JP2007218525A - System using exhaust heat - Google Patents

System using exhaust heat Download PDF

Info

Publication number
JP2007218525A
JP2007218525A JP2006040957A JP2006040957A JP2007218525A JP 2007218525 A JP2007218525 A JP 2007218525A JP 2006040957 A JP2006040957 A JP 2006040957A JP 2006040957 A JP2006040957 A JP 2006040957A JP 2007218525 A JP2007218525 A JP 2007218525A
Authority
JP
Japan
Prior art keywords
heat
hot water
temperature water
storage tank
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006040957A
Other languages
Japanese (ja)
Other versions
JP4776391B2 (en
Inventor
Toshikazu Takemori
利和 竹森
Yoshinori Hisakado
喜徳 久角
Akira Kishimoto
章 岸本
Keiko Fujioka
恵子 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUNCTIONAL FLUIDS KK
Osaka Gas Co Ltd
Original Assignee
FUNCTIONAL FLUIDS KK
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUNCTIONAL FLUIDS KK, Osaka Gas Co Ltd filed Critical FUNCTIONAL FLUIDS KK
Priority to JP2006040957A priority Critical patent/JP4776391B2/en
Publication of JP2007218525A publication Critical patent/JP2007218525A/en
Application granted granted Critical
Publication of JP4776391B2 publication Critical patent/JP4776391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system using exhaust heat capable of sufficiently using the exhaust heat from an exhaust heat source by a relatively simple facility constitution, and coping with heat shortage in winter and cold heat shortage in summer, for example, even in a facility constitution with a limited exhaust heat quantity. <P>SOLUTION: This system using exhaust heat comprises a low-temperature water supply mechanism 5 for supplying low-temperature water, a high-temperature water recovery heat exchanger 1 recovering exhaust heat from the exhaust heat source generating the exhaust heat and obtaining high-temperature water from the low-temperature water, and a hot water storage tank 2 storing the high-temperature water obtained by the heat exchanger 1. This system further comprises a chemical heat pump, and in a heat storage process for supplying the high-temperature water stored in the hot water storage tank 2 to a reactor 6 and performing heat storage operation by the heat of the high-temperature water, condensation heat recovery operation for recovering condensation heat generated in a condenser/evaporator 7 by the low-temperature water is executed, and hot water obtained by the recovery of condensation heat is stored in the hot water storage tank. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、低温水を供給する低温水供給機構と、排熱を発生する排熱源からの排熱を回収して低温水から高温水を得る高温水回収熱交換器と、この高温水回収熱交換器により得られた高温水を貯湯する貯湯タンクとを備えた排熱利用システムに関する。   The present invention includes a low-temperature water supply mechanism that supplies low-temperature water, a high-temperature water recovery heat exchanger that recovers exhaust heat from an exhaust heat source that generates exhaust heat to obtain high-temperature water from low-temperature water, and the high-temperature water recovery heat The present invention relates to an exhaust heat utilization system including a hot water storage tank for storing hot water obtained by an exchanger.

この種の温冷水循環回路として、特許文献1に開示されている排熱利用システムが提案されている。この排熱利用システムは、排熱源としての固体高分子型燃料電池を備え、この燃料電池からの排熱を成層式貯湯タンクに蓄熱する。貯湯タンクからは、給湯水が逐次、払い出されるとともに、熱交換により他の熱負荷に対しても利用される。
この種の排熱利用システムでは、燃料電池から発生する電力を需要者側で利用可能となるとともに、排熱をも有効に利用することで、所謂、電熱並供給を良好に実現できる。
As this type of hot / cold water circulation circuit, an exhaust heat utilization system disclosed in Patent Document 1 has been proposed. This exhaust heat utilization system includes a polymer electrolyte fuel cell as an exhaust heat source, and stores exhaust heat from the fuel cell in a stratified hot water storage tank. Hot water is sequentially discharged from the hot water storage tank and used for other heat loads by heat exchange.
In this type of exhaust heat utilization system, the electric power generated from the fuel cell can be used on the consumer side, and so-called parallel supply of electric heat can be satisfactorily realized by effectively utilizing the exhaust heat.

一方、無機塩での気体の放出及び吸着と、放出された気体の凝縮及び蒸発を組み合わせて、一定の熱投入に従って蓄熱を行い、熱需要が発生した状況で、前記蓄熱時とは逆の反応を行わせて蓄熱を使用する、所謂、ケミカルヒートポンプが知られている。   On the other hand, by combining the release and adsorption of gas with inorganic salt and the condensation and evaporation of the released gas, heat is stored according to a constant heat input, and in the situation where heat demand is generated, the reaction opposite to that at the time of heat storage is performed. A so-called chemical heat pump that uses heat storage by performing heat treatment is known.

ケミカルヒートポンプは、図1に示すように、受熱に従って気体を発生する化学反応と前記気体の吸着により放熱する逆反応とを繰り返す反応器6と、気体が放熱して凝縮液として凝縮する凝縮反応と、受熱に従って凝縮液が蒸発する蒸発反応とを繰り返す凝縮・蒸発器7とを、仕切り弁8を備えた連通管9で連通接続して構成され、その動作は、反応器6において、外部から熱を受けて前記気体を発生するとともに、発生した前記気体を前記凝縮・蒸発器7に送り、気体が放熱して凝縮する蓄熱動作と、凝縮・蒸発器7において、外部から熱を受けて凝縮液が蒸発するとともに、発生した気体を前記反応器6に送り、逆反応を発生して外部に放熱する放熱動作とを繰り返すように構成されている。   As shown in FIG. 1, the chemical heat pump includes a reactor 6 that repeats a chemical reaction that generates gas according to heat reception and a reverse reaction that dissipates heat by adsorption of the gas, and a condensation reaction in which the gas dissipates heat and condenses as a condensate. The condenser / evaporator 7 that repeats the evaporation reaction in which the condensate evaporates in accordance with the received heat is connected by a communication pipe 9 having a gate valve 8. The gas is generated in response to the heat, and the generated gas is sent to the condenser / evaporator 7 so that the gas releases heat and condenses, and the condenser / evaporator 7 receives heat from the outside to receive the condensed liquid. Is evaporated, and the generated gas is sent to the reactor 6 to generate a reverse reaction and to dissipate heat to the outside.

この種のケミカルヒートポンプを給湯器に使用する例として、特許文献2に開示されている技術がある。この技術では、一対のケミカルヒートポンプを組み合わせることで、熱の連続取り出し、COPを1以上とする目的を達成している。   As an example of using this type of chemical heat pump in a water heater, there is a technique disclosed in Patent Document 2. In this technique, by combining a pair of chemical heat pumps, the purpose of continuously extracting heat and setting the COP to 1 or more is achieved.

特開2005−141913号公報JP-A-2005-141913 特開2005−083657号公報Japanese Patent Laying-Open No. 2005-083657

そこで、排熱源としての燃料電池とケミカルヒートポンプとが組み合わされた排熱利用システムが考えられる。この排熱利用システムでは、例えば、熱需要(給湯需要)のほとんど無い夜間に、発電に伴って発生する排熱を利用して貯湯タンクに高温水を貯湯するとともに、その高温水を使用してケミカルヒートポンプにおける蓄熱を行う蓄熱工程を実行し、この蓄熱工程において蓄熱された熱を、熱需要時に適宜、払い出し、ケミカルヒートポンプの放熱工程において、熱需要に対応するという動作形態が考えられる。   Therefore, an exhaust heat utilization system in which a fuel cell as an exhaust heat source and a chemical heat pump are combined can be considered. In this exhaust heat utilization system, for example, hot water is stored in a hot water storage tank using exhaust heat generated during power generation at night when there is almost no heat demand (hot water supply demand), and the high temperature water is used. A heat storage process for storing heat in the chemical heat pump is executed, and the heat stored in the heat storage process is appropriately discharged at the time of heat demand, and an operation mode of responding to the heat demand in the heat dissipation process of the chemical heat pump is conceivable.

しかしながら、上記のような従来技術の組み合わせでは、連続的な熱回収を行おうとすると、2系列以上のケミカルヒートポンプが必要となり、その連続運転状態では、各ケミカルヒートポンプを構成する反応器及び凝縮・蒸発器の接続状態を、交互に切り換える必要があり、システムが大型化するとともに、設備コストも嵩むという問題がある。   However, in the combination of the conventional techniques as described above, two or more chemical heat pumps are required to perform continuous heat recovery. In the continuous operation state, the reactors and the condensation / evaporation that constitute each chemical heat pump. It is necessary to switch the connection state of the vessel alternately, and there is a problem that the system becomes large and the equipment cost increases.

一方、反応器及び凝縮・蒸発器を備えた単一のケミカルヒートポンプでは、ケミカルヒートポンプが蓄熱動作を行う蓄熱工程において、凝縮・蒸発器からその凝縮熱を外部環境に冷却塔等を利用して捨てる必要があり、ケミカルヒートポンプのCOPは1を越えることができない。   On the other hand, in a single chemical heat pump equipped with a reactor and a condenser / evaporator, in the heat storage process in which the chemical heat pump performs a heat storage operation, the condensation heat is discarded from the condenser / evaporator to the external environment using a cooling tower or the like. And the COP of the chemical heat pump cannot exceed 1.

