JP2007218960A - Varifocal spectacles - Google Patents

Varifocal spectacles Download PDF

Info

Publication number
JP2007218960A
JP2007218960A JP2006036310A JP2006036310A JP2007218960A JP 2007218960 A JP2007218960 A JP 2007218960A JP 2006036310 A JP2006036310 A JP 2006036310A JP 2006036310 A JP2006036310 A JP 2006036310A JP 2007218960 A JP2007218960 A JP 2007218960A
Authority
JP
Japan
Prior art keywords
applying
variable focus
variable
vibration
barium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006036310A
Other languages
Japanese (ja)
Inventor
Tomoaki Ban
知晃 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006036310A priority Critical patent/JP2007218960A/en
Publication of JP2007218960A publication Critical patent/JP2007218960A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide varifocal spectacles which have optical elements of solid crystal with variable optical characteristics formed on a surface of a transmissive substrate at equally spaced cycles and to which vibrations are applied from outside. <P>SOLUTION: The varifocal spectacles have the optical elements of a solid crystal film with variable optical characteristics formed at equally spaced cycles and a means of applying vibrations from outside on at least the one transmissive substrate surface supported on a spectacle frame 4, and the focal length is varied by varying the optical characteristics by applying external vibrations. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、透過性の基体に固体結晶の光学特性可変光学素子を設けた可変焦点眼鏡に関するものである。   The present invention relates to varifocal spectacles in which a transmissive substrate is provided with a variable optical element of solid crystal optical characteristics.

本発明は、固体結晶の光学特性可変光学素子を設けた可変焦点眼鏡に関し、より詳細には固体結晶の光学特性可変素子を透過性の基体面上に等間隔な周期で形成した可変焦点眼鏡に関するものである。   The present invention relates to varifocal spectacles provided with a solid crystal optical property variable optical element, and more particularly to varifocal spectacles in which a solid crystal optical property variable element is formed on a transparent substrate surface at regular intervals. Is.

本発明は、固体結晶の光学特性可変光学素子を透過性の基体面上に等間隔な周期で形成した可変焦点眼鏡に関し、より詳細には等間隔な周期で形成している固体結晶の光学特性可変素子に外部より振動を印加する可変焦点眼鏡に関するものである。   The present invention relates to varifocal spectacles in which a variable optical element of a solid crystal is formed on a transmissive substrate surface at regular intervals, and more specifically, the optical characteristics of a solid crystal formed at regular intervals. The present invention relates to variable focus glasses that apply vibration to the variable element from the outside.

本発明は、等間隔な周期で形成した固体結晶の光学特性可変素子に外部より振動を印加する可変焦点眼鏡に関し、固体結晶の光学特性可変素子に外部より振動を印加することで、光学特性を変化させ、焦点を変化させることが可能となる技術に関するものである。   The present invention relates to variable focus spectacles that externally apply vibration to a solid crystal optical property variable element formed at equal intervals, and to apply optical vibration to the solid crystal optical property variable element from the outside, thereby improving the optical characteristics. The present invention relates to a technique that can change and change the focus.

遠近両用眼鏡として使用する可変焦点眼鏡は、単レンズの中に焦点の異なる2枚のレンズを設け、単レンズを回転させて切り替える方式や、単レンズを上下にシフトさせて切り替える方式、さらには眼鏡自体を上下逆さにかけ直す方式が提案されている。また、新たな方式としては、液晶や固体結晶膜等の可変誘電体をレンズとして用いた可変焦点眼鏡がある。液晶や固体結晶膜等の可変誘電体を用いた可変焦点眼鏡は、レンズ内に配置された可変誘電体に電圧を印加し、その印加電圧を調整することで、屈折率を変化させ、被装着者からみた眼鏡のピント位置を調整することを特徴とするものである。(例えば、特許文献1および特許文献2参照)
特開昭63−135916号公報 特開平11−352445号公報
Variable focus glasses used as bifocal glasses include two lenses with different focal points in a single lens, a method that switches by rotating the single lens, a method that switches by switching the single lens up and down, and glasses A method has been proposed in which itself is turned upside down. As a new system, there is variable focus glasses using a variable dielectric such as a liquid crystal or a solid crystal film as a lens. Variable focus glasses using variable dielectrics such as liquid crystals and solid crystal films apply a voltage to the variable dielectric placed in the lens and adjust the applied voltage to change the refractive index and wear It adjusts the focus position of the eyeglasses seen from the person. (For example, see Patent Document 1 and Patent Document 2)
JP-A-63-135916 JP-A-11-352445


従来の遠近両用のために使用される単レンズの中に焦点の異なる2枚のレンズを設けた可変焦点眼鏡では、1枚のレンズを面で分割しているため、境界部では像が歪んでしまい、使用の際には邪魔になることや常に半分は焦点が合わずぼけて見えてしまい、視野が狭くなるといった課題を有していた。また、従来の液晶を用いた可変焦点眼鏡では、レンズの中に液晶を封入しているため、落下や衝突等によって外部から衝撃が加わると、液晶漏れが発生し焦点が合わず、眼鏡としての機能を発揮できなくなる課題を有していた。さらには、固体結晶膜を用いた可変焦点眼鏡では、電場印加によって誘発される屈折率変化が小さいといった課題を有していた。

In conventional variable-focus eyeglasses with two lenses with different focal points in a single lens used for both near and near, the image is distorted at the boundary because one lens is divided by the surface. In other words, there is a problem that it becomes an obstacle during use, and half of the focus is out of focus and the field of view is narrowed. Moreover, in conventional variable focus glasses using liquid crystal, the liquid crystal is sealed in the lens, so if an impact is applied from the outside due to dropping or collision, the liquid crystal leaks and the focus is not adjusted, so There was a problem that the function could not be demonstrated. Furthermore, variable focus glasses using a solid crystal film have a problem that a change in refractive index induced by application of an electric field is small.

