長手方向と実質平行であるロール状の位相差フィルム(11)を、四角形の枚葉体(13)に裁断し、連続して取り出す。
この四角形の枚葉体は、遅相軸(12)に対して、平行な辺ad、bcと、平行ではない辺ab、cdからなり、辺ab、cdの少なくとも一辺はフィルムの遅相軸に対して所定角(0°<θ<180°)をもつ。上記四角形の枚葉体(13)は、平行四辺形または台形である。
One embodiment of the first invention will be described with reference to FIGS.
First, as shown in FIG. 1, a roll-like retardation film (11) whose slow axis (12) is substantially parallel to the longitudinal direction is cut into a rectangular sheet (13) and continuously taken out.
This rectangular sheet has parallel sides ad and bc and non-parallel sides ab and cd with respect to the slow axis (12), and at least one side of the sides ab and cd is on the slow axis of the film. On the other hand, it has a predetermined angle (0 ° <θ <180 °). The rectangular sheet (13) is a parallelogram or trapezoid.

次に、図2に示すように、得られた位相差フィルム枚葉体(22)を、ロール状の搬送用粘着フィルム(21)に、該フィルムの長手方向に対して枚葉体の遅相軸(23)が所定角(0°<θ<180°)になるように連続して貼合することで、遅相軸(23)が長手方向に対して所定角(0°<θ<180°)をもつ、ロール状の位相差フィルム連続貼合フィルム(24)を得る。この時、位相差フィルム枚葉体(22)の少なくとも一辺は、ロール状の搬送用粘着フィルム(21)の長辺に対して実質平行となる。   Next, as shown in FIG. 2, the obtained retardation film sheet (22) is transferred to a roll-like pressure-sensitive adhesive film (21) for the slow phase of the sheet relative to the longitudinal direction of the film. The slow axis (23) has a predetermined angle (0 ° <θ <180) with respect to the longitudinal direction by continuously bonding the axis (23) so as to be a predetermined angle (0 ° <θ <180 °). A roll-like retardation film continuous laminated film (24) having (°) is obtained. At this time, at least one side of the retardation film sheet (22) is substantially parallel to the long side of the roll-shaped transport adhesive film (21).

搬送用粘着フィルムとしては、フィルムの片側或いは両側に、再剥離性の粘着層を有するフィルムであり、キャリアフィルム、搬送用テープ等とも呼称される。
フィルムとしては、ポリエチレン及びポリプロピレン等のオレフィン系フィルム、並びにポリエチレンテレフタレート等のポリエステルフィルム等が挙げられる。
本発明で用いられる搬送用粘着フィルムに特に限定はないが、位相差フィルムとの接着強度や、位相差フィルムを剥がしたときの糊残りの有無等により、適切に選定されなければならない。
As a conveyance adhesive film, it is a film which has a releasable adhesion layer in the one side or both sides of a film, and is also called a carrier film, a tape for conveyance, etc.
Examples of the film include olefinic films such as polyethylene and polypropylene, and polyester films such as polyethylene terephthalate.
Although there is no limitation in particular in the adhesive film for conveyance used by this invention, you have to select suitably by adhesive strength with retardation film, the presence or absence of the adhesive residue when peeling a retardation film, etc.

第1発明で得られた位相差フィルム連続貼合フィルムは、楕円偏光板の製造に好ましく使用できる。
楕円偏光板は、通常、偏光板と位相差フィルムとを積層することにより構成されている。すなわち、偏光板の吸収軸と位相差フィルムの遅相軸とが所定の角度をなすように、偏光板及び位相差フィルムが粘着剤や接着剤等を用いて接着されている。
The retardation film continuous laminated film obtained by 1st invention can be preferably used for manufacture of an elliptically polarizing plate.
The elliptically polarizing plate is usually configured by laminating a polarizing plate and a retardation film. That is, the polarizing plate and the retardation film are bonded using an adhesive or an adhesive so that the absorption axis of the polarizing plate and the slow axis of the retardation film form a predetermined angle.

本発明の第2発明は、吸収軸が長手方向と実質平行であるロール状の直線偏光板と、第1発明で得られたロール状の位相差フィルム連続貼合フィルムを、互いの長手方向が実質平行になるよう接着してロール状の楕円偏光板としたロール状の楕円偏光板に関する。   In the second invention of the present invention, the roll-shaped linearly polarizing plate whose absorption axis is substantially parallel to the longitudinal direction, and the roll-shaped retardation film continuous laminated film obtained in the first invention, the mutual longitudinal directions are The present invention relates to a roll-shaped elliptically polarizing plate bonded to be substantially parallel to form a roll-shaped elliptically polarizing plate.

偏光板としては、自然光、すなわち非偏光な光線からある一方向の直線偏光を選択的に透過する機能を有するものであれば種々のものが使用できる。
例えば、ポリビニルアルコール系フィルムにヨウ素を吸着、配向させたヨウ素系偏光フィルム、ポリビニルアルコール系フィルムに二色性の染料を吸着、配向させた染料系偏光フィルム、ビニルアルコール系/ポリエン系偏光フィルム、(リオトロピック)液晶状態の二色性染料をコーティングし、配向、固定化した塗布型偏光子等が挙げられる。
これら、ヨウ素系偏光フィルム、染料系偏光フィルム、ビニルアルコール系/ポリエン系偏光フィルム、塗布型偏光板は、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を吸収する機能を有するもので、吸収型偏光板と呼ばれている。
上記ヨウ素系偏光フィルム、染料系偏光フィルムは、通常、その片面又は両面に保護層を設けて、偏光板とされる。片面にのみ保護層を設けた偏光板は、面光源素子と接着する面が、保護層のある面であっても、保護層のない面であっても構わない。
保護層としては、例えば、トリアセチルセルロースやジアセチルセルロースのようなセルロースアセテート樹脂フィルム、アクリル樹脂フィルム、ポリエステル樹脂フィルム、ポリアリレート樹脂フィルム、ポリエーテルサルホン樹脂フィルム、ノルボルネンのような環状オレフィンをモノマーとする環状ポリオレフィン樹脂フィルム等を貼合したものが挙げられる。保護層はフィルム状のものに限定されない。例えば、コーティングによって形成された保護層であっても構わない。
本発明に用いる偏光板は、前述した吸収型偏光板だけではなく、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を反射または散乱する機能を有する反射型偏光板、散乱型偏光板と呼ばれているものでも構わない。また、上記に具体的に挙げた偏光板は、必ずしもこれらによって限定されるものではなく、自然光からある一方向の直線偏光を選択的に透過する機能を有するものであればよい。
楕円偏光板に使用される偏光板は、これらの偏光子の中でも、視認性に優れている吸収型偏光板を用いるのが、好ましく、その中でも、偏光度、透過率が優れているヨウ素系偏光板を用いるのが、最も好ましい。
As the polarizing plate, various types of polarizing plates can be used as long as they have a function of selectively transmitting a certain direction of linearly polarized light from a non-polarized light beam.
For example, an iodine polarizing film in which iodine is adsorbed and oriented on a polyvinyl alcohol film, a dye polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol film, a vinyl alcohol / polyene polarizing film, ( (Lyotropic) Coating type polarizers coated with a dichroic dye in a liquid crystal state, oriented and fixed.
These iodine-based polarizing films, dye-based polarizing films, vinyl alcohol / polyene-based polarizing films, and coated polarizing plates selectively transmit one direction of linearly polarized light from natural light and absorb the other direction of linearly polarized light. It has a function to perform, and is called an absorption type polarizing plate.
The iodine-based polarizing film and the dye-based polarizing film are usually formed as a polarizing plate by providing a protective layer on one or both sides. In a polarizing plate provided with a protective layer only on one side, the surface to be bonded to the surface light source element may be a surface with a protective layer or a surface without a protective layer.
Examples of the protective layer include cellulose acetate resin films such as triacetyl cellulose and diacetyl cellulose, acrylic resin films, polyester resin films, polyarylate resin films, polyether sulfone resin films, and cyclic olefins such as norbornene as monomers. The thing which bonded the cyclic polyolefin resin film etc. to do is mentioned. The protective layer is not limited to a film. For example, it may be a protective layer formed by coating.
The polarizing plate used in the present invention is not limited to the absorptive polarizing plate described above, but is also a reflective polarized light having a function of selectively transmitting one direction of linearly polarized light from natural light and reflecting or scattering the other direction of linearly polarized light. What is called a board and a scattering type polarizing plate may be used. Moreover, the polarizing plate specifically mentioned above is not necessarily limited by these, What is necessary is just to have a function which selectively permeate | transmits one direction of linearly polarized light from natural light.
Among these polarizers, the polarizing plate used for the elliptically polarizing plate is preferably an absorptive polarizing plate that is excellent in visibility, and among them, iodine-based polarized light having excellent polarization degree and transmittance. Most preferably, a plate is used.