また、各家庭に例えば固体高分子型燃料電池を備え、この燃料電池のみから給電と排熱利用による給湯等の熱利用(例えば、冬場の暖房需要、夏場の冷房需要に対応する)を図ろうとしても、今日到達している技術では、冬場に熱不足が発生する可能性があり、同時に、夏場の冷房ニーズに充分に対応できない可能性があるという問題がある。   Also, each home will be equipped with, for example, a polymer electrolyte fuel cell, and heat utilization such as hot water supply using electricity and exhaust heat from only this fuel cell (for example, responding to heating demand in winter and cooling demand in summer) Even so, there is a problem that the technology that has reached today may cause a shortage of heat in winter, and at the same time, may not be able to adequately meet the cooling needs in summer.

本発明の目的は、排熱源からの排熱を、比較的簡便な設備構成で連続的に且つ充分に利用することができ、例えば、排熱量が限られている設備構成でも、外部環境の有する熱を回収して、冬場の熱不足、夏場の冷熱不足に対応することが可能となる排熱利用システムを提供する点にある。   An object of the present invention is to allow exhaust heat from an exhaust heat source to be used continuously and sufficiently with a relatively simple equipment configuration. For example, even in an equipment configuration where the amount of exhaust heat is limited, the external environment has The object is to provide an exhaust heat utilization system that can recover heat and cope with the lack of heat in winter and the lack of cold in summer.

上記目的を達成するための本発明に係る、低温水を供給する低温水供給機構と、排熱を発生する排熱源からの排熱を回収して前記低温水から高温水を得る高温水回収熱交換器と、前記高温水回収熱交換器により得られた高温水を貯湯する貯湯タンクとを備えた排熱利用システムの特徴構成は、
受熱に従って気体を発生する化学反応と前記気体の吸着により放熱する逆反応とを繰り返す反応器と、前記気体が放熱して凝縮液として凝縮する凝縮反応と、受熱に従って前記凝縮液が蒸発する蒸発反応とを繰り返す凝縮・蒸発器とを、仕切り弁を備えた連通管で連通接続して構成され、前記反応器において、外部から熱を受けて前記気体を発生するとともに、発生した前記気体を前記凝縮・蒸発器に送り、前記気体が放熱して凝縮する蓄熱動作と、前記凝縮・蒸発器において、外部から熱を受けて前記凝縮液が蒸発するとともに、発生した気体を前記反応器に送り、前記逆反応を発生して外部に放熱する放熱動作との間で、動作切換え可能なケミカルヒートポンプを備え、
前記貯湯タンク内に貯湯された高温水を前記反応器に送り、前記高温水の熱により前記蓄熱動作を行う蓄熱工程において、前記凝縮・蒸発器において発生する凝縮熱を前記低温水で回収する凝縮熱回収動作を実行し、前記凝縮熱の回収により得られた湯水を前記貯湯タンクに貯湯可能に構成されていることにある。
The low temperature water supply mechanism for supplying the low temperature water and the high temperature water recovery heat for recovering the exhaust heat from the exhaust heat source that generates the exhaust heat to obtain the high temperature water from the low temperature water according to the present invention for achieving the above object A feature configuration of the exhaust heat utilization system including an exchanger and a hot water storage tank for storing hot water obtained by the high temperature water recovery heat exchanger is as follows:
A reactor that repeats a chemical reaction that generates gas according to heat reception and a reverse reaction that dissipates heat by adsorption of the gas, a condensation reaction in which the gas releases heat and condenses as a condensate, and an evaporation reaction in which the condensate evaporates according to heat reception And a condenser / evaporator that repeats the above are connected by a communication pipe provided with a partition valve. In the reactor, the gas is generated by receiving heat from the outside, and the generated gas is condensed. A heat storage operation in which the gas is radiated and condensed by being sent to the evaporator, and in the condenser / evaporator, the condensate evaporates by receiving heat from the outside, and the generated gas is sent to the reactor, It is equipped with a chemical heat pump that can switch operation between heat dissipation operation that generates reverse reaction and dissipates heat to the outside,
Condensation that recovers the heat of condensation generated in the condenser / evaporator with the low-temperature water in a heat storage process in which the hot water stored in the hot water storage tank is sent to the reactor and the heat storage operation is performed by the heat of the high-temperature water. A heat recovery operation is executed, and hot water obtained by recovering the condensation heat is configured to be stored in the hot water storage tank.

この構成の排熱利用システムは、排熱源から発生する排熱を高温水回収熱交換器により高温水として熱回収し、これを貯湯タンクに貯める。
一方、システムはケミカルヒートポンプを備え、ケミカルヒートポンプが蓄熱動作を行う蓄熱工程において、排熱回収により得られた高温水が利用される。さらに、この蓄熱工程においては、低温水供給機構から供給される低温水がケミカルヒートポンプを成す、凝縮・蒸発器に送られ、この機器における気体の凝縮により発生する熱を回収する。
従って、これまで通常のケミカルヒートポンプに係る技術では、蓄熱時に外部に棄てられていた熱を貯湯タンク側へ回収することができる。
In the exhaust heat utilization system having this configuration, exhaust heat generated from an exhaust heat source is recovered as high temperature water by a high temperature water recovery heat exchanger and stored in a hot water storage tank.
On the other hand, the system includes a chemical heat pump, and high-temperature water obtained by exhaust heat recovery is used in a heat storage process in which the chemical heat pump performs a heat storage operation. Furthermore, in this heat storage process, the low-temperature water supplied from the low-temperature water supply mechanism is sent to a condenser / evaporator that forms a chemical heat pump, and recovers heat generated by the condensation of gas in this equipment.
Therefore, with the technology related to a normal chemical heat pump, heat that has been discarded to the outside during heat storage can be recovered to the hot water storage tank side.

結果、ケミカルヒートポンプにおいて通常の作動である放熱時の熱需要時の反応器における熱利用に加えて、蓄熱時にも熱回収を行うことが可能となり、連続的な貯湯タンクへの熱回収が可能となる。
さらに、このシステムでは、ケミカルヒートポンプは単一でシステムを構成することが可能であるため、設備が大型化したり、設備コストが嵩む等の問題を回避することができる。
As a result, in addition to using heat in the reactor at the time of heat demand during heat dissipation, which is the normal operation of chemical heat pumps, it is possible to recover heat even during heat storage, enabling continuous heat recovery to hot water storage tanks Become.
Furthermore, in this system, since it is possible to configure the system with a single chemical heat pump, problems such as an increase in equipment size and an increase in equipment cost can be avoided.

このシステム構成において、前記凝縮熱の回収により得られた湯水を前記貯湯タンクに貯湯するに、前記湯水を直接前記貯湯タンクに戻す第一戻り路を備えておくと、凝縮・蒸発器で回収された熱を、貯湯としてタンク内に保っておくことができる。   In this system configuration, in order to store hot water obtained by collecting the condensed heat in the hot water storage tank, if a first return path is provided for returning the hot water directly to the hot water storage tank, the hot water is recovered by the condenser / evaporator. Heat can be kept in the tank as hot water storage.

さらに、前記凝縮熱の回収により得られた湯水を前記貯湯タンクに貯湯するに、前記湯水を前記高温水回収熱交換器を介し昇温して前記貯湯タンクに戻す第二戻り路を備えておくと、凝縮・蒸発器で熱を回収しながら、生成された湯水を、高温水とすることができ、排熱利用システムにおいて、ケミカルヒートポンプの駆動熱源となる高温水を安定的に得ることができ、排熱利用システムとしての機能の安定増大に寄与することができる。   Furthermore, in order to store hot water obtained by collecting the condensed heat in the hot water storage tank, a second return path is provided for raising the temperature of the hot water via the high temperature water recovery heat exchanger and returning it to the hot water storage tank. And while recovering heat with a condenser / evaporator, the generated hot water can be converted to high-temperature water, and in the exhaust heat utilization system, high-temperature water that is the driving heat source of the chemical heat pump can be stably obtained. It can contribute to the stable increase of the function as an exhaust heat utilization system.

以上は、本願に係る排熱利用システムにおける蓄熱工程に関する動作に関する説明であるが、この蓄熱工程と対を成す放熱工程においては、熱負荷に対応するため、以下の動作を行うこととする。
即ち、前記放熱動作を行う放熱工程において、前記低温水を前記反応器に導き、前記反応器で発生する熱を前記低温水で回収し、得られる湯水を前記貯湯タンクに供給する。
このようにすることで、ケミカルヒートポンプの放熱動作で、蓄熱された熱を利用することができる。
The above is description regarding the operation | movement regarding the thermal storage process in the exhaust-heat utilization system which concerns on this application, However, In order to respond | correspond to a heat load in the thermal radiation process which makes this thermal storage process, the following operation | movement shall be performed.
That is, in the heat dissipation process for performing the heat dissipation operation, the low temperature water is guided to the reactor, the heat generated in the reactor is recovered by the low temperature water, and the obtained hot water is supplied to the hot water storage tank.
By doing in this way, the stored heat can be used in the heat dissipation operation of the chemical heat pump.

