JP2007218799A - Semiconductor magnetoresistive element and magnetic sensor module using the same - Google Patents

Semiconductor magnetoresistive element and magnetic sensor module using the same Download PDF

Info

Publication number
JP2007218799A
JP2007218799A JP2006041340A JP2006041340A JP2007218799A JP 2007218799 A JP2007218799 A JP 2007218799A JP 2006041340 A JP2006041340 A JP 2006041340A JP 2006041340 A JP2006041340 A JP 2006041340A JP 2007218799 A JP2007218799 A JP 2007218799A
Authority
JP
Japan
Prior art keywords
magnetoresistive element
semiconductor magnetoresistive
semiconductor
lead frame
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006041340A
Other languages
Japanese (ja)
Other versions
JP4754985B2 (en
Inventor
Hiromasa Gotou
広将 後藤
Ichiro Shibazaki
一郎 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2006041340A priority Critical patent/JP4754985B2/en
Publication of JP2007218799A publication Critical patent/JP2007218799A/en
Application granted granted Critical
Publication of JP4754985B2 publication Critical patent/JP4754985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the phase lag of output amplitude of a semiconductor magnetoresistive element used in detecting a rotating angle of a gear or the like, and to simplify a magnetic sensor module assembly by a significant amount. <P>SOLUTION: An azimuth-aligning groove 27 is formed along the outer periphery of the semiconductor magnetoresistive element, having two or more MR-sensor chips mounted, thereby improving the assembling accuracy for the outer case. Furthermore, a magnet insertion hole for inserting a magnet to be mounted on a rear surface is integrally formed, when sealing resin 25 is resin-formed. Furthermore, bending a leg 23 of an elongated lead frame eliminates a complex process of connecting a terminal of the semiconductor magnetoresistive element with a terminal pin, after it has been mounted once on a printed board. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体磁気抵抗素子及びそれを用いた磁気センサモジュールに関し、より詳細には、磁気エンコーダー用の磁気センサモジュールであって、磁気センサを構成する半導体磁気抵抗素子と、磁気センサを収納する外部ケースとの位置決めを行なうようにしてアジマスずれを無くすようにした半導体磁気抵抗素子及びそれを用いた磁気センサモジュールに関する。   The present invention relates to a semiconductor magnetoresistive element and a magnetic sensor module using the same, and more particularly to a magnetic sensor module for a magnetic encoder, which houses a semiconductor magnetoresistive element constituting the magnetic sensor and the magnetic sensor. The present invention relates to a semiconductor magnetoresistive element in which azimuth shift is eliminated by positioning with an external case, and a magnetic sensor module using the same.

従来から感知部を形成する半導体磁気抵抗素子を備えたチップを樹脂封止した半導体パッケージの裏面に接着剤で磁石を取り付けた磁気センサモジュールは知られている。   2. Description of the Related Art Conventionally, a magnetic sensor module in which a magnet is attached to the back surface of a semiconductor package in which a chip including a semiconductor magnetoresistive element forming a sensing portion is sealed with a resin is known.

図14は、磁気エンコーダーに用いられる従来の半導体磁気抵抗素子の断面図である。この半導体磁気抵抗素子は、外部ケース18内に、リードフレームの台座2上にダイボンドされ、かつリードフレームの足3に金ワイヤー4でワイヤボンドされた半導体磁気抵抗素子チップ1を充填樹脂19により樹脂成形し、かつリードフレームの足3を折り曲げた構造を成す半導体磁気抵抗素子8の裏面側にはバイアス磁石9が配置され、さらにこのバイアス磁石9とリードフレームの足3を固定化するための磁石ケース11により構成された構造を備えている。   FIG. 14 is a cross-sectional view of a conventional semiconductor magnetoresistive element used for a magnetic encoder. This semiconductor magnetoresistive element is formed of a resin 19 filled with a semiconductor magnetoresistive element chip 1 die-bonded on a pedestal 2 of a lead frame and wire-bonded to a foot 3 of a lead frame with a gold wire 4 in an outer case 18. A bias magnet 9 is arranged on the back side of the semiconductor magnetoresistive element 8 which is formed and the lead frame foot 3 is bent. Further, a magnet for fixing the bias magnet 9 and the lead frame foot 3 is fixed. A structure constituted by the case 11 is provided.

図15は、磁気エンコーダーに用いられる従来の他の半導体磁気抵抗素子の斜視図である。半導体磁気抵抗素子チップを樹脂成形した半導体磁気抵抗素子8の出力端子を、ハンダ付けによりプリント基板13に実装して出力ピン10と接続配線12により電気的に接続させ、さらに半導体磁気抵抗素子8の裏面側にバイアス磁石9と磁石ケース11を配置した構造を備えている(例えば、特許文献1参照)。   FIG. 15 is a perspective view of another conventional semiconductor magnetoresistive element used for a magnetic encoder. The output terminal of the semiconductor magnetoresistive element 8 formed by resin-molding the semiconductor magnetoresistive element chip is mounted on the printed board 13 by soldering and electrically connected by the output pin 10 and the connection wiring 12. It has a structure in which a bias magnet 9 and a magnet case 11 are arranged on the back side (see, for example, Patent Document 1).

これら半導体磁気抵抗素子は、磁気エンコーダーに用いられ、この半導体磁気抵抗素子の感磁面の垂直位置空間に配置された歯車が回転する際に、歯車の凹凸に応じて半導体磁気抵抗素子に直交する磁束密度に変化が生じることにより正弦波出力を得ることができるようにしたものである。   These semiconductor magnetoresistive elements are used in a magnetic encoder, and when a gear disposed in a vertical position space of a magnetic sensitive surface of the semiconductor magnetoresistive element rotates, the semiconductor magnetoresistive element is orthogonal to the semiconductor magnetoresistive element according to the unevenness of the gear. A sine wave output can be obtained by a change in the magnetic flux density.

磁気エンコーダーにおける一般的な出力波形は、正弦波となるA相と、90°位相をずらしたB相と、360°で1歯を検出するZ相といったように数種の信号を同時に出力することが必要となる。磁気エンコーダーとして使用するためには、各出力の位相差を厳密に制御することが重要となるが、通常、A相とB相のみを使用する磁気エンコーダーの場合は、A相とB相を単一の半導体磁気抵抗素子チップとして作製することが出来るため、リードフレーム上に半導体磁気抵抗素子チップを実装する際も1つの半導体磁気抵抗素子チップとリードフレームとのθ方向(アジマス)ずれを小さくするように実装すれば、A相とB相の各々の位置ずれが起こることは無く、各出力の位相ずれは、半導体磁気抵抗素子の設計段階でほぼ決定することができる。   The general output waveform of a magnetic encoder is to output several types of signals at the same time, such as a phase A that is a sine wave, a phase B that is 90 ° out of phase, and a phase Z that detects one tooth at 360 °. Is required. In order to use it as a magnetic encoder, it is important to strictly control the phase difference of each output. Usually, in the case of a magnetic encoder using only the A phase and the B phase, the A phase and the B phase are simply set. Since it can be manufactured as one semiconductor magnetoresistive element chip, even when the semiconductor magnetoresistive element chip is mounted on the lead frame, the θ direction (azimuth) deviation between one semiconductor magnetoresistive element chip and the lead frame is reduced. If mounted in this manner, there will be no positional shift between the A phase and the B phase, and the phase shift of each output can be determined substantially at the design stage of the semiconductor magnetoresistive element.

一方、A/B相とZ相を有する磁気エンコーダーでは、A/B相とZ相の異なる半導体磁気抵抗素子チップを別々にリードフレーム上あるいはプリント基板上に形成する必要があるが、この場合では上述した各々の半導体磁気抵抗素子チップのθ方向(アジマス)ずれが無いように実装することが必要であることは言うまでも無く、さらにA/B相の半導体磁気抵抗素子チップとZ相の半導体磁気抵抗素子チップの歯車回転方向の実装ずれが無いように配置することも重要となる。   On the other hand, in a magnetic encoder having an A / B phase and a Z phase, it is necessary to separately form semiconductor magnetoresistive element chips having different A / B and Z phases on a lead frame or a printed circuit board. Needless to say, it is necessary to mount each semiconductor magnetoresistive element chip so that there is no deviation in the θ direction (azimuth), and further, an A / B phase semiconductor magnetoresistive element chip and a Z phase semiconductor. It is also important to arrange the magnetoresistive element chip so that there is no mounting shift in the gear rotation direction.

特開2005−337866号公報JP 2005-337866 A

通常、この種の半導体磁気抵抗素子は、外部ケースに挿入された状態で使用されている。外部ケース全体をアルミダイキャスト、ステンレスや真鍮などの非磁性の材料で作製したものや、半導体磁気抵抗素子と接する部分のみ非磁性の金属材料(CANキャップ)とし、他の部位はインジェクション成形技術などを用いて樹脂で作製したものが用いられている。   Usually, this type of semiconductor magnetoresistive element is used in a state of being inserted into an outer case. The entire outer case is made of a non-magnetic material such as aluminum die cast, stainless steel or brass, or the non-magnetic metal material (CAN cap) is used only for the part in contact with the semiconductor magnetoresistive element. What was produced with resin using is used.

これらの外部ケースに半導体磁気抵抗素子を実装する場合、外部ケースとの位置合わせには、図14においては磁石ケースをガイドとして用いたり、図15においてはプリント基板の縁を外部ケースの内形状と合わせて加工するなどして、半導体磁気抵抗素子のアジマスを揃えていた。   When semiconductor magnetoresistive elements are mounted on these outer cases, the magnet case is used as a guide in FIG. 14 for alignment with the outer case, or the edge of the printed circuit board is used as the inner shape of the outer case in FIG. The azimuth of the semiconductor magnetoresistive element was arranged by processing together.