本発明は、従来の課題を解決するもので、固体結晶の光学特性可変光学素子を透過性の基体面上に等間隔な周期で形成し、そこに外部から振動を印加する可変焦点眼鏡の提供を目的とする。   SUMMARY OF THE INVENTION The present invention solves the conventional problems, and provides variable-focus spectacles in which solid crystal optical property variable optical elements are formed on a transparent substrate surface at regular intervals, and vibrations are applied thereto from the outside. With the goal.

前記従来の課題を解決するために、本発明の透過性の基体面上に等間隔な周期で形成した固体結晶の光学特性可変光学素子に外部より振動を印加する可変焦点眼鏡は、眼鏡フレームに支持する少なくとも一方の透過性の基体面上に固体結晶を等間隔な周期で形成した光学特性可変光学素子と、固体結晶を等間隔な周期で形成した光学特性可変光学素子に外部から振動を印加する手段を備えたもので、外部からの振動の印加によって、固体結晶を等間隔な周期で形成した光学特性可変光学素子の光学特性を変化させ、焦点を変化させることが可能となる。そのため、凸レンズ及び凹レンズのいずれにも共用することができるので、従来存在していた境界部での像の歪や落下や外部からの衝撃の影響が緩和される。また、固体結晶膜を用いた可変焦点眼鏡では微弱であった電場印加による屈折率変化を増幅させることが可能となり、膜厚が緩和される。   In order to solve the above-described conventional problems, variable focus glasses for applying vibration from the outside to a solid crystal optical property variable optical element formed on a transparent substrate surface of the present invention at regular intervals are provided on a spectacle frame. Vibration is applied to the optical characteristic variable optical element in which solid crystals are formed at regular intervals on the surface of at least one transparent substrate to be supported, and to the optical characteristic variable optical element in which solid crystals are formed at regular intervals. It is possible to change the focal point by changing the optical characteristics of the optical characteristic variable optical element in which the solid crystals are formed at equal intervals by applying external vibration. Therefore, since it can be used for both convex lenses and concave lenses, the influence of image distortion, dropping, and external impact at the boundary portions that existed in the past can be mitigated. In addition, it is possible to amplify a change in refractive index due to the application of an electric field, which was weak with variable focus glasses using a solid crystal film, and the film thickness is reduced.


本発明の透過性の基体面上に等間隔な周期で形成した固体結晶の光学特性可変光学素子に外部より振動を印加する可変焦点眼鏡によれば、外部振動の印加によって光学特性を変化させ、焦点を変化させることが可能となる。そのため、凸レンズ及び凹レンズのいずれにも共用することができるので、従来存在していた境界部での像の歪や落下や外部からの衝撃の影響が緩和される。また、固体結晶膜を用いた可変焦点眼鏡では微弱であった電場印加による屈折率変化を増幅させることが可能となり、膜厚の薄い眼鏡を提供できる。

According to the variable focus glasses for applying vibration from the outside to the optical characteristic variable optical element of the solid crystal formed on the transparent substrate surface of the present invention at regular intervals, the optical characteristics are changed by applying external vibration, It becomes possible to change the focus. Therefore, since it can be used for both convex lenses and concave lenses, the influence of image distortion, dropping, and external impact at the boundary portions that existed in the past can be mitigated. In addition, it is possible to amplify a change in refractive index due to the application of an electric field, which was weak in variable focus glasses using a solid crystal film, and it is possible to provide glasses with a thin film thickness.

以下に、本発明の可変焦点眼鏡の実施の形態を図面とともに詳細に説明する。   Hereinafter, embodiments of variable focus glasses of the present invention will be described in detail with reference to the drawings.