さて、前記凝縮・蒸発器における、凝縮液の蒸発に伴って発生する冷熱を熱回収可能な冷水循環回路を備え、
この冷水循環回路に、冷熱蓄熱槽、外部環境から熱を奪って外部環境を冷房する冷房ユニット、若しくは、外部環境から与えられる熱を集熱する集熱ユニットのいずれか一つ以上が備えられていることが、好ましい。
Now, in the condenser / evaporator, a chilled water circulation circuit capable of recovering the heat generated by the evaporation of the condensate is provided.
The chilled water circulation circuit is provided with one or more of a cold heat storage tank, a cooling unit that takes heat from the external environment and cools the external environment, or a heat collection unit that collects heat given from the external environment. It is preferable.

凝縮・蒸発器にあっては、ケミカルヒートポンプの放熱動作において、冷熱を外部に付与することができる。そこで、冷水循環回路を備え、その回路に冷熱蓄熱槽を備えておくと、放熱動作において得ることができる冷熱を蓄熱し、後の用に供することができる。
一方、冷房ユニットを備えておくと、例えば、夏季に発生される冷熱を外部環境の冷房用に冷房ユニットで利用できる。集熱ユニットを備えておくと、例えば、冬季に発生される冷熱を外部環境からの熱回収に利用でき、このようにして回収された熱を排熱利用システム側で使用することが可能となる。
In the condenser / evaporator, cold heat can be applied to the outside in the heat dissipation operation of the chemical heat pump. Therefore, if a cold water circulation circuit is provided and a cold heat storage tank is provided in the circuit, the cold heat that can be obtained in the heat radiation operation can be stored for later use.
On the other hand, if a cooling unit is provided, for example, cooling generated in summer can be used in the cooling unit for cooling the external environment. If the heat collection unit is provided, for example, the cold generated in winter can be used for heat recovery from the external environment, and the heat recovered in this way can be used on the exhaust heat utilization system side. .

これまで説明してきた排熱利用システムにおいて、前記低温水供給機構から直接前記貯湯タンクに前記低温水を供給する低温水直接供給路が備えられている構成を採用しておくと、例えば、システムの起動時等、タンクが満水になっていない状況において、貯湯タンク内への給水を直接且つ迅速に行うことが可能となる。   In the exhaust heat utilization system that has been described so far, if a configuration is provided in which a low-temperature water direct supply path that supplies the low-temperature water directly from the low-temperature water supply mechanism to the hot water storage tank is employed, for example, In a situation where the tank is not full, such as at startup, water supply into the hot water storage tank can be performed directly and quickly.

これまで説明してきた貯湯タンクが成層型貯湯タンクであり、前記高温水回収熱交換器で得られる高温水を前記貯湯タンクへ戻す高温水入口に対して、第一戻り路の中間温水受入口が、鉛直方向で下側に設けられている構成を採用することにより、タンク内の成層状態を良好に形成若しくは維持できる。   The hot water storage tank described so far is a stratified hot water storage tank, and an intermediate hot water inlet for the first return path is provided for the high temperature water inlet for returning the high temperature water obtained by the high temperature water recovery heat exchanger to the hot water storage tank. By adopting the configuration provided on the lower side in the vertical direction, the stratified state in the tank can be satisfactorily formed or maintained.

さらに、この貯湯タンクの底部から、前記低温水供給機構にタンク内の湯水を戻す戻り路が設けられており、前記戻り路に、路内を流れる湯水の温度を低下させる冷却装置が備えられている構成を採用すると、貯湯タンクが例えば、満水となって、排熱利用システム内への低温水の供給を実質上受けても意味がない状況において、ケミカルヒートポンプの放熱動作に必要となる低温水を、戻り路を介して冷却装置により冷却した状態で得ることができ、排熱利用システムの蓄熱工程及び対となる放熱工程を円滑に実行できる。   Further, a return path for returning hot water in the tank is provided from the bottom of the hot water storage tank to the low temperature water supply mechanism, and a cooling device for reducing the temperature of the hot water flowing in the path is provided in the return path. If the hot water storage tank is full, for example, it is meaningless to receive the supply of low-temperature water into the exhaust heat utilization system, and the low-temperature water required for the heat dissipation operation of the chemical heat pump Can be obtained in a state cooled by the cooling device via the return path, and the heat storage process and the paired heat dissipation process of the exhaust heat utilization system can be executed smoothly.

さて、前記反応器に熱交換器を備え、
当該熱交換器が、前記蓄熱工程における前記高温水からの受熱と、前記放熱動作を行う放熱工程における前記低温水への放熱とで共用されることが好ましい。
この構成を採用することで、蓄熱工程と放熱工程とを、反応器内に設けられた同一の熱交換器を使用して実行することができることとなり、設備構成が簡単になるとともに、設備コストも低減できる。
Now, the reactor is equipped with a heat exchanger,
It is preferable that the heat exchanger is commonly used for receiving heat from the high temperature water in the heat storage step and radiating heat to the low temperature water in the heat radiating step performing the heat radiating operation.
By adopting this configuration, the heat storage step and the heat release step can be performed using the same heat exchanger provided in the reactor, which simplifies the equipment configuration and reduces the equipment cost. Can be reduced.

一方、凝縮・蒸発器に関しては、同じく、凝縮・蒸発器に熱交換器を備え、
当該熱交換器が、前記蓄熱工程における前記低温水への授熱と、前記放熱動作を行う放熱工程における冷水循環回路内を流れる冷水からの受熱とで共用されることが好ましい。
この構成の場合も、蓄熱工程と放熱工程とを、凝縮・蒸発器内に設けられた同一の熱交換器を使用して実行することができることとなり、設備構成が簡単になるとともに、設備コストも低減できる。
On the other hand, regarding the condenser / evaporator, the condenser / evaporator is equipped with a heat exchanger,
It is preferable that the heat exchanger is shared by heat transfer to the low-temperature water in the heat storage process and heat reception from the cold water flowing in the cold water circulation circuit in the heat dissipation process in which the heat dissipation operation is performed.
Even in this configuration, the heat storage process and the heat release process can be performed using the same heat exchanger provided in the condenser / evaporator, which simplifies the equipment configuration and reduces the equipment cost. Can be reduced.

本願に係る排熱利用システム100に関して図1に基づいて説明する。
図1に示す排熱利用システム100は、排熱源としての固体酸化物形燃料電池SOFCと、この固体酸化物形燃料電池SOFCからの排熱を回収する高温水回収熱交換器1と、この高温水回収熱交換器1により得られた高温水を貯湯する貯湯タンク2とを備えて構成されている。この貯湯タンク2は、貯湯水を払出すことで給湯の用に供されるとともに、暖房等の熱負荷循環回路4内を流れる循環水との熱交換により、暖房等の用に供される。
一方、この排熱利用システム100には、水道水等の低温水を供給する低温水供給機構5が備えられている。
The exhaust heat utilization system 100 according to the present application will be described with reference to FIG.
The exhaust heat utilization system 100 shown in FIG. 1 includes a solid oxide fuel cell SOFC as an exhaust heat source, a high-temperature water recovery heat exchanger 1 that recovers exhaust heat from the solid oxide fuel cell SOFC, and the high temperature A hot water storage tank 2 for storing hot water obtained by the water recovery heat exchanger 1 is provided. The hot water storage tank 2 is used for hot water supply by discharging hot water, and is also used for heating etc. by exchanging heat with circulating water flowing in the heat load circulation circuit 4 such as heating.
On the other hand, the exhaust heat utilization system 100 includes a low-temperature water supply mechanism 5 that supplies low-temperature water such as tap water.

この例の場合、固体酸化物形燃料電池SOFCからの排熱は230℃程度であり、前記高温水回収熱交換器1より得られる高温水の温度は95〜100℃程度である。熱回収後の温度は40℃程度となる。   In this example, the exhaust heat from the solid oxide fuel cell SOFC is about 230 ° C., and the temperature of the high-temperature water obtained from the high-temperature water recovery heat exchanger 1 is about 95 to 100 ° C. The temperature after heat recovery is about 40 ° C.

図1に示すように、排熱利用システム100には、ケミカルヒートポンプが備えられており、前記低温水供給機構5、ケミカルヒートポンプに備えられる反応器6及び凝縮・蒸発器7、高温水回収熱交換器1、貯湯タンク2との間に、所定の管路網を備えることで、下記する各動作を実行可能に構成されている。図上Pはポンプを示す。   As shown in FIG. 1, the exhaust heat utilization system 100 includes a chemical heat pump. The low-temperature water supply mechanism 5, the reactor 6 and the condenser / evaporator 7 included in the chemical heat pump, high-temperature water recovery heat exchange. By providing a predetermined pipeline network between the container 1 and the hot water storage tank 2, each operation described below can be executed. P on the figure indicates a pump.

ケミカルヒートポンプは、これまで説明してきた構成に従ったものであり、受熱に従って気体を発生する化学反応と気体の吸着により放熱する逆反応とを繰り返す反応器6と、気体が放熱して凝縮液として凝縮する凝縮反応と、受熱に従って前記凝縮液が蒸発する蒸発反応とを繰り返す凝縮・蒸発器7とを、仕切り弁8を備えた連通管9で連通接続して構成されている。   The chemical heat pump is in accordance with the configuration described so far, and the reactor 6 that repeats the chemical reaction that generates gas according to heat reception and the reverse reaction that dissipates heat by adsorption of the gas, and the gas releases heat as a condensed liquid. A condenser / evaporator 7 that repeats a condensation reaction to condense and an evaporation reaction in which the condensate evaporates according to heat reception is connected by a communication pipe 9 having a partition valve 8.

