WO2023089685A1 - Mass spectrometer and mass spectrometer control method - Google Patents

Mass spectrometer and mass spectrometer control method Download PDF

Info

Publication number
WO2023089685A1
WO2023089685A1 PCT/JP2021/042194 JP2021042194W WO2023089685A1 WO 2023089685 A1 WO2023089685 A1 WO 2023089685A1 JP 2021042194 W JP2021042194 W JP 2021042194W WO 2023089685 A1 WO2023089685 A1 WO 2023089685A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
mass spectrometer
supply unit
information
measurement
Prior art date
Application number
PCT/JP2021/042194
Other languages
French (fr)
Japanese (ja)
Inventor
康 照井
幹太郎 丸岡
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2021/042194 priority Critical patent/WO2023089685A1/en
Publication of WO2023089685A1 publication Critical patent/WO2023089685A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission

Definitions

  • the present invention relates to a mass spectrometer and a control method for the mass spectrometer.
  • a typical analytical device that analyzes liquid samples in mass spectrometry is a liquid chromatograph mass spectrometer. Qualitative and quantitative measurements are performed by ionizing the liquid sample sent out from the liquid chromatograph and introducing it into the mass spectrometer.
  • Typical ionization methods include the atmospheric pressure ionization method (hereinafter referred to as APCI method) (Non-Patent Document 1) and the electrospray ionization method (hereinafter referred to as ESI method) (Non-Patent Document 2).
  • the measurement sample is first atomized. Since the sample to be measured is continuously fed from the liquid chromatograph together with a solvent of several to 1000 [ ⁇ L/min], atomization is often carried out by airflow-assisted spray using nitrogen gas or the like. After that, the atomized sample is heated to be vaporized, and the vaporized sample is introduced into a corona discharge generated by a needle-shaped electrode and ionized.
  • the liquid sample is atomized by airflow-assisted spray, and a high voltage is applied to the atomizer to turn the mist into charged droplets.
  • a high voltage is applied to the measurement sample itself to atomize it into charged droplets.
  • the charged droplets are heated and dried to reduce the size of the charged droplets, and the excess charge due to the miniaturization of the charged droplets is detached from the droplets and ionized by Coulomb repulsion.
  • the APCI method is said to have high ionization efficiency and high sensitivity for measurement samples with low to medium polarity, and the ESI method for measurement samples with medium to high polarity. Therefore, an operator using a liquid chromatograph-mass spectrometer must select an ionization method in consideration of the polarity of the substance to be measured.
  • the ionization method used for liquid chromatograph mass spectrometer measurement is basically selected according to the polarity, molecular weight, molecular structure, etc. of the target substance. High ionization methods are often selected.
  • the ion source has a high-temperature part for drying the liquid sample, and it was difficult to replace the ion source for each target substance separated by the liquid chromatograph. Therefore, an operator of a liquid chromatograph-mass spectrometer used to collect and measure samples having ionization characteristics similar to those of a target substance when measuring actual samples.
  • ion sources equipped with both APCI and ESI ionization methods.
  • the target substances whose components are separated by the liquid chromatograph are branched and switched before entering the ion source, and the target substances, which are good at the APCI method and the ESI method, are ionized.
  • This method has problems such as a longer sample introduction distance to the ion source, which reduces the separation of the liquid chromatograph, and a decrease in sensitivity due to the limited ionization conditions compared to a single ion source. rice field.
  • the target substance is often measured by separating the components of the measurement sample with the liquid chromatograph.
  • a liquid chromatograph is used by mixing water with an organic solvent such as acetonitrile or methanol and separating the components while changing the mixing ratio. This mixture of water and organic solvent is called an eluent.
  • cluster ions When a mixture of water and an organic solvent is ionized, molecular ions called cluster ions, in which multiple ions are combined, may be generated in addition to their own ions.
  • Cluster ions include molecular ions in which multiple water molecules are bound together, and molecular ions in which water and organic solvent ions are bound together. detected.
  • APCI which is a typical conventional ionization method, introduces a vaporized measurement sample into corona discharge and ionizes it.
  • ESI a high voltage is applied to the atomizer or the liquid sample itself, and the liquid is ionized when atomized.
  • Both ionization methods ionize the target substance as well as the eluent. Therefore, the mass spectrometer simultaneously observes the signal derived from the target substance and the signal derived from the eluent. Therefore, when the target substance to be measured has a small molecular weight, the signal of the cluster ions overlaps with the signal from the target substance, which may reduce the sensitivity.
  • An object of the present invention is to provide a mass spectrometer capable of improving the measurement sensitivity of a liquid chromatograph-mass spectrometer compared to conventional methods, and a method of controlling the mass spectrometer.
  • the present invention includes a plurality of means for solving the above problems.
  • One example is a mass spectrometer that supplies a mixed gas to a charge supply unit and a heating mixing chamber based on measurement item information. and a controller for controlling the gas supply unit.
  • FIG. 1 is a diagram showing the overall configuration of a mass spectrometer according to an embodiment of the present invention
  • FIG. 1 is a diagram showing the overall configuration of the mass spectrometer of this embodiment.
  • a typical analysis device for analyzing liquid samples is a liquid chromatograph mass spectrometer (hereinafter referred to as mass spectrometer 1) as shown in FIG.
  • the sample measured by the mass spectrometer 1 is continuously sent to the atomizer 100 by the liquid chromatograph 300 at a speed of about several to 1000 [ ⁇ L/min].
  • the atomizer 100 atomizes the liquid sample sent from the liquid chromatograph 300 .
  • a typical atomizer is a gas-assisted spray, in which a high-speed gas is passed around a capillary tube in which a liquid sample flows, and the liquid sample and the high-speed gas are brought into contact with each other at the outlet of the capillary tube to atomize the liquid sample. Nitrogen gas and air are generally used as the high-speed gas.
  • ultrasonic atomizers such as those used in humidifiers, can be used.
  • An atomized fluid is introduced into the heating mixing chamber 110 in order to vaporize and ionize the measurement sample fluid (atomized fluid) atomized in the atomizer 100 .
  • the heated mixing chamber 110 itself is heated by a heater or the like, and heat transfer from the heated mixing chamber 110 promotes vaporization of the introduced atomized fluid.
  • a method of generating a high-frequency heating electric field in the heating mixing chamber 110 to heat the atomized fluid, or a method of heating with a light source that generates infrared rays can also be used.
  • the charge supply unit 120 generates seed ions from the seed ion gas for applying an electric charge to the measurement sample fluid (vaporized fluid) vaporized in the heating and mixing chamber 110 and supplies the generated seed ions to the heating and mixing chamber 110. .
  • the charge supply unit 120 generates seed ions by means of introducing a seed ion gas 122 during corona discharge by a needle electrode of APCI or by means of plasma discharge using the seed ion gas 122 .
  • the charge supply unit 120 has a positive pressure (higher pressure) than the heating mixing chamber 110 so that the vaporized fluid does not flow in, and a gas flow is generated from the charge supply unit 120 to the heating mixing chamber 110 .
  • the seed ion gas 122 supplied to the charge supply unit 120 is air, nitrogen, He, Ne, Ar, Xe, or a mixed gas thereof.
  • the measurement sample supplied from the atomizer 110 and vaporized in the heating and mixing chamber 110 and the seed ions supplied from the charge supply section 120 are mixed in the heating and mixing chamber 110 to ionize the measurement sample. Since the charge supply section 120 has a positive pressure from the heating and mixing chamber 110, the fluid derived from the measurement sample does not flow into the charge supply section 120, and contamination derived from the measurement sample can be prevented. Further, since the atomizer 100 has a function of only atomization and the charge supply section 120 has a function of only charge supply, measurement stability is improved.
  • the ionized measurement sample passes through a hole called the first pore 140, is introduced into the analysis unit 150, and is detected.
  • the heated mixing chamber 110 is in contact with the first pores 140 and reduces the temperature difference with the first pores 140 by heat transfer.
  • the first pore 140 serves as an interface separating the atmosphere and the vacuum.
  • a room in the analysis unit 150 having the first pore 140 (a vacuum chamber having the first pore 140) is connected to a vacuum pump 170, and the area and length of the first pore 140 and the capacity of the vacuum pump 170
  • the amount of gas introduced into the analysis unit 150 is determined by the exhaust speed. Therefore, the total amount of gas supplied from the atomizer 100 and the amount of gas supplied from the charge supply unit 120 is the sum of the gas supply amount of the measurement gas to the analysis unit 150 and the gas introduction amount to the analysis unit 150 by the vacuum pump 170. may differ.
  • Auxiliary gas 130 is supplied to the heating and mixing chamber in order to adjust the gas supply amount to the analysis unit 150 and the gas introduction amount to the analysis unit 150 of the measurement gas.