図1は、本発明の可変焦点眼鏡に用いるレンズの作製方法の一例を示す。1は透過性の基体としてプラスチックレンズ、2Aおよび2Bは電圧を印加する手段としてITO薄膜、3A、3B、3Cおよび3Dは固体結晶としては金属酸化物系であるチタン酸バリウムである。プラスチックレンズ1をマグネトロンスパッタ装置(アルバック社製)のサンプル台に設置後、チャンバー内を5×10−5Paまで減圧し、続いてアルゴンと若干の酸素ガスを混合したガスを導入し、0.7Paにした。まず始めに、電圧を印加する手段を設けるために、ITO(酸化インジウム・スズ)をターゲットとして用い、装置内の設定温度を250℃にし、10〜100nmのITO薄膜2Aを形成した。 FIG. 1 shows an example of a method for manufacturing a lens used in the variable focus glasses of the present invention. 1 is a plastic lens as a transparent substrate, 2A and 2B are ITO thin films as means for applying a voltage, and 3A, 3B, 3C and 3D are barium titanates which are metal oxides as solid crystals. After placing the plastic lens 1 on the sample stage of the magnetron sputtering apparatus (manufactured by ULVAC), the inside of the chamber is depressurized to 5 × 10 −5 Pa, and then a gas in which argon and some oxygen gas are mixed is introduced. 7 Pa. First, in order to provide means for applying a voltage, ITO (indium tin oxide) was used as a target, the set temperature in the apparatus was set to 250 ° C., and an ITO thin film 2A having a thickness of 10 to 100 nm was formed.

ITO薄膜2Aを成膜した基体をスピンコータ(ミカサ社製)に装着させた。ポジ型フォトレジスト(東京応化工業社製)をマイクロピペットで基体全体を覆うように滴下した。スピンコータの設定として、1000rpmで20秒間回転させ、次の20秒間をかけて1000rpmから5000rpmまで高速にし、5000rpmの状態で20秒間保持させた後に、5秒間かけて回転を止めることで、均一なフォトレジスト膜を塗布した。レジスト膜を塗布した基体を、95℃に設定したホットプレートに90秒間設置し、プリベークを行った。フォトマスクと基体のギャップ間距離を100μm、印加電圧を3keVに設定した露光装置(日本電子社製)を用いて、プリベーク後の基体に幅200nm、周期700nmのストライプ形状のパターンを形成させ、有機アルカリ現像液(東京応化工業社製)に浸漬させ、現像した。その後、ビーカー内に溜めた純水による2度の洗浄と流水による洗浄を行い、窒素ガスを吹き付け乾燥させ、乾燥後の基体を120℃に設定したホットプレートに5分間設置し、ポストベークを行った。   The substrate on which the ITO thin film 2A was formed was mounted on a spin coater (Mikasa). A positive photoresist (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was dropped with a micropipette so as to cover the entire substrate. The spin coater is set to rotate at 1000 rpm for 20 seconds, over the next 20 seconds at a high speed from 1000 rpm to 5000 rpm, held at 5000 rpm for 20 seconds, and then stopped for 5 seconds to obtain uniform photo A resist film was applied. The substrate coated with the resist film was placed on a hot plate set at 95 ° C. for 90 seconds, and prebaked. Using an exposure apparatus (manufactured by JEOL Ltd.) in which the gap distance between the photomask and the substrate is set to 100 μm and the applied voltage is set to 3 keV, a stripe-shaped pattern having a width of 200 nm and a period of 700 nm is formed on the substrate after pre-baking. It was immersed in an alkali developer (manufactured by Tokyo Ohka Kogyo Co., Ltd.) and developed. After that, it was washed twice with pure water stored in a beaker and washed with running water, sprayed with nitrogen gas and dried, and the dried substrate was placed on a hot plate set at 120 ° C. for 5 minutes and post-baked. It was.

先程形成したストライプ形状のパターンに固体結晶の薄膜を形成する方法として、メタノール(和光純薬工業社製)と2−メトキシエタノール(和光純薬工業社製)を混合させた50mlの溶媒に12.78gのバリウムイソプロポキシド(和光純薬工業社製)と11.41gのチタンエトキシド(和光純薬工業社製)を溶かした後、溶液を摂氏−20度まで冷却し、攪拌しながら水蒸気量を3から8molの範囲内に調節しながら、少しずつ加えて、ゾル溶液を調製した。調製したゾル溶液をマイクロピペットでストライプ形状のパターンを作製した基体全体に覆うように滴下した。スピンコータの設定として、1000rpmで20秒間回転させ、次の30秒間をかけて1000rpmから5000rpmまで高速にし、5000rpmの状態で60秒間保持させた後に、5秒間かけて回転を止めることで、ゾル溶液を均一に塗布した。   As a method for forming a thin film of solid crystals on the stripe-shaped pattern formed earlier, 12. in 50 ml of a solvent in which methanol (manufactured by Wako Pure Chemical Industries, Ltd.) and 2-methoxyethanol (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed. After dissolving 78 g of barium isopropoxide (manufactured by Wako Pure Chemical Industries, Ltd.) and 11.41 g of titanium ethoxide (manufactured by Wako Pure Chemical Industries, Ltd.), the solution was cooled to -20 degrees Celsius and the amount of water vapor was stirred. Was adjusted in the range of 3 to 8 mol in small portions to prepare a sol solution. The prepared sol solution was dropped with a micropipette so as to cover the entire substrate on which the stripe-shaped pattern was produced. As a spin coater setting, the sol solution was rotated by rotating at 1000 rpm for 20 seconds, increasing the speed from 1000 rpm to 5000 rpm over the next 30 seconds, holding at 5000 rpm for 60 seconds, and then stopping rotation for 5 seconds. It was applied evenly.