偏光板と位相差フィルムの接着で使用される接着剤としては、接着性に優れ、かつ楕円偏光板の光学特性に悪影響を与えないものであれば何でも良い。
具体的には、(メタ)アクリレート系、オキセタン系等のモノマー・オリゴマー系接着剤、尿素樹脂系、メラミン樹脂系、フェノール樹脂系、レゾルシノール樹脂系、エポキシ系、ポリウレタン樹脂系、酢酸ビニル樹脂系、ポリビニルアルコール樹脂系、アクリル樹脂系、セルロース樹脂系等の樹脂系接着剤、クロロプレン系、ニトリルゴム系、スチレンブタジエンゴム系、スチレンブロック共重合熱可塑性エラストマー系、ブチルゴム系、天然ゴム系、再生ゴム系、塩化ゴム系、シリコーンゴム系等のゴム系接着剤、膠や澱粉系等の天然系接着剤等が挙げられる。
Any adhesive may be used as long as it is excellent in adhesiveness and does not adversely affect the optical characteristics of the elliptically polarizing plate.
Specifically, (meth) acrylate type, oxetane type monomer / oligomer type adhesives, urea resin type, melamine resin type, phenol resin type, resorcinol resin type, epoxy type, polyurethane resin type, vinyl acetate resin type, Resin adhesives such as polyvinyl alcohol resin, acrylic resin, cellulose resin, chloroprene, nitrile rubber, styrene butadiene rubber, styrene block copolymer thermoplastic elastomer, butyl rubber, natural rubber, recycled rubber , Rubber adhesives such as chlorinated rubber and silicone rubber, and natural adhesives such as glue and starch.

接着剤は、活性エネルギー線の照射か、又は加熱、或いは両方を行うことにより硬化し、偏光板と位相差フィルムを強固に接着することができる。   The adhesive can be cured by irradiation with active energy rays, heating, or both to firmly bond the polarizing plate and the retardation film.

活性エネルギー線の照射により硬化を行う場合、用いる光源は特に限定されないが、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ等を用いることができる。
光照射強度も特に限定されないが、接着剤に含まれる光重合開始剤の吸収波長での照射強度ピークが10〜10,000mW/cm2であることが好ましい。光照射強度が10mW/cm2 未満であると、反応時間が長くなりすぎ、10,000mW/cm2を超えると、ランプからの輻射熱により、偏光板の劣化を生じる可能性がある。光照射時間もやはり特に限定されないが、照射強度と照射時間の積として表される積算光量が10〜10,000mJ/cm2となるように設定されることが好ましい。積算光量が10mJ/cm2未満であると、接着剤の硬化が十分に進まない可能性があり、一方で積算光量が10,000mJ/cm2を超えると、偏光板の劣化を生じる可能性がある。
When curing is performed by irradiation with active energy rays, the light source used is not particularly limited. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, or the like can be used.
The light irradiation intensity is not particularly limited, but the irradiation intensity peak at the absorption wavelength of the photopolymerization initiator contained in the adhesive is preferably 10 to 10,000 mW / cm 2 . If the light irradiation intensity is less than 10 mW / cm 2 , the reaction time becomes too long, and if it exceeds 10,000 mW / cm 2 , the polarizing plate may be deteriorated by radiant heat from the lamp. The light irradiation time is also not particularly limited, but is preferably set so that the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is 10 to 10,000 mJ / cm 2 . If the integrated light quantity is less than 10 mJ / cm 2 , the curing of the adhesive may not proceed sufficiently. On the other hand, if the integrated light quantity exceeds 10,000 mJ / cm 2 , the polarizing plate may be deteriorated. is there.

熱により硬化を行う場合は、一般的に知られた方法で加熱することができ、その条件等も特に限定されないが、高温での加熱は偏光板の劣化を招くため、通常25〜150℃にて実施される。   When curing by heat, it can be heated by a generally known method, and the conditions are not particularly limited. However, heating at a high temperature causes deterioration of the polarizing plate. Implemented.

活性エネルギー線の照射又は加熱のいずれの条件で硬化させる場合でも、偏光板の偏光度、透過率及び色相といった、偏光板の諸機能が低下しない範囲で硬化させることが好ましい。   Even in the case of curing under the conditions of irradiation with active energy rays or heating, it is preferable to cure in the range where various functions of the polarizing plate such as the degree of polarization, the transmittance and the hue of the polarizing plate do not deteriorate.

また、偏光板と位相差フィルムの接着に際しては粘着剤を用いることもできる。粘着剤とは、一般的に感圧接着剤とも呼称される接着剤の一種である。
具体的には、(メタ)アクリレート系、オキセタン系、スチレンブタジエンゴム系、ブチルゴム系、天然ゴム系、シリコーンゴム系、ポリイソプレン系、ポリブテン系、ポリビニルエーテル系、アクリル樹脂系、ポリエステル系等が挙げられる。
An adhesive can also be used for bonding the polarizing plate and the retardation film. The pressure-sensitive adhesive is a kind of adhesive generally called a pressure-sensitive adhesive.
Specific examples include (meth) acrylate, oxetane, styrene butadiene rubber, butyl rubber, natural rubber, silicone rubber, polyisoprene, polybutene, polyvinyl ether, acrylic resin, and polyester. It is done.