前記反応器6内には、塩化カルシウム水和物等の反応材が収納されており、この反応材は、受熱に従って気体としての水蒸気を発生し、水蒸気を吸着することで放熱する。
この化学反応及び逆反応を可能とすべく、前記反応器6内には、反応器外部からの媒体が内部を流れる熱交換器6hcが設けられている。この媒体とは、本例では、高温水或は低温水である。
In the reactor 6, a reaction material such as calcium chloride hydrate is accommodated, and this reaction material generates water vapor as a gas according to heat reception and dissipates heat by adsorbing the water vapor.
In order to enable this chemical reaction and reverse reaction, a heat exchanger 6hc in which a medium from the outside of the reactor flows is provided in the reactor 6. In this example, this medium is high temperature water or low temperature water.

前記凝縮・蒸発器7内には、この器内に導かれる水蒸気の凝縮、または凝縮水の蒸発を可能とすべく、凝縮・蒸発器外部からの媒体が内部を流れる熱交換器7hcが設けられている。この媒体とは、本例では、低温水或は冷水循環回路10内を流れる冷水である。   The condenser / evaporator 7 is provided with a heat exchanger 7hc through which a medium from the outside of the condenser / evaporator flows to allow condensation of water vapor introduced into the condenser or evaporation of condensed water. ing. In this example, this medium is low-temperature water or cold water flowing in the cold water circulation circuit 10.

ケミカルヒートポンプは、以下の蓄熱動作と放熱動作を繰り返す。
蓄熱動作では、反応器6において、高温水が熱交換器6hc内を流れることにより、外部から熱を受けて水蒸気を発生するとともに、発生した水蒸気が凝縮・蒸発器7に移流し、凝縮・蒸発器7において、移流してきた水蒸気が凝縮し、熱交換器7hcを介して低温水に放熱する。この蓄熱動作では、図2に示されるように、反応器6内は70℃程度となり、蓄熱・蒸発器7内は30℃程度となる。
The chemical heat pump repeats the following heat storage operation and heat dissipation operation.
In the heat storage operation, high-temperature water flows in the heat exchanger 6hc in the reactor 6 to generate water vapor by receiving heat from the outside, and the generated water vapor is transferred to the condenser / evaporator 7 for condensation / evaporation. In the vessel 7, the advected water vapor is condensed and dissipated to the low temperature water via the heat exchanger 7hc. In this heat storage operation, as shown in FIG. 2, the inside of the reactor 6 is about 70 ° C., and the inside of the heat storage / evaporator 7 is about 30 ° C.

放熱動作では、凝縮・蒸発器7において、冷水が熱交換器7hc内を流れることにより、外部から熱を受けて凝縮液である水が蒸発するとともに、発生した水蒸気が反応器6に移流する。そして、前記逆反応である、移流してきた水蒸気の吸着反応が発生し、この逆反応により発生する熱を熱交換器6hc内を流れる低温水に与える(放熱する)。この放熱動作では、図3、図4に示すように、反応器6内は30℃程度となり、蓄熱・蒸発器7内は10℃程度となる。   In the heat radiating operation, in the condenser / evaporator 7, cold water flows through the heat exchanger 7 hc, so that water as a condensate is evaporated by receiving heat from the outside, and the generated water vapor is transferred to the reactor 6. Then, an adsorbing reaction of the transferred water vapor, which is the reverse reaction, occurs, and heat generated by the reverse reaction is given to the low-temperature water flowing in the heat exchanger 6hc (dissipates heat). In this heat radiation operation, as shown in FIGS. 3 and 4, the inside of the reactor 6 is about 30 ° C., and the inside of the heat storage / evaporator 7 is about 10 ° C.

高温水回収熱交換器1は、前記固体酸化物形燃料電池SOFCから交流型の熱交で、その排熱を熱回収可能な熱交換器として構成されており、その低温部1Lには切替弁Dを介して加温された低温水が導入可能に構成されている。一方、低温部1Lと高温部1Hとの間に設けられる中温部1Mには、切替弁Jを介して温度低下した高温水が導入可能に構成されている。
この高温水回収熱交換器1により発生される高温水は、前記貯湯タンク2の最上部(天面部位)に設けられた高温水入口2aより、貯湯タンク2内に供給されるように構成されている。
The high-temperature water recovery heat exchanger 1 is configured as a heat exchanger capable of recovering the exhaust heat from the solid oxide fuel cell SOFC by AC-type heat exchange. Low temperature water heated via D can be introduced. On the other hand, the intermediate temperature part 1M provided between the low temperature part 1L and the high temperature part 1H is configured such that high temperature water whose temperature has been reduced can be introduced through the switching valve J.
The high temperature water generated by the high temperature water recovery heat exchanger 1 is configured to be supplied into the hot water storage tank 2 from a high temperature water inlet 2a provided at the top (top surface portion) of the hot water storage tank 2. ing.

貯湯タンク2の最上部近傍で、高温水入口2aより下側の部位に貯湯タンク2に貯湯される高温水を払出す高温水払出口2bが設けられており、この高温水払出口2bから高温水をケミカルヒートポンプ側に送ることが可能とされている。
貯湯タンク2のタンク中間部位に、ケミカルヒートポンプから切替弁Dを介して送られてくる湯水を受入れる中間温水受入口2cが設けられている。
貯湯タンク2には、低温水供給機構5から直接低温水を供給するための低温水直接供給路11が備えられている。この機構5から供給される低温水の温度は5〜25℃である。
一方、この貯湯タンク2の底部から、低温水供給機構5にタンク内の貯湯水を戻す戻り路12が設けられており、この戻り路12に、路12内を流れる湯水の温度を低下させる冷却装置13が備えられている。温度は、先に説明した低温水の温度域まで低下させる。
A hot water outlet 2b for discharging hot water stored in the hot water tank 2 is provided near the top of the hot water tank 2 and below the hot water inlet 2a. It is possible to send water to the chemical heat pump side.
An intermediate hot water receiving port 2 c that receives hot water sent from the chemical heat pump via the switching valve D is provided at an intermediate portion of the hot water storage tank 2.
The hot water storage tank 2 is provided with a low-temperature water direct supply path 11 for supplying low-temperature water directly from the low-temperature water supply mechanism 5. The temperature of the low temperature water supplied from the mechanism 5 is 5 to 25 ° C.
On the other hand, a return path 12 for returning the hot water in the tank to the low temperature water supply mechanism 5 is provided from the bottom of the hot water storage tank 2, and cooling that lowers the temperature of the hot water flowing in the path 12 is provided in the return path 12. A device 13 is provided. The temperature is lowered to the temperature range of the low-temperature water described above.

前記凝縮・蒸発器7内に設けられている熱交換器7hc内には、前記低温水供給機構5からの低温水が直接導入可能にされているとともに、この熱交換器7hcには、凝縮・蒸発器7における、凝縮液の生成若しくは凝縮液の蒸発に伴って発生する熱を熱回収可能な冷水循環回路10が連結できるように構成されている。この冷水循環回路10には、冷熱蓄熱槽14が配設されているととともに、この冷熱蓄熱槽14と直列に、外部環境から熱を奪って外部環境を冷房する冷房ユニット15と、外部環境から与えられる熱を集熱する集熱ユニットとしての集熱パネル16とが並列に備えられている。   In the heat exchanger 7hc provided in the condenser / evaporator 7, low-temperature water from the low-temperature water supply mechanism 5 can be directly introduced, and in the heat exchanger 7hc, condensation / The evaporator 7 is configured to be connected to a chilled water circulation circuit 10 capable of recovering heat generated by the generation of condensate or evaporation of the condensate. The cold water circulation circuit 10 is provided with a cold heat storage tank 14, a cooling unit 15 for taking heat from the external environment and cooling the external environment in series with the cold heat storage tank 14, and an external environment A heat collecting panel 16 serving as a heat collecting unit for collecting applied heat is provided in parallel.

蓄熱工程に際しては、この熱交換器7hc内に低温水供給機構5からの低温水を流し、水蒸気の凝縮に伴って発生する熱を回収する。
一方、放熱工程においては、前記冷水循環回路10の一部が熱交換器7hc内の流路からなるものとし、凝縮・蒸発器7で冷却された冷水を利用して、冷熱蓄熱槽14で冷熱を蓄熱する他、夏季には冷房ユニット15内に冷水を循環させ、外部環境の冷房の用に供することができる。一方、冬季には、集熱パネル16内に冷水を循環させ、集熱パネル16で外部環境から熱回収を行うとともに、熱を凝縮・蒸発器7における蒸発の用に供し、ケミカルヒートポンプにおいて、蓄熱動作時に蓄熱された熱に加えて、外部環境から回収される熱をも反応器6での湯水の生成に利用することができる。
In the heat storage process, low-temperature water from the low-temperature water supply mechanism 5 is allowed to flow into the heat exchanger 7hc, and heat generated with the condensation of water vapor is recovered.
On the other hand, in the heat dissipation process, a part of the cold water circulation circuit 10 is composed of a flow path in the heat exchanger 7hc, and cold water cooled by the condenser / evaporator 7 is used to cool the cold water in the cold heat storage tank 14. In addition to storing heat, in the summer, cold water can be circulated in the cooling unit 15 and used for cooling the external environment. On the other hand, in winter, cold water is circulated in the heat collection panel 16, heat is recovered from the external environment by the heat collection panel 16, and heat is used for evaporation in the condenser / evaporator 7. In addition to the heat stored during operation, heat recovered from the external environment can also be used for the production of hot water in the reactor 6.