ゾル溶液を塗布した基体を200℃になった炉内で1時間加熱させ水分を除去した後に、500℃まで温度が上昇させたことを確認し、その後2時間加熱を行い焼成させた。炉から基体を取り出し、露光装置に設置し、基体全体に露光し、有機アルカリ現像液の中で超音波洗浄することで基体に残ったレジストを除去し、図1(a)のような一層目としてのチタン酸バリウム結晶3Aを等間隔な周期で形成させた。   The substrate on which the sol solution was applied was heated in a furnace at 200 ° C. for 1 hour to remove moisture, and then it was confirmed that the temperature had been raised to 500 ° C., followed by heating for 2 hours and firing. The substrate is taken out from the furnace, installed in an exposure apparatus, exposed to the entire substrate, and subjected to ultrasonic cleaning in an organic alkali developer to remove the resist remaining on the substrate. As shown in FIG. The barium titanate crystal 3A was formed at regular intervals.

二層目の周期的なチタン酸バリウム結晶を等間隔な周期で形成させるために、一層目の周期的なチタン酸バリウム結晶を作製する時と同様な条件を用い、露光装置に設置するフォトマスクとしては、一層目の等間隔な周期で形成されたチタン酸バリウム結晶3Aの向きを90度回転させ、一層目のストライプ形状とが直交するような条件で図1(b)のような幅200nm、周期700nmの二層目のストライプ形状のチタン酸バリウム結晶3Bを形成した。   In order to form the second layer of periodic barium titanate crystals at regular intervals, a photomask installed in the exposure apparatus using the same conditions as those for producing the first layer of periodic barium titanate crystals. As shown in FIG. 1 (b), the direction of the barium titanate crystal 3A formed at equal intervals in the first layer is rotated by 90 degrees and the stripe shape of the first layer is orthogonal. Then, a second-layer stripe-shaped barium titanate crystal 3B having a period of 700 nm was formed.

三層目の周期的なチタン酸バリウム結晶を等間隔な周期で形成させるために、二層目の周期的なチタン酸バリウム結晶を作製する時と同様な条件を用い、露光装置に設置するフォトマスクとしては、一層目の周期的なチタン酸バリウム結晶のストライプ形状とは重ならず、かつ、二層目の周期的なチタン酸バリウム結晶3Bの向きを90度回転させ、二層目のストライプ形状とが直交するような条件で図1(c)のような幅200nm、周期700nmの三層目のストライプ形状のチタン酸バリウム結晶3Cを形成した。   In order to form the periodic periodic barium titanate crystal of the third layer at regular intervals, the photo is installed in the exposure apparatus under the same conditions as those for the periodic periodic barium titanate crystal of the second layer. The mask does not overlap with the stripe shape of the periodic barium titanate crystal of the first layer, and the direction of the periodic barium titanate crystal 3B of the second layer is rotated by 90 degrees, A striped barium titanate crystal 3C of the third layer having a width of 200 nm and a period of 700 nm as shown in FIG. 1C was formed under the condition that the shape was orthogonal.

四層目の周期的なチタン酸バリウム結晶を等間隔な周期で形成させるために、三層目の周期的なチタン酸バリウム結晶を作製する時と同様な条件を用い、露光装置に設置するフォトマスクとしては、二層目の周期的なチタン酸バリウム結晶のストライプ形状とは重ならず、かつ、三層目の周期的なチタン酸バリウム結晶3Cの向きを90度回転させ、三層目のストライプ形状とが直交するような条件で図1(d)のような幅200nm、周期700nmの四層目のストライプ形状のチタン酸バリウム結晶3Dで形成した。   In order to form the fourth layer of periodic barium titanate crystals at regular intervals, a photo that is installed in the exposure apparatus using the same conditions as those for the third layer of periodic barium titanate crystals. The mask does not overlap with the stripe shape of the periodic barium titanate crystal of the second layer, and the direction of the periodic barium titanate crystal 3C of the third layer is rotated by 90 degrees, The stripe-shaped barium titanate crystal 3D was formed in a fourth layer having a width of 200 nm and a period of 700 nm as shown in FIG.

始めに電圧を印加する手段として形成したITO薄膜2Aの対極となる手段を設けるために、図1(d)のような四層のストライプ形状が形成された基体をマグネトロンスパッタ装置(アルバック社製)のサンプル台に設置し、チャンバー内を5×10−5Paまで減圧し、続いてアルゴンと若干の酸素ガスを混合したガスを導入し、0.7Paにした。ITO(酸化インジウム・スズ)をターゲットとして用い、装置内の設定温度を250℃にし、図1(e)のようなストライプ形状の上に10〜100nmのITO薄膜2Bを形成した。 First, in order to provide means for countering the ITO thin film 2A formed as means for applying a voltage, a substrate having a four-layer stripe shape as shown in FIG. The pressure inside the chamber was reduced to 5 × 10 −5 Pa, and a gas mixed with argon and some oxygen gas was introduced to 0.7 Pa. Using ITO (indium tin oxide) as a target, the set temperature in the apparatus was 250 ° C., and an ITO thin film 2B having a thickness of 10 to 100 nm was formed on the stripe shape as shown in FIG.