  • Auxiliary gas 130 is air, nitrogen, He, Ne, Ar, Xe, or a mixture thereof.
  • the flow rate of the auxiliary gas 130 can be determined from the difference between the sum of the liquid flow rate being introduced plus the flow rate of the seed ion gas 122 and the gas flow rate passing through the first pore 140, or else the first It can be determined based on the pressure of the vacuum chamber with pores 140 .
  • the pressure of the vacuum chamber having the first pore 140 is detected, for example, by a pressure gauge 160 provided in the vacuum chamber.
  • auxiliary gas 130 provides ionization that is less sensitive to system environmental conditions.
  • the measurement sample ionized by the ion source comprising the atomizer 100, the heating mixing chamber 110, and the charge supply section 120 is introduced into the mass spectrometer and measured by the detection section of the mass spectrometer.
  • the gas supply unit 500 supplies gas to the electric charge supply unit 120 and the heating mixing chamber 110, and switching of gas species and flow rate control are performed by the control unit 400.
  • the control unit 400 is a mechanism that controls the gas supply unit 500 to supply the mixed gas (seed ion gas 122 and auxiliary gas 130) to the charge supply unit 120 and the heating mixing chamber 110 based on the measurement item information 410.
  • the seed ion gas 122 and the auxiliary gas 130 consist of air, nitrogen, He, Ar, Xe, or a mixture thereof as described above.
  • the gas supply unit 500 includes a first flow control unit 510 that controls the gas flow rate of the seed ion gas 122 with a flow rate of 0, a second flow control unit 520 that controls the gas flow rate of the auxiliary gas 130 with a flow rate of 0, and the seed ion gas 122 .
  • a gas mixing unit 530 that mixes ion gas and composite gas as auxiliary gas, and a single gas control unit 540 that controls the flow rate of single gas such as air, nitrogen, He, Ar, Xe, etc. that is the basis of seed ion gas and auxiliary gas. etc.
  • a single gas control unit 540 that controls the flow rate of a single gas includes a plurality of different types of single gas supply sources 570, an electromagnetic valve 560 that turns on/off the gas flow, and a single gas flow control unit 550 that controls the flow rate. Configured.
  • this single gas control unit 540 One or more types are used. For example, when using Ar, nitrogen, or He gas, three systems are connected.
  • liquid chromatograph-mass spectrometers often separate the components of a measurement sample using a liquid chromatograph to measure the target substance.
  • measurement components are separated at the same time (timing) if they are the same substances under the same separation conditions. This time is called retention time. Therefore, a sample to be measured is introduced into the liquid chromatograph, and the target component is separated at a fixed retention time. Measurement is performed by changing the measurement conditions of the mass spectrometer (for example, mass to be observed and MSMS conditions) in accordance with the retention time for component separation.
  • the substance to be measured (target substance) is known in advance by the measurer. At least the mass to be measured is known, and often the molecular structure is also known.
  • the method of ionizing the target component using a seed ion gas (especially a rare gas) and electric discharge is called the Penning ionization method.
  • the Penning ionization method molecules are ionized through multiple reactions from metastable excited species of noble gases generated by electrical discharge.
  • the energy imparted to the measurement component can be adjusted by appropriately selecting the seed ion gas. be.
  • the metastable excited species generated from He gas has a high internal energy of 19.8 [eV], so it is thought that almost all molecules can be ionized.
  • Ar gas can selectively ionize molecules with an ionization energy of 11.7 [eV] or less.
  • the above-mentioned internal energy has a unique value for each gas type, can be changed by changing the gas type, and the measurement target substance is known, so the seed ion gas is selected and controlled according to the measurement target substance By doing so, the background signal derived from the solvent is reduced, and the target substance itself can be ionized.
  • the control unit 400 controls the gas supply unit 500 based on the molecular weight information.
  • an operator of a liquid chromatograph mass spectrometer inputs the molecular weight information of the target substance before measurement, mainly when performing quantitative analysis.
  • the control unit 400 controls the gas supply unit 500 to select ions to be measured according to the values input during measurement.
  • the relationship between molecular weight and ionization energy generally tends to be high on the low molecular weight side and low on the high molecular weight side. Become.
  • Reversed-phase chromatography is a method in which a highly polar solvent is passed through a low-polarity separation column to elute components with long carbon chains from target components with short carbon chains. It is generally assumed that components with short carbon chains are on the low molecular weight side and components with long carbon chains are on the high molecular weight side. As described above, the ionization energy generally tends to be high on the low molecular weight side and low on the high molecular weight side.
  • normal phase chromatography is also available as a separation method using liquid chromatography.
  • Normal-phase chromatography is a method in which a low-polarity solvent is passed through a high-polarity separation column to elute high-polarity components from low-polarity target components.
  • the magnitude of the polarity of the target component is also a factor that affects the measurement sensitivity in selecting the ionization method of the mass spectrometer.
  • target components with low polarity tend to be difficult to ionize, and thus tend to have high ionization energy, while components with high polarity tend to have low ionization energy.
  • the components are separated in order of molecular weight and polarity depending on the separation conditions used.
  • the ionization energy tends to change depending on the order of molecular weight and the degree of polarity.
  • the control unit 400 controls the gas supply unit 500 based on the separation method information.
  • the measurer selects the gas species of the seed ion gas and its flow rate based on the information on the separation method.
  • Helium gas has high internal energy and is considered to be the easiest to use from the viewpoint of ionization in the mass spectrometer 1 .
  • the control unit 400 controls the gas supply unit 500 based on the gas type information. At this time, the controller 400 switches the gas type during the measurement.
  • the seed ion gas is switched during measurement based on the target component and information on the separation method by liquid chromatography.
  • the gas supply unit 500 includes a plurality of different supply sources 570 and a gas mixing unit 530 that mixes gases supplied from the plurality of different supply sources 570 to produce a mixed gas. and a solenoid valve 560 that controls the composition of the mixed gas, and controls the gas supply unit 500 to supply the mixed gas to the charge supply unit 120 and the heating mixing chamber 110 based on the measurement item information 410.
  • a control unit 400 is provided.
  • a liquid chromatograph-mass spectrometer it is possible to reduce the effects of physical properties such as the polarity and molecular weight of the measurement target substance and achieve highly efficient ionization (high sensitivity).
  • the cluster ion signal derived from the eluent used for liquid chromatography can be reduced, and the background signal can be reduced. Therefore, it is possible to perform highly sensitive measurements compared to conventional mass spectrometers.
  • the measurement item information 410 is information on the molecular weight of the measurement target substance, and the control unit 400 controls the gas supply unit 500 based on the molecular weight information, so highly sensitive measurement is possible.
  • the measurement item information 410 is separation method information for a liquid chromatograph that separates the measurement target substance, and the control unit 400 controls the gas supply unit 500 based on the separation method information to ionize the target component itself. Suitable for high-efficiency ionization (high sensitivity).
  • the measurement item information 410 is information on the type of gas supplied from the gas supply unit 500, and the control unit 400 controls the gas supply unit 500 based on the gas type information, thereby reducing operating costs during measurement. can be achieved, and more efficient measurement becomes possible.
  • control unit 400 can perform more efficient measurement by switching the gas type during measurement.
  • Mass spectrometer 100 Atomizer 110: Heated mixing chamber 120: Charge supply unit 122: Seed ion gas 130: Auxiliary gas 140: First pore 150: Analysis unit 160: Pressure gauge 170: Vacuum pump 300: Liquid Chromatograph 400: Control unit 410: Measurement item information 500: Gas supply unit 510: First flow control unit 520: Second flow control unit 530: Gas mixing unit 540: Single gas control unit 550: Single gas flow control unit 560: Solenoid valve 570: supply source (gas source)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention is equipped with a control unit 400 for controlling a gas supply unit 500 which has a plurality of different supply sources 570, a gas mixing unit 530 for producing a gas mixture by mixing the gases supplied from the plurality of different supply sources 570, and an electromagnetic valve 560 for controlling the composition of the gas mixture. Therein, the gas supply unit 500 is controlled so as to supply the gas mixture to an electric charge supply unit 120 and to a heating/mixing chamber 110 on the basis of measurement item information. As a result, the present invention provides a mass spectrometer and a mass spectrometer control method which make it possible to improve the measurement sensitivity of a liquid chromatography mass spectrometer in comparison to the prior art.

