JP2007218873A - Instrument for measuring volatile organic compound - Google Patents

Instrument for measuring volatile organic compound Download PDF

Info

Publication number
JP2007218873A
JP2007218873A JP2006043019A JP2006043019A JP2007218873A JP 2007218873 A JP2007218873 A JP 2007218873A JP 2006043019 A JP2006043019 A JP 2006043019A JP 2006043019 A JP2006043019 A JP 2006043019A JP 2007218873 A JP2007218873 A JP 2007218873A
Authority
JP
Japan
Prior art keywords
set value
hydrogen
flow rate
organic compound
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006043019A
Other languages
Japanese (ja)
Other versions
JP4765657B2 (en
Inventor
Masahito Ueda
雅人 上田
Masanao Furukawa
雅直 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006043019A priority Critical patent/JP4765657B2/en
Publication of JP2007218873A publication Critical patent/JP2007218873A/en
Application granted granted Critical
Publication of JP4765657B2 publication Critical patent/JP4765657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent dew condensation after hydrogen flame is ignited to shorten a stabilization time, in an instrument for measuring a volatile organic compound using a hydrogen flame ionization detector (FID). <P>SOLUTION: One or more of set values out of a flow rate set value of hydrogen, a flow rate set value of a combustion improver and a temperature set value of the FID, are controlled to a set value larger than a set value in a usual measuring time, during a tentative time before and after the hydrogen flame is ignited, and the tentative set values are returned to the set value in the usual measuring time, based on an output signal level or by a preset time program, after ignited. Relative humidity is reduced in an inside of the FID after the ignition, by this constitution, the dew is thereby prevented from being generated just after the ignition, and the stabilization time for the instrument is also shortened. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素炎イオン化検出器を利用して試料ガス中の有機化合物の濃度を測定する揮発性有機化合物測定装置に関する。   The present invention relates to a volatile organic compound measuring apparatus that measures the concentration of an organic compound in a sample gas using a flame ionization detector.

例えば塗装ブースからの排気中に含まれる有機溶剤蒸気等の濃度を測定する装置として、水素炎イオン化検出器(以下、FIDと記す)を利用した揮発性有機化合物測定装置が用いられている(例えば、非特許文献1参照)。
FIDは、水素ガスが助燃ガスの存在下で燃焼する炎の中に試料ガスを通し、試料ガス中の有機物質を構成する炭素原子(有機性炭素)が水素炎中でイオン化することによって生じるイオン電流を測定するもので、ガスクロマトグラフ用の検出器としてよく知られている。FIDは有機性炭素の原子数にほぼ比例する出力が得られるので、有機化合物を個々の成分に分離せずに試料ガスをそのままFIDに通すことにより全有機化合物濃度を有機性炭素の濃度として測定することができる。これがFIDを用いる有機化合物濃度測定の原理であるが、この場合試料が気体であるから、その中に含まれる有機化合物は揮発性に限られるので揮発性全有機化合物(Total Volatile Organic Compounds)測定装置とも呼ばれる(以下、TVOC測定装置と記す)。
For example, a volatile organic compound measuring device using a hydrogen flame ionization detector (hereinafter referred to as FID) is used as a device for measuring the concentration of organic solvent vapor or the like contained in exhaust from a painting booth (for example, FID) Non-Patent Document 1).
FID is an ion generated by passing sample gas through a flame in which hydrogen gas burns in the presence of an auxiliary gas, and carbon atoms (organic carbon) constituting the organic substance in the sample gas are ionized in the hydrogen flame. It measures current and is well known as a detector for gas chromatography. Since the output of FID is almost proportional to the number of atoms of organic carbon, the total organic compound concentration is measured as the concentration of organic carbon by passing the sample gas as it is without separating the organic compound into individual components. can do. This is the principle of organic compound concentration measurement using FID. In this case, since the sample is a gas, the organic compound contained therein is limited to volatile, so a volatile total organic compounds measurement device. Also called (hereinafter referred to as TVOC measuring device).