図1において、プラスチックレンズにチタン酸バリウム結晶の成膜方法として、ゾルゲル法を用いて積層したが、スパッタリング法、レーザーアブレーション法、有機金属化合物堆積法または有機金属気相成長法によってストライプ形状を3次元に積層することや自己クローニング法によって三角格子状を3次元に積層して作製することも可能である。また、透過性の基体としてプラスチックレンズを用いたが、ガラスレンズやサファイヤレンズを用いることも可能である。   In FIG. 1, a sol-gel method is used to form a barium titanate crystal film on a plastic lens. However, a stripe shape is formed by sputtering, laser ablation, organometallic compound deposition, or organometallic vapor deposition. It is also possible to stack three-dimensionally in a three-dimensional manner by stacking in three dimensions or by self-cloning. Further, although a plastic lens is used as the transmissive substrate, a glass lens or a sapphire lens can also be used.

図2は、本発明の可変焦点眼鏡の一例中、等間隔な周期で形成したチタン酸バリウム結晶膜の光の吸収特性の一例を示す図である。横軸は上記作製したプラスチックレンズに等間隔な周期で形成したチタン酸バリウム結晶膜に入力した光の波長、縦軸は入力した光強度に対する出力した光強度の割合を対数で表した吸収率である。200nm程度の短波長では入力した光がほとんど吸収されるが、波長を長くしていくにつれ吸収される割合が減少する。チタン酸バリウム結晶の周期である700nm以上になると入力した光は、ほぼ吸収されなくなる。   FIG. 2 is a diagram showing an example of light absorption characteristics of a barium titanate crystal film formed at regular intervals in one example of the variable focus glasses of the present invention. The horizontal axis is the wavelength of light input to the barium titanate crystal film formed at equal intervals on the plastic lens produced above, and the vertical axis is the absorptance expressed as a logarithm of the ratio of the output light intensity to the input light intensity. is there. Although the input light is almost absorbed at a short wavelength of about 200 nm, the rate of absorption decreases as the wavelength increases. When the period of the barium titanate crystal is 700 nm or more, the input light is hardly absorbed.

図3は、本発明の可変焦点眼鏡の模式図である。4は眼鏡フレーム、5はプラスチックレンズ、6Aおよび6BはITO薄膜、7はチタン酸バリウム結晶膜、8は電源である。   FIG. 3 is a schematic diagram of the variable focus glasses of the present invention. 4 is a spectacle frame, 5 is a plastic lens, 6A and 6B are ITO thin films, 7 is a barium titanate crystal film, and 8 is a power source.

チタン酸バリウム結晶膜7はバリウム9A、チタン10A及び酸素原子11Aが図4(a)のような結晶構造を有しプラスチックレンズ5に成膜される。電源8に接続されたITO膜6Aおよび6Bを介してチタン酸バリウム結晶膜7に電場12を印加すると、結晶を形成しているバリウム9B(陽性)、チタン10B(陽性)及び酸素11B(陰性)原子がそれぞれ陽性もしくは陰性の電気的な偏りを有しているため、電場に応答し図4(b)のように構造が伸縮し、結晶構造の中心がずれる現象が発生する。結晶構造の中心がずれると電場誘起歪が生じ、その結果、光学特性が変化する。   In the barium titanate crystal film 7, barium 9A, titanium 10A and oxygen atoms 11A have a crystal structure as shown in FIG. When an electric field 12 is applied to the barium titanate crystal film 7 through the ITO films 6A and 6B connected to the power supply 8, barium 9B (positive), titanium 10B (positive) and oxygen 11B (negative) forming the crystals are formed. Since each atom has a positive or negative electrical bias, the structure expands and contracts as shown in FIG. 4B in response to the electric field, and the center of the crystal structure shifts. When the center of the crystal structure is shifted, an electric field induced strain is generated, and as a result, the optical characteristics are changed.

図5は、本発明の可変焦点眼鏡の一例中、電場の印加による等間隔な周期で形成したチタン酸バリウム結晶膜の電気化学特性の一例を示す。図5において、横軸は電源から印加した電場強度を透過性の基体に成膜したチタン酸バリウム結晶膜の厚さで割った電位勾配であり、縦軸は400nmの波長における印加した電位勾配での誘電率を電場の未印加(0V/mm)の誘電率との差を電場の未印加(0V/mm)の誘電率で割った誘電率変化量(%)である。チタン酸バリウム結晶膜に電位勾配を0から200V/mmに上昇させながら走引して印加すると、電位勾配が150V/mm近傍から誘電率変化量が変化し始めた。さらに、電位勾配を200V/mmにした状態から0V/mmに減少させながら走引して印加すると、非対称な光学特性を描きはするものの、可逆的に電場の未印加時と同様な誘電率変化量(%)に戻った。   FIG. 5 shows an example of the electrochemical characteristics of a barium titanate crystal film formed at regular intervals by applying an electric field in an example of variable focus glasses of the present invention. In FIG. 5, the horizontal axis is the electric potential gradient obtained by dividing the electric field strength applied from the power source by the thickness of the barium titanate crystal film formed on the transparent substrate, and the vertical axis is the applied electric potential gradient at a wavelength of 400 nm. Is a change in dielectric constant (%) obtained by dividing the difference between the dielectric constant of the electric field and the dielectric constant of the unapplied electric field (0 V / mm) by the dielectric constant of the non-applied electric field (0 V / mm). When the potential gradient was applied to the barium titanate crystal film while increasing the potential gradient from 0 to 200 V / mm, the amount of change in dielectric constant started to change from around 150 V / mm. In addition, when applied by running while decreasing the potential gradient from 200 V / mm to 0 V / mm, the dielectric constant changes reversibly as when no electric field is applied, although it draws asymmetric optical characteristics. Returned to the amount (%).