Description

質量分析計、および質量分析計の制御方法Mass spectrometer and method of controlling mass spectrometer
 本発明は、質量分析計、および質量分析計の制御方法に関する。 The present invention relates to a mass spectrometer and a control method for the mass spectrometer.
 質量分析法において液体試料を分析する代表的な分析装置には、液体クロマトグラフ質量分析計がある。液体クロマトグラフから送出された液体試料をイオン化し質量分析計に導入することで定性、定量測定を行う。代表的なイオン化法には大気圧イオン化法(以下APCI法)(非特許文献1)やエレクトロスプレーイオン化法(以下ESI法)(非特許文献2)がある。 A typical analytical device that analyzes liquid samples in mass spectrometry is a liquid chromatograph mass spectrometer. Qualitative and quantitative measurements are performed by ionizing the liquid sample sent out from the liquid chromatograph and introducing it into the mass spectrometer. Typical ionization methods include the atmospheric pressure ionization method (hereinafter referred to as APCI method) (Non-Patent Document 1) and the electrospray ionization method (hereinafter referred to as ESI method) (Non-Patent Document 2).
 APCI法では、初めに測定試料を霧化する。測定試料は数~1000[μL/min]程度の溶媒とともに液体クロマトグラフから連続的に送液されるため、霧化には窒素ガス等を用いた気流支援によるスプレーを用いることが多い。その後、霧化試料を加熱することで気化し、気化した試料を針形状の電極で生成するコロナ放電中に導入しイオン化する。 In the APCI method, the measurement sample is first atomized. Since the sample to be measured is continuously fed from the liquid chromatograph together with a solvent of several to 1000 [μL/min], atomization is often carried out by airflow-assisted spray using nitrogen gas or the like. After that, the atomized sample is heated to be vaporized, and the vaporized sample is introduced into a corona discharge generated by a needle-shaped electrode and ionized.
 ESI法では、APCI法と同様に液体試料を気流支援によるスプレーによって霧化し、霧化器に高電圧を印加、霧を帯電液滴とする。もしくは測定試料自身に高電圧を印加し霧化、帯電液滴とする。帯電液滴を加熱乾燥させ帯電液滴を小型化、帯電液滴の小型化により過剰となった電荷がクーロン斥力によって、イオンが液滴から脱離しイオン化する。 In the ESI method, as in the APCI method, the liquid sample is atomized by airflow-assisted spray, and a high voltage is applied to the atomizer to turn the mist into charged droplets. Alternatively, a high voltage is applied to the measurement sample itself to atomize it into charged droplets. The charged droplets are heated and dried to reduce the size of the charged droplets, and the excess charge due to the miniaturization of the charged droplets is detached from the droplets and ionized by Coulomb repulsion.
 一般的にAPCI法は極性が低極性から中極性、ESI法では極性が中極性から高極性の測定試料に対してイオン化効率が高く、感度の良い測定が可能と言われている。そのため液体クロマトグラフ質量分析計を用いる測定者は、測定目的物質の極性を考慮してイオン化法の選択をする必要がある。 In general, the APCI method is said to have high ionization efficiency and high sensitivity for measurement samples with low to medium polarity, and the ESI method for measurement samples with medium to high polarity. Therefore, an operator using a liquid chromatograph-mass spectrometer must select an ionization method in consideration of the polarity of the substance to be measured.
 液体クロマトグラフ質量分析計の測定に用いるイオン化法は目的物質の極性や分子量、分子構造等により選択することが基本であるものの、実際はAPCI法やESI法で実際に測定した後で、測定感度の高いイオン化法を選択することが多い。 The ionization method used for liquid chromatograph mass spectrometer measurement is basically selected according to the polarity, molecular weight, molecular structure, etc. of the target substance. High ionization methods are often selected.
 イオン源には液体試料を乾燥されるための高温部があり、液体クロマトグラフで分離した目的物質ごとにイオン源を交換することは難しかった。そのため、液体クロマトグラフ質量分析計の測定者は、実試料の測定を行う際に目的物質のイオン化特性の近い試料を纏め測定を行っていた。  The ion source has a high-temperature part for drying the liquid sample, and it was difficult to replace the ion source for each target substance separated by the liquid chromatograph. Therefore, an operator of a liquid chromatograph-mass spectrometer used to collect and measure samples having ionization characteristics similar to those of a target substance when measuring actual samples.
 このような課題を解決するために、APCI法とESI法との両方のイオン化法を搭載しているイオン源がある。液体クロマトグラフにて成分分離された目的物質を、イオン源に入る前に分岐、切り替えし、APCI法、ESI法のそれぞれが得意とする目的物質をイオン化する。 In order to solve such problems, there are ion sources equipped with both APCI and ESI ionization methods. The target substances whose components are separated by the liquid chromatograph are branched and switched before entering the ion source, and the target substances, which are good at the APCI method and the ESI method, are ionized.
 この手法はイオン源までの試料導入距離が長くなり、液体クロマトグラフの分離が低下することや、単体のイオン源と比較するとイオン化条件が制限されることから、感度が低下するなどの課題があった。 This method has problems such as a longer sample introduction distance to the ion source, which reduces the separation of the liquid chromatograph, and a decrease in sensitivity due to the limited ionization conditions compared to a single ion source. rice field.
 ここで、液体クロマトグラフ質量分析計では、測定試料を液体クロマトグラフで成分分離し目的物質の測定を行うことが多い。液体クロマトグラフの使用法には、水とアセトニトリル、メタノール等の有機溶媒を混合し、混合比を変えながら成分分離をする方法がある。この水と有機溶媒の混合液を溶離液と呼ぶ。 Here, in the liquid chromatograph mass spectrometer, the target substance is often measured by separating the components of the measurement sample with the liquid chromatograph. A liquid chromatograph is used by mixing water with an organic solvent such as acetonitrile or methanol and separating the components while changing the mixing ratio. This mixture of water and organic solvent is called an eluent.
 しかし、目的物質が変わると、溶離液に使用する有機溶媒や混合比が変わる。そのため、質量分析計に導入される液体の組成は様々であり、一意に決定することができない、との問題がある。 However, when the target substance changes, the organic solvent used for the eluent and the mixing ratio also change. Therefore, there is a problem that the composition of the liquid introduced into the mass spectrometer varies and cannot be uniquely determined.
 水と有機溶媒の混合物をイオン化すると、自分自身のイオン以外に、複数のイオンが結合したクラスターイオンと呼ばれる分子イオンが発生する場合がある。クラスターイオンには複数の水分子が結合した分子イオンや、水と有機溶媒イオンが結合した分子イオンなどがあり、クラスターイオンを質量分析計で測定すると、低分子量域に複雑なバックグラウンドとして信号が検出される。 When a mixture of water and an organic solvent is ionized, molecular ions called cluster ions, in which multiple ions are combined, may be generated in addition to their own ions. Cluster ions include molecular ions in which multiple water molecules are bound together, and molecular ions in which water and organic solvent ions are bound together. detected.
 従来法の代表的なイオン化法であるAPCIは、気化した測定試料をコロナ放電中に導入しイオン化する。また、ESIは霧化器もしくは液体試料自身に高電圧を印加して、液体の霧化時にイオン化する。どちらのイオン化法も目的物質とともに溶離液もイオン化している。そのため、質量分析計では目的物質由来の信号と溶離液由来の信号とが同時に観測される。従って、測定したい目的物質の分子量が小さい場合、クラスターイオンの信号と目的物質からの信号とが重なることで感度が低下する場合があった。 APCI, which is a typical conventional ionization method, introduces a vaporized measurement sample into corona discharge and ionizes it. Also, in ESI, a high voltage is applied to the atomizer or the liquid sample itself, and the liquid is ionized when atomized. Both ionization methods ionize the target substance as well as the eluent. Therefore, the mass spectrometer simultaneously observes the signal derived from the target substance and the signal derived from the eluent. Therefore, when the target substance to be measured has a small molecular weight, the signal of the cluster ions overlaps with the signal from the target substance, which may reduce the sensitivity.
 本発明の目的は、液体クロマトグラフ質量分析計の測定感度を従来に比べて向上させることが可能な質量分析計、および質量分析計の制御方法を提供することにある。 An object of the present invention is to provide a mass spectrometer capable of improving the measurement sensitivity of a liquid chromatograph-mass spectrometer compared to conventional methods, and a method of controlling the mass spectrometer.
 本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、質量分析計において、測定項目情報に基づいて、電荷供給部と加熱混合チャンバとに混合ガスを供給するようにガス供給部を制御する制御部を備えることを特徴とする。 The present invention includes a plurality of means for solving the above problems. One example is a mass spectrometer that supplies a mixed gas to a charge supply unit and a heating mixing chamber based on measurement item information. and a controller for controlling the gas supply unit.