これら接着剤または粘着剤の中でも、(メタ)アクリレート系、オキセタン系、アクリル樹脂系、ポリエステル系、エポキシ系、ポリウレタン樹脂系の接着剤または粘着剤が好ましい。これらの接着剤または粘着剤は透明性が高く、耐候性も良好という理由でも好ましい。さらに、薄型化した偏光板を用いる場合は、(メタ)アクリレート系、アクリル樹脂系、ポリエステル系の接着剤を用いることが特に好ましい。   Among these adhesives or pressure-sensitive adhesives, (meth) acrylate-based, oxetane-based, acrylic resin-based, polyester-based, epoxy-based, and polyurethane resin-based adhesives or pressure-sensitive adhesives are preferable. These adhesives or pressure-sensitive adhesives are also preferable because of their high transparency and good weather resistance. Further, when using a thin polarizing plate, it is particularly preferable to use a (meth) acrylate, acrylic resin, or polyester adhesive.

硬化性接着剤を用いた貼合工程の例を説明する。図3に示すように、ロール状の直線偏光板(31)から巻き出して、硬化性接着剤(34)を塗工装置(33)で塗工する。この際の塗工装置としては、ロールコーター、グラビアコーター、ナイフコーター、ロッドコーター、スロットオリフィスコーター、エアドクタコーター、キスコーター、ブレードコーター、ダイコーター、コンマコーター等がある。   The example of the bonding process using a curable adhesive is demonstrated. As shown in FIG. 3, it rolls out from a roll-shaped linearly-polarizing plate (31), and a curable adhesive (34) is applied with a coating device (33). Examples of the coating apparatus at this time include a roll coater, a gravure coater, a knife coater, a rod coater, a slot orifice coater, an air doctor coater, a kiss coater, a blade coater, a die coater, and a comma coater.

ロール状の位相差フィルム連続貼合フィルム(35)を巻き出してラミネートロール(36)にて異物や空気等が混入しないように両フィルムをラミネートする。必要に応じて、熱或いは活性エネルギー線の照射(37)により、接着剤を硬化させて巻き取ることにより、ロール状の楕円偏光板(38)を得ることができる。接着剤硬化後に、位相差フィルム連続貼合フィルム(35)に用いられていた搬送用粘着フィルムを剥離しながら巻き取ることも可能である。
この積層の前に、直線偏光板と位相差フィルムの接着性をよくするために、ロール状の直線偏光板(31)の貼合面もしくは、位相差フィルム連続貼合フィルム(35)の貼合面(位相差フィルム面)の少なくとも一方、或いは両方に、コロナ処理、プラズマ処理等の易接着処理装置(32)での易接着処理を行ってもよい。
A roll-like retardation film continuous laminated film (35) is unwound and both films are laminated by a laminating roll (36) so that foreign matter, air, etc. are not mixed. If necessary, a roll-like elliptically polarizing plate (38) can be obtained by curing and winding the adhesive by irradiation with heat or active energy rays (37). It is also possible to wind up while peeling the adhesive film for conveyance used for the retardation film continuous bonding film (35) after adhesive hardening.
Before the lamination, in order to improve the adhesion between the linear polarizing plate and the retardation film, the bonding surface of the roll-shaped linear polarizing plate (31) or the lamination of the retardation film continuous bonding film (35). At least one or both of the surfaces (retardation film surface) may be subjected to easy adhesion treatment with an easy adhesion treatment device (32) such as corona treatment or plasma treatment.

粘着剤を用いた貼合工程の例を説明する。図4に示すように、ロール状の位相差フィルム連続貼合フィルム(41)から巻き出して粘着剤(44)を塗工装置(43)で塗工する。この際の塗工装置としては、前記と同様のものが挙げられる。   The example of the bonding process using an adhesive is demonstrated. As shown in FIG. 4, it rolls out from a roll-like retardation film continuous bonding film (41), and applies an adhesive (44) with a coating apparatus (43). Examples of the coating apparatus at this time are the same as those described above.

必要に応じて、熱或いは活性エネルギー線の照射(45)を行った後、離型フィルム(46)をラミネートロール(47)でラミネートし、巻き取ることでロール状の粘着加工済位相差フィルム連続貼合フィルム(48)を得ることができる。
この積層の前に、粘着剤と位相差フィルムの接着性をよくするために、位相差フィルム連続貼合フィルム(41)の貼合面(位相差フィルム面)に、コロナ処理、プラズマ処理等の易接着処理装置(42)での易接着処理を行ってもよい。
If necessary, after irradiation with heat or active energy rays (45), the release film (46) is laminated with a laminating roll (47), and wound to form a roll-like adhesive processed retardation film continuously. A pasting film (48) can be obtained.
Before this lamination, in order to improve the adhesiveness between the pressure-sensitive adhesive and the retardation film, the bonding surface (retardation film surface) of the retardation film continuous bonding film (41) is subjected to corona treatment, plasma treatment, etc. You may perform an easy adhesion process with an easy adhesion processing apparatus (42).

図5には、一般にサポートレス粘着剤と呼称される、粘着剤の両面を離型フィルムでサンドイッチされた構造のフィルムを転写することによって、粘着加工済位相差フィルム連続貼合フィルムを得る工程例を示す。ロール状の位相差フィルム連続貼合フィルム(51)を巻き出し、離型フィルム巻き取りロール(54)で剥離フィルムを剥離したサポートレス粘着シート(53)をラミネートロール(55)でラミネートすることで、粘着加工済位相差フィルム連続貼合フィルム(56)を得ることができる。
この積層の前に、粘着剤と位相差フィルムの接着性をよくするために、位相差フィルム連続貼合フィルム(51)の貼合面(位相差フィルム面)に、コロナ処理、プラズマ処理等の易接着処理装置(52)での易接着処理を行ってもよい。
FIG. 5 shows an example of a process for obtaining an adhesive processed retardation film continuous laminated film by transferring a film having a structure in which both sides of an adhesive are sandwiched between release films, generally called a supportless adhesive. Indicates. By unwinding the roll-like retardation film continuous bonding film (51) and laminating the supportless pressure-sensitive adhesive sheet (53) from which the release film has been peeled off by the release film take-up roll (54) with the laminating roll (55). An adhesive processed retardation film continuous laminated film (56) can be obtained.
Before this lamination, in order to improve the adhesiveness between the pressure-sensitive adhesive and the retardation film, on the bonding surface (retardation film surface) of the retardation film continuous bonding film (51), corona treatment, plasma treatment, etc. You may perform an easy adhesion process with an easy adhesion processing apparatus (52).