このアジマスずれを発生する要因としては、1)半導体磁気抵抗素子の実装ずれ(リードフレーム上に半導体磁気抵抗素子チップをダイボンディングする際の実装ずれ、半導体磁気抵抗素子をプリント基板等の基材上にハンダ付けにより実装する際の実装ずれなど)、2)歯車と外部ケースとの位置ずれ、3)外部ケースと半導体磁気抵抗素子との位置ずれといった点が挙げられる。   Factors that cause this azimuth misalignment are: 1) semiconductor magnetoresistive element mounting misalignment (mounting misalignment when the semiconductor magnetoresistive element chip is die-bonded on the lead frame; (2) misalignment between the gear and the outer case, and (3) misalignment between the outer case and the semiconductor magnetoresistive element.

上述した要因の1)については、ダイボンディング装置や実装装置等の装置性能によって規定される。2)は外部ケースを取り付ける台座と歯車との位置関係により決まる要素である。このように、1)と2)では、半導体磁気抵抗素子の実装位置ずれの改善は一義的に決まるものである。これに対して、3)は上述したような外部ケースに半導体磁気抵抗素子を実装する際に、磁石ケースやプリント基板などをガイドとして用いた場合に、半導体磁気抵抗素子と磁石ケース間、半導体磁気抵抗素子とプリント基板間の組立て精度や外部ケースに実装する際のずれにより位置ずれが発生する。   The above-mentioned factor 1) is defined by the performance of the die bonding apparatus, the mounting apparatus or the like. 2) is an element determined by the positional relationship between the pedestal to which the outer case is attached and the gear. Thus, in 1) and 2), the improvement of the mounting position shift of the semiconductor magnetoresistive element is uniquely determined. On the other hand, 3), when a semiconductor magnetoresistive element is mounted on the external case as described above, when a magnet case or a printed circuit board is used as a guide, between the semiconductor magnetoresistive element and the magnet case, Misalignment occurs due to the assembly accuracy between the resistance element and the printed circuit board and the displacement when mounted on the external case.

この半導体磁気抵抗素子の実装ずれは、図16に示すように、X方向、Y方向の位置ずれとθ方向のアジマスずれが想定されるが、X方向、Y方向の位置ずれは、2)のように外部ケースを基材に取り付ける際に調整することで一方向の位置合わせは可能となるが、もう一方向の位置合わせは出来ない。さらに、θ方向のアジマスずれは調整が出来ないという問題があった。   As shown in FIG. 16, this semiconductor magnetoresistive element mounting deviation is assumed to be a positional deviation in the X and Y directions and an azimuth deviation in the θ direction, but the positional deviation in the X and Y directions is 2). As described above, when the outer case is attached to the base material, adjustment in one direction is possible, but alignment in the other direction is not possible. Further, there is a problem that the azimuth shift in the θ direction cannot be adjusted.

X方向あるいはY方向の実装位置がずれた場合、A/B相とZ相の出力振幅に差が生じるか、出力波形に歪みを生じるかなどの問題が発生する。θ方向のアジマスずれがある場合には、A相/Z相間の位相ずれ、B相/Z相間の(90°+位相ずれ)が発生するという問題があった。   When the mounting position in the X direction or the Y direction is deviated, problems such as a difference in output amplitude between the A / B phase and the Z phase or distortion in the output waveform occur. When there is an azimuth shift in the θ direction, there is a problem that a phase shift between the A phase / Z phase and a (90 ° + phase shift) between the B phase / Z phase occur.

このように従来の作製方法では、外部ケースと半導体磁気抵抗素子との位置合わせは、磁石ケースやプリント基板などの半導体磁気抵抗素子に付属する部位を用いて位置合わせを行なっていたため、半導体磁気抵抗素子の実装ずれやアジマスずれは、磁石ケースへの取り付け方や、プリント基板への半導体磁気抵抗素子の実装方法により影響を受けてしまうといった問題があった。   As described above, in the conventional manufacturing method, the alignment between the outer case and the semiconductor magnetoresistive element is performed using a part attached to the semiconductor magnetoresistive element such as a magnet case or a printed circuit board. There is a problem in that the mounting displacement and azimuth displacement of the element are affected by how to attach to the magnet case and how to mount the semiconductor magnetoresistive element on the printed circuit board.

さらに、従来の作製方法では、プリント基板のような基材、接続端子用ピン、磁石収納ケースなど多くの部品を必要とすることや、半導体磁気抵抗素子として組み上げる際の工数も多くなり、多大な半導体磁気抵抗素子の作製費用を費やさなければならないといった問題があった。   Furthermore, the conventional manufacturing method requires a large number of parts such as a substrate such as a printed circuit board, connection terminal pins, and a magnet storage case, and the number of man-hours for assembly as a semiconductor magnetoresistive element increases. There has been a problem that the manufacturing cost of the semiconductor magnetoresistive element has to be spent.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、外部ケースへ半導体磁気抵抗素子を実装する際の位置精度を格段に高め、かつ構成する部品点数の削減、工数を激減させることが可能な構造を有する半導体磁気抵抗素子及びそれを用いた磁気センサモジュールを提供することにある。   The present invention has been made in view of such problems, and its purpose is to significantly increase the positional accuracy when mounting the semiconductor magnetoresistive element on the outer case, and to reduce the number of components to be configured. An object of the present invention is to provide a semiconductor magnetoresistive element having a structure capable of drastically reducing the number of steps and a magnetic sensor module using the same.

本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、複数の半導体磁気抵抗素子チップが、リードフレーム上にダイボンドされているとともにワイヤボンドされており、前記半導体磁気抵抗素子チップ及び前記リードフレームが、該リードフレームの裏面に磁石挿入用穴を形成するように封止樹脂で一体成形され、該封止樹脂にアジマス位置合わせ部を設けたことを特徴とする。   The present invention has been made to achieve such an object. The invention according to claim 1 is characterized in that a plurality of semiconductor magnetoresistive element chips are die-bonded and wire-bonded on a lead frame. The semiconductor magnetoresistive element chip and the lead frame are integrally formed of a sealing resin so as to form a magnet insertion hole on the back surface of the lead frame, and an azimuth alignment portion is provided in the sealing resin. Features.

また、請求項2に記載の発明は、請求項1に記載の発明において、前記アジマス位置合わせ部が、前記封止樹脂の外周部に複数設けられていることを特徴とする。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, a plurality of the azimuth alignment portions are provided on an outer peripheral portion of the sealing resin.

また、請求項3に記載の発明は、請求項1又は2に記載の発明において、前記アジマス位置合わせ部が、溝又は突起を有することを特徴とする。   The invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the azimuth alignment portion has a groove or a protrusion.

また、請求項4に記載の発明は、請求項1,2又は3に記載の発明において、前記封止樹脂の一体成形の形状が、前記半導体磁気抵抗素子チップ上の円形状の樹脂で、かつ2段形状であることを特徴とする。   According to a fourth aspect of the present invention, in the first, second, or third aspect of the invention, the shape of the integral molding of the sealing resin is a circular resin on the semiconductor magnetoresistive element chip, and It is characterized by a two-stage shape.

また、請求項5に記載の発明は、請求項1乃至4のいずれかに記載の半導体磁気抵抗素子と、前記アジマス位置合わせ部と嵌め合わされる嵌合部を有する外部ケースとを備えたことを特徴とする。   According to a fifth aspect of the present invention, there is provided the semiconductor magnetoresistive element according to any one of the first to fourth aspects, and an external case having a fitting portion fitted to the azimuth alignment portion. Features.

また、請求項6に記載の発明は、請求項5に記載の発明において、前記外部ケースに前記半導体磁気抵抗素子を挿入する挿入穴を設け、該挿入穴の周縁部に前記嵌合部を複数設けて、前記アジマス位置合わせ部に前記嵌合部を嵌め合わせることにより、前記半導体磁気抵抗素子チップと前記外部ケースとの位置決めを行なうことを特徴とする。   According to a sixth aspect of the present invention, in the fifth aspect of the present invention, an insertion hole for inserting the semiconductor magnetoresistive element is provided in the outer case, and a plurality of the fitting portions are provided at a peripheral edge portion of the insertion hole. And positioning the semiconductor magnetoresistive element chip and the outer case by fitting the fitting portion to the azimuth alignment portion.

また、請求項7に記載の発明は、請求項5又は6に記載の発明において、前記嵌合部が、突起又は溝を有することを特徴とする。   The invention according to claim 7 is the invention according to claim 5 or 6, wherein the fitting portion has a protrusion or a groove.

また、請求項8に記載の発明は、請求項5,6又は7に記載の発明において、前記外部ケースに挿入された前記半導体磁気抵抗素子の感磁面の前面で、かつ前記挿入穴の前面に非磁性金属部材を設けたことを特徴とする。   The invention according to claim 8 is the invention according to claim 5, 6 or 7, wherein the semiconductor magnetoresistive element inserted in the outer case is in front of the magnetic sensitive surface and the front surface of the insertion hole. A nonmagnetic metal member is provided on the surface.