図3に従来のTVOC測定装置の構成の一例を示す。
同図において1はFIDであって、内部にノズル11、コレクタ電極12が設けられ、下部に試料ガス流路14、水素ガス流路15、助燃ガス流路16がそれぞれ接続され、頂部には大気に連通する排気口13が開設されている。2は、このFID1を収容し所定温度に保つ恒温槽であり、また3はコレクタ電極12に流れるイオン電流を増幅して出力信号とする増幅器である。4は試料ガスを取り込むためのポンプ、5、6はそれぞれ水素ガス、助燃ガスの流量を制御する流量制御装置、7は恒温槽2の温度を制御する温度制御装置である。
FIG. 3 shows an example of the configuration of a conventional TVOC measurement apparatus.
In the figure, reference numeral 1 denotes an FID, in which a nozzle 11 and a collector electrode 12 are provided, a sample gas flow path 14, a hydrogen gas flow path 15 and an auxiliary combustion gas flow path 16 are connected to the lower part, and the top is an atmosphere. An exhaust port 13 communicating with is established. Reference numeral 2 denotes a thermostatic chamber that accommodates the FID 1 and keeps it at a predetermined temperature. Reference numeral 3 denotes an amplifier that amplifies an ionic current flowing through the collector electrode 12 to generate an output signal. 4 is a pump for taking in sample gas, 5 and 6 are flow control devices for controlling the flow rates of hydrogen gas and auxiliary combustion gas, and 7 is a temperature control device for controlling the temperature of the thermostatic chamber 2.

次に、図3に示す従来のTVOC測定装置の動作について説明する。
水素ガスは流量制御装置5でその流量が制御されて水素ガス流路15を経てノズル11から噴出し燃焼して水素炎17を形成する。助燃ガス(有機物や水分を除去した空気)は同様に流量制御装置6で制御されて助燃ガス流路16を経てFID1の内部に送り込まれ、水素炎17に燃焼に必要な酸素を供給する。試料ガスはポンプ4により試料ガス流路14を通って水素炎17中に送給され、ここで試料中の有機化合物を構成する炭素原子がイオン化される。水素炎17の周辺には図示しない電圧印加手段により電場が形成されており、発生したイオンはこの電場に導かれコレクタ電極12に到達することで電流として検出される。これを増幅器3で増幅してFID1の出力信号とする。
水素ガスに点火するときは、図示しないフィラメント、または放電点火器により電気的に点火する。
Next, the operation of the conventional TVOC measuring apparatus shown in FIG. 3 will be described.
The flow rate of the hydrogen gas is controlled by the flow rate control device 5, and the hydrogen gas is ejected from the nozzle 11 through the hydrogen gas flow path 15 and burned to form a hydrogen flame 17. Similarly, the auxiliary combustion gas (air from which organic substances and moisture have been removed) is controlled by the flow rate control device 6 and sent into the FID 1 through the auxiliary combustion gas passage 16 to supply oxygen necessary for combustion to the hydrogen flame 17. The sample gas is fed by the pump 4 through the sample gas flow path 14 into the hydrogen flame 17 where the carbon atoms constituting the organic compound in the sample are ionized. An electric field is formed around the hydrogen flame 17 by voltage application means (not shown), and the generated ions are guided to this electric field and reach the collector electrode 12 to be detected as a current. This is amplified by the amplifier 3 to be an output signal of FID1.
When igniting hydrogen gas, it is ignited electrically by a filament (not shown) or a discharge igniter.

カタログC180−0155「FID形VOC分析計VMS−1000F」(株)島津製作所、2005年12月Catalog C180-0155 “FID VOC Analyzer VMS-1000F” Shimadzu Corporation, December 2005