以上が本願に係る排熱利用システム100を構成する各機器の構成及び作動の説明であるが、図1に示されるように、このシステム100には、複数の切替弁A〜Jが備えられている。以下、各切替弁A〜Jの働きに関して順に説明する。   The above is the description of the configuration and operation of each device constituting the exhaust heat utilization system 100 according to the present application. As shown in FIG. 1, the system 100 includes a plurality of switching valves A to J. Yes. Hereinafter, the operation of each switching valve A to J will be described in order.

切替弁Aは、低温水供給機構5の終端部位に設けられており、送られてきた低温水を、反応器6内に設けられている熱交換器6hcへ送る流路入口(この部位には切替弁Bが設けられている)と、凝縮・蒸発器7内に設けられている熱交換器7hcへ送る流路入口(この部位には切替弁Eが設けられている)との間で択一的に切替える。   The switching valve A is provided at the end portion of the low-temperature water supply mechanism 5, and the flow path inlet (this portion includes the low-temperature water sent to the heat exchanger 6 hc provided in the reactor 6 is provided. The switching valve B is provided) and the flow path inlet (the switching valve E is provided in this part) to be sent to the heat exchanger 7hc provided in the condenser / evaporator 7. Switch to one.

切替弁Bは、反応器6内に設けられている熱交換器6hcへの流路入口に設けられており、前記器切替弁Aから送られてくる低温水を熱交換器6hc内に導くか、後述する切替弁Iから送られてくる貯湯タンク2内の湯水(通常は高温水である)を熱交換器6hc内に導くかの切替を行う。   The switching valve B is provided at the flow path inlet to the heat exchanger 6hc provided in the reactor 6, and is the low temperature water sent from the reactor switching valve A guided to the heat exchanger 6hc? The hot water (usually high-temperature water) in the hot water storage tank 2 sent from the switching valve I, which will be described later, is switched between being guided into the heat exchanger 6hc.

切替弁Cは、反応器6内に備えられる熱交換器6hcから熱交換をして戻ってくる湯水を、切替弁Dに送るか、切替弁Jに送るかの切替を行う。本願では、この切替弁Dから中間温水受入口2cに到る流路を第一戻り路と呼び、高温水回収熱交換器1を介し、貯湯タンク2に到る流路を第二戻り路と呼ぶ。   The switching valve C performs switching between sending hot water returned from the heat exchanger 6hc provided in the reactor 6 through heat exchange to the switching valve D or to the switching valve J. In the present application, the flow path from the switching valve D to the intermediate hot water inlet 2c is referred to as a first return path, and the flow path to the hot water storage tank 2 via the high temperature water recovery heat exchanger 1 is referred to as a second return path. Call.

切替弁Dは、切替弁C若しくは切替弁Fを介して切替弁Dに至る温水を、貯湯タンク2側の中間温水受入口2cに送るか、高温水回収熱交換器1に送るかの調整を行う。即ち、切替弁Dは、入り側に関しては択一的な選択を行う構成とされているが、出側に関して、その送り出しに関して、送り出し側への流量を送り出し側両者間で調整可能に構成されている。   The switching valve D adjusts whether the hot water reaching the switching valve D via the switching valve C or the switching valve F is sent to the intermediate hot water inlet 2c on the hot water storage tank 2 side or to the hot water recovery heat exchanger 1. Do. That is, the switching valve D is configured to perform an alternative selection on the entry side, but on the delivery side, regarding the delivery, the flow rate to the delivery side can be adjusted between the delivery side. Yes.

切替弁Eは、凝縮・蒸発器7内に設けられている熱交換器7hcの流路入口に設けられており、切替弁Aから送られてくる低温水を熱交換器7hc内に送るか、冷水循環回路10内を流れる冷水を熱交換器7hc内に送るかの切替を行う。   The switching valve E is provided at the flow path inlet of the heat exchanger 7hc provided in the condenser / evaporator 7, and the low temperature water sent from the switching valve A is sent into the heat exchanger 7hc, Switching between whether the cold water flowing in the cold water circulation circuit 10 is sent into the heat exchanger 7hc is performed.

切替弁Fは、切替弁Eに対して対となるものであり、実質的には、凝縮・蒸発器7内に設けられている熱交換器7hcの流路出口に設けられており、熱交換器7hcを経て熱交換を終えて送られてくる昇温された低温水を切替弁D側に送るか、熱交換により冷却された冷水を冷水循環回路10内に戻すかの切替を行う。   The switching valve F is a pair with the switching valve E, and is substantially provided at the outlet of the heat exchanger 7hc provided in the condenser / evaporator 7 to exchange heat. Switching is made between sending the low-temperature water, which has been heated after finishing the heat exchange through the vessel 7hc, to the switching valve D side or returning the chilled water cooled by the heat exchange into the cold water circulation circuit 10.

切替弁G及びHは、図1に示すように、冷水循環回路10内を流れる冷水を、冷房ユニット15側を流すか、集熱パネル16側を流すかの切替を行う。   As shown in FIG. 1, the switching valves G and H switch whether the cold water flowing in the cold water circulation circuit 10 flows through the cooling unit 15 side or the heat collection panel 16 side.

切替弁I及びJは、貯湯タンク2と高温水回収熱交換器1との間に設けられる高温水循環回路17の往路17a側に設けられており、この往路17a内を流れる湯水を、反応器6内に設けられる熱交換器6hcに導き、反応器6に授熱するとともに、さらに高温水循環回路17に戻し、排熱源SOFCからの排熱により受熱する動作を行うか否かの切替を行う。高温水が十分に貯湯タンク2に貯湯されている状態にあっては、切替弁Iから反応器6の熱交換器6hcに湯水を送る場合、その温度は、往路で95℃、復路で85℃程度となる。   The switching valves I and J are provided on the outward path 17a side of the high-temperature water circulation circuit 17 provided between the hot water storage tank 2 and the high-temperature water recovery heat exchanger 1, and hot water flowing in the outward path 17a is supplied to the reactor 6 as a result. It is led to the heat exchanger 6hc provided in the interior to transfer heat to the reactor 6, and further returned to the high-temperature water circulation circuit 17 to switch whether or not to perform an operation of receiving heat by exhaust heat from the exhaust heat source SOFC. When hot water is sufficiently stored in the hot water storage tank 2, when hot water is sent from the switching valve I to the heat exchanger 6 hc of the reactor 6, the temperature is 95 ° C. in the forward path and 85 ° C. in the return path. It will be about.

以上が本願に係る排熱利用システム100の構成であるが、以下、ケミカルヒートポンプの動作状態を基礎として、このシステム100の動作工程を説明する。
蓄熱工程
図2は、排熱利用システム100においてケミカルヒートポンプが蓄熱動作をする蓄熱工程を示す図面であり、湯水が流れている流路を実線で、流れていない流路を破線で示しており、切替弁において白抜きは「連通状態」を、黒塗りつぶしは「非連通状態」を示している(以下、図3、4で同じ)。
この蓄熱工程は、夏季、冬季共通して、例えば、夜間に実行される。本願に係る排熱利用システム100では、この蓄熱工程でも、凝縮・蒸発器で回収できる凝縮熱を低温水で回収する。
The above is the configuration of the exhaust heat utilization system 100 according to the present application. Hereinafter, the operation process of the system 100 will be described based on the operation state of the chemical heat pump.
Heat storage process FIG. 2 is a drawing showing a heat storage process in which the chemical heat pump performs a heat storage operation in the exhaust heat utilization system 100, wherein a flow path in which hot water flows is shown by a solid line, and a non-flowing flow path is shown by a broken line, In the switching valve, white indicates a “communication state” and solid black indicates a “non-communication state” (hereinafter the same in FIGS. 3 and 4).
This heat storage process is performed in the summer and winter, for example, at night. In the exhaust heat utilization system 100 according to the present application, the condensed heat that can be recovered by the condenser / evaporator is recovered by low-temperature water even in this heat storage process.

低温水供給機構5から供給される低温水は、切替弁A、Eを経て凝縮・蒸発器7内の熱交換器7hcに導かれ、器7内で発生する水蒸気の凝縮により発生する熱を回収する(即ち、昇温される)。昇温された低温水は、切替弁Fを経て切替弁Dまで送られ、一部がそのまま貯湯タンク2に送られ、一部が高温水回収熱交換器1に送られる。この時の高温水回収熱交換器1に送られる量は、高温水循環回路17側を流れる湯水の量により調整される。   The low-temperature water supplied from the low-temperature water supply mechanism 5 is guided to the heat exchanger 7hc in the condenser / evaporator 7 through the switching valves A and E, and recovers heat generated by condensation of water vapor generated in the container 7. (Ie, the temperature is raised). The low-temperature water whose temperature has been raised is sent to the switching valve D through the switching valve F, partly sent to the hot water storage tank 2 as it is, and partly sent to the high-temperature water recovery heat exchanger 1. The amount sent to the high temperature water recovery heat exchanger 1 at this time is adjusted by the amount of hot water flowing through the high temperature water circulation circuit 17 side.