このように本発明者らは、上述した本発明の課題を解決するために鋭意検討を重ねた結果、A/B相とZ相を有する半導体磁気抵抗素子において、A相とZ相、B相とZ相との位相ずれを無くし、従来に無い高精度な磁気エンコーダーを達成することができる半導体磁気抵抗素子を完成して本発明をなすに至った。   As described above, the present inventors have conducted extensive studies to solve the above-described problems of the present invention. As a result, in the semiconductor magnetoresistive element having the A / B phase and the Z phase, the A phase, the Z phase, and the B phase. Thus, the present invention has been completed by completing a semiconductor magnetoresistive element capable of eliminating a phase shift between the Z phase and the Z phase and achieving an unprecedented highly accurate magnetic encoder.

本発明の半導体磁気抵抗素子は、リードフレーム上にダイボンディング装置を用いて2個以上の半導体磁気抵抗素子チップを実装し、樹脂モールドする際も磁石ケースを一体成形することと、樹脂成形された外周部が円周部と突起或いは切り欠けを有することで、円形の外部ケースとの位置合わせ精度を格段に向上させることが可能となる。   The semiconductor magnetoresistive element of the present invention is formed by integrally molding a magnet case and resin molding when mounting two or more semiconductor magnetoresistive element chips on a lead frame using a die bonding apparatus and resin molding. Since the outer peripheral portion has a circumferential portion and a protrusion or a cutout, the alignment accuracy with the circular outer case can be remarkably improved.

また、外部ケース内の部品は、本発明による半導体磁気抵抗素子と磁石、充填樹脂のみとなり、部品点数の格段の減少を実現できることから工数の低減とコスト削減を達成できる。さらに、半導体磁気抵抗素子チップの実装位置精度の向上に配慮する必要がなくなるため、製品の歩留り向上も達成できるようになる。   In addition, since the components in the outer case are only the semiconductor magnetoresistive element, the magnet, and the filling resin according to the present invention, and the number of components can be significantly reduced, man-hours and costs can be reduced. Further, since it is not necessary to consider the improvement of the mounting position accuracy of the semiconductor magnetoresistive element chip, the yield of the product can be improved.

以下、図面を参照して本発明の実施形態について説明する。
図1は、本発明の半導体磁気抵抗素子の実施形態(実施例1)を示す上面図で、図2は、図1に示した半導体磁気抵抗素子の底面図、図3は、リードフレーム上に半導体磁気抵抗素子チップを実装し、ワイヤーボンディングを施した状態を示す斜視図、図4は、本発明の半導体磁気抵抗素子の上部斜め方向から見た斜視図、図5は、図4に示した本発明の半導体磁気抵抗素子を下部斜め方向から見た斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a top view showing an embodiment (Example 1) of a semiconductor magnetoresistive element of the present invention, FIG. 2 is a bottom view of the semiconductor magnetoresistive element shown in FIG. 1, and FIG. FIG. 4 is a perspective view showing a state in which a semiconductor magnetoresistive element chip is mounted and wire bonding is performed, FIG. 4 is a perspective view of the semiconductor magnetoresistive element of the present invention as seen from the upper oblique direction, and FIG. 5 is shown in FIG. It is the perspective view which looked at the semiconductor magnetoresistive element of this invention from the lower diagonal direction.

図中符号21は半導体磁気抵抗素子チップ、22はリードフレームの台座、23はリードフレームの足、24は金ワイヤー、25は封止樹脂、26は磁石挿入用穴、27はアジマス位置合わせ用溝を示している。   In the figure, reference numeral 21 is a semiconductor magnetoresistive element chip, 22 is a lead frame base, 23 is a lead frame leg, 24 is a gold wire, 25 is a sealing resin, 26 is a magnet insertion hole, and 27 is an azimuth alignment groove. Is shown.

本発明の半導体磁気抵抗素子は、リードフレームの台座22上に半導体磁気抵抗素子チップ21がダイボンドされ、この半導体磁気抵抗素子チップ21とリードフレームの足23とが金ワイヤー24でワイヤボンドされ、封止樹脂25により樹脂成形されている。リードフレームの足23を折り曲げた構造を有する半導体磁気抵抗素子の裏面側には、バイアス磁石を挿入する磁石挿入用穴26が設けられている。また、封止樹脂25の外周部には複数のアジマス位置合わせ用溝27が設けられている。このアジマス位置合わせ用溝27は、後述する外部ケースに設けられている突起と嵌め合わされる切り欠きを構成している。   In the semiconductor magnetoresistive element of the present invention, a semiconductor magnetoresistive element chip 21 is die-bonded on a pedestal 22 of a lead frame, and the semiconductor magnetoresistive element chip 21 and a lead frame leg 23 are wire-bonded by a gold wire 24 and sealed. Resin molding is performed by the stop resin 25. A magnet insertion hole 26 for inserting a bias magnet is provided on the back side of the semiconductor magnetoresistive element having a structure in which the legs 23 of the lead frame are bent. A plurality of azimuth alignment grooves 27 are provided on the outer peripheral portion of the sealing resin 25. The azimuth alignment groove 27 constitutes a notch to be fitted with a protrusion provided on an outer case described later.

つまり、複数の半導体磁気抵抗素子チップ21は、リードフレームの台座22にダイボンドされているとともに、リードフレームの足23にワイヤボンドされており、磁気抵抗素子チップ21及びリードフレーム22,23が、そのリードフレーム22,23の裏面に磁石挿入用穴26を形成するように封止樹脂25で一体成形され、この封止樹脂25にアジマス位置合わせ用溝27が設けられている。   In other words, the plurality of semiconductor magnetoresistive element chips 21 are die-bonded to the pedestal 22 of the lead frame and wire-bonded to the legs 23 of the lead frame, and the magnetoresistive element chip 21 and the lead frames 22 and 23 are The lead frames 22 and 23 are integrally formed with a sealing resin 25 so as to form a magnet insertion hole 26 on the back surface of the lead frames 22 and 23, and the sealing resin 25 is provided with an azimuth alignment groove 27.

図6は、本発明の半導体磁気抵抗素子を収納する外部ケースを前方から見たときの斜視図で、図7は、図6に示した外部ケースを後方から見たときの斜視図である。この半導体磁気抵抗素子と外部ケースとにより本発明の磁気センサモジュールを構成している。図中符号38は外部ケース、40は感磁面上金属部、41は突起、42は基材取付け用ネジ穴、43は磁気抵抗素子挿入穴を示している。   6 is a perspective view of the outer case housing the semiconductor magnetoresistive element of the present invention as viewed from the front, and FIG. 7 is a perspective view of the outer case shown in FIG. 6 as viewed from the rear. The semiconductor magnetoresistive element and the outer case constitute a magnetic sensor module of the present invention. In the figure, reference numeral 38 denotes an outer case, 40 denotes a metal part on the magnetic sensitive surface, 41 denotes a protrusion, 42 denotes a screw hole for attaching a base material, and 43 denotes a magnetoresistive element insertion hole.

本発明における外部ケース38の材質は、外部ケース38全体をアルミダイキャスト、真鍮、ステンレスなどの非磁性の金属材料を用いて形成しても良く、半導体磁気抵抗素子の感磁面の前面にある部分のみ非磁性材料で形成し、他の部分は樹脂などで形成した構造でも良い。また、半導体磁気抵抗素子の感磁面上に接する金属部分の厚さは、半導体磁気抵抗素子チップの感磁面と歯車との距離をできるだけ短くするために0.3mm以下とすることが好ましい。   The material of the outer case 38 in the present invention may be formed by using a non-magnetic metal material such as aluminum die cast, brass, stainless steel, etc., and is located in front of the magnetic sensitive surface of the semiconductor magnetoresistive element. Only a part may be formed of a nonmagnetic material, and the other part may be formed of a resin or the like. In addition, the thickness of the metal portion in contact with the magnetosensitive surface of the semiconductor magnetoresistive element is preferably set to 0.3 mm or less in order to shorten the distance between the magnetosensitive surface of the semiconductor magnetoresistive element chip and the gear as much as possible.

また、感磁面上の非磁性金属(感磁面上金属部)40の形状は、円形とすることが最も好ましいが、円形と直線部分を持つ俵型としても良い。また、この感磁面上金属部40の内壁側には、半導体磁気抵抗素子の外周部に形成されたアジマス位置合わせ用溝(切り欠き)27(あるいは突起)と合致するような、突起41(あるいは切り欠き)が設けられている。   The shape of the nonmagnetic metal (metal part on the magnetic sensitive surface) 40 on the magnetic sensitive surface is most preferably a circular shape, but may be a saddle shape having a circular shape and a linear portion. Further, on the inner wall side of the metal portion 40 on the magnetosensitive surface, a protrusion 41 (which matches an azimuth alignment groove (notch) 27 (or protrusion) formed on the outer peripheral portion of the semiconductor magnetoresistive element is provided. Or a notch) is provided.