図6は、本発明の可変焦点眼鏡の一例中、電位勾配を200V/mmを印加した際の等間隔な周期で形成したチタン酸バリウム結晶膜の誘電特性の一例を示す図である。横軸は上記作製したプラスチックレンズに等間隔な周期で形成したチタン酸バリウム結晶膜に入力した光の波長、縦軸は電圧を印加していない図2で示した光の吸収特性から見積もった屈折率を波長400nmの誘電率との差を波長400nmの誘電率で割った誘電率変化量(%)、実線は200V/mmの電位勾配を印加した時の誘電特性、点線は電位勾配を印加していない時の誘電特性である。電位勾配400から700nmの波長領域に関して、電場を印加することで各波長の誘電率変化量が誘発される。
このように、プラスチックレンズに等間隔な周期で形成したチタン酸バリウム結晶膜を設けた眼鏡において、電場を印加することで、異なる光学特性を作り出すことが可能となり、凹レンズ及び凸レンズのいずれにも共用することができる。このことから、眼球近傍の筋力低下によって引き起こされる老眼で用いる、単レンズの中に焦点の異なる2枚のレンズを設けた眼鏡で発生していたレンズの境界部での像の歪や液晶を用いた眼鏡で発生していた液晶漏れによる焦点距離の変化の影響が緩和される。また、固体結晶膜を用いた可変焦点眼鏡では微弱であった電場印加による屈折率変化を増幅させることが可能となり、膜厚の薄い眼鏡を提供できる。
FIG. 6 is a diagram showing an example of the dielectric characteristics of a barium titanate crystal film formed at regular intervals when a potential gradient of 200 V / mm is applied in an example of variable focus glasses of the present invention. The horizontal axis represents the wavelength of light input to the barium titanate crystal film formed on the plastic lens produced at regular intervals, and the vertical axis represents the refraction estimated from the light absorption characteristics shown in FIG. 2 when no voltage is applied. The change in dielectric constant (%) obtained by dividing the difference from the dielectric constant at a wavelength of 400 nm by the dielectric constant at a wavelength of 400 nm, the solid line is the dielectric characteristic when a potential gradient of 200 V / mm is applied, and the dotted line is the potential gradient applied Dielectric characteristics when not. With respect to the wavelength range of the potential gradient from 400 to 700 nm, applying an electric field induces a change in dielectric constant at each wavelength.
In this way, it is possible to create different optical characteristics by applying an electric field in glasses with a barium titanate crystal film formed at regular intervals on a plastic lens, and it can be used for both concave and convex lenses. can do. For this reason, image distortion and liquid crystal at the boundary of the lens, which was generated with spectacles with two lenses with different focal points in a single lens used for presbyopia caused by muscle weakness near the eyeball, were used. The influence of the change in the focal length due to the liquid crystal leakage that occurred in the glasses that was worn is alleviated. In addition, it is possible to amplify a change in refractive index due to the application of an electric field, which was weak in variable focus glasses using a solid crystal film, and it is possible to provide glasses with a thin film thickness.

図7は、本発明の可変焦点眼鏡の一例中、電場の走引速度による認識可能な像の個数の一例を示す。横軸は電場の走引速度(V/s)であり、縦軸は認識している像の個数(ヶ)である。800V/s以下の走引速度であると、遠・近それぞれの2つの像を個別に認識することが可能であるが、2000V/s程度の走引速度になると、遠・近それぞれの2つの像の境界が曖昧になり、認識することが困難になる。更に走引速度を高くし、4000V/s以上にすると、遠・近それぞれの2つの像を認識することが可能にも関わらず、遠・近両方の像が合わさった1つの像として認識する。このことから、必要に応じてスイッチ等を介して遠・近それぞれの像を認識することなく、遠・近両方の像を同時に認識することが可能となる。   FIG. 7 shows an example of the number of recognizable images according to the electric field running speed in an example of the variable focus glasses of the present invention. The horizontal axis is the electric field running speed (V / s), and the vertical axis is the number of recognized images. If the running speed is 800 V / s or less, it is possible to recognize the two images of far and near separately, but if the running speed is about 2000 V / s, the far and near two images The boundaries of the image become ambiguous and difficult to recognize. If the running speed is further increased to 4000 V / s or more, the two images of the far and near images can be recognized, but they are recognized as one image in which both the far and near images are combined. This makes it possible to recognize both the far and near images simultaneously without recognizing the far and near images via a switch or the like as necessary.