上記のように構成されたTVOC測定装置においては、恒温槽の温度、即ちFIDの温度は、測定対象が空気等の気体に限られることから特に高温に保つ必要がないので、比較的低温(40〜60℃)に設定される。従って、水素炎を点火したとき水素の燃焼によって発生する水蒸気によりFID内部のコレクタ電極やこれを支持する絶縁碍子等の表面に結露が発生することがある。特に、装置の電源投入直後でまだ恒温槽温度が十分に上がっていない状態で点火した場合には、結露が生じやすい。結露が生じると、FIDの出力信号は通常の測定レンジを越えて大きく振れ、所謂「振り切れた」状態となる。結露は恒温槽の熱と水素炎から発する熱により徐々に蒸発して消失するから、出力信号も徐々に正常なレベルに戻るが、測定可能な状態となるまでの時間(安定化時間)は1時間程度を要することがある。
本発明はこのような事情に鑑みてなされたものであり、FIDを用いたTVOC測定装置において、水素炎点火後の結露発生を防ぎ、以て安定化時間を短縮することを目的とする。
In the TVOC measuring apparatus configured as described above, the temperature of the thermostatic chamber, that is, the temperature of the FID does not need to be kept particularly high because the measurement object is limited to a gas such as air. ˜60 ° C.). Therefore, when the hydrogen flame is ignited, dew condensation may occur on the surface of the collector electrode inside the FID or the insulator supporting the FID due to water vapor generated by hydrogen combustion. In particular, when ignition is performed immediately after the apparatus is turned on and the temperature of the thermostatic chamber is not sufficiently increased, dew condensation is likely to occur. When dew condensation occurs, the output signal of the FID greatly fluctuates beyond the normal measurement range and is in a so-called “shattered” state. Condensation gradually evaporates and disappears due to the heat of the thermostatic chamber and the heat generated from the hydrogen flame, so the output signal gradually returns to the normal level, but the time until it becomes measurable (stabilization time) is 1. It may take some time.
The present invention has been made in view of such circumstances, and an object of the present invention is to prevent the occurrence of dew condensation after hydrogen flame ignition and shorten the stabilization time in a TVOC measuring apparatus using an FID.

本発明は、上記課題を解決するために、水素ガスの流量設定値、助燃ガスの流量設定値、及びFIDの温度設定値のうちいずれか1または複数の設定値を水素炎を点火する前後の暫定期間だけ通常測定時の設定値よりも大きい設定値に制御するように構成し、点火後に出力信号レベルに基づき、または予め設定したタイムプログラムにより上記設定値を通常測定時の設定値に戻すように構成する。   In order to solve the above-described problem, the present invention provides one or more of the hydrogen gas flow rate setting value, the auxiliary combustion gas flow rate setting value, and the FID temperature setting value before and after igniting the hydrogen flame. It is configured to control to a set value larger than the set value during normal measurement only during the provisional period, and the set value is returned to the set value during normal measurement based on the output signal level after ignition or by a preset time program. Configure.

本発明は上記のように構成されているので、点火直後の結露発生が防止され、装置の安定化時間を短縮することができる。   Since the present invention is configured as described above, the occurrence of dew condensation immediately after ignition is prevented, and the stabilization time of the apparatus can be shortened.

本発明が提供するTVOC測定装置は次のような特徴を有する。即ち、第1の特徴は水素ガスの流量設定値、助燃ガスの流量設定値、及びFIDの温度設定値のうち1または2以上の設定値を水素炎を点火する前後の暫定期間だけ通常測定時の設定値よりも大きい設定値に制御するように構成した点にあり、第2の特徴は点火後に、例えば出力信号レベルに基づき上記設定値を通常測定時の設定値に戻すように構成した点である。
従って、最良の形態の基本的な構成は、上記2件の特徴を具備するTVOC測定装置である。
The TVOC measurement apparatus provided by the present invention has the following characteristics. That is, the first feature is that one or more of the hydrogen gas flow rate setting value, the auxiliary combustion gas flow rate setting value, and the FID temperature setting value is measured normally during a provisional period before and after the hydrogen flame is ignited. The second feature is that, after ignition, for example, the set value is returned to the set value during normal measurement based on the output signal level. It is.
Therefore, the basic configuration of the best mode is a TVOC measuring device having the above two features.

図1に本発明の一実施例の構成を示す。同図において、図3に示す従来例と同符号を付すものは図3と同一物であるから再度の説明を省く。本実施例が従来例と相違する点は、設定値切換手段8を設けたことである。
前述したように、水素ガス、助燃ガス、及びFID1の温度はそれぞれ流量制御装置5、6及び温度制御装置7で制御されるが、これらの通常測定時の設定値(通常設定値)は、一例として水素ガスは40〜50ml/min、助燃ガスは100ml/min、FID1の温度は40〜60°C程度である。設定値切換手段8はこれらのうちいずれか1つまたは複数の設定値を水素炎17を点火する前後の期間(暫定期間)だけ暫定的に上記の通常設定値よりも大きい値に切り換えるものである。各制御装置5、6、7はいずれも電子式で構成されているから電気的入力信号により設定可能であり、設定値切換手段8はこのような設定用の信号a、b、cを発信する電子的機能ブロックであって、このTVOC測定装置全体をコントロールするコンピュータの一部として構成されている。
FIG. 1 shows the configuration of an embodiment of the present invention. In the figure, since the components denoted by the same reference numerals as those in the conventional example shown in FIG. 3 are the same as those in FIG. The difference between this embodiment and the conventional example is that a set value switching means 8 is provided.
As described above, the temperatures of the hydrogen gas, auxiliary combustion gas, and FID1 are controlled by the flow rate control devices 5, 6 and the temperature control device 7, respectively. The set values (normal set values) at the time of these normal measurements are examples. The hydrogen gas is 40-50 ml / min, the auxiliary combustion gas is 100 ml / min, and the temperature of FID1 is about 40-60 ° C. The set value switching means 8 temporarily switches any one or a plurality of set values to a value larger than the above normal set value only during a period before and after igniting the hydrogen flame 17 (provisional period). . Since each of the control devices 5, 6, and 7 is configured electronically, it can be set by an electrical input signal, and the set value switching means 8 transmits such setting signals a, b, and c. It is an electronic functional block and is configured as a part of a computer that controls the entire TVOC measuring apparatus.

本実施例においては、設定値切換手段8は、点火の前後の期間だけ信号aにより水素ガスの流量設定値を変更する。即ち、水素炎17点火の直前、または点火とほぼ同時に水素ガス流量設定を通常設定値の1.5倍程度に、即ち60〜70ml/minに変更する。これにより水素炎17は通常よりも大きくなり、発熱量も増加するから水素炎17周辺のノズル11やコレクタ電極12の温度が上昇し、結露が起こり難くなる。点火後は、FID1の出力信号のレベルは一時的に大きく振れるが、次第に通常のレベルに戻って来る。設定値切換手段8は出力信号レベルを基準値と比較する比較器を備え、出力信号レベルが基準値まで下がったとき水素ガス流量の設定値を通常設定値に戻す。これにより測定開始までの安定化時間を短縮することができる。
図2は、上記の水素流量設定の変化をグラフで示した(同図中の実線)もので、この例では点火から15分後に通常設定値に戻り、さらに若干の安定化時間を要して点火から約30分後には測定可能な状態となっている。
In the present embodiment, the set value switching means 8 changes the hydrogen gas flow rate set value by the signal a only during the period before and after ignition. That is, the hydrogen gas flow rate setting is changed to about 1.5 times the normal set value, that is, 60 to 70 ml / min, just before the ignition of the hydrogen flame 17 or almost simultaneously with the ignition. As a result, the hydrogen flame 17 becomes larger than usual and the amount of heat generation also increases, so the temperature of the nozzle 11 and the collector electrode 12 around the hydrogen flame 17 rises, and condensation is unlikely to occur. After ignition, the output signal level of FID1 fluctuates greatly temporarily, but gradually returns to the normal level. The set value switching means 8 includes a comparator that compares the output signal level with the reference value, and returns the set value of the hydrogen gas flow rate to the normal set value when the output signal level drops to the reference value. Thereby, the stabilization time until the start of measurement can be shortened.
FIG. 2 is a graph showing the change in the hydrogen flow rate setting described above (solid line in the figure). In this example, it returns to the normal setting value 15 minutes after ignition, and further requires some stabilization time. About 30 minutes after ignition, the state is measurable.

他の実施例として、図1の構成において水素炎17の点火後の暫定期間中、助燃ガスの流量設定値を増加するようにしてもよい。助燃ガスの流量設定値を、例えば通常設定値100ml/minのところを200〜300ml/min程度に増加させるように設定値切換手段8により切り換える。これにより、水素の燃焼により発生する水蒸気が希釈され、FID1の内部の相対湿度が低下するので結露が起こり難くなる。
その後、FID1の出力信号レベルを設定値切換手段8で判定して、通常設定値に戻すことは実施例1の場合と同様である。
As another example, the auxiliary combustion gas flow rate setting value may be increased during the provisional period after the ignition of the hydrogen flame 17 in the configuration of FIG. The set value switching means 8 switches the auxiliary combustion gas flow rate setting value so that, for example, the normal setting value of 100 ml / min is increased to about 200 to 300 ml / min. As a result, water vapor generated by the combustion of hydrogen is diluted and the relative humidity inside the FID 1 is lowered, so that condensation is unlikely to occur.
Thereafter, the output signal level of FID1 is determined by the set value switching means 8 and returned to the normal set value as in the case of the first embodiment.