なお、図4、図5ではロール状の位相差フィルム連続貼合フィルムを粘着加工してから離型フィルムをラミネートして巻き取ったが、離型フィルムをラミネートせずに連続して図6のラミネートロール(65)以降の工程を行うことも可能である。   In FIGS. 4 and 5, the roll-like retardation film continuous laminated film was adhesively processed and then the release film was laminated and wound. However, the release film was not laminated and continuously rolled as shown in FIG. 6. It is also possible to perform the steps after the laminating roll (65).

次に、図6に示すように、ロール状の粘着加工済位相差フィルム連続貼合フィルム(61)から巻き出して、離型フィルムを離型フィルム巻き取りロール(62)で剥離後、ロール状の直線偏光板(64)を巻き出してラミネートロール(65)にて異物や空気等が混入しないように両フィルムをラミネートする。必要に応じて、熱或いは活性エネルギー線の照射(66)を行って巻き取ることにより、ロール状の楕円偏光板(67)を得ることができる。巻き取る際には、粘着加工済位相差フィルム連続貼合フィルム(61)に用いられていた搬送用粘着フィルムを剥離しながら巻き取ることも可能である。この積層の前に、直線偏光板と位相差フィルムの接着性をよくするために、ロール状の直線偏光板(64)の貼合面に、コロナ処理、プラズマ処理等の易接着処理装置(63)での易接着処理を行ってもよい。   Next, as shown in FIG. 6, it rolls out from a roll-shaped adhesion-processed retardation film continuous bonding film (61), peels the release film with a release film winding roll (62), and then rolls. The linear polarizing plate (64) is unwound and both films are laminated by a laminating roll (65) so that no foreign matter, air, etc. are mixed. If necessary, a roll-like elliptically polarizing plate (67) can be obtained by performing irradiation (66) with heat or active energy rays and winding. When winding up, it is also possible to wind up while peeling the adhesive film for conveyance used for the adhesive-processed retardation film continuous bonding film (61). Before this lamination, in order to improve the adhesiveness between the linear polarizing plate and the retardation film, an easy-adhesion processing device (63 such as corona treatment or plasma treatment) is applied to the bonding surface of the roll-shaped linear polarizing plate (64). ) May be performed.

ロール状の楕円偏光板は以上のような製造方法によって製造されるが、波長分散性を良くする(可視光の波長全般にわたって楕円偏光板の機能を同等にかつ高度に発揮させる)等、光学特性を良くために、偏光板に2枚以上の位相差フィルムを貼合して、楕円偏光板とすることもある。その場合、2枚目以降のロール状位相差フィルム連続貼合フィルムを貼合する際、対象となるものはロール状楕円偏光板(ロール状直線偏光板+位相差フィルム)になるが、その際は既に貼合された位相差フィルムを介して、楕円偏光板中の直線偏光板と、前述した製造方法によって製造することになる。   Rolled elliptically polarizing plates are manufactured by the above-described manufacturing method, but optical properties such as improving wavelength dispersion (making elliptical polarizing plates function equally and highly over the entire wavelength of visible light). In order to improve the quality, two or more retardation films may be bonded to the polarizing plate to form an elliptical polarizing plate. In that case, when the roll-like retardation film continuous pasting film after the second sheet is pasted, the target is a roll-shaped elliptical polarizing plate (rolled linear polarizing plate + retardation film). Is manufactured by the linear polarizing plate in the elliptically polarizing plate and the above-described manufacturing method through the already-laminated retardation film.

以上のようにして得られたロール状の楕円偏光板を、所定の形状に裁断することによって楕円偏光板の枚葉体を得ることができる。なお、この裁断工程は、ロール状の楕円偏光板として巻き取る前に行うこともできる。   The sheet-like body of the elliptically polarizing plate can be obtained by cutting the rolled elliptically polarizing plate obtained as described above into a predetermined shape. In addition, this cutting process can also be performed before winding up as a roll-like elliptically polarizing plate.

上記で得られた楕円偏光板の枚葉体は液晶表示装置用の光学フィルムとして用いることができる。また、該楕円偏光板は、有機電界発光を用いた表示装置の内部電極の反射を防止するための光学フィルムとして用いることもできる。   The sheet of the elliptically polarizing plate obtained above can be used as an optical film for a liquid crystal display device. The elliptically polarizing plate can also be used as an optical film for preventing reflection of internal electrodes of a display device using organic electroluminescence.

以下に実施例、及び比較例を挙げて、本発明をさらに具体的に説明する。
本発明における物性の測定方法、効果の評価方法は次の方法に従って行った。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
The measurement method of physical properties and the evaluation method of effects in the present invention were performed according to the following methods.

(1)楕円率
王子計測機器社製 自動複屈折計KOBRA−21ADHを用いて測定した。なお550nmにおける位相差はコーシーの式を用いて近似した。
(1) Ellipticity The ellipticity was measured using an automatic birefringence meter KOBRA-21ADH manufactured by Oji Scientific Instruments. The phase difference at 550 nm was approximated using Cauchy's equation.

(2)有効使用率
有効幅amm、有効長bmmのロール状位相差フィルムから枚葉体状位相差フィルムをc枚切り出し、ロール状偏光板と全て貼合する。このとき、枚葉体状位相差フィルム1枚が偏光板と貼合されることで、楕円偏光板として有効に機能することができた面積をSとしたとき、以下の(1)式を楕円偏光板の有効使用率Rとした。
(2) Effective usage rate c sheets of a sheet-like retardation film are cut out from a roll-shaped retardation film having an effective width of amm and an effective length of bmm, and all are bonded to a roll-shaped polarizing plate. At this time, when an area that can function effectively as an elliptically polarizing plate is obtained by laminating one sheet-like retardation film with a polarizing plate, the following equation (1) is elliptical: The effective usage rate R of the polarizing plate was defined.