本発明における半導体磁気抵抗素子の外観形状は、樹脂モールドされた外周部が円形状あるいは円形部と直線部を併せ持った形状とし、かつ外部ケース38の感磁面上金属部40の形状と揃える形状とすることで、実装ずれを最も小さくすることが可能となる。また、本発明での外周部の一部の部位には、位置合わせ用の凹形状に加工された窪み、もしくは凸形状に加工された突起を有していてもよい。この突起あるいは窪みの形状は、直径10mm以下の半円とするのが良い。この突起あるいは窪みのサイズは、外部ケース38の窪みあるいは突起のサイズとほぼ同様のサイズとすることで、半導体磁気抵抗素子を外部ケース38に挿入したり、他の固定用部品と接続させる際のアジマスずれを低減させたり、磁気エンコーダーを作製する際の作業の容易さと工数の低減には非常に重要となる。   The external shape of the semiconductor magnetoresistive element in the present invention is a shape in which the outer periphery of the resin mold is circular or has a shape having both a circular portion and a straight portion, and is aligned with the shape of the metal portion 40 on the magnetic sensitive surface of the outer case 38. By doing so, it is possible to minimize the mounting deviation. Further, a part of the outer peripheral portion in the present invention may have a recess processed into a concave shape for alignment, or a protrusion processed into a convex shape. The shape of the protrusion or recess is preferably a semicircle having a diameter of 10 mm or less. The size of the protrusion or recess is substantially the same as the size of the recess or protrusion of the outer case 38, so that the semiconductor magnetoresistive element can be inserted into the outer case 38 or connected to other fixing parts. This is very important for reducing the azimuth deviation and for facilitating the work and reducing the man-hours when manufacturing the magnetic encoder.

また、半導体磁気抵抗素子チップ上の円形状の樹脂を2段形状とすることで、外部ケース38を半導体磁気抵抗素子に被せる場合に、リードフレームの足23と外部ケース38との距離を遠ざけ両者の接触を防ぐ効果や、外部ケース38の非磁性金属カバーの曲率が大きい場合に半導体磁気抵抗素子の端部が当たり、外部ケース38と半導体磁気抵抗素子表面間に空隙が発生することを防ぐ効果がある。   Further, by forming the circular resin on the semiconductor magnetoresistive element chip into a two-stage shape, when the outer case 38 is put on the semiconductor magnetoresistive element, the distance between the lead frame foot 23 and the outer case 38 is increased. The effect of preventing contact between the outer case 38 and the surface of the semiconductor magnetoresistive element when the end of the semiconductor magnetoresistive element hits when the curvature of the nonmagnetic metal cover of the outer case 38 is large. There is.

本発明における半導体磁気抵抗素子に使用するリードフレーム22,23の材質は、非磁性であればどのような金属を用いても良いが、銅あるいは銅合金を用いることが一般的に行なわれている。無酸素銅のような純銅や、リン青銅、鉛銅、ジルコニウム銅などを用いても良いが曲げに対して破断が発生しにくい材料を用いることが好ましい。   As the material of the lead frames 22 and 23 used in the semiconductor magnetoresistive element in the present invention, any metal may be used as long as it is non-magnetic, but copper or a copper alloy is generally used. . Pure copper such as oxygen-free copper, phosphor bronze, lead copper, zirconium copper, or the like may be used, but it is preferable to use a material that does not easily break when bent.

上述したように、図3には、リードフレーム上に半導体磁気抵抗素子チップを実装し、ワイヤーボンディングを施した状態、つまり、本発明の範疇に含まれるリードフレームの台座22に半導体磁気抵抗素子チップをダイボンディングして、電極パッドを金ワイヤー24により電気的に接続した状態を示しているが、この図3を用いてリードフレームの足23の板厚については以下に説明する。   As described above, in FIG. 3, the semiconductor magnetoresistive element chip is mounted on the lead frame and wire bonded, that is, the semiconductor magnetoresistive element chip is mounted on the pedestal 22 of the lead frame included in the scope of the present invention. Is shown, and the electrode pad is electrically connected by the gold wire 24. The thickness of the leg 23 of the lead frame will be described below with reference to FIG.

金ワイヤー24を接続するリードフレームの足23となる部位の板厚Aは、リードフレームの足23を折り曲げて使用するために0.2mm以上とすることが好ましく、半導体磁気抵抗素子チップ21をダイボンディングする部位Bは、バイアス磁石との距離を極力短くし、より強い磁束密度が半導体磁気抵抗素子の感磁面に垂直に作用するように0.2mm以下とすることが好ましい。   The thickness A of the portion to be the lead frame foot 23 to which the gold wire 24 is connected is preferably 0.2 mm or more in order to bend the lead frame foot 23 and use the semiconductor magnetoresistive element chip 21 as a die. The portion B to be bonded is preferably 0.2 mm or less so that the distance from the bias magnet is as short as possible and a stronger magnetic flux density acts perpendicularly to the magnetic sensitive surface of the semiconductor magnetoresistive element.

また、半導体磁気抵抗素子チップ21を実装するリードフレームの台座22は、半導体磁気抵抗素子チップ21の電極パッドと電気的に接続されることは無く、リードフレームの台座22以外に半導体磁気抵抗素子チップ21の電極パッド数と同数以上のリードフレームの足23を有している。   Further, the pedestal 22 of the lead frame on which the semiconductor magnetoresistive element chip 21 is mounted is not electrically connected to the electrode pads of the semiconductor magnetoresistive element chip 21, and other than the pedestal 22 of the lead frame, the semiconductor magnetoresistive element chip The number of the lead frame legs 23 is equal to or more than 21 electrode pads.

本発明における半導体磁気抵抗素子の封止樹脂25は、エポキシ系、ビフェニル系、フェノール系、レジン系等を用いることが出来るが、周囲温度変化に対して膨張収縮率の小さい樹脂を用いることで、周囲温度の急激な変化による樹脂割れの問題やリードフレーム22,23との剥離を低減できる。また、半導体磁気抵抗素子チップ21の表面の感磁部に与える歪の影響が少なくなるため、周囲温度変化による素子特性変動を小さく出来るというメリットもある。成型する際の樹脂厚については、歯車とチップ感磁面との距離を短くすることで半導体磁気抵抗素子からのより大きな出力振幅を得ることができるために、半導体磁気抵抗素子チップ21の表面上の樹脂厚は、0.5mm以下とすることが良い。さらに、バイアス磁石を歯車に近づけることによっても半導体磁気抵抗素子の出力振幅を増加させることができるため、半導体磁気抵抗素子チップ21が載っているリードフレームの台座22の裏面側の樹脂厚は、0.2mm以下とすることが好ましく、さらに好ましくは、裏面側に樹脂が無くリードフレームの台座22が剥き出しとなっている状態が良い。   As the sealing resin 25 of the semiconductor magnetoresistive element in the present invention, an epoxy-based, biphenyl-based, phenol-based, resin-based, or the like can be used, but by using a resin having a small expansion / contraction rate against an ambient temperature change, It is possible to reduce the problem of resin cracking due to a sudden change in the ambient temperature and the separation from the lead frames 22 and 23. Further, since the influence of the strain on the magnetic sensitive part on the surface of the semiconductor magnetoresistive element chip 21 is reduced, there is also an advantage that the element characteristic fluctuation due to the ambient temperature change can be reduced. With respect to the resin thickness at the time of molding, since the larger output amplitude from the semiconductor magnetoresistive element can be obtained by shortening the distance between the gear and the chip magnetosensitive surface, the surface of the semiconductor magnetoresistive element chip 21 can be obtained. The resin thickness is preferably 0.5 mm or less. Furthermore, since the output amplitude of the semiconductor magnetoresistive element can also be increased by bringing the bias magnet closer to the gear, the resin thickness on the back side of the pedestal 22 of the lead frame on which the semiconductor magnetoresistive element chip 21 is mounted is 0. .2 mm or less is preferable, and more preferably, there is no resin on the back surface side and the pedestal 22 of the lead frame is exposed.

また、半導体磁気抵抗素子の上面から見たモールド樹脂の形状が円形であり、円形のモールド樹脂の周縁部にはリードフレームの台座22を支えているタイバーが半導体磁気抵抗素子の金属製カバーや周辺の電気配線に接続に接続する可能性がある場合には、モールド樹脂端のタイバー部分に1箇所あるいは数箇所の切り欠けを有することもあるが、切り欠けの深さは、タイバーの金属部分が周囲の金属部分に接触しない程度に窪んでいれば良い。   In addition, the shape of the mold resin viewed from the top surface of the semiconductor magnetoresistive element is circular, and a tie bar that supports the pedestal 22 of the lead frame is provided on the periphery of the circular mold resin and the metal cover of the semiconductor magnetoresistive element and the periphery If there is a possibility of connection to the electrical wiring, the tie bar part at the end of the mold resin may have one or several notches, but the depth of the notch depends on the metal part of the tie bar. What is necessary is just to be depressed so that it may not contact the surrounding metal part.

本発明の半導体磁気抵抗素子で使用するバイアス磁石は、SmCo系、NeFeB系やフェライト系のいずれかの磁石を用いることができるが、残留磁束密度が0.2テスラ以上の磁石を用いることで、半導体磁気抵抗素子の磁気抵抗変化量は、化合物半導体薄膜の電子移動度μに比例して大きくなるので、大きな出力を得ることができるために好ましい。   As the bias magnet used in the semiconductor magnetoresistive element of the present invention, any of SmCo-based, NeFeB-based and ferrite-based magnets can be used, but by using a magnet having a residual magnetic flux density of 0.2 Tesla or more, Since the magnetoresistive change amount of the semiconductor magnetoresistive element increases in proportion to the electron mobility μ of the compound semiconductor thin film, it is preferable because a large output can be obtained.