 本発明によれば、液体クロマトグラフ質量分析計の測定感度を従来に比べて向上させることができる。上記した以外の課題、構成および効果は、以下の実施例の説明により明らかにされる。 According to the present invention, it is possible to improve the measurement sensitivity of a liquid chromatograph mass spectrometer compared to conventional methods. Problems, configurations and effects other than those described above will be clarified by the following description of the embodiments.
本発明の実施例の質量分析計の全体構成を示す図。1 is a diagram showing the overall configuration of a mass spectrometer according to an embodiment of the present invention; FIG.
 本発明の質量分析計、および質量分析計の制御方法の実施例について図1を用いて説明する。 An embodiment of the mass spectrometer and the control method of the mass spectrometer of the present invention will be described with reference to FIG.
 最初に、質量分析計の全体構成について図1を用いて説明する。図1は本実施例の質量分析計の全体構成を示す図である。 First, the overall configuration of the mass spectrometer will be explained using FIG. FIG. 1 is a diagram showing the overall configuration of the mass spectrometer of this embodiment.
 液体試料を分析する代表的な分析装置には、図1に示すような液体クロマトグラフ質量分析計(以下、質量分析計1と記載)がある。 A typical analysis device for analyzing liquid samples is a liquid chromatograph mass spectrometer (hereinafter referred to as mass spectrometer 1) as shown in FIG.
 質量分析計1での測定試料は、液体クロマトグラフ300によって約数~1000[μL/min]の速さで連続して霧化器100に送液される。 The sample measured by the mass spectrometer 1 is continuously sent to the atomizer 100 by the liquid chromatograph 300 at a speed of about several to 1000 [μL/min].
 霧化器100は、液体クロマトグラフ300から送液された液体試料を霧化する。代表的な霧化器として、液体試料の流れる細管の周囲に高速ガスを流し、細管の出口で液体試料と高速ガスを接触させることで霧化する気体支援によるスプレーがある。高速ガスとしては、一般的に窒素ガスや空気が用いられる。気体支援によるスプレーに換えて、加湿器に用いられているような超音波霧化器を用いることができる。 The atomizer 100 atomizes the liquid sample sent from the liquid chromatograph 300 . A typical atomizer is a gas-assisted spray, in which a high-speed gas is passed around a capillary tube in which a liquid sample flows, and the liquid sample and the high-speed gas are brought into contact with each other at the outlet of the capillary tube to atomize the liquid sample. Nitrogen gas and air are generally used as the high-speed gas. As an alternative to gas-assisted spraying, ultrasonic atomizers, such as those used in humidifiers, can be used.
 加熱混合チャンバ110は、霧化器100において霧化された測定試料流体(霧化流体)を気化、イオン化するために、霧化流体が導入される。加熱混合チャンバ110は、それ自体がヒータ等により加熱されており、導入された霧化流体が加熱混合チャンバ110からの伝熱によって気化が促進される。その他の加熱方法としては、加熱混合チャンバ110内に高周波加熱の電場を生成して霧化流体を加熱する方法や、赤外線を発生する光源により加熱する方法を用いることもできる。 An atomized fluid is introduced into the heating mixing chamber 110 in order to vaporize and ionize the measurement sample fluid (atomized fluid) atomized in the atomizer 100 . The heated mixing chamber 110 itself is heated by a heater or the like, and heat transfer from the heated mixing chamber 110 promotes vaporization of the introduced atomized fluid. As other heating methods, a method of generating a high-frequency heating electric field in the heating mixing chamber 110 to heat the atomized fluid, or a method of heating with a light source that generates infrared rays can also be used.
 電荷供給部120は、加熱混合チャンバ110内で気化した測定試料流体(気化流体)に電荷を印加するための種イオンを種イオンガスから生成し、生成した種イオンを加熱混合チャンバ110に供給する。電荷供給部120は、APCIの針電極によるコロナ放電中に種イオンガス122を導入する手段や、種イオンガス122を用いたプラズマ放電による手段により、種イオンを生成する。 The charge supply unit 120 generates seed ions from the seed ion gas for applying an electric charge to the measurement sample fluid (vaporized fluid) vaporized in the heating and mixing chamber 110 and supplies the generated seed ions to the heating and mixing chamber 110. . The charge supply unit 120 generates seed ions by means of introducing a seed ion gas 122 during corona discharge by a needle electrode of APCI or by means of plasma discharge using the seed ion gas 122 .
 また、電荷供給部120は、気化流体が流入しないように加熱混合チャンバ110より陽圧(高圧)とし、電荷供給部120から加熱混合チャンバ110へのガス流れを発生させる。 In addition, the charge supply unit 120 has a positive pressure (higher pressure) than the heating mixing chamber 110 so that the vaporized fluid does not flow in, and a gas flow is generated from the charge supply unit 120 to the heating mixing chamber 110 .
 電荷供給部120に供給する種イオンガス122は、空気,窒素,He,Ne,Ar,Xe、もしくはそれらの混合ガスである。 The seed ion gas 122 supplied to the charge supply unit 120 is air, nitrogen, He, Ne, Ar, Xe, or a mixed gas thereof.
 霧化器110から供給され、加熱混合チャンバ110内で気化した測定試料と電荷供給部120から供給された種イオンとが加熱混合チャンバ110内で混合されることで、測定試料がイオン化される。電荷供給部120は加熱混合チャンバ110より陽圧となっているため、測定試料由来の流体が電荷供給部120に流入することが無く、測定試料由来の汚染を防ぐことができる。また、霧化器100は霧化のみの機能となり、電荷供給部120は電荷供給のみの機能となることから、測定安定性が向上する。 The measurement sample supplied from the atomizer 110 and vaporized in the heating and mixing chamber 110 and the seed ions supplied from the charge supply section 120 are mixed in the heating and mixing chamber 110 to ionize the measurement sample. Since the charge supply section 120 has a positive pressure from the heating and mixing chamber 110, the fluid derived from the measurement sample does not flow into the charge supply section 120, and contamination derived from the measurement sample can be prevented. Further, since the atomizer 100 has a function of only atomization and the charge supply section 120 has a function of only charge supply, measurement stability is improved.
 イオン化した測定試料は第1細孔140と呼ばれる孔を通り、分析部150内に導入され、検出される。加熱混合チャンバ110は第1細孔140と接しており、伝熱により第1細孔140との温度差を低減する。 The ionized measurement sample passes through a hole called the first pore 140, is introduced into the analysis unit 150, and is detected. The heated mixing chamber 110 is in contact with the first pores 140 and reduces the temperature difference with the first pores 140 by heat transfer.
 分析部150では第1細孔140が大気と真空とを隔てるインターフェースとなっている。第1細孔140のある分析部150内の部屋(第1細孔140を有する真空室)は、真空ポンプ170に接続されており、第1細孔140の面積、長さ、真空ポンプ170の排気速度とによって、分析部150へのガス導入量が決定する。そのため、霧化器100からのガス供給量と電荷供給部120からのガス供給量との総和による測定気体の分析部150へのガス供給量と真空ポンプ170による分析部150へのガス導入量とが異なる場合がある。 In the analysis unit 150, the first pore 140 serves as an interface separating the atmosphere and the vacuum. A room in the analysis unit 150 having the first pore 140 (a vacuum chamber having the first pore 140) is connected to a vacuum pump 170, and the area and length of the first pore 140 and the capacity of the vacuum pump 170 The amount of gas introduced into the analysis unit 150 is determined by the exhaust speed. Therefore, the total amount of gas supplied from the atomizer 100 and the amount of gas supplied from the charge supply unit 120 is the sum of the gas supply amount of the measurement gas to the analysis unit 150 and the gas introduction amount to the analysis unit 150 by the vacuum pump 170. may differ.
 測定気体の分析部150へのガス供給量と分析部150へのガス導入量とを調整するために、補助ガス130を加熱混合チャンバに供給する。補助ガス130は空気,窒素,He,Ne,Ar,Xeもしくはそれらの混合ガスである。補助ガス130の流量は、導入している液体流量と種イオンガス122の流量との和と、第1細孔140を通過するガス流量との差分から決定することができ、他には第1細孔140を有する真空室の圧力に基づいて決定することができる。 Auxiliary gas 130 is supplied to the heating and mixing chamber in order to adjust the gas supply amount to the analysis unit 150 and the gas introduction amount to the analysis unit 150 of the measurement gas. Auxiliary gas 130 is air, nitrogen, He, Ne, Ar, Xe, or a mixture thereof. The flow rate of the auxiliary gas 130 can be determined from the difference between the sum of the liquid flow rate being introduced plus the flow rate of the seed ion gas 122 and the gas flow rate passing through the first pore 140, or else the first It can be determined based on the pressure of the vacuum chamber with pores 140 .