貯湯タンク2からは、高温水循環回路17を通じて貯湯タンク2の天面近傍にある湯水(通常、高温水である)が払い出される。この高温水は、切替弁I、切替弁Bを介して、反応器6内の熱交換器6hcに導入され、反応器6内で、その蓄熱動作を発生する。
反応に必要な熱を授けた湯水は、切替弁C,切替弁Jを介して高温水回収熱交換器1に送られて排熱回収を行った後、高温水循環回路17の復路17bを介して貯湯タンク2に戻される。
Hot water in the vicinity of the top surface of the hot water storage tank 2 (usually high temperature water) is discharged from the hot water storage tank 2 through the high temperature water circulation circuit 17. This high-temperature water is introduced into the heat exchanger 6hc in the reactor 6 via the switching valve I and the switching valve B, and the heat storage operation is generated in the reactor 6.
The hot water that has given the heat necessary for the reaction is sent to the high-temperature water recovery heat exchanger 1 via the switching valve C and the switching valve J to recover the exhaust heat, and then is returned via the return path 17b of the high-temperature water circulation circuit 17. It is returned to the hot water storage tank 2.

この運転状態では、反応器6内では受熱により水蒸気が発生され、水蒸気が凝縮・蒸発器7に送られて、凝縮し熱交換器7hcを介して凝縮熱が低温水に回収される。結果、反応器6における水蒸気発生を伴った化学反応により蓄熱が成されるとともに、低温水により凝縮熱が回収され、貯湯タンク2側に戻されて、熱の有効利用が図られる。結果、COPは1以上とすることができる。   In this operation state, water vapor is generated in the reactor 6 by receiving heat, the water vapor is sent to the condenser / evaporator 7, condensed, and condensed heat is recovered into the low-temperature water via the heat exchanger 7 hc. As a result, heat is stored by the chemical reaction accompanied by the generation of water vapor in the reactor 6, and the heat of condensation is recovered by the low-temperature water and returned to the hot water storage tank 2 side, so that the heat can be effectively used. As a result, the COP can be 1 or more.

放熱工程
図3は、夏季に、排熱利用システム100においてケミカルヒートポンプが放熱動作をする放熱工程を示す図面であり、図4は、冬季に、排熱利用システム100においてケミカルヒートポンプが放熱動作をする放熱工程を示す図面である。
この放熱工程は、例えば、夏季には、冷房ユニット15を備えた部屋に冷房需要がある時間帯に行われる他、冷熱蓄熱槽14での冷熱の蓄熱が必要とされる夏季の朝方等に行われる。冬季には、昼間にあって、太陽光からのエネルギーを集熱パネル16を使用して回収することができる等の状況で行われる。
本願に係る排熱利用システム100では、この放熱工程で、外部環境から凝縮・蒸発器7を介して熱を回収し、その回収熱をも反応器6側の熱交換器6hcに送られてくる低温水で回収することができる。
Heat Dissipation Process FIG. 3 is a drawing showing a heat dissipation process in which the chemical heat pump performs a heat dissipation operation in the exhaust heat utilization system 100 in the summer, and FIG. 4 shows a heat dissipation operation in the exhaust heat utilization system 100 in the winter. It is drawing which shows a thermal radiation process.
For example, in the summer, this heat radiation process is performed during a time when there is a cooling demand in the room equipped with the cooling unit 15, and in the summer in the summer when the cold heat storage tank 14 is required to store heat. Is called. In the winter, it is performed in the daytime and in a situation where energy from sunlight can be recovered using the heat collecting panel 16.
In the exhaust heat utilization system 100 according to the present application, heat is recovered from the external environment via the condenser / evaporator 7 in this heat dissipation step, and the recovered heat is also sent to the heat exchanger 6hc on the reactor 6 side. It can be recovered with cold water.

低温水供給機構5から供給される低温水は、切替弁A、Bを経て反応器6内の熱交換器6hcに導かれ、器6hc内で水蒸気の吸着により発生する熱を回収する(即ち、昇温される)。昇温された低温水は、切替弁Dまで送られ、一部がそのまま貯湯タンク2に送られ、一部が高温水回収熱交換器1に送られる。この時の高温水回収熱交換器1に送られる量は、この高温水熱交換器1における排熱回収を良好に行うべく高温水循環回路17側を流れる湯水の量により、切替弁Dの開度で調整される。   The low-temperature water supplied from the low-temperature water supply mechanism 5 is led to the heat exchanger 6hc in the reactor 6 through the switching valves A and B, and recovers the heat generated by the adsorption of water vapor in the vessel 6hc (that is, Temperature rise). The low-temperature water whose temperature has been raised is sent to the switching valve D, a part thereof is sent as it is to the hot water storage tank 2, and a part is sent to the high-temperature water recovery heat exchanger 1. The amount sent to the high-temperature water recovery heat exchanger 1 at this time depends on the amount of hot water flowing through the high-temperature water circulation circuit 17 so that the exhaust heat recovery in the high-temperature water heat exchanger 1 can be performed satisfactorily. It is adjusted with.

貯湯タンク2からは、高温水循環回路17を通じて貯湯タンク2の天面近傍にある湯水(通常、高温水である)が、払い出される。この高温水は、切替弁I、切替弁Jを介して、高温水循環回路17をそのまま循環し、排熱回収動作を実行する。   Hot water in the vicinity of the top surface of the hot water tank 2 (usually hot water) is discharged from the hot water tank 2 through the high temperature water circulation circuit 17. This high-temperature water circulates through the high-temperature water circulation circuit 17 as it is through the switching valve I and the switching valve J, and executes the exhaust heat recovery operation.

貯湯タンク2が満水になっている状況では、低温水供給機構5からの低温水の供給は行われず、貯湯タンク2の底面から貯湯水を抜くとともに、ケミカルヒートポンプの動作を確保すべく反応器6での熱回収を可能とするため、冷却装置13にて抜き出した湯水の温度を反応器6で逆反応を起こすことができる温度以下にして、反応器6側に送る。貯湯タンク2内の湯水が、実質的に全量高温水となっている状況では、ケミカルヒートポンプでの放熱動作を確保すべく、冷却装置13を十分に作動させる必要が生じる。   In a situation where the hot water storage tank 2 is full, low temperature water is not supplied from the low temperature water supply mechanism 5, the hot water is removed from the bottom surface of the hot water storage tank 2, and the reactor 6 is used to ensure the operation of the chemical heat pump. Therefore, the temperature of the hot water extracted by the cooling device 13 is set below the temperature at which the reverse reaction can be caused in the reactor 6 and sent to the reactor 6 side. In a situation where the hot water in the hot water storage tank 2 is substantially entirely hot water, it is necessary to sufficiently operate the cooling device 13 in order to ensure the heat radiation operation by the chemical heat pump.

一方、凝縮・蒸発器7に関しては、切替弁E、切替弁Fの切替選択により、冷水循環回路10が形成される。この回路10内を冷水は、凝縮・蒸発器7内の熱交換器7hcから冷熱蓄熱槽14及び、冷房ユニット15若しくは集熱パネル16のいずれかにわたって循環する。夏季には、切替弁G,切替弁Hの選択により、冷水が冷房ユニット15内を流れる。冬季には、切替弁G,切替弁Hの選択により、冷水が集熱パネル16内を流れる。   On the other hand, with regard to the condenser / evaporator 7, a cold water circulation circuit 10 is formed by switching selection of the switching valve E and the switching valve F. In this circuit 10, the cold water circulates from the heat exchanger 7 hc in the condenser / evaporator 7 to the cold heat storage tank 14 and either the cooling unit 15 or the heat collection panel 16. In summer, cold water flows through the cooling unit 15 by selecting the switching valve G and the switching valve H. In winter, cold water flows through the heat collecting panel 16 by selecting the switching valve G and the switching valve H.

この運転状態では、冷房ユニット15或は集熱パネル16により回収された熱により、凝縮・蒸発器7内に存する凝縮水の蒸発が促され、水蒸気が反応器6側に移流して、反応器6内で、反応材に吸着する(逆反応を起こす)。この逆反応により発生する熱は、熱交換器6hc内を流れる低温の湯水(低温水を含む)に回収され、貯湯タンク2での貯湯の用に供される。
結果、夏季の冷房需要に対応できるとともに、冬季の熱不足に対しても、外部環境から汲み上げた熱を利用することが可能となる。
In this operation state, the heat recovered by the cooling unit 15 or the heat collecting panel 16 promotes the evaporation of the condensed water existing in the condenser / evaporator 7, and the water vapor is transferred to the reactor 6 side, and the reactor 6 adsorbs to the reaction material (causes a reverse reaction). The heat generated by the reverse reaction is recovered by low-temperature hot water (including low-temperature water) flowing in the heat exchanger 6hc and used for hot water storage in the hot water storage tank 2.
As a result, it is possible to meet the cooling demand in summer and to use the heat pumped up from the external environment for the shortage of heat in winter.