上記可変焦点眼鏡において、固体結晶膜としてチタン酸バリウムを用いたが、リン酸二水素カリウム(KHPO)、リン酸二重水素カリウム(KDPO)、ニオブ酸リチウム(LiNbO)、酸化亜鉛(ZnO)、KTN結晶などの電場を加えたとき,光学特性が変化する材料を用いることが可能である。また、等間隔な周期として700nmとしたが、700nmに捉われず他の周期でもよく、大きな誘電率変化量が得られる700nm以下であることが好ましい。 In the variable focus glasses, barium titanate was used as the solid crystal film, but potassium dihydrogen phosphate (KH 2 PO 4 ), potassium dihydrogen phosphate (KD 2 PO 4 ), lithium niobate (LiNbO 3 ). It is possible to use a material whose optical properties change when an electric field such as zinc oxide (ZnO) or KTN crystal is applied. In addition, although the equally spaced period is set to 700 nm, the period is not limited to 700 nm and may be other periods, and is preferably 700 nm or less so that a large change in dielectric constant can be obtained.

本発明の透過性の基体に等間隔な周期で形成した固体結晶膜の光学特性可変光学素子に外部から振動を印加する可変焦点眼鏡によれば、外部振動の印加によって光学特性を変化させ、焦点を変化させることが可能となる。そのため、凸レンズ及び凹レンズのいずれにも共用することができるので、従来存在していた境界部での像の歪が緩和されるだけでなく、落下や衝撃等の外部からの衝撃に強い眼鏡を提供できる。また、固体結晶膜を用いた可変焦点眼鏡では微弱であった電場印加による屈折率変化を増幅させることが可能となり、膜厚の薄い眼鏡を提供できる。 According to the varifocal spectacles in which vibration is applied from the outside to the optical characteristic variable optical element of the solid crystal film formed on the transparent substrate of the present invention at equal intervals, the optical characteristic is changed by applying external vibration, and the focus is changed. Can be changed. For this reason, it can be used for both convex and concave lenses, so it not only relieves image distortion at the boundary that existed in the past, but also provides eyeglasses that are resistant to external impacts such as drops and impacts. it can. In addition, it is possible to amplify a change in refractive index due to the application of an electric field, which was weak in variable focus glasses using a solid crystal film, and it is possible to provide glasses with a thin film thickness.


本発明の可変焦点眼鏡に用いる光学素子の作製方法の一例を示す模式図The schematic diagram which shows an example of the production method of the optical element used for the variable focus spectacles of this invention 本発明の可変焦点眼鏡の一例中、等間隔な周期で形成したチタン酸バリウム結晶膜の光の吸収特性の一例を示す図The figure which shows an example of the light absorption characteristic of the barium titanate crystal film formed in the interval of equal intervals in an example of the variable focus spectacles of this invention 本発明の可変焦点眼鏡の模式図Schematic diagram of variable focus glasses of the present invention 本発明の可変焦点眼鏡の一例中、チタン酸バリウム結晶膜の結晶構造の一例を示す模式図、(a)外部から電場を印加していない状態での結晶構造を示す模式図、(b)外部から電場を印加した状態での結晶構造を示す模式図FIG. 4 is a schematic diagram showing an example of a crystal structure of a barium titanate crystal film in an example of the variable focus glasses of the present invention, (a) a schematic diagram showing a crystal structure in a state where no electric field is applied from the outside, and (b) an external view. Schematic diagram showing the crystal structure with an electric field applied 本発明の可変焦点眼鏡の一例中、電場の印加によるチタン酸バリウム結晶膜の電気化学特性の一例を示す図The figure which shows an example of the electrochemical characteristic of the barium titanate crystal film by application of an electric field in an example of the variable focus spectacles of this invention 本発明の可変焦点眼鏡の一例中、電位勾配を200V/mmを印加した際の等間隔な周期で形成したチタン酸バリウム結晶膜の誘電率特性の一例を示す図The figure which shows an example of the dielectric constant characteristic of the barium titanate crystal film formed in the period of equal intervals at the time of applying a potential gradient 200V / mm in an example of the variable focus spectacles of this invention. 本発明の可変焦点眼鏡の一例中、電場の走引速度に応じて認識可能な像の個数の一例を示す図The figure which shows an example of the number of the images which can be recognized according to the running speed of an electric field in an example of the variable focus spectacles of this invention.

符号の説明Explanation of symbols

1、5 プラスチックレンズ
2A、2B、6A、6B ITO薄膜
3A、3B、3C、3D、7 チタン酸バリウム結晶
4 眼鏡フレーム
8 電源
9A、9B バリウム原子
10A、10B チタン原子
11A、11B 酸素原子
12 電場
1, 5 Plastic lens 2A, 2B, 6A, 6B ITO thin film 3A, 3B, 3C, 3D, 7 Barium titanate crystal 4 Eyeglass frame 8 Power supply 9A, 9B Barium atom 10A, 10B Titanium atom 11A, 11B Oxygen atom 12 Electric field

Claims (7)