 第1細孔140を有する真空室の圧力は、例えばその真空室に設けた圧力計160にて検出する。補助ガス130を供給することにより、装置環境条件に影響されにくいイオン化が実現する。 The pressure of the vacuum chamber having the first pore 140 is detected, for example, by a pressure gauge 160 provided in the vacuum chamber. The provision of auxiliary gas 130 provides ionization that is less sensitive to system environmental conditions.
 このように、霧化器100、加熱混合チャンバ110、電荷供給部120を備えるイオン源によってイオン化した測定試料を質量分析計に導入し、質量分析計の検出部によって測定する。 Thus, the measurement sample ionized by the ion source comprising the atomizer 100, the heating mixing chamber 110, and the charge supply section 120 is introduced into the mass spectrometer and measured by the detection section of the mass spectrometer.
 ガス供給部500は、電荷供給部120、および加熱混合チャンバ110にガスを供給する部分であり、ガス種の切り替えや流量制御は制御部400によって行われる。 The gas supply unit 500 supplies gas to the electric charge supply unit 120 and the heating mixing chamber 110, and switching of gas species and flow rate control are performed by the control unit 400.
 制御部400は、測定項目情報410に基づいて、電荷供給部120と加熱混合チャンバ110とに混合ガス(種イオンガス122、補助ガス130)を供給するようにガス供給部500を制御する機構であり、単一の制御装置であってもよいし、各々担当する機構の異なる複数の制御部によって構成されてもよい。 The control unit 400 is a mechanism that controls the gas supply unit 500 to supply the mixed gas (seed ion gas 122 and auxiliary gas 130) to the charge supply unit 120 and the heating mixing chamber 110 based on the measurement item information 410. There may be a single control device, or a plurality of control units each having a different mechanism in charge.
 種イオンガス122および補助ガス130は、上述の、空気,窒素,He,Ar,Xeもしくはそれらの混合ガスからなる。 The seed ion gas 122 and the auxiliary gas 130 consist of air, nitrogen, He, Ar, Xe, or a mixture thereof as described above.
 ガス供給部500は、流量0を含み、種イオンガス122のガス流量を制御する第1流量制御部510、流量0を含み、補助ガス130のガス流量を制御する第2流量制御部520、種イオンガスや補助ガスとする複合ガスを混合するガス混合部530、種イオンガスや補助ガスの基となる空気,窒素,He,Ar,Xe等の単体ガスの流量制御を行う単体ガス制御部540等により構成される。 The gas supply unit 500 includes a first flow control unit 510 that controls the gas flow rate of the seed ion gas 122 with a flow rate of 0, a second flow control unit 520 that controls the gas flow rate of the auxiliary gas 130 with a flow rate of 0, and the seed ion gas 122 . A gas mixing unit 530 that mixes ion gas and composite gas as auxiliary gas, and a single gas control unit 540 that controls the flow rate of single gas such as air, nitrogen, He, Ar, Xe, etc. that is the basis of seed ion gas and auxiliary gas. etc.
 単体ガスの流量制御を行う単体ガス制御部540は、各々、複数の異なる種類の単体ガスの供給源570、ガス流れをOn/Offする電磁弁560、流量制御を行う単体ガス流量制御部550から構成される。 A single gas control unit 540 that controls the flow rate of a single gas includes a plurality of different types of single gas supply sources 570, an electromagnetic valve 560 that turns on/off the gas flow, and a single gas flow control unit 550 that controls the flow rate. Configured.
 この単体ガス制御部540は、1種類以上使用し、例えばAr,窒素、Heガスを使用する場合は、3系統接続する。 One or more types of this single gas control unit 540 are used. For example, when using Ar, nitrogen, or He gas, three systems are connected.
 次いで、上述の種イオンガスや補助ガスの流量制御の詳細について説明する。 Next, the details of the flow rate control of the above seed ion gas and auxiliary gas will be described.
 上述のように、液体クロマトグラフ質量分析計では、測定試料を液体クロマトグラフで成分分離し、目的物質の測定を行うことが多い。液体クロマトグラフによる成分分離では、同一分離条件、同じ物質であれば同じ時間(タイミング)に測定成分は分離される。この時間を保持時間と呼ぶ。故に液体クロマトグラフに測定試料を導入し、目的成分は決まった保持時間に分離されることになる。その成分分離される保持時間に合わせ、質量分析装置の測定条件(例えば観測する質量やMSMS条件)を変えて測定を行う。 As described above, liquid chromatograph-mass spectrometers often separate the components of a measurement sample using a liquid chromatograph to measure the target substance. In component separation by liquid chromatography, measurement components are separated at the same time (timing) if they are the same substances under the same separation conditions. This time is called retention time. Therefore, a sample to be measured is introduced into the liquid chromatograph, and the target component is separated at a fixed retention time. Measurement is performed by changing the measurement conditions of the mass spectrometer (for example, mass to be observed and MSMS conditions) in accordance with the retention time for component separation.
 このため、測定する物質(目的物質)は、測定者が事前に把握している。少なくとも、測定する質量が既知であり、さらに分子構造も既知であることも多い。 For this reason, the substance to be measured (target substance) is known in advance by the measurer. At least the mass to be measured is known, and often the molecular structure is also known.
 ここで、種イオンガス(特に希ガス)と放電を用いて目的成分をイオン化させる方法はペニングイオン化法と呼ばれている。 Here, the method of ionizing the target component using a seed ion gas (especially a rare gas) and electric discharge is called the Penning ionization method.
 ペニングイオン化法では、放電により生じた希ガスの準安定励起種から複数の反応を経て、分子のイオン化に至る。質量分析計1でのイオン化において、ペニングイオン化の重要点である種イオンガス種は、おのおの異なる内部エネルギーをもつため、種イオンガスを適宜選択することで,測定成分に与えるエネルギーを調節できる点にある。 In the Penning ionization method, molecules are ionized through multiple reactions from metastable excited species of noble gases generated by electrical discharge. In the ionization in the mass spectrometer 1, since the seed ion gas species, which is an important point in Penning ionization, have different internal energies, the energy imparted to the measurement component can be adjusted by appropriately selecting the seed ion gas. be.
 例えば,Heガスから生成される準安定励起種は、その内部エネルギーが19.8[eV]と高いため、ほぼあらゆる分子がイオン化できると考えられる。またArガスならイオン化エネルギーが11.7[eV]以下の分子を選択的にイオン化できる。 For example, the metastable excited species generated from He gas has a high internal energy of 19.8 [eV], so it is thought that almost all molecules can be ionized. Ar gas can selectively ionize molecules with an ionization energy of 11.7 [eV] or less.
 上述の内部エネルギーは各ガス種により固有の値を持ち、ガス種の変更により変更可能、かつ測定目的物質も既知での測定であることから、測定目的物質により種イオンガスを選択制御、流量制御することで、溶媒由来のバックグラウンド信号を低下させ、目的物質自身のイオン化が可能となる。 The above-mentioned internal energy has a unique value for each gas type, can be changed by changing the gas type, and the measurement target substance is known, so the seed ion gas is selected and controlled according to the measurement target substance By doing so, the background signal derived from the solvent is reduced, and the target substance itself can be ionized.
 そこで、測定項目情報410として、測定目的物質の分子量の情報を用いることとし、制御部400は、分子量情報に基づいてガス供給部500を制御するものとする。 Therefore, information on the molecular weight of the measurement target substance is used as the measurement item information 410, and the control unit 400 controls the gas supply unit 500 based on the molecular weight information.
 例えば、液体クロマトグラフ質量分析計の測定者は、主に定量分析を行う際、測定前に目的物質の分子量情報を入力する。制御部400は測定時に入力された値に従って、測定するイオンを選択するようにガス供給部500を制御する。分子量とイオン化のエネルギーの関係は、一般的に低分子量側が高く、高分子量側が低い傾向にあるため、測定時のイオン選択時に種イオンガスも目的物質によって切り替えることで、高感度な測定が可能となる。 For example, an operator of a liquid chromatograph mass spectrometer inputs the molecular weight information of the target substance before measurement, mainly when performing quantitative analysis. The control unit 400 controls the gas supply unit 500 to select ions to be measured according to the values input during measurement. The relationship between molecular weight and ionization energy generally tends to be high on the low molecular weight side and low on the high molecular weight side. Become.