〔別実施形態〕
(1) 上記の実施の形態にあっては、ケミカルヒートポンプに使用する反応材の基材としては、塩化カルシウムの外、塩化マンガン、塩化マグネシウム、塩化ニッケル、炭酸ナトリウム、硫酸カルシウムから選択される一種以上を挙げることができる。
塩化マンガンに対しては、水、アンモニアが本願にいう化学反応を起こす気体となる。塩化マグネシウムに対しては、水、メタノール、アンモニアが本願にいう化学反応を起こす気体となる。塩化ニッケルに対しては、アンモニアが本願にいう化学反応を起こす気体となる。炭酸ナトリウムに対しては、水が本願にいう化学反応を起こす気体となる。硫酸カルシウムに対しては、水が本願にいう化学反応を起こす気体となる。
(2) 上記の実施の形態においては、排熱源として固体酸化物形燃料電池(SOFC)の例を示したが、排熱が発生するものであれば如何なるものでもよい。例えば、固体酸化物形燃料電池(SOFC)の外、固体高分子形燃料電池等の燃料電池、ガスエンジン、ガスタービン等も使用できる。
(3) 上記の実施の形態にあっては、低温水の供給源としては、水道水の例を示したが、この排熱回収システムでは、蓄熱動作における凝縮・蒸発器内での凝縮熱回収、放熱動作における反応器内での逆反応の発生に支障がない温度の水であればよい。
従って、別途、排熱回収等により予熱された予熱水も使用可能である。
(4) 冷水循環回路に備えれる機器は、その一種以上が備えられ、冷熱消費が回路で発生する構成であればよい。
(5) 切替弁Dにおいて、直接貯湯タンクに戻す戻り路(第一戻り路)と、高温水回収熱交換器を介して貯湯タンクに戻す戻り路(第二戻り路)との両方を備える構成としたが、切替弁Dに送られてくる湯水の全てをいずれか一方の戻り路を介して、貯湯タンクに戻す構成を採用してもよい。
[Another embodiment]
(1) In the above embodiment, the reaction material used in the chemical heat pump is selected from manganese chloride, magnesium chloride, nickel chloride, sodium carbonate, and calcium sulfate in addition to calcium chloride. The above can be mentioned.
For manganese chloride, water and ammonia are gases that cause the chemical reaction referred to herein. For magnesium chloride, water, methanol, and ammonia are gases that cause the chemical reaction referred to herein. For nickel chloride, ammonia is a gas that causes the chemical reaction referred to in the present application. For sodium carbonate, water is a gas that causes the chemical reaction referred to in the present application. For calcium sulfate, water is a gas that causes the chemical reaction referred to in the present application.
(2) In the above embodiment, the example of the solid oxide fuel cell (SOFC) is shown as the exhaust heat source. However, any type may be used as long as exhaust heat is generated. For example, in addition to a solid oxide fuel cell (SOFC), a fuel cell such as a solid polymer fuel cell, a gas engine, a gas turbine, or the like can be used.
(3) In the above embodiment, an example of tap water is shown as the supply source of low-temperature water, but in this exhaust heat recovery system, condensation heat recovery in the condenser / evaporator in the heat storage operation is performed. Water having a temperature that does not hinder the occurrence of a reverse reaction in the reactor in the heat radiation operation may be used.
Accordingly, preheated water preheated by exhaust heat recovery or the like can be used separately.
(4) The equipment provided in the chilled water circulation circuit may be provided with one or more of them, and may be configured to generate cold consumption in the circuit.
(5) The switching valve D includes a return path (first return path) that directly returns to the hot water storage tank and a return path (second return path) that returns to the hot water storage tank via the high-temperature water recovery heat exchanger. However, a configuration in which all of the hot water sent to the switching valve D is returned to the hot water storage tank through one of the return paths may be adopted.

排熱源からの排熱を、比較的簡便な設備構成で充分に利用することができ、例えば、排熱の量が限れており、冬場の熱不足、夏場の冷熱不足にも対応することが可能となる排熱利用システムを提供することができた。   The exhaust heat from the exhaust heat source can be fully utilized with a relatively simple equipment configuration, for example, the amount of exhaust heat is limited, and it is possible to cope with the lack of heat in winter and the lack of cold in summer We were able to provide a waste heat utilization system.

本願に係る排熱利用システムの構成を示す図The figure which shows the structure of the waste heat utilization system which concerns on this application ケミカルヒートポンプが蓄熱動作を行う蓄熱工程の動作説明図Operation explanatory diagram of heat storage process in which chemical heat pump performs heat storage operation ケミカルヒートポンプが放熱動作を行う放熱工程の夏季の動作説明図Explanatory diagram of summer operation of heat dissipation process where chemical heat pump performs heat dissipation operation ケミカルヒートポンプが放熱動作を行う放熱工程の冬季の動作説明図Explanatory drawing of winter operation of heat dissipation process where chemical heat pump performs heat dissipation operation

符号の説明Explanation of symbols

1 高温水回収熱交換器
2 貯湯タンク
5 低温水供給機構
6 反応器
7 凝縮・蒸発器
10 冷水循環回路
11 低温水直接供給路
12 戻り路
13 冷却装置
14 冷熱蓄熱槽
15 冷房ユニット
16 集熱ユニット
17 高温水循環回路
100 排熱利用システム
SOHC固体酸化物形燃料電池(排熱源)
DESCRIPTION OF SYMBOLS 1 High temperature water recovery heat exchanger 2 Hot water storage tank 5 Low temperature water supply mechanism 6 Reactor 7 Condenser / Evaporator 10 Cold water circulation circuit 11 Low temperature water direct supply path 12 Return path 13 Cooling device 14 Cold heat storage tank 15 Cooling unit 16 Heat collecting unit 17 High-temperature water circulation circuit 100 Waste heat utilization system SOHC solid oxide fuel cell (waste heat source)

Claims (10)