Figure 2007219022
Figure 2007219022

(実施例1)
住友化学(株)製のロール状位相差フィルム(レターデーション値138nm、遅相軸:フィルム長手方向、有効幅300mm×有効長10000mm)を図1に示した裁断工程を用いて、遅相軸に対して45°の方向で裁断し、1辺が300√2mmのひし形状位相差フィルム枚葉体を22枚得た。
次に、このひし形状位相差フィルム枚葉体22枚を図2に示した貼合工程を用いて、リンテック(株)製ロール状搬送フィルム“スリムライナーSRL−0754AS”(以下、SRLという)に全て貼合し、ロール状の位相差フィルム連続貼合フィルム(有効幅300mm)を得た。
このロール状の位相差フィルム連続貼合フィルムに図3に示した工程を用いて、東亞合成(株)製の可視光硬化型接着剤“アロニックスUV−3600”を膜厚10μmになるようマイクログラビアコーターにて塗布温度25℃で塗工した。次いで、住友化学(株)製ロール状(直線)偏光板(有効幅300mm×有効長10000mm)にラミネートロールにて貼合し、メタルハライドランプの取り付けられた紫外線照射装置を用いて、紫外線照射を行い、接着を行った。積算光量は1,200mJ/cm2(365nm)であった。
このようにして、ひし形状位相差フィルム枚葉体22枚が貼合されたロール状の楕円偏光板を得た。このロール状の楕円偏光板はシワ等の不具合が入ったものは無く、すべて良好な外観を呈していた。この時、楕円偏光板の有効使用率Rは93.3%であった。また、得られたロール状楕円偏光板を裁断し、一部の楕円率を測定すると光の波長550nmにおける楕円率は99.4%であった。
Example 1
A roll-like retardation film (retardation value: 138 nm, slow axis: film longitudinal direction, effective width: 300 mm × effective length: 10,000 mm) manufactured by Sumitomo Chemical Co., Ltd. is used as the slow axis using the cutting step shown in FIG. On the other hand, the sheet was cut in a direction of 45 ° to obtain 22 rhombus-shaped retardation film sheets having a side of 300√2 mm.
Next, using the bonding process shown in FIG. 2, the roll-shaped retardation film “Slimliner SRL-0754AS” (hereinafter referred to as SRL) manufactured by Lintec Co., Ltd. All were bonded together to obtain a roll-like retardation film continuous bonded film (effective width 300 mm).
A microgravure so that a visible light curable adhesive “Aronix UV-3600” manufactured by Toagosei Co., Ltd. has a film thickness of 10 μm using the process shown in FIG. Coating was performed at a coating temperature of 25 ° C. using a coater. Next, it is bonded to a roll-shaped (linear) polarizing plate (effective width 300 mm × effective length 10000 mm) manufactured by Sumitomo Chemical Co., Ltd. with a laminate roll, and ultraviolet irradiation is performed using an ultraviolet irradiation device to which a metal halide lamp is attached. Gluing was performed. The integrated light amount was 1,200 mJ / cm 2 (365 nm).
In this way, a roll-shaped elliptically polarizing plate having 22 rhombic retardation film sheets bonded together was obtained. None of the rolled elliptical polarizing plates had defects such as wrinkles, and all exhibited good appearance. At this time, the effective usage rate R of the elliptically polarizing plate was 93.3%. Moreover, when the obtained roll-shaped elliptical polarizing plate was cut and a part of the ellipticity was measured, the ellipticity at a light wavelength of 550 nm was 99.4%.

(実施例2)
実施例1と同様の方法でロール状の位相差フィルム連続貼合フィルム(有効幅300mm)を得た。
このロール状の位相差フィルム連続貼合フィルムに図4に示した工程を用いて、東亞合成(株)製のアクリル系粘着剤“アロンタックS−1511(X)”(以下、S−1511という)を膜厚25μmになるようコンマコーターにて塗布温度25℃で塗工し、100℃で3分乾燥した。
次いで、実施例1と同様の(直線)偏光板にラミネートロールにて貼合し、積層を行った。
このようにして、ひし形状位相差フィルム枚葉体22枚が貼合されたロール状の楕円偏光板を得た。このロール状の楕円偏光板はシワ等の不具合が入ったものは無く、すべて良好な外観を呈していた。この時、楕円偏光板の有効使用率Rは93.3%であった。また、得られたロール状楕円偏光板を裁断し、一部の楕円率を測定すると光の波長550nmにおける楕円率は99.4%であった。
(Example 2)
A roll-like retardation film continuous laminated film (effective width 300 mm) was obtained in the same manner as in Example 1.
Using the process shown in FIG. 4 for this roll-like retardation film continuous laminated film, an acrylic adhesive “Arontack S-1511 (X)” (hereinafter referred to as S-1511) manufactured by Toagosei Co., Ltd. Was coated at a coating temperature of 25 ° C. with a comma coater so as to have a film thickness of 25 μm, and dried at 100 ° C. for 3 minutes.
Next, the same (linear) polarizing plate as in Example 1 was laminated with a laminating roll and laminated.
In this way, a roll-shaped elliptically polarizing plate having 22 rhombic retardation film sheets bonded together was obtained. None of the rolled elliptical polarizing plates had defects such as wrinkles, and all exhibited good appearance. At this time, the effective usage rate R of the elliptically polarizing plate was 93.3%. Moreover, when the obtained roll-shaped elliptical polarizing plate was cut and a part of the ellipticity was measured, the ellipticity at a light wavelength of 550 nm was 99.4%.

(実施例3)
実施例1と同様の方法でロール状の位相差フィルム連続貼合フィルム(有効幅300mm)を得た。
このロール状の位相差フィルム連続貼合フィルムに図5に示した工程を用いて、綜研化学(株)製のサポートレス粘着剤“SK−2057”(膜厚25μm)を温度25℃で転写した。
次いで、実施例1と同様の(直線)偏光板にラミネートロールにて貼合し、積層を行った。
このようにして、ひし形状位相差フィルム枚葉体22枚が貼合されたロール状の楕円偏光板を得た。このロール状の楕円偏光板はシワ等の不具合が入ったものは無く、すべて良好な外観を呈していた。この時、楕円偏光板の有効使用率Rは93.3%であった。また、得られたロール状楕円偏光板を裁断し、一部の楕円率を測定すると光の波長550nmにおける楕円率は99.4%であった。
(Example 3)
A roll-like retardation film continuous laminated film (effective width 300 mm) was obtained in the same manner as in Example 1.
Using the process shown in FIG. 5, a supportless adhesive “SK-2057” (film thickness: 25 μm) manufactured by Soken Chemical Co., Ltd. was transferred at a temperature of 25 ° C. to this roll-like retardation film continuous laminated film. .
Next, the same (linear) polarizing plate as in Example 1 was laminated with a laminating roll and laminated.
In this way, a roll-shaped elliptically polarizing plate having 22 rhombic retardation film sheets bonded together was obtained. None of the rolled elliptical polarizing plates had defects such as wrinkles, and all exhibited good appearance. At this time, the effective usage rate R of the elliptically polarizing plate was 93.3%. Moreover, when the obtained roll-shaped elliptical polarizing plate was cut and a part of the ellipticity was measured, the ellipticity at a light wavelength of 550 nm was 99.4%.