 また、例えば液体クロマトグラフによる分離方法として、逆相クロマトグラフィーがある。逆相クロマトグラフィーは、極性の低い分離カラムに、極性の高い溶媒を流し、炭素鎖の短い目的成分から炭素鎖の長い成分を溶出させる方法である。一般的に炭素鎖の短い成分は低分子量側、炭素鎖の長い成分は高分子量側となると想定される。上述のようにイオン化エネルギーは、一般的に低分子量側が高く、高分子量側が低い傾向にある。 Also, for example, there is reversed-phase chromatography as a separation method using a liquid chromatograph. Reversed-phase chromatography is a method in which a highly polar solvent is passed through a low-polarity separation column to elute components with long carbon chains from target components with short carbon chains. It is generally assumed that components with short carbon chains are on the low molecular weight side and components with long carbon chains are on the high molecular weight side. As described above, the ionization energy generally tends to be high on the low molecular weight side and low on the high molecular weight side.
 更に、液体クロマトグラフによる分離方法として、順相クロマトグラフィーもある。順相クロマトグラフィーは、極性の高い分離カラムに、極性の低い溶媒を流し、極性の低い目的成分から極性の高い成分を溶出させる方法である。目的成分の極性の大小も、質量分析計のイオン化法の選択において、測定感度に影響を与える因子である。一般的に極性が小さい目的成分はイオン化しにくいため、イオン化エネルギーが大きくなり、極性の大きな成分は、イオン化エネルギーが小さくなる傾向にある。 Furthermore, normal phase chromatography is also available as a separation method using liquid chromatography. Normal-phase chromatography is a method in which a low-polarity solvent is passed through a high-polarity separation column to elute high-polarity components from low-polarity target components. The magnitude of the polarity of the target component is also a factor that affects the measurement sensitivity in selecting the ionization method of the mass spectrometer. In general, target components with low polarity tend to be difficult to ionize, and thus tend to have high ionization energy, while components with high polarity tend to have low ionization energy.
 上述の、液体クロマトグラフによる分離では、使用する分離条件により、分子量順や極性の大きさ順に成分が分離される。質量分析のイオン化では分子量順、極性の大きさにより、イオン化エネルギーが変化する傾向にある。 In the liquid chromatographic separation described above, the components are separated in order of molecular weight and polarity depending on the separation conditions used. In the ionization of mass spectrometry, the ionization energy tends to change depending on the order of molecular weight and the degree of polarity.
 そこで、測定項目情報410として、測定目的物質を分離する液体クロマトグラフの分離方法情報を用いることとし、制御部400は、分離方法情報に基づいてガス供給部500を制御するものとする。 Therefore, as the measurement item information 410, the separation method information of the liquid chromatograph that separates the measurement target substance is used, and the control unit 400 controls the gas supply unit 500 based on the separation method information.
 例えば、測定者が液体クロマトグラフによる分離方法を決定することで、分離方法の情報を元に、種イオンガスのガス種やその流量を選択する。ヘリウムガスは内部エネルギーが高く、質量分析計1でのイオン化の観点では最も使いやすいと考えられる。一方で資源としては有限であり、かつ高価という課題がある。 For example, by determining the separation method by liquid chromatography, the measurer selects the gas species of the seed ion gas and its flow rate based on the information on the separation method. Helium gas has high internal energy and is considered to be the easiest to use from the viewpoint of ionization in the mass spectrometer 1 . On the other hand, there is a problem that the resource is limited and expensive.
 そこで、測定項目情報410として、ガス供給部500から供給するガス種の情報を用いることとし、制御部400は、ガス種情報に基づいてガス供給部500を制御するものとする。この際、制御部400は、測定中にガス種を切り替えるものとする。 Therefore, information on the type of gas supplied from the gas supply unit 500 is used as the measurement item information 410, and the control unit 400 controls the gas supply unit 500 based on the gas type information. At this time, the controller 400 switches the gas type during the measurement.
 例えば、空気の分離から生成可能な窒素を用い、目的成分や液体クロマトグラフによる分離方法情報を元に、種イオンガスを測定中に切り替える。 For example, using nitrogen that can be generated from air separation, the seed ion gas is switched during measurement based on the target component and information on the separation method by liquid chromatography.
 次に、本実施例の効果について説明する。 Next, the effects of this embodiment will be described.
 上述した本実施例の質量分析計1は、ガス供給部500は、複数の異なる供給源570と、複数の異なる供給源570から供給されたガスを混合して混合ガスを作製するガス混合部530と、混合ガスの組成を制御する電磁弁560と、を有し、測定項目情報410に基づいて、電荷供給部120と加熱混合チャンバ110とに混合ガスを供給するようにガス供給部500を制御する制御部400を備える。 In the mass spectrometer 1 of the present embodiment described above, the gas supply unit 500 includes a plurality of different supply sources 570 and a gas mixing unit 530 that mixes gases supplied from the plurality of different supply sources 570 to produce a mixed gas. and a solenoid valve 560 that controls the composition of the mixed gas, and controls the gas supply unit 500 to supply the mixed gas to the charge supply unit 120 and the heating mixing chamber 110 based on the measurement item information 410. A control unit 400 is provided.
 よって、液体クロマトグラフ質量分析計において、測定目的物質の極性や分子量等の物性に由来する影響を低減し、高効率なイオン化(高感度)を実現することができる。また、液体クロマトグラフに使用する溶離液由来のクラスターイオン信号を低減し、バックグラウンド信号を低減することができる。従って、従来の質量分析計に比べて高感度な測定を実施することが可能となる。 Therefore, in a liquid chromatograph-mass spectrometer, it is possible to reduce the effects of physical properties such as the polarity and molecular weight of the measurement target substance and achieve highly efficient ionization (high sensitivity). In addition, the cluster ion signal derived from the eluent used for liquid chromatography can be reduced, and the background signal can be reduced. Therefore, it is possible to perform highly sensitive measurements compared to conventional mass spectrometers.
 また、測定項目情報410は、測定目的物質の分子量の情報であり、制御部400は、分子量情報に基づいてガス供給部500を制御するため、高感度な測定が可能となる。 Also, the measurement item information 410 is information on the molecular weight of the measurement target substance, and the control unit 400 controls the gas supply unit 500 based on the molecular weight information, so highly sensitive measurement is possible.
 更に、測定項目情報410は、測定目的物質を分離する液体クロマトグラフの分離方法情報であり、制御部400は、分離方法情報に基づいてガス供給部500を制御することで、目的成分自身のイオン化に適する、高効率なイオン化(高感度)が可能となる。 Furthermore, the measurement item information 410 is separation method information for a liquid chromatograph that separates the measurement target substance, and the control unit 400 controls the gas supply unit 500 based on the separation method information to ionize the target component itself. Suitable for high-efficiency ionization (high sensitivity).
 また、測定項目情報410は、ガス供給部500から供給するガス種の情報であり、制御部400は、ガス種情報に基づいてガス供給部500を制御することにより、測定時の運用費用の低減を図ることができるようになり、より効率的な測定が可能となる。 The measurement item information 410 is information on the type of gas supplied from the gas supply unit 500, and the control unit 400 controls the gas supply unit 500 based on the gas type information, thereby reducing operating costs during measurement. can be achieved, and more efficient measurement becomes possible.
 更に、制御部400は、測定中にガス種を切り替えることで、さらに効率的な測定が可能となる。 Furthermore, the control unit 400 can perform more efficient measurement by switching the gas type during measurement.
 <その他> 
 なお、本発明は上記の実施例に限られず、種々の変形、応用が可能なものである。上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。
<Others>
The present invention is not limited to the above embodiments, and various modifications and applications are possible. The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
1:質量分析計
100:霧化器
110:加熱混合チャンバ
120:電荷供給部
122:種イオンガス
130:補助ガス
140:第1細孔
150:分析部
160:圧力計
170:真空ポンプ
300:液体クロマトグラフ
400:制御部
410:測定項目情報
500:ガス供給部
510:第1流量制御部
520:第2流量制御部
530:ガス混合部
540:単体ガス制御部
550:単体ガス流量制御部
560:電磁弁
570:供給源(ガス源)
1: Mass spectrometer 100: Atomizer 110: Heated mixing chamber 120: Charge supply unit 122: Seed ion gas 130: Auxiliary gas 140: First pore 150: Analysis unit 160: Pressure gauge 170: Vacuum pump 300: Liquid Chromatograph 400: Control unit 410: Measurement item information 500: Gas supply unit 510: First flow control unit 520: Second flow control unit 530: Gas mixing unit 540: Single gas control unit 550: Single gas flow control unit 560: Solenoid valve 570: supply source (gas source)