本発明における半導体磁気抵抗素子チップ21を形成する基板としては、Si、GaAs、InAs、GaP、InP、GaSb、InSbといった半導体基板を用いることが好ましいが、感磁部となる薄膜を堆積することができるものであればどのような基板を用いても良い。感磁部を形成する薄膜は単結晶でも他結晶でもアモルファスのいずれの状態であっても使用することができるが、より高感度な磁気センサを実現するためには、単結晶である半導体薄膜を用いることが好ましい。半導体薄膜の材料としては、電子移動度の高いInSb、InAs、GaAsといったものが好ましいが、特に、InSbは半導体の中で最も電子移動度が高く、磁気センサの大きな出力を得ることができることから好ましい材料であるといえる。また、上述した以外でもInAsSb、InGaSb、InGaAsといった3元混晶やInGaAsSbといった4元混晶としても良い。さらに、半導体磁気抵抗素子の素子抵抗の周囲温度変化に対する変動をより少なくするために、感磁部となる半導体薄膜中に不純物を混入させても良い。一般的にはドナー性不純物を添加することが好ましいためSi、Sn、S、Se、Te、Ge、Cといった材料を用いることができる。このドナー性不純物を添加することで、上述した素子抵抗の温度特性を改善することに加えて半導体磁気抵抗素子の中点電位オフセットの温度特性を改善する効果も期待できる。   As the substrate for forming the semiconductor magnetoresistive element chip 21 in the present invention, it is preferable to use a semiconductor substrate such as Si, GaAs, InAs, GaP, InP, GaSb, and InSb. However, a thin film serving as a magnetosensitive portion is deposited. Any substrate that can be used may be used. The thin film forming the magnetosensitive part can be used in a single crystal, other crystal, or amorphous state, but in order to realize a highly sensitive magnetic sensor, a single crystal semiconductor thin film is used. It is preferable to use it. As a material for the semiconductor thin film, materials such as InSb, InAs, and GaAs having high electron mobility are preferable. InSb is particularly preferable because it has the highest electron mobility among semiconductors and can obtain a large output of the magnetic sensor. It can be said that it is a material. In addition to the above, a ternary mixed crystal such as InAsSb, InGaSb, and InGaAs or a quaternary mixed crystal such as InGaAsSb may be used. Furthermore, in order to reduce the variation of the element resistance of the semiconductor magnetoresistive element with respect to the ambient temperature change, impurities may be mixed in the semiconductor thin film that becomes the magnetic sensitive part. Since it is generally preferable to add a donor impurity, materials such as Si, Sn, S, Se, Te, Ge, and C can be used. By adding this donor-type impurity, in addition to improving the temperature characteristic of the element resistance described above, an effect of improving the temperature characteristic of the midpoint potential offset of the semiconductor magnetoresistive element can be expected.

以下、本発明の具体的な各実施例について説明する。   Hereinafter, specific embodiments of the present invention will be described.

図1乃至図5は、本発明における半導体磁気抵抗素子の実施例1を示す図である。この実施例1において、半導体磁気抵抗素子チップ21を実装しているリードフレームの台座22の厚さは0.15mmで、リードフレームの足23の厚さは0.50mmとしている。リードフレームの足23と周囲の金属部分との接触を防ぐためにリードフレームの足23と接触する樹脂の部分に線状の切り欠けを設け、リードフレームの足23の曲げを実施した際に樹脂の端部で折り曲げるためにリードフレームの足23が樹脂の内側に入り、金属キャップなどの周囲の金属部分に接触した際の短絡を防止することができる。リードフレームの台座22の裏面側は、樹脂が無くリードフレームの台座22が剥き出しの状態とした。   1 to 5 are diagrams showing a first embodiment of a semiconductor magnetoresistive element according to the present invention. In Example 1, the thickness of the pedestal 22 of the lead frame on which the semiconductor magnetoresistive element chip 21 is mounted is 0.15 mm, and the thickness of the leg 23 of the lead frame is 0.50 mm. In order to prevent contact between the lead frame foot 23 and the surrounding metal portion, a linear notch is provided in the resin portion in contact with the lead frame foot 23, and when the lead frame foot 23 is bent, the resin In order to bend at the end portion, the lead frame leg 23 enters the inside of the resin, and a short circuit can be prevented when it contacts a surrounding metal portion such as a metal cap. The back side of the lead frame pedestal 22 had no resin and the lead frame pedestal 22 was exposed.

以下に本発明における半導体磁気抵抗素子の作製方法を説明するが、この作製方法に限ったものではない。半導体磁気抵抗素子チップ21の作製は、半絶縁GaAs基板にInSb薄膜を形成したものを用いている。素子作製手順は、通常のフォトリソグラフィー技術を用いて、InSb薄膜を短冊型に形成する工程、短絡電極と引き回し電極作製工程、保護膜形成工程等を実施した。その後、通常のダイシングを施して、半導体磁気抵抗素子チップ21の形状に切り分け、本発明の半導体磁気抵抗素子チップ21を完成させた。   A method for manufacturing a semiconductor magnetoresistive element in the present invention will be described below, but the method is not limited to this method. The semiconductor magnetoresistive element chip 21 is manufactured using an InSb thin film formed on a semi-insulating GaAs substrate. The element manufacturing procedure was performed by using a normal photolithography technique to form an InSb thin film in a strip shape, a short-circuit electrode and a lead electrode manufacturing process, a protective film forming process, and the like. Thereafter, normal dicing was performed, and the semiconductor magnetoresistive chip 21 was cut into the shape of the semiconductor magnetoresistive chip 21 to complete the semiconductor magnetoresistive chip 21 of the present invention.

本実施例1においてA相/B相のピッチは、JIS規B1701−1円筒歯車インボリユート歯車p=0.8πの歯車ピッチに合わせて設計されている。   In the first embodiment, the pitch of the A phase / B phase is designed in accordance with the gear pitch of JIS B1701-1 cylindrical gear involute gear p = 0.8π.

半導体磁気抵抗素子チップ21のリードフレームの台座22への実装は、市販の自動ダイボンディング装置(カタログ上の実装位置精度:±30μm)を用いて行い、市販の自動ワイヤーボンディング装置を用いて半導体磁気抵抗素子チップ21の電極パッドとリードフレームの足23とを接続した。接続に用いたAuワイヤー24は、30μmΦでワイヤーのループ高さは90μmであった。半導体磁気抵抗素子チップ21を実装したリードフレームの台座22を金型にセットして樹脂を注入して成型を完成させた。成型後、リードフレームのツリピンとタイバーをカットし、リードフレームと切り離した後にフォーミング用金型を用いてリードフレームの足23を90°に折り曲げて半導体磁気抵抗素子を完成させた。   Mounting of the semiconductor magnetoresistive element chip 21 on the pedestal 22 of the lead frame is performed using a commercially available automatic die bonding apparatus (mounting position accuracy on the catalog: ± 30 μm), and the semiconductor magnetism using a commercially available automatic wire bonding apparatus. The electrode pads of the resistance element chip 21 and the legs 23 of the lead frame were connected. The Au wire 24 used for connection was 30 μmΦ, and the loop height of the wire was 90 μm. The lead frame base 22 on which the semiconductor magnetoresistive element chip 21 was mounted was set in a mold, and resin was injected to complete the molding. After molding, the lead frame tabs and tie bars were cut, separated from the lead frame, and then the lead frame legs 23 were bent at 90 ° using a forming die to complete the semiconductor magnetoresistive element.

完成した半導体磁気抵抗素子の磁石挿入用穴26にSmCo系磁石を挿入し、裏面側をエポキシ樹脂にて封止した。さらに、図6及び図7に示した外部ケース38の突起41に半導体磁気抵抗素子のアジマス位置合わせ用溝27を、嵌合させ挿入して磁気センサモジュールを完成させた。   An SmCo-based magnet was inserted into the magnet insertion hole 26 of the completed semiconductor magnetoresistive element, and the back side was sealed with an epoxy resin. Further, the azimuth alignment groove 27 of the semiconductor magnetoresistive element was fitted and inserted into the protrusion 41 of the outer case 38 shown in FIGS. 6 and 7 to complete the magnetic sensor module.

上記規格の歯車を回転させた状態で半導体磁気抵抗素子の出力特性を測定した。歯車と外部ケースのCAN表面との空隙は0.3mmとした(歯車と半導体磁気抵抗素子の感磁面との距離は0.6mmとしている)。半導体磁気抵抗素子に5Vの電圧を印加した状態の出力信号をデジタルオシロスコープで測定した結果、A相とB相の位相ずれは83.9°、A相とZ相との位相ずれは0.5°であった。   The output characteristics of the semiconductor magnetoresistive element were measured while rotating the gear of the above standard. The gap between the gear and the CAN surface of the outer case was 0.3 mm (the distance between the gear and the magnetosensitive surface of the semiconductor magnetoresistive element was 0.6 mm). As a result of measuring an output signal with a voltage of 5 V applied to the semiconductor magnetoresistive element with a digital oscilloscope, the phase shift between the A phase and the B phase was 83.9 °, and the phase shift between the A phase and the Z phase was 0.5. °.

A相とB相の位相ずれは、本来90°となるように設計されているが、歯車の曲率のため83.9°となっている。曲率∞の歯車を使用すれば位相差は90°となる。   Although the phase shift between the A phase and the B phase is originally designed to be 90 °, it is 83.9 ° due to the curvature of the gear. If a gear having a curvature ∞ is used, the phase difference is 90 °.