眼鏡フレームと、前記眼鏡フレームに支持する少なくとも一方に透過性の基体と、前記透過性の基体に固体結晶を設けた光学素子と、前記光学素子に外部から振動を印加する振動印加手段とが配置された可変焦点眼鏡において、前記透過性の基体面上に前記固体結晶を等間隔な周期で配列するとともに、前記配列を少なくとも一層以上形成することを特徴とした可変焦点眼鏡。 An eyeglass frame, a transparent base on at least one of the eyeglass frames, an optical element in which a solid crystal is provided on the transparent base, and a vibration applying unit that applies vibration to the optical element from the outside are disposed. In the variable-focus glasses, the solid-crystals are arranged on the transparent substrate surface at regular intervals, and at least one of the arrays is formed. 前記固体結晶が、ペロブスカイト構造を有することを特徴とする請求項1記載の可変焦点眼鏡。 2. The variable focus glasses according to claim 1, wherein the solid crystal has a perovskite structure. 前記ペロブスカイト構造を有した固体結晶として、チタン酸バリウム(BaTiO)、リン酸二水素カリウム(KHPO)、リン酸二重水素カリウム(KDPO)、ニオブ酸リチウム(LiNbO)、酸化亜鉛(ZnO)、KTN結晶であることを特徴とした請求項2記載の可変焦点眼鏡。 Examples of solid crystals having the perovskite structure include barium titanate (BaTiO 4 ), potassium dihydrogen phosphate (KH 2 PO 4 ), potassium double hydrogen phosphate (KD 2 PO 4 ), lithium niobate (LiNbO 3 ). 3. The variable focus glasses according to claim 2, wherein the glasses are zinc oxide (ZnO) or KTN crystal. 前記等間隔な周期として700nm以下であることを特徴とした請求項1〜3のいずれか記載の可変焦点眼鏡。 The variable focus glasses according to any one of claims 1 to 3, wherein the equally spaced period is 700 nm or less. 前記外部から振動を印加する振動印加手段として、電場または磁場の少なくとも一つを印加する手段であることを特徴とした請求項1〜4のいずれか記載の可変焦点眼鏡。 The variable focus glasses according to any one of claims 1 to 4, wherein the vibration applying means for applying vibration from the outside is a means for applying at least one of an electric field or a magnetic field. 前記電場による振動印加手段として、150V/mm以上の電位勾配を印加する手段であることを特徴とした請求項5記載の可変焦点眼鏡。 6. The variable focus glasses according to claim 5, wherein the means for applying vibration by the electric field is means for applying a potential gradient of 150 V / mm or more. 前記150V/mm以上の電位勾配を印加する手段として、4000V/s以上の走引速度を印加する手段であることを特徴とした請求項6記載の可変焦点眼鏡。 7. The variable focus glasses according to claim 6, wherein the means for applying a potential gradient of 150 V / mm or more is a means for applying a running speed of 4000 V / s or more.
JP2006036310A 2006-02-14 2006-02-14 Varifocal spectacles Pending JP2007218960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036310A JP2007218960A (en) 2006-02-14 2006-02-14 Varifocal spectacles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006036310A JP2007218960A (en) 2006-02-14 2006-02-14 Varifocal spectacles

Publications (1)

Publication Number Publication Date
JP2007218960A true JP2007218960A (en) 2007-08-30

Family

ID=38496376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036310A Pending JP2007218960A (en) 2006-02-14 2006-02-14 Varifocal spectacles

Country Status (1)

Country Link
JP (1) JP2007218960A (en)

Similar Documents

Publication Publication Date Title
JP3979982B2 (en) Interferometric modulator and display device
JP4689259B2 (en) Method for producing transparent element with invisible electrode
US8771448B2 (en) Curvature reduction for switchable polymer lenticulars
US20180231867A1 (en) Lens device
WO2006115147A1 (en) Imaging lens
JP2009271390A (en) Liquid crystal display and electronic equipment
JP2012068607A (en) Liquid crystal lens
JP2012128457A (en) Aperture optical element for camera and manufacturing method thereof
KR20120028265A (en) Polymerizable liquid crystal composition
JP2006267150A (en) Liquid crystal lens device
JP4996114B2 (en) Aperture optical element for camera and manufacturing method thereof
JP4647921B2 (en) Substrate with transparent electrode and apparatus including the substrate
JP4633088B2 (en) Interferometric modulator and display device
JP2009098644A (en) Liquid crystal fresnel lens, and liquid crystal fresnel lens production device
CN101666940B (en) Adjustable guided-mold resonance optical filter based on oriented polymer dispersed liquid crystal material
KR20180087409A (en) A method for manufacturing such an optical element based on an optically isotropic liquid and electrically controllable optical element, in particular a lens, and a liquid composition
CN107357110B (en) Large-aperture liquid crystal lens array adopting composite dielectric layer
JP2007218960A (en) Varifocal spectacles
JP2016004197A (en) Liquid crystal lens
JP4258817B2 (en) Manufacturing method of liquid crystal display device
JP2005200501A (en) Liquid crystal composition, liquid crystal device, and projection display device
JP2011154156A (en) Liquid crystal display device and projector
JP2007212500A (en) Variable focusing spectacles
JPS63253924A (en) Light valve and its production
KR100820851B1 (en) Reflective-transmitted type liquid crystal display and method for manufacturing thereof