Claims (10)

  1.  霧化した液体試料を気化、イオン化する加熱混合チャンバと、
     種イオンガスから種イオンを生成し、前記加熱混合チャンバに前記種イオンを供給する電荷供給部と、
     前記電荷供給部、および前記加熱混合チャンバにガスを供給するガス供給部と、を備えた質量分析計において、
     前記ガス供給部は、
      複数の異なるガス源と、
      複数の異なる前記ガス源から供給されたガスを混合して混合ガスを作製する混合部と、
      前記混合ガスの組成を制御する電磁弁と、を有し、
     測定項目情報に基づいて、前記電荷供給部と前記加熱混合チャンバとに前記混合ガスを供給するように前記ガス供給部を制御する制御部を備える
     ことを特徴とする質量分析計。
    a heated mixing chamber for vaporizing and ionizing the atomized liquid sample;
    a charge supply for generating seed ions from a seed ion gas and supplying the seed ions to the heated mixing chamber;
    A mass spectrometer comprising the charge supply and a gas supply supplying gas to the heated mixing chamber,
    The gas supply unit
    a plurality of different gas sources;
    a mixing unit that mixes gases supplied from a plurality of different gas sources to prepare a mixed gas;
    a solenoid valve that controls the composition of the mixed gas,
    A mass spectrometer, comprising: a control section that controls the gas supply section so as to supply the mixed gas to the electric charge supply section and the heating mixing chamber based on measurement item information.
  2.  請求項1に記載の質量分析計において、
     前記測定項目情報は、測定目的物質の分子量の情報であり、
     前記制御部は、前記分子量情報に基づいて前記ガス供給部を制御する
     ことを特徴とする質量分析計。
    The mass spectrometer of claim 1, wherein
    The measurement item information is information on the molecular weight of the measurement target substance,
    The mass spectrometer, wherein the control unit controls the gas supply unit based on the molecular weight information.
  3.  請求項1に記載の質量分析計において、
     前記測定項目情報は、測定目的物質を分離する液体クロマトグラフの分離方法情報であり、
     前記制御部は、前記分離方法情報に基づいて前記ガス供給部を制御する
     ことを特徴とする質量分析計。
    The mass spectrometer of claim 1, wherein
    The measurement item information is liquid chromatograph separation method information for separating the measurement target substance,
    The mass spectrometer, wherein the control unit controls the gas supply unit based on the separation method information.
  4.  請求項1に記載の質量分析計において、
     前記測定項目情報は、前記ガス供給部から供給するガス種の情報であり、
     前記制御部は、前記ガス種情報に基づいて前記ガス供給部を制御する
     ことを特徴とする質量分析計。
    The mass spectrometer of claim 1, wherein
    The measurement item information is information on the type of gas supplied from the gas supply unit,
    The mass spectrometer, wherein the control unit controls the gas supply unit based on the gas type information.
  5.  請求項4に記載の質量分析計において、
     前記制御部は、測定中に前記ガス種を切り替える
     ことを特徴とする質量分析計。
    A mass spectrometer according to claim 4, wherein
    The mass spectrometer, wherein the controller switches the gas species during measurement.
  6.  霧化した液体試料を気化、イオン化する加熱混合チャンバと、種イオンガスから種イオンを生成し、前記加熱混合チャンバに前記種イオンを供給する電荷供給部と、前記電荷供給部、および前記加熱混合チャンバにガスを供給するガス供給部と、を備えた質量分析計の制御方法において、
     前記ガス供給部は、複数の異なるガス源と、複数の異なる前記ガス源から供給されたガスを混合して混合ガスを作製する混合部と、前記混合ガスの組成を制御する電磁弁と、を有し、
     測定項目情報に基づいて、前記電荷供給部と前記加熱混合チャンバとに前記混合ガスを供給するように前記ガス供給部を制御する
     ことを特徴とする質量分析計の制御方法。
    a heating and mixing chamber for vaporizing and ionizing an atomized liquid sample; a charge supply unit for generating seed ions from a seed ion gas and supplying the seed ions to the heating and mixing chamber; the charge supply unit; A control method for a mass spectrometer comprising a gas supply unit for supplying gas to the chamber,
    The gas supply unit includes a plurality of different gas sources, a mixing unit that mixes the gases supplied from the plurality of different gas sources to prepare a mixed gas, and an electromagnetic valve that controls the composition of the mixed gas. have
    A method of controlling a mass spectrometer, comprising: controlling the gas supply unit to supply the mixed gas to the charge supply unit and the heating mixing chamber based on measurement item information.
  7.  請求項6に記載の質量分析計の制御方法において、
     前記測定項目情報は、測定目的物質の分子量の情報であり、前記分子量情報に基づいて前記ガス供給部を制御する
     ことを特徴とする質量分析計の制御方法。
    In the control method of the mass spectrometer according to claim 6,
    A control method for a mass spectrometer, wherein the measurement item information is information on a molecular weight of a substance to be measured, and the gas supply section is controlled based on the molecular weight information.
  8.  請求項6に記載の質量分析計の制御方法において、
     前記測定項目情報は、測定目的物質を分離する液体クロマトグラフの分離方法情報であり、前記分離方法情報に基づいて前記ガス供給部を制御する
     ことを特徴とする質量分析計の制御方法。
    In the control method of the mass spectrometer according to claim 6,
    A control method for a mass spectrometer, wherein the measurement item information is separation method information for a liquid chromatograph that separates a measurement target substance, and the gas supply unit is controlled based on the separation method information.
  9.  請求項6に記載の質量分析計の制御方法において、
     前記測定項目情報は、前記ガス供給部から供給するガス種の情報であり、前記ガス種情報に基づいて前記ガス供給部を制御する
     ことを特徴とする質量分析計の制御方法。
    In the control method of the mass spectrometer according to claim 6,
    A control method for a mass spectrometer, wherein the measurement item information is information on a gas type supplied from the gas supply unit, and the gas supply unit is controlled based on the gas type information.
  10.  請求項9に記載の質量分析計の制御方法において、
     測定中に前記ガス種を切り替える
     ことを特徴とする質量分析計の制御方法。
    In the control method of the mass spectrometer according to claim 9,
    A control method for a mass spectrometer, comprising switching the gas species during measurement.
PCT/JP2021/042194 2021-11-17 2021-11-17 Mass spectrometer and mass spectrometer control method WO2023089685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042194 WO2023089685A1 (en) 2021-11-17 2021-11-17 Mass spectrometer and mass spectrometer control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042194 WO2023089685A1 (en) 2021-11-17 2021-11-17 Mass spectrometer and mass spectrometer control method

Publications (1)

Publication Number Publication Date
WO2023089685A1 true WO2023089685A1 (en) 2023-05-25

Family

ID=86396392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042194 WO2023089685A1 (en) 2021-11-17 2021-11-17 Mass spectrometer and mass spectrometer control method

Country Status (1)

Country Link
WO (1) WO2023089685A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773848A (en) * 1993-06-30 1995-03-17 Hitachi Ltd Mass-spectrometer and method for mass-spectrometry
JP2005539358A (en) * 2002-09-18 2005-12-22 アジレント・テクノロジーズ・インク Multimode ionization source
WO2017056182A1 (en) * 2015-09-29 2017-04-06 株式会社島津製作所 Liquid sample introduction system for ion source and analysis system
JP2017527078A (en) * 2014-09-04 2017-09-14 レコ コーポレイションLeco Corporation Soft ionization based on the adjustable glow discharge method for quantitative analysis
US20190341241A1 (en) * 2018-05-03 2019-11-07 Perkinelmer Health Sciences Canada Inc. Multiple gas flow ionizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773848A (en) * 1993-06-30 1995-03-17 Hitachi Ltd Mass-spectrometer and method for mass-spectrometry
JP2005539358A (en) * 2002-09-18 2005-12-22 アジレント・テクノロジーズ・インク Multimode ionization source
JP2017527078A (en) * 2014-09-04 2017-09-14 レコ コーポレイションLeco Corporation Soft ionization based on the adjustable glow discharge method for quantitative analysis
WO2017056182A1 (en) * 2015-09-29 2017-04-06 株式会社島津製作所 Liquid sample introduction system for ion source and analysis system
US20190341241A1 (en) * 2018-05-03 2019-11-07 Perkinelmer Health Sciences Canada Inc. Multiple gas flow ionizer

Similar Documents

Publication Publication Date Title
CA2725612C (en) Single and multiple operating mode ion sources with atmospheric pressure chemical ionization
JP5073168B2 (en) A fast combined multimode ion source for mass spectrometers.
Tang et al. Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry
JP4178110B2 (en) Mass spectrometer
US20080265152A1 (en) Mass Spectrometer
CN108369889A (en) The system minimized for the electric discharge during making ESI operate
US11029291B2 (en) Systems and methods for ionization
JP2016080706A (en) Enhanced sensitivity of detection in electrospray ionization mass spectrometry using post-column modifier and microfluidic device
JP2003215101A (en) Liquid chromatographic mass spectrometer
EP1864315B1 (en) Mass spectrometer
WO2017056182A1 (en) Liquid sample introduction system for ion source and analysis system
JP2004185886A (en) Atmospheric pressure ionization mass spectroscope
WO2023089685A1 (en) Mass spectrometer and mass spectrometer control method
US11049711B2 (en) Ion source for mass spectrometer
CN109856231B (en) Multi-channel high-flux composite ionization device
US20110049348A1 (en) Multiple inlet atmospheric pressure ionization apparatus and related methods
EP4266040A1 (en) Ion source and mass spectrometer equipped therewith
JPH02135655A (en) Atmospheric pressure ionized mass spectrometer
JPH06302295A (en) Mass spectrograph device and differential air exhaust device
JPH1164289A (en) Liquid chromatograph mass analyzer
JPH0943201A (en) Liquid chromatograph mass spectrometer
JP2023549819A (en) Interface between liquid chromatography, ionization device, and mass spectrometer and sample analysis method using the same
JPH04342945A (en) Mass spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964701

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023561974

Country of ref document: JP