(比較例1)
図15に示すように樹脂モールドした半導体磁気抵抗素子8をプリント基板13上に半田付けし、さらにこのプリント基板13と端子ピン10を差込みハンダ付けにより形成した。SmCo系磁石を挿入した磁石ケースをプリント基板13の裏面側に取り付けて半導体磁気抵抗素子を完成させた。完成した半導体磁気抵抗素子に厚さ0.1mmのステンレス製CANを被せ、CANの裏面側をエポキシ樹脂で封止して半導体磁気抵抗素子を完成させた。
(Comparative Example 1)
As shown in FIG. 15, the resin-molded semiconductor magnetoresistive element 8 was soldered onto the printed circuit board 13, and the printed circuit board 13 and the terminal pins 10 were inserted and formed by soldering. A magnet case with an SmCo-based magnet inserted was attached to the back side of the printed circuit board 13 to complete the semiconductor magnetoresistive element. The completed semiconductor magnetoresistive element was covered with a stainless steel CAN having a thickness of 0.1 mm, and the back side of the CAN was sealed with an epoxy resin to complete the semiconductor magnetoresistive element.

従来技術を用いて作製した半導体磁気抵抗素子を実施例1と同様の歯車を用いて出力特性を測定した。歯車とCAN表面との空隙は0.3mmとした(歯車と半導体磁気抵抗素子の感磁面との距離は0.6mmとしている)。半導体磁気抵抗素子に5Vの電圧を印加した状態の出力信号をデジタルオシロスコープで測定した結果、A相とB相の位相ずれは83.8°、A相とZ相の位相ずれは5.2°であった。   The output characteristics of the semiconductor magnetoresistive element manufactured using the conventional technique were measured using the same gear as in Example 1. The gap between the gear and the CAN surface was 0.3 mm (the distance between the gear and the magnetosensitive surface of the semiconductor magnetoresistive element was 0.6 mm). As a result of measuring an output signal with a voltage of 5 V applied to the semiconductor magnetoresistive element with a digital oscilloscope, the phase shift between the A phase and the B phase was 83.8 °, and the phase shift between the A phase and the Z phase was 5.2 °. Met.

A相B相は単一チップ内で形成されているため位相のずれは見られないが、A相とZ相は別々の素子で構成され、かつ実装も別々に行なわれているために位相ずれが大きくなったといえる。   Phase A and phase B are formed in a single chip, so there is no phase shift. However, phase A and phase Z are composed of separate elements and are mounted separately. Can be said to have grown.

(比較例2)
上述した実施例1の方法で作製した半導体磁気抵抗素子と比較例1の方法で作製した半導体磁気抵抗素子の各々30個の歯車回転検出測定を実施した結果から、A相とZ相との位相ずれを測定した結果を図8及び表1に示す。この表1には、本発明と従来技術により作製した半導体磁気抵抗素子各30個のA相−Z相間の位相差測定結果が示されている。
(Comparative Example 2)
From the result of carrying out 30 gear rotation detection measurements of the semiconductor magnetoresistive element manufactured by the method of Example 1 and the semiconductor magnetoresistive element manufactured by the method of Comparative Example 1 described above, the phase between the A phase and the Z phase is obtained. The results of measuring the deviation are shown in FIG. Table 1 shows the measurement results of the phase difference between the A phase and the Z phase of each of the 30 semiconductor magnetoresistive elements manufactured by the present invention and the prior art.

Figure 2007218799
Figure 2007218799

図9乃至図12は、本発明における半導体磁気抵抗素子の実施例2を示す図である。図9は、リードフレームの足に垂直方法の樹脂をリードに垂直になるように直線的にカットした形状とした半導体磁気抵抗素子の上面図、図10は、図9に示した半導体磁気抵抗素子の底面図、図11は、リードフレームの足に垂直方法の樹脂をリードに垂直になるように直線的にカットした形状とした半導体磁気抵抗素子を上部斜め方向から見た斜視図、図12は、図11に示した半導体磁気抵抗素子を下部斜め方向から見た斜視図である。なお、実施例1と同じ機能を有する構成要素には同一に符号を付してある。   9 to 12 are diagrams showing Example 2 of the semiconductor magnetoresistive element in the present invention. FIG. 9 is a top view of a semiconductor magnetoresistive element having a shape in which a resin in a method perpendicular to the legs of the lead frame is linearly cut so as to be perpendicular to the lead, and FIG. 10 is a semiconductor magnetoresistive element shown in FIG. FIG. 11 is a perspective view of a semiconductor magnetoresistive element having a shape obtained by linearly cutting a resin in a method perpendicular to the leads of the lead frame so as to be perpendicular to the leads, and FIG. FIG. 12 is a perspective view of the semiconductor magnetoresistive element shown in FIG. 11 viewed from the lower diagonal direction. In addition, the same code | symbol is attached | subjected to the component which has the same function as Example 1. FIG.

半導体磁気抵抗素子チップ21の作製方法およびこの半導体磁気抵抗素子チップ21のリードフレームの台座22への実装は、実施例1と同様の方法を用いた。樹脂成型用の金型の形状を変えて、実施例1のように円形ではなく、リードフレームの足23に垂直方法の樹脂をリードに垂直になるように直線的にカットした形状とした。この形状によってリードフォーミングが容易になった。   The manufacturing method of the semiconductor magnetoresistive element chip 21 and the mounting of the semiconductor magnetoresistive element chip 21 on the pedestal 22 of the lead frame used the same method as in Example 1. The shape of the mold for resin molding was changed to a shape that was not circular as in Example 1, but a resin that was perpendicular to the legs 23 of the lead frame was linearly cut so as to be perpendicular to the leads. This shape facilitates lead forming.

半導体磁気抵抗素子チップ21を実装しているリードフレームの台座22の厚さは0.15mmで、リードフレームの足23の厚さは0.50mmとしている。   The thickness of the pedestal 22 of the lead frame on which the semiconductor magnetoresistive element chip 21 is mounted is 0.15 mm, and the thickness of the legs 23 of the lead frame is 0.50 mm.

本実施例における半導体磁気抵抗素子では、外部ケースを取り付ける際に外部ケースに形成した凸型の部位がアジマス位置合わせ用溝27に整合する形状をとることで、アジマスずれなく実装ができる構造となっている。   In the semiconductor magnetoresistive element according to the present embodiment, when the outer case is attached, the convex portion formed in the outer case is shaped so as to be aligned with the azimuth alignment groove 27, so that it can be mounted without azimuth misalignment. ing.

完成した半導体磁気抵抗素子の磁石挿入用穴26にSmCo系磁石を挿入し、裏面側をエポキシ樹脂にて封止した。さらに、図6及び図7に示した外部ケース38の突起41に半導体磁気抵抗素子のアジマス位置合わせ用溝27を、嵌合させ挿入して磁気センサモジュールを完成させた。この際、図11に示した半円状アジマス位置合わせ用溝27の直径は3mm、図7に示した外部ケース38の突起41の直径は2.9mmとした。突起41は、嵌合手段の一例を示したに過ぎず、これに限定されるものではない。   An SmCo-based magnet was inserted into the magnet insertion hole 26 of the completed semiconductor magnetoresistive element, and the back side was sealed with an epoxy resin. Further, the azimuth alignment groove 27 of the semiconductor magnetoresistive element was fitted and inserted into the protrusion 41 of the outer case 38 shown in FIGS. 6 and 7 to complete the magnetic sensor module. At this time, the diameter of the semicircular azimuth alignment groove 27 shown in FIG. 11 was 3 mm, and the diameter of the protrusion 41 of the outer case 38 shown in FIG. 7 was 2.9 mm. The protrusion 41 is merely an example of the fitting means, and is not limited to this.

実施例1と同形状の歯車を回転させた状態で半導体磁気抵抗素子の出力特性を測定した。歯車とCAN表面との空隙は0.3mmとした。半導体磁気抵抗素子に5Vの電圧を印加した状態の出力信号をデジタルオシロスコープで測定した結果、A相とB相の位相ずれは83.9°、A相とZ相との位相ずれは0.4°であり、実施例1と同様な結果を得た。   The output characteristics of the semiconductor magnetoresistive element were measured while the gear having the same shape as in Example 1 was rotated. The gap between the gear and the CAN surface was 0.3 mm. As a result of measuring the output signal with a voltage of 5 V applied to the semiconductor magnetoresistive element with a digital oscilloscope, the phase shift between the A phase and the B phase was 83.9 °, and the phase shift between the A phase and the Z phase was 0.4. The same results as in Example 1 were obtained.

図13は、本発明における半導体磁気抵抗素子の実施例3を示す図で、感磁面上の成形樹脂形状を段差を設けて2段とした場合の半導体磁気抵抗素子を示している。図中符号44は段差で、その他、実施例2と同じ機能を有する構成要素には同一に符号を付してある。   FIG. 13 is a diagram showing Example 3 of the semiconductor magnetoresistive element according to the present invention, and shows the semiconductor magnetoresistive element in a case where the molding resin shape on the magnetic sensitive surface is provided with two steps. In the figure, reference numeral 44 denotes a step, and other components having the same functions as those of the second embodiment are denoted by the same reference numerals.

実施例2と同様な方法を用いて半導体磁気抵抗素子を作製する工程において、モールド樹脂にて封止する際の金型を変更し、図13に示すように円形状パターンが2段になるように段差44を設けて半導体磁気抵抗素子を作製した。この段差構造は、CANキャップの曲げ曲率の大きいキャップを被せる場合に有効で、キャップの曲率部分に円形状パターンのエッジが当たることによる空隙が発生することを防ぐことが可能になる。   In the process of manufacturing the semiconductor magnetoresistive element using the same method as in Example 2, the mold used for sealing with the mold resin is changed so that the circular pattern has two stages as shown in FIG. A semiconductor magnetoresistive element was fabricated by providing a step 44 on the substrate. This step structure is effective when a cap having a large bending curvature of the CAN cap is covered, and it is possible to prevent the occurrence of a gap due to the edge of the circular pattern hitting the curvature portion of the cap.

以上のように本発明では、半導体磁気抵抗素子の成形樹脂の外周部にアジマス位置合わせ用の溝又は窪み(あるいは突起)を有し、外部ケースに設けられた突起(あるいは溝又は窪み)と形状をあわせることで組み上げの際の実装ずれが無くなるため、磁気エンコーダーに応用した場合などは、A相/Z相、B相/Z相間の位相ずれを殆ど無くすことが可能となる。   As described above, in the present invention, the outer peripheral portion of the molding resin of the semiconductor magnetoresistive element has the grooves or depressions (or protrusions) for positioning the azimuth, and the protrusions (or grooves or depressions) and the shape provided on the outer case. Since the mounting deviation at the time of assembling is eliminated by combining the two, the phase deviation between the A phase / Z phase and the B phase / Z phase can be almost eliminated when applied to a magnetic encoder.

さらに、1枚のリードフレーム上に2個以上の半導体磁気抵抗素子チップが実装されることとバイアス磁石を挿入するケースが半導体磁気抵抗素子を樹脂モールドする際に一体成形されている構造であることから、各半導体磁気抵抗素子チップの実装の位置ずれも殆ど無く、さらに、バイアス磁石のケースも一体化されているため、半導体磁気抵抗素子チップの感磁部に、より均一に磁束が寄与することができ、A相、B相、Z相それぞれの出力振幅や中点電位を一定に保つことができる。   Further, two or more semiconductor magnetoresistive element chips are mounted on one lead frame, and the case where the bias magnet is inserted is integrally formed when the semiconductor magnetoresistive element is resin-molded. Therefore, there is almost no displacement in the mounting of each semiconductor magnetoresistive element chip, and since the case of the bias magnet is also integrated, the magnetic flux contributes more evenly to the magnetic sensitive part of the semiconductor magnetoresistive element chip. The output amplitude and midpoint potential of the A phase, B phase, and Z phase can be kept constant.

さらに、リードフレームの足が折り曲げられた構造であり、かつ一体樹脂成形であることから、従来の磁気センサモジュールの作製方法と比較して大幅な部品点数削減と作製工数低減することができるようになり、磁気センサモジュールの作製の大幅コスト削減を実現することができる。また、従来の磁気センサモジュールよりも簡素な構造であり、アセンブリも容易であるため、不良素子の低減や、個々間の素子特性ばらつきを低減し、安定した磁気センサモジュールの供給を実現することができる。また、従来の半導体磁気抵抗素子よりもモールド樹脂も厚くすることが出来ることから、外部からの物理衝撃に対しても格段の耐久性を達成することが可能となり、産業上の利用価値は計り知れない。   Furthermore, because the lead frame legs are bent and integrated resin molding, the number of parts and manufacturing man-hours can be greatly reduced compared to conventional magnetic sensor module manufacturing methods. Thus, significant cost reduction in the production of the magnetic sensor module can be realized. In addition, since it has a simpler structure than conventional magnetic sensor modules and is easy to assemble, it is possible to reduce defective elements and reduce variations in element characteristics among individual elements, thereby realizing a stable supply of magnetic sensor modules. it can. In addition, since the mold resin can be made thicker than conventional semiconductor magnetoresistive elements, it is possible to achieve exceptional durability against physical impact from the outside, and the industrial utility value is measurable. Absent.

本発明の半導体磁気抵抗素子の実施形態(実施例1)を示す上面図である。It is a top view which shows embodiment (Example 1) of the semiconductor magnetoresistive element of this invention. 図1に示した半導体磁気抵抗素子の底面図である。FIG. 2 is a bottom view of the semiconductor magnetoresistive element shown in FIG. 1. リードフレーム上に半導体磁気抵抗素子チップを実装し、ワイヤーボンディングを施した状態を示す斜視図である。It is a perspective view which shows the state which mounted the semiconductor magnetoresistive element chip | tip on the lead frame, and gave the wire bonding. 本発明の半導体磁気抵抗素子の上部斜め方向から見た斜視図である。It is the perspective view seen from the upper part diagonal direction of the semiconductor magnetoresistive element of this invention. 図4に示した本発明の半導体磁気抵抗素子を下部斜め方向から見た斜視図である。It is the perspective view which looked at the semiconductor magnetoresistive element of this invention shown in FIG. 4 from the lower diagonal direction. 本発明の半導体磁気抵抗素子を収納する外部ケースを前方から見たときの斜視図である。It is a perspective view when the outer case which accommodates the semiconductor magnetoresistive element of this invention is seen from the front. 図6に示した外部ケースを後方から見たときの斜視図である。It is a perspective view when the outer case shown in FIG. 6 is seen from back. 本発明と従来技術により作製した半導体磁気抵抗素子各30個のA相−Z相間の位相ずれ分布を示す図である。It is a figure which shows the phase shift distribution between the 30 A phase-Z phases of each semiconductor magnetoresistive element produced by this invention and the prior art. 本発明における半導体磁気抵抗素子の実施例2を示す図で、リードフレームの足に垂直方法の樹脂をリードに垂直になるように直線的にカットした形状とした半導体磁気抵抗素子の上面図である。FIG. 8 is a diagram illustrating a semiconductor magnetoresistive element according to a second embodiment of the present invention, and is a top view of a semiconductor magnetoresistive element formed by linearly cutting a resin in a method perpendicular to the legs of a lead frame so as to be perpendicular to the leads. . 図9に示した半導体磁気抵抗素子の底面図である。FIG. 10 is a bottom view of the semiconductor magnetoresistive element shown in FIG. 9. リードフレームの足に垂直方法の樹脂をリードに垂直になるように直線的にカットした形状とした半導体磁気抵抗素子を上部斜め方向から見た斜視図である。It is the perspective view which looked at the semiconductor magnetoresistive element made into the shape which linearly cut the resin of the perpendicular | vertical method to the leg | foot of a lead frame so that it might become perpendicular | vertical to a lead | read | reed. 図11に示した半導体磁気抵抗素子を下部斜め方向から見た斜視図である。It is the perspective view which looked at the semiconductor magnetoresistive element shown in FIG. 11 from the lower diagonal direction. 本発明における半導体磁気抵抗素子の実施例3を示す図である。It is a figure which shows Example 3 of the semiconductor magnetoresistive element in this invention. 磁気エンコーダーに用いられる従来の半導体磁気抵抗素子の断面図である。It is sectional drawing of the conventional semiconductor magnetoresistive element used for a magnetic encoder. 磁気エンコーダーに用いられる従来の他の半導体磁気抵抗素子の斜視図である。It is a perspective view of the other conventional semiconductor magnetoresistive element used for a magnetic encoder. 半導体磁気抵抗素子を実装した際の実装位置ずれの状態を示した図である。It is the figure which showed the state of the mounting position shift at the time of mounting a semiconductor magnetoresistive element.

符号の説明Explanation of symbols

1 半導体磁気抵抗素子チップ
2 リードフレームの台座
3 リードフレームの足
4 金ワイヤー
8 半導体磁気抵抗素子
9 バイアス磁石
10 出力ピン
11 磁石ケース
12 接続配線
13 プリント基板
18 外部ケース
19 充填樹脂
21 磁気抵抗素子チップ
22 リードフレームの台座
23 リードフレームの足
24 金ワイヤー
25 封止樹脂
26 磁石挿入用穴
27 アジマス位置合わせ用溝
38 外部ケース
40 感磁面上金属部
41 突起
42 基材取付け用ネジ穴
43 磁気抵抗素子挿入穴
44 段差
DESCRIPTION OF SYMBOLS 1 Semiconductor magnetoresistive element chip 2 Lead frame base 3 Lead frame leg 4 Gold wire 8 Semiconductor magnetoresistive element 9 Bias magnet 10 Output pin 11 Magnet case 12 Connection wiring 13 Printed circuit board 18 External case 19 Filling resin 21 Magnetoresistive element chip 22 Lead frame base 23 Lead frame foot 24 Gold wire 25 Sealing resin 26 Magnet insertion hole 27 Azimuth alignment groove 38 External case 40 Metal part 41 on the magnetic sensitive surface Projection 42 Substrate mounting screw hole 43 Magnetic resistance Element insertion hole 44 Step

Claims (8)