(比較例1)
実施例1と同様のロール状位相差フィルムを特許文献6の図1に記載された方法にて、遅相軸に対して45°の方向で裁断し、1辺が150√2mmの矩形状(正方形状)位相差フィルム枚葉体を33枚得た。
次に、この矩形状位相差フィルム枚葉体33枚を特許文献6の図2に示した固定方法を用いて、ロール状搬送フィルムSRLに全て貼合し、ロール状の位相差フィルム連続貼合フィルム(有効幅150√2mm)を得た。
このロール状の位相差フィルム連続貼合フィルムに、特許文献6の図4に示した工程を用いて、アクリル系粘着剤S−1511を膜厚25μmになるようコンマコーターにて塗布温度25℃で塗工し、100℃で3分乾燥した。
次いで、住友化学(株)製ロール状(直線)偏光板(有効幅150√2mm×有効長10000mm)にラミネートロールにて貼合し、矩形状位相差フィルム枚葉体33枚が貼合されたロール状の楕円偏光板を得た。このロール状の楕円偏光板はシワ等の不具合が入ったものは無く、すべて良好な外観を呈していた。この時、楕円偏光板の有効使用率Rは49.5%であった。また、得られたロール状楕円偏光板を裁断し、一部の楕円率を測定すると光の波長550nmにおける楕円率は99.4%であった。
(Comparative Example 1)
A roll-like retardation film similar to that in Example 1 was cut in a direction of 45 ° with respect to the slow axis by the method described in FIG. 1 of Patent Document 6, and a rectangular shape with one side of 150√2 mm ( (Square) 33 sheets of retardation film were obtained.
Next, 33 sheets of this rectangular retardation film sheet are all bonded to the roll-shaped transport film SRL using the fixing method shown in FIG. 2 of Patent Document 6, and a roll-shaped retardation film is continuously bonded. A film (effective width 150√2 mm) was obtained.
In this roll-like phase difference film continuous pasting film, using the process shown in Drawing 4 of patent documents 6, acrylic adhesive S-1511 is applied at 25 ° C with a comma coater so that film thickness may be 25 micrometers. It was coated and dried at 100 ° C. for 3 minutes.
Subsequently, it was bonded to a roll-shaped (linear) polarizing plate (effective width 150√2 mm × effective length 10,000 mm) manufactured by Sumitomo Chemical Co., Ltd. with a laminate roll, and 33 sheets of rectangular retardation film sheets were bonded. A roll-shaped elliptically polarizing plate was obtained. None of the rolled elliptical polarizing plates had defects such as wrinkles, and all exhibited good appearance. At this time, the effective usage rate R of the elliptically polarizing plate was 49.5%. Moreover, when the obtained roll-shaped elliptical polarizing plate was cut and a part of the ellipticity was measured, the ellipticity at a light wavelength of 550 nm was 99.4%.

本発明は、ロール状の位相差フィルム連続貼合フィルムとその製造方法、ならびにそれを用いる楕円偏光板とその製造方法に関し、位相差フィルム、楕円偏光板および液晶表示装置の分野、ならびにこれを使用する分野等において利用できる。   The present invention relates to a roll-like retardation film continuous laminated film and a production method thereof, and an elliptically polarizing plate using the same and a production method thereof, and relates to the fields of retardation film, elliptically polarizing plate and liquid crystal display device, and the use thereof It can be used in the field to do.

ロール状の位相差フィルムを、四角形の枚葉体に裁断する工程の例。An example of a step of cutting a roll-like retardation film into a rectangular sheet. 位相差フィルム枚葉体をロール状の搬送用粘着フィルムに貼合する工程の例。The example of the process of bonding a retardation film sheet to the adhesive film for conveyance of a roll form. 硬化型接着剤を用いた、位相差フィルム連続貼合フィルムとロール状の直線偏光板の積層工程の例。The example of the lamination | stacking process of retardation film continuous bonding film and roll-shaped linearly-polarizing plate using a curable adhesive. ロール状の位相差フィルム連続貼合フィルムへの粘着剤塗工工程の例。The example of the adhesive coating process to a roll-like phase difference film continuous pasting film. ロール状の位相差フィルム連続貼合フィルムへのサポートレス粘着剤転写工程の例。The example of the supportless adhesive transfer process to a roll-like phase difference film continuous pasting film. ロール状の粘着加工済位相差フィルム連続貼合フィルムと、ロール状の直線偏光板の積層工程の例。The example of the lamination process of a roll-shaped adhesion-processed retardation film continuous bonding film and a roll-shaped linearly-polarizing plate.

符号の説明Explanation of symbols

11 ロール状の位相差フィルム
12 遅相軸
13 四角形の枚葉体
21 ロール状の搬送用粘着ロール
22 位相差フィルム枚葉体
23 遅相軸
24 ロール状の位相差フィルム連続貼合フィルム
31 ロール状の直線偏光板
32 易接着処理装置
33 塗工装置
34 硬化性接着剤
35 ロール状の位相差フィルム連続貼合フィルム
36 ラミネートロール
37 熱オーブン或いは活性エネルギー線照射装置
38 ロール状の楕円偏光板
41 ロール状の位相差フィルム連続貼合フィルム
42 易接着処理装置
43 塗工装置
44 粘着剤
45 熱オーブン或いは活性エネルギー線照射装置
46 離型フィルム
47 ラミネートロール
48 ロール状の粘着加工済位相差フィルム連続貼合フィルム
51 ロール状の位相差フィルム連続貼合フィルム
52 易接着処理装置
53 ロール状のサポートレス粘着剤
54 離型フィルム巻取りロール
55 ラミネートロール
56 ロール状の粘着加工済位相差フィルム連続貼合フィルム
61 ロール状の粘着加工済位相差フィルム連続貼合フィルム
62 離型フィルム巻取りロール
63 易接着処理装置
64 ロール状の直線偏光板
65 ラミネートロール
66 熱或いは活性エネルギー線照射装置
67 ロール状の楕円偏光板
DESCRIPTION OF SYMBOLS 11 Roll-like phase difference film 12 Slow axis 13 Quadrilateral sheet 21 Roll-shaped conveyance adhesive roll 22 Retardation film sheet 23 Slow axis 24 Roll-like retardation film continuous bonding film 31 Roll shape Linear polarizing plate 32 Easy adhesion processing device 33 Coating device 34 Curing adhesive 35 Roll-like retardation film continuous laminating film 36 Laminating roll 37 Thermal oven or active energy ray irradiation device 38 Roll-like elliptical polarizing plate 41 Roll Retardation film continuous laminating film 42 Easy adhesion processing device 43 Coating device 44 Adhesive 45 Thermal oven or active energy ray irradiation device 46 Release film 47 Laminating roll 48 Roll-like adhesive processed retardation film continuous laminating Film 51 Roll-like retardation film continuous bonding film 52 Easy adhesion processing device 53 Roll-shaped supportless adhesive 54 Release film winding roll 55 Laminating roll 56 Roll-shaped adhesive processed retardation film continuous bonding film 61 Roll-shaped adhesive processed retardation film continuous bonding film 62 Release film winding Take-up roll 63 Easy adhesion treatment device 64 Roll-shaped linearly polarizing plate 65 Laminating roll 66 Thermal or active energy ray irradiation device 67 Roll-shaped elliptically polarizing plate