さらに他の実施例として、図1の構成において点火に先立って設定値切換手段8からの信号cにより温度制御装置7の設定値を切り換えて、暫定期間中の恒温槽2の温度を通常設定値よりも高く設定しておくことも可能である。即ち、恒温槽2の温度の通常設定値は前述のように、例えば40〜60°Cのところを100〜150°Cとする。FID1の内部は排気口13を通して大気に連通しているので内部の気圧は1気圧であり、温度100°C以上であれば理論上結露は起こり得ない。この状態で水素炎17を点火し、その後、FID1の出力信号レベルを設定値切換手段8で判定して、恒温槽2の温度を通常設定値に戻すことは実施例1または2の場合と同様である。
この場合の温度設定値の変化を図2に点線で示す。
なお、恒温槽2の温度を常時100°C以上に設定しておくことも結露防止のためには効果的であるが、一方、電力消費の増大、或いは恒温槽2の近傍に配置される電子装置の熱防護対策等の問題が生じるので好ましくない。
As another embodiment, in the configuration of FIG. 1, the set value of the temperature control device 7 is switched by the signal c from the set value switching means 8 prior to ignition, and the temperature of the thermostatic chamber 2 during the temporary period is set to the normal set value. It is also possible to set a higher value. That is, as described above, the normal setting value of the temperature of the thermostat 2 is, for example, 40 to 60 ° C. and 100 to 150 ° C. Since the inside of FID1 communicates with the atmosphere through the exhaust port 13, the internal atmospheric pressure is 1 atm, and if the temperature is 100 ° C. or higher, dew condensation cannot occur theoretically. In this state, the hydrogen flame 17 is ignited, and then the output signal level of FID1 is determined by the set value switching means 8 to return the temperature of the thermostatic chamber 2 to the normal set value as in the case of the first or second embodiment. It is.
The change of the temperature set value in this case is shown by a dotted line in FIG.
It is effective to set the temperature of the thermostat 2 to 100 ° C. or more at all times to prevent dew condensation, but on the other hand, an increase in power consumption or an electron placed in the vicinity of the thermostat 2 This is not preferable because problems such as thermal protection measures for the device occur.

以上の実施例は、いずれも複数の条件設定値のうちいずれか1つだけを点火の前後の期間に変更するようにした例であるが、2つ以上の設定値を組み合わせて変更することでさらに効果を高めることも可能である。また、通常設定に戻すタイミングを決める方法として、上記は出力信号レベルで判定する例を挙げたが、予め設定したタイムプログラムによって切り換えるようにしてもよい。
なお、上記は試料ガス中の揮発性有機化合物をトータルに測定するTVOC測定装置について説明したが、前段に例えばクロマトグラフィ的な分離手段を設けて有機化合物を各成分に分離して測定するように構成した揮発性有機化合物測定装置に対しても本発明を適用することができる。
Each of the above embodiments is an example in which only one of a plurality of condition set values is changed to a period before and after ignition. However, by changing two or more set values in combination, It is also possible to enhance the effect. Further, as an example of determining the timing for returning to the normal setting, the above example has been described based on the output signal level. However, the timing may be switched by a preset time program.
In the above description, the TVOC measuring apparatus for measuring the total amount of volatile organic compounds in the sample gas has been described. However, for example, a chromatographic separation means is provided in the previous stage to separate and measure the organic compound into each component. The present invention can also be applied to the volatile organic compound measuring apparatus.

本発明は、例えば塗装ブースからの排気中に含まれる有機溶剤蒸気等の濃度を測定する揮発性有機化合物測定装置に利用できる。   The present invention can be used for a volatile organic compound measuring device that measures the concentration of organic solvent vapor or the like contained in, for example, exhaust from a painting booth.