複数の半導体磁気抵抗素子チップが、リードフレーム上にダイボンドされているとともにワイヤボンドされており、前記半導体磁気抵抗素子チップ及び前記リードフレームが、該リードフレームの裏面に磁石挿入用穴を形成するように封止樹脂で一体成形され、該封止樹脂にアジマス位置合わせ部を設けたことを特徴とする半導体磁気抵抗素子。   A plurality of semiconductor magnetoresistive element chips are die-bonded and wire-bonded on the lead frame, and the semiconductor magnetoresistive element chip and the lead frame form a magnet insertion hole on the back surface of the lead frame. A semiconductor magnetoresistive element, which is integrally molded with a sealing resin and provided with an azimuth alignment portion on the sealing resin. 前記アジマス位置合わせ部が、前記封止樹脂の外周部に複数設けられていることを特徴とする請求項1に記載の半導体磁気抵抗素子。   The semiconductor magnetoresistive element according to claim 1, wherein a plurality of the azimuth alignment portions are provided on an outer peripheral portion of the sealing resin. 前記アジマス位置合わせ部が、溝又は突起を有することを特徴とする請求項1又は2に記載の半導体磁気抵抗素子。   The semiconductor magnetoresistive element according to claim 1, wherein the azimuth alignment portion has a groove or a protrusion. 前記封止樹脂の一体成形の形状が、前記半導体磁気抵抗素子チップ上の円形状の樹脂で、かつ2段形状であることを特徴とする請求項1,2又は3に記載の半導体磁気抵抗素子。   4. The semiconductor magnetoresistive element according to claim 1, wherein the sealing resin is integrally molded with a circular resin on the semiconductor magnetoresistive element chip and has a two-stage shape. 5. . 請求項1乃至4のいずれかに記載の半導体磁気抵抗素子と、前記アジマス位置合わせ部と嵌め合わされる嵌合部を有する外部ケースとを備えたことを特徴とする磁気センサモジュール。   5. A magnetic sensor module comprising: the semiconductor magnetoresistive element according to claim 1; and an outer case having a fitting portion fitted to the azimuth alignment portion. 前記外部ケースに前記半導体磁気抵抗素子を挿入する挿入穴を設け、該挿入穴の周縁部に前記嵌合部を複数設けて、前記アジマス位置合わせ部に前記嵌合部を嵌め合わせることにより、前記半導体磁気抵抗素子チップと前記外部ケースとの位置決めを行なうことを特徴とする請求項5に記載の磁気センサモジュール。   By providing an insertion hole for inserting the semiconductor magnetoresistive element in the outer case, providing a plurality of the fitting portions at the peripheral edge of the insertion hole, and fitting the fitting portion to the azimuth alignment portion, 6. The magnetic sensor module according to claim 5, wherein the semiconductor magnetoresistive element chip and the outer case are positioned. 前記嵌合部が、突起又は溝を有することを特徴とする請求項5又は6に記載の磁気センサモジュール。   The magnetic sensor module according to claim 5, wherein the fitting portion has a protrusion or a groove. 前記外部ケースに挿入された前記半導体磁気抵抗素子の感磁面の前面で、かつ前記挿入穴の前面に非磁性金属部材を設けたことを特徴とする請求項5,6又は7に記載の磁気センサモジュール。
8. The magnetism according to claim 5, 6 or 7, wherein a nonmagnetic metal member is provided in front of a magnetic sensitive surface of the semiconductor magnetoresistive element inserted in the outer case and in front of the insertion hole. Sensor module.
JP2006041340A 2006-02-17 2006-02-17 Magnetic sensor module Active JP4754985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041340A JP4754985B2 (en) 2006-02-17 2006-02-17 Magnetic sensor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041340A JP4754985B2 (en) 2006-02-17 2006-02-17 Magnetic sensor module

Publications (2)

Publication Number Publication Date
JP2007218799A true JP2007218799A (en) 2007-08-30
JP4754985B2 JP4754985B2 (en) 2011-08-24

Family

ID=38496256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041340A Active JP4754985B2 (en) 2006-02-17 2006-02-17 Magnetic sensor module

Country Status (1)

Country Link
JP (1) JP4754985B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145285A (en) * 2008-12-19 2010-07-01 Alps Electric Co Ltd Magnetic detection device and method of manufacturing the same
JP2010522994A (en) * 2007-03-29 2010-07-08 アレグロ・マイクロシステムズ・インコーポレーテッド Method and apparatus for multistage molding of integrated circuit packages
JP2012511152A (en) * 2008-12-05 2012-05-17 アレグロ・マイクロシステムズ・インコーポレーテッド Magnetic field sensor and method for manufacturing the magnetic field sensor
JP2013250244A (en) * 2012-06-04 2013-12-12 Nidec Sankyo Corp Magnetic sensor device
JP2014508286A (en) * 2011-01-17 2014-04-03 ジャンス マルチディメンショナル テクノロジー シーオー., エルティーディー Single package bridge type magnetic field sensor
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9620705B2 (en) 2012-01-16 2017-04-11 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
WO2019131816A1 (en) * 2017-12-27 2019-07-04 旭化成エレクトロニクス株式会社 Magnetic sensor module
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10921391B2 (en) 2018-08-06 2021-02-16 Allegro Microsystems, Llc Magnetic field sensor with spacer
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144824A (en) * 1996-11-08 1998-05-29 Sony Corp Semiconductor package and semiconductor package containing tray
JP2002365352A (en) * 2001-06-12 2002-12-18 Aisin Seiki Co Ltd Magnetic field detector
JP2005337866A (en) * 2004-05-26 2005-12-08 Asahi Kasei Corp Magnetic substance detector and semiconductor package

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144824A (en) * 1996-11-08 1998-05-29 Sony Corp Semiconductor package and semiconductor package containing tray
JP2002365352A (en) * 2001-06-12 2002-12-18 Aisin Seiki Co Ltd Magnetic field detector
JP2005337866A (en) * 2004-05-26 2005-12-08 Asahi Kasei Corp Magnetic substance detector and semiconductor package

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522994A (en) * 2007-03-29 2010-07-08 アレグロ・マイクロシステムズ・インコーポレーテッド Method and apparatus for multistage molding of integrated circuit packages
JP2015038507A (en) * 2008-12-05 2015-02-26 アレグロ・マイクロシステムズ・エルエルシー Magnetic field sensors and methods for fabricating magnetic field sensors
JP2012511152A (en) * 2008-12-05 2012-05-17 アレグロ・マイクロシステムズ・インコーポレーテッド Magnetic field sensor and method for manufacturing the magnetic field sensor
JP2010145285A (en) * 2008-12-19 2010-07-01 Alps Electric Co Ltd Magnetic detection device and method of manufacturing the same
JP2014508286A (en) * 2011-01-17 2014-04-03 ジャンス マルチディメンショナル テクノロジー シーオー., エルティーディー Single package bridge type magnetic field sensor
US9620705B2 (en) 2012-01-16 2017-04-11 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US10333055B2 (en) 2012-01-16 2019-06-25 Allegro Microsystems, Llc Methods for magnetic sensor having non-conductive die paddle
US11444209B2 (en) 2012-03-20 2022-09-13 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil enclosed with a semiconductor die by a mold material
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10230006B2 (en) 2012-03-20 2019-03-12 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an electromagnetic suppressor
US10916665B2 (en) 2012-03-20 2021-02-09 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US11677032B2 (en) 2012-03-20 2023-06-13 Allegro Microsystems, Llc Sensor integrated circuit with integrated coil and element in central region of mold material
US11961920B2 (en) 2012-03-20 2024-04-16 Allegro Microsystems, Llc Integrated circuit package with magnet having a channel
US11828819B2 (en) 2012-03-20 2023-11-28 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
JP2013250244A (en) * 2012-06-04 2013-12-12 Nidec Sankyo Corp Magnetic sensor device
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US11313924B2 (en) 2013-07-19 2022-04-26 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10254103B2 (en) 2013-07-19 2019-04-09 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10670672B2 (en) 2013-07-19 2020-06-02 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753768B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US11307054B2 (en) 2014-10-31 2022-04-19 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10837800B2 (en) 2016-06-08 2020-11-17 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US11073573B2 (en) 2017-05-26 2021-07-27 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10649042B2 (en) 2017-05-26 2020-05-12 Allegro Microsystems, Llc Packages for coil actuated position sensors
US11320496B2 (en) 2017-05-26 2022-05-03 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US11768256B2 (en) 2017-05-26 2023-09-26 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
CN111527415A (en) * 2017-12-27 2020-08-11 旭化成微电子株式会社 Magnetic sensor module
WO2019131816A1 (en) * 2017-12-27 2019-07-04 旭化成エレクトロニクス株式会社 Magnetic sensor module
JPWO2019131816A1 (en) * 2017-12-27 2020-12-17 旭化成エレクトロニクス株式会社 Magnetic sensor module
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US11313700B2 (en) 2018-03-01 2022-04-26 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10921391B2 (en) 2018-08-06 2021-02-16 Allegro Microsystems, Llc Magnetic field sensor with spacer
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US11686599B2 (en) 2018-08-06 2023-06-27 Allegro Microsystems, Llc Magnetic field sensor
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Also Published As

Publication number Publication date
JP4754985B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4754985B2 (en) Magnetic sensor module
US11828819B2 (en) Magnetic field sensor integrated circuit with integral ferromagnetic material
US5912556A (en) Magnetic sensor with a chip attached to a lead assembly within a cavity at the sensor&#39;s sensing face
KR101503224B1 (en) Current sensor substrate and current sensor
JP5969969B2 (en) Sensor
US6356068B1 (en) Current monitor system and a method for manufacturing it
EP2817647B1 (en) Magnetic field sensor
US11609248B2 (en) Current transducer with integrated primary conductor
JP2005337866A (en) Magnetic substance detector and semiconductor package
US10049969B1 (en) Integrated circuit
JP2015516069A (en) Current converter module
JP4240306B2 (en) Rotation detector
JPH11304894A (en) Magnetism detection device, and manufacture thereof
JP2003302428A (en) Substrate mounting type current sensor and current measuring method
JP2010203910A (en) Current sensor and method of manufacturing the same
JP2020030046A (en) Current sensor
EP0464226A1 (en) Magnetoresistance sensor
US11768230B1 (en) Current sensor integrated circuit with a dual gauge lead frame
JP2020020624A (en) Magnetic sensor device
CN220543019U (en) Current sensor
JP4122940B2 (en) Magnetic detector
JP2010048625A (en) Current sensor manufacturing method and current sensor
CN117790452A (en) Lead frame and semiconductor device
JP2016125942A (en) Magnetic sensor device
KR970004405Y1 (en) Magnetic reluctance element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4754985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350