Claims (10)

遅相軸或いは進相軸(以下、単に遅相軸という)が長手方向と実質平行であるロール状の位相差フィルムから、四角形の少なくとも一辺がフィルムの遅相軸に対して所定角(0°<θ<180°)をもつように裁断して枚葉体を連続して取り出し、その枚葉体をロール状の搬送用粘着フィルムに、該フィルムの長手方向に対して枚葉体の遅相軸が所定角(0°<θ<180°)になるように連続して貼合することで、遅相軸が長手方向に対して所定角(0°<θ<180°)をもつロール状の位相差フィルムが連続的に貼合されたフィルムであり、上記四角形の枚葉体が平行四辺形または台形であることを特徴とするロール状の位相差フィルム連続貼合フィルム。 From a roll-shaped retardation film having a slow axis or a fast axis (hereinafter simply referred to as a slow axis) substantially parallel to the longitudinal direction, at least one side of a square is a predetermined angle (0 ° with respect to the slow axis of the film). <Θ <180 °) The sheet is continuously cut and taken out, and the sheet is taken as a roll-like adhesive film for conveyance in the longitudinal direction of the film. A roll shape in which the slow axis has a predetermined angle (0 ° <θ <180 °) with respect to the longitudinal direction by continuous bonding so that the shaft has a predetermined angle (0 ° <θ <180 °). A roll-like retardation film continuous laminated film, wherein the retardation film is continuously laminated, and the rectangular sheet is a parallelogram or trapezoid. 吸収軸或いは透過軸(以下、単に吸収軸という)が長手方向と実質平行であるロール状の直線偏光板、と、請求項1に記載のロール状の位相差フィルム連続貼合フィルムを、互いの長手方向が実質平行になるように接着してロール状にされたロール状の楕円偏光板。 The roll-shaped linear polarizing plate whose absorption axis or transmission axis (hereinafter simply referred to as absorption axis) is substantially parallel to the longitudinal direction, and the roll-shaped retardation film continuous laminated film according to claim 1, A roll-shaped elliptically polarizing plate bonded and rolled so that the longitudinal direction is substantially parallel. ロール状の直線偏光板と、ロール状の位相差フィルム連続貼合フィルムの接着が、熱或いは活性エネルギー線の照射により硬化・接着する硬化性接着剤を用いたものである請求項2に記載のロール状の楕円偏光板。 The adhesive of a roll-shaped linearly polarizing plate and a roll-shaped retardation film continuous bonding film uses the curable adhesive which hardens | cures and adhere | attaches by the irradiation of a heat | fever or an active energy ray. Roll elliptical polarizing plate. 請求項2又は3に記載のロール状の楕円偏光板を所定の形状に裁断することによって得られる枚葉体からなる楕円偏光板。 The elliptically polarizing plate which consists of a sheet body obtained by cutting the roll-shaped elliptically polarizing plate of Claim 2 or 3 in a predetermined shape. 請求項2〜4のいずれかに記載の楕円偏光板を用いることを特徴とする液晶表示装置。 A liquid crystal display device using the elliptically polarizing plate according to claim 2. 請求項2〜4のいずれかに記載の楕円偏光板を用いることを特徴とする有機電界発光を用いた表示装置。 A display device using organic electroluminescence, wherein the elliptically polarizing plate according to claim 2 is used. 遅相軸が長手方向と実質平行であるロール状の位相差フィルムから、四角形の少なくとも一辺がフィルムの遅相軸に対して所定角(0°<θ<180°)をもつように裁断して枚葉体を連続して取り出し、その枚葉体をロール状の搬送用粘着フィルムに、該フィルムの長手方向に対して枚葉体の遅相軸が所定角(0°<θ<180°)になるように連続して貼合することで、遅相軸が長手方向に対して所定角(0°<θ<180°)をもつ、位相差フィルムが連続的に貼合されたロール状のフィルムを製造する方法であり、上記四角形の枚葉体が平行四辺形または台形であることを特徴とするロール状の位相差フィルム連続貼合フィルムの製造方法。 Cut from a roll-like retardation film whose slow axis is substantially parallel to the longitudinal direction so that at least one side of the square has a predetermined angle (0 ° <θ <180 °) with respect to the slow axis of the film. The single sheet is continuously taken out, and the single sheet is placed on a roll-shaped adhesive film for conveyance, with the slow axis of the single sheet being a predetermined angle (0 ° <θ <180 °) with respect to the longitudinal direction of the film. By continuously laminating so as to become, a slow axis has a predetermined angle (0 ° <θ <180 °) with respect to the longitudinal direction, and a roll-shaped retardation film is continuously laminated. A method for producing a film, wherein the rectangular sheet is a parallelogram or trapezoid, and a method for producing a roll-like retardation film continuous laminated film. 吸収軸が長手方向と実質平行であるロール状の直線偏光板、と、請求項7に記載の製造方法で得られたロール状の位相差フィルム連続貼合フィルムを、互いの長手方向が実質平行になるよう接着してロール状にすることを特徴とする、ロール状の楕円偏光板の製造方法。 The roll-shaped linearly polarizing plate whose absorption axis is substantially parallel to the longitudinal direction, and the roll-shaped retardation film continuous laminated film obtained by the production method according to claim 7, wherein the longitudinal directions of the roll-shaped retardation film are substantially parallel to each other. A method for producing a roll-shaped elliptically polarizing plate, characterized in that it is bonded to form a roll. ロール状の直線偏光板と、ロール状の位相差フィルム連続貼合フィルムを接着する際に、熱或いは活性エネルギー線の照射により硬化・接着する硬化性接着剤を用いることを特徴とする請求項8に記載のロール状の楕円偏光板の製造方法。 9. A curable adhesive that is cured and bonded by irradiation of heat or active energy rays is used when bonding a roll-shaped linearly polarizing plate and a roll-shaped retardation film continuous laminated film. The manufacturing method of the elliptical polarizing plate of roll shape as described in 2. 請求項8又は9に記載のロール状の楕円偏光板を所定の形状に裁断して枚葉体とすることを特徴とする、楕円偏光板の製造方法。


A method for producing an elliptically polarizing plate, wherein the roll-like elliptically polarizing plate according to claim 8 or 9 is cut into a predetermined shape.