低温水を供給する低温水供給機構と、排熱を発生する排熱源からの排熱を回収して前記低温水から高温水を得る高温水回収熱交換器と、前記高温水回収熱交換器により得られた高温水を貯湯する貯湯タンクとを備えた排熱利用システムであって、
受熱に従って気体を発生する化学反応と前記気体の吸着により放熱する逆反応とを繰り返す反応器と、前記気体が放熱して凝縮液として凝縮する凝縮反応と、受熱に従って前記凝縮液が蒸発する蒸発反応とを繰り返す凝縮・蒸発器とを、仕切り弁を備えた連通管で連通接続して構成され、前記反応器において、外部から熱を受けて前記気体を発生するとともに、発生した前記気体を前記凝縮・蒸発器に送り、前記気体が放熱して凝縮する蓄熱動作と、前記凝縮・蒸発器において、外部から熱を受けて前記凝縮液が蒸発するとともに、発生した気体を前記反応器に送り、前記逆反応を発生して外部に放熱する放熱動作との間で、動作切換え可能なケミカルヒートポンプを備え、
前記貯湯タンク内に貯湯された高温水を前記反応器に送り、前記高温水の熱により前記蓄熱動作を行う蓄熱工程において、前記凝縮・蒸発器において発生する凝縮熱を前記低温水で回収する凝縮熱回収動作を実行し、前記凝縮熱の回収により得られた湯水を前記貯湯タンクに貯湯可能に構成されている排熱利用システム。
A low-temperature water supply mechanism that supplies low-temperature water, a high-temperature water recovery heat exchanger that recovers exhaust heat from an exhaust heat source that generates exhaust heat to obtain high-temperature water from the low-temperature water, and the high-temperature water recovery heat exchanger An exhaust heat utilization system comprising a hot water storage tank for storing hot water obtained,
A reactor that repeats a chemical reaction that generates gas according to heat reception and a reverse reaction that dissipates heat by adsorption of the gas, a condensation reaction in which the gas releases heat and condenses as a condensate, and an evaporation reaction in which the condensate evaporates according to heat reception And a condenser / evaporator that repeats the above are connected by a communication pipe provided with a partition valve. In the reactor, the gas is generated by receiving heat from the outside, and the generated gas is condensed. A heat storage operation in which the gas is radiated and condensed by being sent to the evaporator, and in the condenser / evaporator, the condensate evaporates by receiving heat from the outside, and the generated gas is sent to the reactor, It is equipped with a chemical heat pump that can switch operation between heat dissipation operation that generates reverse reaction and dissipates heat to the outside,
Condensation that recovers the heat of condensation generated in the condenser / evaporator with the low-temperature water in a heat storage process in which the hot water stored in the hot water storage tank is sent to the reactor and the heat storage operation is performed by the heat of the high-temperature water. An exhaust heat utilization system configured to perform a heat recovery operation and store hot water obtained by recovering the condensed heat in the hot water storage tank.
前記凝縮熱の回収により得られた湯水を前記貯湯タンクに貯湯するに、前記湯水を直接前記貯湯タンクに戻す第一戻り路を備えた請求項1記載の排熱利用システム。 The exhaust heat utilization system according to claim 1, further comprising a first return path for returning the hot water directly to the hot water storage tank in order to store hot water obtained by collecting the condensed heat in the hot water storage tank. 前記凝縮熱の回収により得られた湯水を前記貯湯タンクに貯湯するに、前記湯水を前記高温水回収熱交換器を介し昇温して前記貯湯タンクに戻す第二戻り路を備えた請求項1又は2記載の排熱利用システム。 The hot water obtained by collecting the condensed heat is stored in the hot water storage tank with a second return path for raising the temperature of the hot water through the high temperature water recovery heat exchanger and returning the hot water to the hot water storage tank. Or the waste heat utilization system of 2. 前記放熱動作を行う放熱工程において、前記低温水を前記反応器に導き、前記反応器で発生する熱を前記低温水で回収し、得られる湯水を前記貯湯タンクに供給する請求項1〜3のいずれか一項記載の排熱利用システム。 The heat dissipation step of performing the heat dissipation operation, wherein the low temperature water is guided to the reactor, heat generated in the reactor is recovered by the low temperature water, and the obtained hot water is supplied to the hot water storage tank. The exhaust heat utilization system according to any one of claims. 前記凝縮・蒸発器における、凝縮液の蒸発に伴って発生する冷熱を熱回収可能な冷水循環回路を備え、
前記冷水循環回路に、冷熱蓄熱槽、外部環境から熱を奪って外部環境を冷房する冷房ユニット、若しくは、外部環境から与えられる熱を集熱する集熱ユニットのいずれか一つ以上が備えられている請求項1〜4のいずれか一項記載の排熱利用システム。
In the condenser / evaporator, provided with a chilled water circulation circuit capable of recovering heat generated by the condensate evaporation.
The cold water circulation circuit includes at least one of a cold heat storage tank, a cooling unit that takes heat from the external environment and cools the external environment, or a heat collection unit that collects heat given from the external environment. The exhaust heat utilization system according to any one of claims 1 to 4.
前記低温水供給機構から直接前記貯湯タンクに前記低温水を供給する低温水直接供給路が備えられている請求項1〜5のいずれか一項記載の排熱利用システム。 The exhaust heat utilization system according to any one of claims 1 to 5, further comprising a low-temperature water direct supply path for supplying the low-temperature water directly from the low-temperature water supply mechanism to the hot water storage tank. 前記貯湯タンクが成層型貯湯タンクであり、前記高温水回収熱交換器で得られる前記高温水を前記貯湯タンクへ戻す高温水入口に対して、前記第一戻り路の中間温水受入口が、鉛直方向で下側に設けられている請求項2記載の排熱利用システム。 The hot water storage tank is a stratified hot water storage tank, and the intermediate hot water inlet of the first return path is perpendicular to the high temperature water inlet that returns the high temperature water obtained by the high temperature water recovery heat exchanger to the hot water storage tank. The exhaust heat utilization system according to claim 2, which is provided on the lower side in the direction. 前記貯湯タンクの底部から、前記低温水供給機構にタンク内の湯水を戻す戻り路が設けられており、前記戻り路に、路内を流れる湯水の温度を低下させる冷却装置が備えられている請求項7記載の排熱利用システム。 A return path for returning hot water in the tank from the bottom of the hot water storage tank to the low-temperature water supply mechanism is provided, and a cooling device for reducing the temperature of the hot water flowing in the path is provided in the return path. Item 8. The exhaust heat utilization system according to Item 7. 前記反応器に熱交換器を備え、
当該熱交換器が、前記蓄熱工程における前記高温水からの受熱と、前記放熱動作を行う放熱工程における前記低温水への放熱とで共用される請求項1〜8のいずれか一項記載の排熱利用システム。
The reactor comprises a heat exchanger;
The exhaust according to any one of claims 1 to 8, wherein the heat exchanger is commonly used for receiving heat from the high-temperature water in the heat storage step and releasing heat to the low-temperature water in the heat dissipation step for performing the heat dissipation operation. Heat utilization system.
前記凝縮・蒸発器に熱交換器を備え、
当該熱交換器が、前記蓄熱工程における前記低温水への授熱と、前記放熱動作を行う放熱工程における冷水循環回路内を流れる冷水からの受熱とで共用される請求項5記載の排熱利用システム。
The condenser / evaporator is equipped with a heat exchanger,
The exhaust heat utilization according to claim 5, wherein the heat exchanger is shared by heat transfer to the low-temperature water in the heat storage step and heat reception from the cold water flowing in the chilled water circulation circuit in the heat release step for performing the heat release operation. system.
JP2006040957A 2006-02-17 2006-02-17 Waste heat utilization system Expired - Fee Related JP4776391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006040957A JP4776391B2 (en) 2006-02-17 2006-02-17 Waste heat utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006040957A JP4776391B2 (en) 2006-02-17 2006-02-17 Waste heat utilization system

Publications (2)

Publication Number Publication Date
JP2007218525A true JP2007218525A (en) 2007-08-30
JP4776391B2 JP4776391B2 (en) 2011-09-21

Family

ID=38496028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040957A Expired - Fee Related JP4776391B2 (en) 2006-02-17 2006-02-17 Waste heat utilization system

Country Status (1)

Country Link
JP (1) JP4776391B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158321A (en) * 2007-12-27 2009-07-16 Nissan Motor Co Ltd Fuel cell system
JP2010090727A (en) * 2008-10-03 2010-04-22 Chugoku Electric Power Co Inc:The Cogeneration system
JP2010090728A (en) * 2008-10-03 2010-04-22 Chugoku Electric Power Co Inc:The Cogeneration system
JP2010277973A (en) * 2009-06-01 2010-12-09 Osaka Gas Co Ltd Solid oxide fuel cell system
JP2011009056A (en) * 2009-06-25 2011-01-13 Toshiba Fuel Cell Power Systems Corp Fuel cell cogeneration system
JP2013108748A (en) * 2013-01-15 2013-06-06 Toyota Central R&D Labs Inc Chemical heat storage system for vehicle
JPWO2012091131A1 (en) * 2010-12-28 2014-06-09 Jx日鉱日石エネルギー株式会社 Fuel cell system
JPWO2012091132A1 (en) * 2010-12-28 2014-06-09 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP2014177619A (en) * 2013-02-18 2014-09-25 Ricoh Co Ltd Reaction material and chemical heat pump
CN108798898A (en) * 2018-04-20 2018-11-13 华电电力科学研究院有限公司 The system and method for Proton Exchange Membrane Fuel Cells and combustion turbine combined supply steam and hot water
JP7034402B1 (en) * 2021-08-11 2022-03-11 三菱電機株式会社 Water heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390390A (en) * 2014-11-25 2015-03-04 苏州鑫阳瑞机械有限公司 Refrigerating device for heat recovery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158321A (en) * 2007-12-27 2009-07-16 Nissan Motor Co Ltd Fuel cell system
JP2010090727A (en) * 2008-10-03 2010-04-22 Chugoku Electric Power Co Inc:The Cogeneration system
JP2010090728A (en) * 2008-10-03 2010-04-22 Chugoku Electric Power Co Inc:The Cogeneration system
JP2010277973A (en) * 2009-06-01 2010-12-09 Osaka Gas Co Ltd Solid oxide fuel cell system
JP2011009056A (en) * 2009-06-25 2011-01-13 Toshiba Fuel Cell Power Systems Corp Fuel cell cogeneration system
JPWO2012091131A1 (en) * 2010-12-28 2014-06-09 Jx日鉱日石エネルギー株式会社 Fuel cell system
JPWO2012091132A1 (en) * 2010-12-28 2014-06-09 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP2013108748A (en) * 2013-01-15 2013-06-06 Toyota Central R&D Labs Inc Chemical heat storage system for vehicle
JP2014177619A (en) * 2013-02-18 2014-09-25 Ricoh Co Ltd Reaction material and chemical heat pump
CN108798898A (en) * 2018-04-20 2018-11-13 华电电力科学研究院有限公司 The system and method for Proton Exchange Membrane Fuel Cells and combustion turbine combined supply steam and hot water
CN108798898B (en) * 2018-04-20 2023-11-28 华电电力科学研究院有限公司 System and method for supplying steam and hot water by combining proton exchange membrane fuel cell and gas turbine
JP7034402B1 (en) * 2021-08-11 2022-03-11 三菱電機株式会社 Water heater

Also Published As

Publication number Publication date
JP4776391B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4776391B2 (en) Waste heat utilization system
KR100740542B1 (en) System for keeping cooling energy of fuel cell
KR101978330B1 (en) Fuel Supply System For Fuel Cell
KR20090089859A (en) Fuel cell heat exchange systems and methods
JP2015002093A (en) Fuel cell system
JP2008111650A (en) Photovoltaic power generation/heat collection composite utilization device
JP5980025B2 (en) Fuel cell cogeneration system
JP2009036473A (en) Fuel cell system
JP2002042841A (en) Polymer electrolyte type fuel cell cogeneration system
JP2004211979A (en) Absorption refrigerating system
WO2010109790A1 (en) Fuel cell system and method for operating fuel cell system
JP5528903B2 (en) Absorption type air conditioning and hot water supply system
KR100832851B1 (en) Latent heat storage type heat storage system for fuel cell using phase change materials
JP4889528B2 (en) Chemical heat pump and heat utilization system using the same
JP2014182923A (en) Fuel cell system and operation method thereof
JP2007052981A (en) Fuel cell power generation system and its operation method
JP6188570B2 (en) Heat supply system
JP2013057435A (en) Heat supply system
JP2009236368A (en) Absorption chiller/heater
JP2005140393A (en) Hot water storage type water heater
JP2005083659A (en) Water heater
JP2002075390A (en) Fuel cell power generation system
JP2006172961A (en) Fuel cell system
JP2004020081A (en) Power generation heat using system
JP2010021061A (en) Fuel cell power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees