JP2007218398A - Flow regulating device - Google Patents

Flow regulating device Download PDF

Info

Publication number
JP2007218398A
JP2007218398A JP2006042576A JP2006042576A JP2007218398A JP 2007218398 A JP2007218398 A JP 2007218398A JP 2006042576 A JP2006042576 A JP 2006042576A JP 2006042576 A JP2006042576 A JP 2006042576A JP 2007218398 A JP2007218398 A JP 2007218398A
Authority
JP
Japan
Prior art keywords
electroformed
flow rate
valve
guide surface
electroformed part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006042576A
Other languages
Japanese (ja)
Inventor
Kenji Hibi
建治 日比
Yasuhiro Yamamoto
康裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006042576A priority Critical patent/JP2007218398A/en
Publication of JP2007218398A publication Critical patent/JP2007218398A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Valve Housings (AREA)
  • Lift Valve (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a flow regulating device capable of accurately controlling the flow regulation of fluid. <P>SOLUTION: A nozzle unit 1 used as the flow regulating device has a nozzle body 3 having a communication hole 6 through which the fluid passes, and a needle shaft 2 provided with a valve 2a reciprocating in the nozzle body 3. A seat face 4a1 corresponding to a shape of the valve 2a is formed in the communication hole 6, and an area to be the seat face 4a1 is formed of the inner face of a first electrocast part 4a formed on a precise face by electrocasting. By this, an interval 7 formed between the outer surface of the valve 2a and the seat face 4a1 can be accurately controlled. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、流体の流量を調整するための流量調整装置に関するものである。この流量調整装置は、流体の供給量を精密にコントロールするためのもので、例えばノズルユニットとして用いることができる。   The present invention relates to a flow rate adjusting device for adjusting the flow rate of a fluid. This flow control device is for precisely controlling the amount of fluid supplied, and can be used as, for example, a nozzle unit.

ノズルユニットは、接着剤を塗布する接着剤塗布装置、潤滑油等の注油を行う注油装置、流動状態の樹脂材料を吐出(射出)する射出成形機、あるいは自動車等のエンジンで燃料を噴射させる燃料噴射装置等において、接着剤、潤滑油、溶融樹脂、あるいは燃料等の流体を供給するために用いられている。このノズルユニットは、主に、流体が流れる流通孔を有する本体と、往復移動可能のバルブ部とを備えている。この種のノズルユニットにおける供給流体の流量調整は、バルブ部の往復移動により、バルブ部の形状に対応したシート面とバルブ部の間の間隔を調整することにより行われる。このノズルユニットの本体は、耐熱性等を考慮して、金属の機械加工品とされる場合が多い(例えば、特許文献1参照)。
特開平11−351102号公報
The nozzle unit is an adhesive application device for applying an adhesive, an oil supply device for injecting lubricating oil, an injection molding machine for discharging (injecting) a resin material in a fluid state, or a fuel for injecting fuel with an engine of an automobile, etc. In an injection device or the like, it is used to supply a fluid such as an adhesive, lubricating oil, molten resin, or fuel. This nozzle unit mainly includes a main body having a flow hole through which a fluid flows and a valve portion that can reciprocate. The flow rate of the supply fluid in this type of nozzle unit is adjusted by adjusting the distance between the seat surface and the valve portion corresponding to the shape of the valve portion by reciprocating movement of the valve portion. The main body of the nozzle unit is often a metal machined product in consideration of heat resistance and the like (for example, see Patent Document 1).
JP 11-351102 A

ところで、上記のノズルユニットで供給流体の流量調整を高精度に行うには、バルブ部の往復移動に伴って、本体のシート面とバルブ部の間に形成される間隔の幅精度を高める必要がある。この幅精度を高めるには、間隔を形成するシート面とこれに対応するバルブ部の面精度を高める必要があるが、特にシート面は、本体に形成したバルブ孔の内面に設けられるため、一般にその高精度な加工は容易に行えず、また加工が施せたとしても高コスト化する。   By the way, in order to adjust the flow rate of the supply fluid with high accuracy with the nozzle unit described above, it is necessary to increase the width accuracy of the interval formed between the seat surface of the main body and the valve portion as the valve portion reciprocates. is there. In order to increase the width accuracy, it is necessary to increase the surface accuracy of the seat surface that forms the interval and the valve portion corresponding to this, but in particular, since the seat surface is provided on the inner surface of the valve hole formed in the main body, Such high-precision processing cannot be easily performed, and even if processing can be performed, the cost increases.

そこで本発明は、流体の流量調整を高精度に行い得る流量調整装置、その中でも、特に微細な流量調整が可能な流量調整装置を低コストに提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a flow rate adjusting device capable of adjusting the flow rate of a fluid with high accuracy, and in particular, a flow rate adjusting device capable of performing a fine flow rate adjustment at low cost.

上記目的を達成するため、本発明にかかる流量調整装置は、流体が流れる流通孔を有する本体と、往復移動可能のバルブ部とを有し、流通孔にバルブ部の形状に対応したシート面を設け、バルブ部の往復移動でバルブ部とシート面との間隔を調整して流体の流量調整を行うものにおいて、流通孔の少なくともシート面を、電鋳部で形成したことを特徴とするものである。   In order to achieve the above object, a flow control device according to the present invention has a main body having a flow hole through which a fluid flows and a valve portion that can reciprocate, and the flow hole has a seat surface corresponding to the shape of the valve portion. In the case of adjusting the flow rate of the fluid by adjusting the distance between the valve portion and the seat surface by reciprocating movement of the valve portion, at least the seat surface of the flow hole is formed by the electroformed portion. is there.

上記のように、本発明では、流通孔の少なくともシート面が電鋳部で形成される。電鋳部は、マスター表面に金属を析出させて形成した金属層であり、電解メッキまたは無電解メッキに準じた手法で形成することができる。電鋳加工の特性上、電鋳部のうち、マスターに接する面は、マスターの表面形状が非常に微細なレベルまで高精度に転写された緻密面となる(なお、その反対側の面は粗面となる)。したがって、マスターから分離した電鋳部、特に緻密面でシート面を形成すれば、特段の仕上げ加工を要すこともなく、容易かつ低コストに高精度なシート面を得ることができ、これにより、間隔の幅精度を高め、流体の流量調整を高精度に管理することができる。特に、電鋳加工で使用したマスターをそのままバルブ部として使用すれば、バルブ部側も高精度な面となるので、間隔の幅をより高精度に管理することが可能となる。上記構成は、難加工となりやすい小型の本体にシート面を設ける場合には特に有効である。   As described above, in the present invention, at least the sheet surface of the flow hole is formed by the electroformed part. The electroformed part is a metal layer formed by depositing metal on the master surface, and can be formed by a technique according to electrolytic plating or electroless plating. Due to the characteristics of electroforming, the surface of the electroformed part that contacts the master is a dense surface that has been transferred with high precision to a very fine surface shape of the master (the opposite surface is rough). Face). Therefore, if the electroformed part separated from the master, especially the sheet surface is formed with a dense surface, a highly accurate sheet surface can be obtained easily and at low cost without requiring special finishing. , The width accuracy of the interval can be increased, and the flow rate adjustment of the fluid can be managed with high accuracy. In particular, if the master used in electroforming is used as it is as the valve portion, the valve portion side also becomes a highly accurate surface, so that the interval width can be managed with higher accuracy. The above configuration is particularly effective when the seat surface is provided on a small body that is difficult to process.

本体にはバルブ部の往復移動を案内する案内面を設けることができ、この案内面を電鋳部(特にその緻密面)で形成すれば、上述した電鋳加工の特性から、案内面の面精度を容易かつ低コストに高めることができる。案内面の面精度が高まることにより、バルブ部の移動を高精度に管理することが可能となる。   The main body can be provided with a guide surface for guiding the reciprocating movement of the valve portion, and if this guide surface is formed by an electroformed portion (particularly a dense surface thereof), the surface of the guide surface can be obtained from the above-mentioned characteristics of electroforming. Accuracy can be increased easily and at low cost. By increasing the surface accuracy of the guide surface, the movement of the valve portion can be managed with high accuracy.

電鋳部で案内面を形成する場合、シート面および案内面を形成する各電鋳部は、共通のマスターを用いて成形するのが望ましい。このように、各電鋳部を共通のマスターで成形すれば、両者を別のマスターで成形する場合に比べ、シート面と案内面の間の同軸度を容易に確保することができ、バルブ部の動作精度および間隔の幅精度を高めることができる。   When the guide surface is formed by the electroformed part, it is desirable that each electroformed part forming the sheet surface and the guide surface is formed using a common master. In this way, if each electroformed part is formed with a common master, the coaxiality between the seat surface and the guide surface can be easily ensured compared to the case where both are formed with different masters, and the valve part. It is possible to improve the operation accuracy and the interval width accuracy.

上記の案内面は、軸方向全長に亘って断面真円状とするほか、例えば断面矩形状、断面楕円状等の非真円形状として回り止めを図ることもでき、これによりバルブ部の回転を嫌う用途の流量調整装置にも使用可能となる。さらに、案内面を螺旋状とすればバルブ部を回転させることで軸方向に往復スライドさせることができる。この場合、バルブ部の回転角からバルブ部の位置管理を行うことができ、より高精度の流量調整が可能となる。螺旋状の案内面の形状加工は一般に困難であるが、電鋳加工で形成した電鋳部であれば、この種の螺旋状案内面が低コストに得られる。   In addition to having a circular shape in cross section over the entire length in the axial direction, the guide surface can also be prevented from rotating as a non-circular shape such as a rectangular shape in cross section, an elliptical shape in cross section, etc. It can also be used for flow control devices for disliked applications. Furthermore, if the guide surface is spiral, it can be reciprocated in the axial direction by rotating the valve portion. In this case, the position of the valve unit can be managed from the rotation angle of the valve unit, and the flow rate can be adjusted with higher accuracy. Although it is generally difficult to shape the spiral guide surface, this type of spiral guide surface can be obtained at low cost in the case of an electroformed part formed by electroforming.

以上のように本発明によれば、流体の流量調整を高精度に行い得る流量調整装置、その中でも、特に微細な流量調整が可能な流量調整装置を低コストに提供することができる。   As described above, according to the present invention, it is possible to provide a flow rate adjustment device capable of adjusting the flow rate of fluid with high accuracy, and in particular, a flow rate adjustment device capable of performing fine flow rate adjustment at low cost.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の構成を有する流量調整装置の一例を示すものである。この流量調整装置は、HDD等のディスク装置に組み込まれる軸受装置(流体軸受装置)の製造工程において、軸受隙間内に潤滑油を供給するために用いられるノズルユニット1を概念的に示すものである。このノズルユニット1は、潤滑油が流れる流通孔6を有するノズル本体3と、ノズル本体3の内部で軸方向に往復移動する軸状部材、例えばニードル軸2とを主要な構成部材として備えている。   FIG. 1 shows an example of a flow control device having the configuration of the present invention. This flow rate adjusting device conceptually shows a nozzle unit 1 used for supplying lubricating oil into a bearing gap in a manufacturing process of a bearing device (fluid bearing device) incorporated in a disk device such as an HDD. . The nozzle unit 1 includes a nozzle body 3 having a flow hole 6 through which lubricating oil flows and a shaft-like member that reciprocates in the axial direction inside the nozzle body 3, for example, a needle shaft 2, as main components. .

ニードル軸2は、ノズル本体3に設けられた案内面で摺動案内される中実軸状の軸部2bと、軸部2bの一端に設けられ、一端側に向かって漸次縮径した略円錐状のバルブ部2aとを備える。このニードル軸2は、例えばステンレス鋼等の金属材料で、各部2a、2bが界面のない一体品に形成される。   The needle shaft 2 is a solid shaft-shaped shaft portion 2b that is slidably guided by a guide surface provided in the nozzle body 3, and a substantially conical shape that is provided at one end of the shaft portion 2b and gradually decreases in diameter toward one end side. Shaped valve portion 2a. The needle shaft 2 is made of a metal material such as stainless steel, for example, and the portions 2a and 2b are formed as an integrated product having no interface.

ノズル本体3は、電鋳加工で形成される電鋳部4と、該電鋳部4をインサートして射出成形された保持部5とで構成される。電鋳部4は、流通孔6を構成し、その内面がバルブ部2a形状に対応したシート面4a1となる略円錐状の第1電鋳部4aと、内周面が、軸部2bの案内面4b1となる円筒状の第2電鋳部4bとで構成される。本実施形態において、第1電鋳部4aと第2電鋳部4bは軸方向で非連続に形成され、この電鋳部が途切れた軸方向領域では、ノズル本体3(保持部5)の内面と軸部2bの外周面2b1との間に空間部9が形成されている。ノズル本体3には、第1電鋳部4aの一端部近傍から外部に抜ける径方向の貫通穴8が設けられ、潤滑油はこの貫通穴8を介してノズル本体3の内部に供給される。潤滑油が供給されると、上記の空間部9は油溜りとして機能する。   The nozzle body 3 includes an electroformed part 4 formed by electroforming, and a holding part 5 that is injection-molded by inserting the electroformed part 4. The electroformed part 4 constitutes a flow hole 6, and the inner surface of the electroformed part 4a1 is a guide surface for the shaft part 2b. The first electroformed part 4a has a substantially conical shape with a seat surface 4a1 corresponding to the shape of the valve part 2a. It is comprised with the cylindrical 2nd electroformed part 4b used as the surface 4b1. In the present embodiment, the first electroformed part 4a and the second electroformed part 4b are formed discontinuously in the axial direction, and in the axial region where the electroformed part is interrupted, the inner surface of the nozzle body 3 (holding part 5). And a space portion 9 is formed between the outer peripheral surface 2b1 of the shaft portion 2b. The nozzle body 3 is provided with a radial through-hole 8 extending from the vicinity of one end of the first electroformed portion 4 a to the outside, and the lubricating oil is supplied into the nozzle body 3 through the through-hole 8. When lubricating oil is supplied, the space 9 functions as an oil reservoir.