JP2006037168A 2006-02-14 2006-02-14 Roll-shaped retardation film and elliptically polarizing plate, and method for manufacturing them Pending JP2007219022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037168A JP2007219022A (en) 2006-02-14 2006-02-14 Roll-shaped retardation film and elliptically polarizing plate, and method for manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037168A JP2007219022A (en) 2006-02-14 2006-02-14 Roll-shaped retardation film and elliptically polarizing plate, and method for manufacturing them

Publications (1)

Publication Number Publication Date
JP2007219022A true JP2007219022A (en) 2007-08-30

Family

ID=38496423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037168A Pending JP2007219022A (en) 2006-02-14 2006-02-14 Roll-shaped retardation film and elliptically polarizing plate, and method for manufacturing them

Country Status (1)

Country Link
JP (1) JP2007219022A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101880A1 (en) * 2008-02-15 2009-08-20 Nitto Denko Corporation Method for manufacturing optical film laminate
JP2009265646A (en) * 2008-03-31 2009-11-12 Sumitomo Chemical Co Ltd Manufacturing apparatus and method of polarizing plate, polarizing plate obtained by the manufacturing method, and optical laminated body
US8379308B2 (en) 2008-09-25 2013-02-19 Nitto Denko Corporation Rolled web of optical film and method of producing the same
JP5361707B2 (en) * 2007-03-16 2013-12-04 東亞合成株式会社 Optical film laminate, method for producing the same, and display device using the same
JP2016153455A (en) * 2015-02-20 2016-08-25 住友化学株式会社 Method for producing optical member attached with resin film
JP2017102479A (en) * 2011-07-07 2017-06-08 住友化学株式会社 Polarization element, circularly polarizing plate, and method of manufacturing those
JP2017119396A (en) * 2015-12-28 2017-07-06 住友化学株式会社 Method for manufacturing optical member with resin film
JP2017120328A (en) * 2015-12-28 2017-07-06 住友化学株式会社 Method for manufacturing optical member with resin film
WO2017115615A1 (en) * 2015-12-28 2017-07-06 住友化学株式会社 Method for producing resin film-equipped optical member
KR20170121072A (en) * 2016-04-22 2017-11-01 스미또모 가가꾸 가부시키가이샤 Method for preparing optical member with separate film
JP2020142530A (en) * 2020-05-15 2020-09-10 住友化学株式会社 Method for manufacturing optical member with resin film

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361707B2 (en) * 2007-03-16 2013-12-04 東亞合成株式会社 Optical film laminate, method for producing the same, and display device using the same
US8480832B2 (en) 2008-02-15 2013-07-09 Nitto Denko Corporation Method of producing optical film laminate
US20100314032A1 (en) * 2008-02-15 2010-12-16 Nitto Denko Corporation Method of producing optical film laminate
CN101743493B (en) * 2008-02-15 2012-07-04 日东电工株式会社 Method for manufacturing optical film laminate
JP2009192902A (en) * 2008-02-15 2009-08-27 Nitto Denko Corp Method of manufacturing optical film laminate
US8734607B2 (en) 2008-02-15 2014-05-27 Nitto Denko Corporation Method of producing optical film laminate
WO2009101880A1 (en) * 2008-02-15 2009-08-20 Nitto Denko Corporation Method for manufacturing optical film laminate
JP2009265646A (en) * 2008-03-31 2009-11-12 Sumitomo Chemical Co Ltd Manufacturing apparatus and method of polarizing plate, polarizing plate obtained by the manufacturing method, and optical laminated body
US8379308B2 (en) 2008-09-25 2013-02-19 Nitto Denko Corporation Rolled web of optical film and method of producing the same
JP2017102479A (en) * 2011-07-07 2017-06-08 住友化学株式会社 Polarization element, circularly polarizing plate, and method of manufacturing those
KR102565137B1 (en) * 2015-02-20 2023-08-08 스미또모 가가꾸 가부시키가이샤 Method for producing optical member with resin film
JP2016153455A (en) * 2015-02-20 2016-08-25 住友化学株式会社 Method for producing optical member attached with resin film
KR20160102341A (en) * 2015-02-20 2016-08-30 스미또모 가가꾸 가부시키가이샤 Method for producing optical member with resin film
JP2017119396A (en) * 2015-12-28 2017-07-06 住友化学株式会社 Method for manufacturing optical member with resin film
WO2017115613A1 (en) * 2015-12-28 2017-07-06 住友化学株式会社 Method for producing resin film-equipped optical member
WO2017115615A1 (en) * 2015-12-28 2017-07-06 住友化学株式会社 Method for producing resin film-equipped optical member
WO2017115614A1 (en) * 2015-12-28 2017-07-06 住友化学株式会社 Method for producing resin film-equipped optical member
JP2017120313A (en) * 2015-12-28 2017-07-06 住友化学株式会社 Method for manufacturing optical member with resin film
TWI709770B (en) * 2015-12-28 2020-11-11 日商住友化學股份有限公司 Method for manufacturing optical member with resin film
TWI808932B (en) * 2015-12-28 2023-07-21 日商住友化學股份有限公司 Method for producing optical member with resin film
JP2017120328A (en) * 2015-12-28 2017-07-06 住友化学株式会社 Method for manufacturing optical member with resin film
KR20170121072A (en) * 2016-04-22 2017-11-01 스미또모 가가꾸 가부시키가이샤 Method for preparing optical member with separate film
KR102328550B1 (en) * 2016-04-22 2021-11-17 스미또모 가가꾸 가부시키가이샤 Method for preparing optical member with separate film
JP2020142530A (en) * 2020-05-15 2020-09-10 住友化学株式会社 Method for manufacturing optical member with resin film

Similar Documents

Publication Publication Date Title
JP2007219022A (en) Roll-shaped retardation film and elliptically polarizing plate, and method for manufacturing them
JP2007155970A (en) Elliptically polarizing plate and manufacturing method
JP6090399B2 (en) Liquid crystal display
JP5446732B2 (en) Manufacturing method of polarizing plate
JP5446933B2 (en) Manufacturing method of polarizing plate
TWI551895B (en) Double-sided transparent adhesive sheet with linear polarization function
KR102224950B1 (en) Polarizing plate
JP2009265646A (en) Manufacturing apparatus and method of polarizing plate, polarizing plate obtained by the manufacturing method, and optical laminated body
JP2011248178A (en) Liquid crystal display device
TWI653475B (en) Polarizer
WO2010067896A1 (en) Method for manufacturing composite polarizing plate
TW201325872A (en) Method of manufacturing polarizing plate
JP6323477B2 (en) Polarizing plate set and LCD panel
JP2008197310A (en) Thin polarizing plate, composite polarizing plate, image display device, and method for manufacturing composite polarizing plate
KR20220117920A (en) Manufacturing method of optical laminate
JP2012137695A (en) Set of roll-shaped polarizing plates, method for manufacturing the same, and method for manufacturing liquid crystal panel
JP6812296B2 (en) Method for manufacturing single layer or laminated body
JP6689433B2 (en) Laminated body and manufacturing method thereof
JP2003025473A (en) Optical member
KR20200047378A (en) Laminate of liquid crystal layer
JP2013064771A (en) Laminated body and method for producing the same
JP2012048181A (en) Polarizer and liquid crystal display device using the same
JP2000347010A (en) Optical member and liquid crystal display device
WO2021095516A1 (en) Optical film set and liquid crystal panel
TWI779144B (en) Polarizing plate group and liquid crystal display panel