本発明の一実施例を示す図である。It is a figure which shows one Example of this invention. 本発明の動作を説明する図である。It is a figure explaining operation | movement of this invention. 従来の構成を示す図である。It is a figure which shows the conventional structure.

符号の説明Explanation of symbols

1 FID
2 恒温槽
3 増幅器
4 ポンプ
5 流量制御装置
6 流量制御装置
7 温度制御装置
8 設定値切換手段
11 ノズル
12 コレクタ電極
13 排気口
14 試料ガス流路
15 水素ガス流路
16 助燃ガス流路
17 水素炎
1 FID
2 Thermostatic chamber 3 Amplifier 4 Pump 5 Flow rate control device 6 Flow rate control device 7 Temperature control device 8 Set value switching means 11 Nozzle 12 Collector electrode 13 Exhaust port 14 Sample gas flow path 15 Hydrogen gas flow path 16 Auxiliary gas flow path 17 Hydrogen flame

Claims (3)

水素ガスが助燃ガスの存在下で燃焼する水素炎中で試料ガス中の有機性炭素がイオン化することによって生じるイオン電流を測定する水素炎イオン化検出器と、前記水素ガス及び前記助燃ガスの流量を制御する流量制御装置と、前記水素炎イオン化検出器の温度を制御する温度制御装置とを備えて構成される揮発性有機化合物測定装置において、前記水素ガスの流量設定値、前記助燃ガスの流量設定値、及び前記水素炎イオン化検出器の温度設定値のうちいずれか1または複数の設定値を前記水素炎を点火する前後の暫定期間だけ通常測定時の設定値よりも大きい設定値に切り換える設定値切換手段を備えることを特徴とする揮発性有機化合物測定装置。 A hydrogen flame ionization detector that measures an ionic current generated by ionizing organic carbon in the sample gas in a hydrogen flame in which hydrogen gas burns in the presence of the auxiliary combustion gas, and a flow rate of the hydrogen gas and the auxiliary combustion gas. In the volatile organic compound measuring device configured to include a flow rate control device to be controlled and a temperature control device to control the temperature of the flame ionization detector, the flow rate setting value of the hydrogen gas and the flow rate setting of the auxiliary combustion gas A setting value for switching one or a plurality of setting values among the value and the temperature setting value of the hydrogen flame ionization detector to a setting value larger than the setting value at the time of normal measurement only for a provisional period before and after the ignition of the hydrogen flame A volatile organic compound measuring device comprising switching means. 水素炎点火前後の暫定期間の終了が前記水素炎イオン化検出器の出力信号に基づいて定められることを特徴とする請求項1に記載する揮発性有機化合物測定装置。 The volatile organic compound measuring apparatus according to claim 1, wherein the end of the provisional period before and after the ignition of the flame is determined based on an output signal of the flame ionization detector. 水素炎点火前後の暫定期間がタイムプログラムにより定められることを特徴とする請求項1に記載する揮発性有機化合物測定装置。 2. The volatile organic compound measuring apparatus according to claim 1, wherein a provisional period before and after the hydrogen flame ignition is determined by a time program.
JP2006043019A 2006-02-20 2006-02-20 Volatile organic compound measuring device Active JP4765657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006043019A JP4765657B2 (en) 2006-02-20 2006-02-20 Volatile organic compound measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006043019A JP4765657B2 (en) 2006-02-20 2006-02-20 Volatile organic compound measuring device

Publications (2)

Publication Number Publication Date
JP2007218873A true JP2007218873A (en) 2007-08-30
JP4765657B2 JP4765657B2 (en) 2011-09-07

Family

ID=38496318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006043019A Active JP4765657B2 (en) 2006-02-20 2006-02-20 Volatile organic compound measuring device

Country Status (1)

Country Link
JP (1) JP4765657B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738541A (en) * 2014-12-10 2016-07-06 中国石油天然气股份有限公司 A flame ionization detector, an ignition determining device and a determining method of the device
CN106018690A (en) * 2016-05-19 2016-10-12 上海勤煊信息科技有限公司 Movable air quality detecting and monitoring device for classrooms
CN107505423A (en) * 2017-07-19 2017-12-22 上海汉洁环境工程有限公司 The automatic heat discharge module of flame ionization ditector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161563U (en) * 1980-05-02 1981-12-01
JPS6267260U (en) * 1985-10-16 1987-04-27
JPH11108893A (en) * 1997-10-01 1999-04-23 Idemitsu Kosan Co Ltd Method and apparatus for microanalysis of gas
JPH11223619A (en) * 1998-02-07 1999-08-17 Horiba Ltd Hydrogen flame ionization detector
JP2001183342A (en) * 1999-12-28 2001-07-06 Nippon Soken Inc Hc analyzer
JP2003057221A (en) * 2001-08-13 2003-02-26 Showa Kankyo Engineering Kk Method and instrument of continuously analyzing exhaust gas from incinerator for hazardous air pollutant
JP2004028851A (en) * 2002-06-27 2004-01-29 Shimadzu Corp System for gas chromatograph analysis system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161563U (en) * 1980-05-02 1981-12-01
JPS6267260U (en) * 1985-10-16 1987-04-27
JPH11108893A (en) * 1997-10-01 1999-04-23 Idemitsu Kosan Co Ltd Method and apparatus for microanalysis of gas
JPH11223619A (en) * 1998-02-07 1999-08-17 Horiba Ltd Hydrogen flame ionization detector
JP2001183342A (en) * 1999-12-28 2001-07-06 Nippon Soken Inc Hc analyzer
JP2003057221A (en) * 2001-08-13 2003-02-26 Showa Kankyo Engineering Kk Method and instrument of continuously analyzing exhaust gas from incinerator for hazardous air pollutant
JP2004028851A (en) * 2002-06-27 2004-01-29 Shimadzu Corp System for gas chromatograph analysis system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738541A (en) * 2014-12-10 2016-07-06 中国石油天然气股份有限公司 A flame ionization detector, an ignition determining device and a determining method of the device
CN106018690A (en) * 2016-05-19 2016-10-12 上海勤煊信息科技有限公司 Movable air quality detecting and monitoring device for classrooms
CN106018690B (en) * 2016-05-19 2019-05-07 杭州绿宇中科检测技术有限公司 One kind is for teaching indoor mobile Detection of Air Quality monitoring device
CN107505423A (en) * 2017-07-19 2017-12-22 上海汉洁环境工程有限公司 The automatic heat discharge module of flame ionization ditector

Also Published As

Publication number Publication date
JP4765657B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
US8421470B2 (en) Discharge ionization current detector
US8829913B2 (en) Discharge ionization current detector
RU2482470C2 (en) Using 5-nitrovanillin as calibrant for calibrating drift time in ion mobility spectrometer
US10545118B2 (en) Dielectric barrier discharge ionization detector
JP4765657B2 (en) Volatile organic compound measuring device
CN110043919B (en) Improved method for automatic ignition of hydrogen flame ionization detector
JP2015526697A (en) Capacitive transimpedance amplifier with offset circuit
CN112534252B (en) Flame ionization detector and method for analyzing oxygen-containing measurement gas
US9322742B2 (en) Hydrogen flame ionization type exhaust gas analyzer
US9366656B2 (en) Analysis device provided with discharge ionization current detector
CN112424586A (en) Flame module for spectrometer
JPH10213509A (en) Pressure measuring device
US11942313B2 (en) Mass spectrometer and mass spectrometry method
Storey et al. Helium conservation by discontinuous introduction in the flowing atmospheric-pressure afterglow source for ambient desorption-ionization mass spectrometry
US11604165B2 (en) Discharge ionization detector
JP3582213B2 (en) Atmospheric pressure ionization mass spectrometer
WO2023089685A1 (en) Mass spectrometer and mass spectrometer control method
JPH09203724A (en) Hydrogen flame ionization sensor
US20240177983A1 (en) Mass spectrometer and method for controlling same
JP2000315474A (en) Mass spectrometer
RU2263898C2 (en) Method and device for atom-emission analysis
Pervukhin et al. Desorption/ionization of acrylamide in aqueous solutions in atmospheric pressure air using a microdischarge with vortex focusing of ions
Alimuddin et al. Use of a Multimode Ionization Source for Open Access LC-MS in a Pharmaceutical Chemistry Environment
CN116896006A (en) Anion generating device
SU1286989A1 (en) Flame-ionization detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R151 Written notification of patent or utility model registration

Ref document number: 4765657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3