上記構成のノズルユニット1において、ニードル軸2のバルブ部2aをノズル本体3の第1電鋳部4aから離反する方向(流通孔6を開く方向)に移動させると、バルブ部2aの外表面2a1と第1電鋳部4aのシート面4a1との間には、テーパ状の間隔7が形成される。そして貫通穴8に供給された潤滑油は、間隔7・流通孔6を介して外部へ吐出される。このときの潤滑油の流量はニードル軸2の軸方向の移動量、換言すると間隔7の幅で調整される。ニードル軸2を軸方向に往復移動させる際、ニードル軸2は第2電鋳部4bの案内面4b1で摺動自在に支持される。   In the nozzle unit 1 configured as described above, when the valve portion 2a of the needle shaft 2 is moved in a direction away from the first electroformed portion 4a of the nozzle body 3 (direction in which the flow hole 6 is opened), the outer surface 2a1 of the valve portion 2a. And a sheet space 4a1 of the first electroformed part 4a, a tapered interval 7 is formed. The lubricating oil supplied to the through hole 8 is discharged to the outside through the interval 7 and the flow hole 6. The flow rate of the lubricating oil at this time is adjusted by the amount of movement of the needle shaft 2 in the axial direction, in other words, the width of the interval 7. When the needle shaft 2 is reciprocated in the axial direction, the needle shaft 2 is slidably supported by the guide surface 4b1 of the second electroformed part 4b.

次に、上記ノズルユニット1の製造工程を、ノズル本体3の製造工程を中心に図面に基づいて説明する。   Next, the manufacturing process of the nozzle unit 1 will be described based on the drawings with a focus on the manufacturing process of the nozzle body 3.

上記ノズルユニット1におけるノズル本体3は、マスター部材11を製作する工程、マスター部材11の所要箇所をマスキングする工程、電鋳加工により電鋳部材13を形成する工程、電鋳部材13の電鋳部4をインサートして保持部5を成形する工程、電鋳部4(ノズル本体3)をマスター部材11から分離する工程、およびノズル本体3に貫通穴8を設ける工程を順に経て製作される。   The nozzle body 3 in the nozzle unit 1 includes a step of manufacturing the master member 11, a step of masking a required portion of the master member 11, a step of forming the electroformed member 13 by electroforming, and an electroformed portion of the electroformed member 13. 4 is inserted in order to form the holding portion 5, the electroformed portion 4 (nozzle body 3) is separated from the master member 11, and the nozzle body 3 is provided with a through hole 8.

マスター部材11の製作工程では、導電性材料、例えば焼入処理を施したステンレス鋼、ニッケルクロム鋼、その他のニッケル合金、あるいはクロム合金等で形成されたマスター部材11が形成される。マスター部材11は、これら金属材料以外にも、導電処理(例えば、表面に導電性の被膜を形成する)を施されたセラミック等の非金属材料で形成することもできる。マスター部材11は、断面真円状の軸部11bと、該軸部11bの一端に一体に設けられ、反軸部側の一端に向けて漸次縮径した円錐部11aとで構成される。電鋳加工の特性上、マスター部材11のうち、円錐部11aの表面精度は第1電鋳部4aの内面精度(シート面精度)を直接左右するので、機能上重要となる表面粗さ等の表面精度を予め高精度に仕上げておくのが望ましい。また、軸部11bの表面精度は第2電鋳部4bの内周面精度(案内面精度)を直接左右するので、真円度、円筒度、表面粗さ等の機能上重要となる表面精度を予め所定の精度に仕上げておくのが望ましい。   In the manufacturing process of the master member 11, the master member 11 formed of a conductive material, for example, stainless steel, nickel chrome steel, other nickel alloy, chromium alloy, or the like subjected to quenching is formed. In addition to these metal materials, the master member 11 can also be formed of a non-metallic material such as a ceramic subjected to a conductive treatment (for example, forming a conductive film on the surface). The master member 11 includes a shaft portion 11b having a perfectly circular cross section, and a conical portion 11a which is integrally provided at one end of the shaft portion 11b and gradually reduces in diameter toward one end on the opposite shaft side. Since the surface accuracy of the conical portion 11a of the master member 11 directly affects the inner surface accuracy (sheet surface accuracy) of the first electroformed portion 4a due to the characteristics of electroforming, such as surface roughness that is important in terms of function. It is desirable to finish the surface accuracy with high accuracy in advance. Further, since the surface accuracy of the shaft portion 11b directly affects the inner peripheral surface accuracy (guide surface accuracy) of the second electroformed portion 4b, the surface accuracy that is important in terms of functions such as roundness, cylindricity, and surface roughness. Is preferably finished to a predetermined accuracy.

マスキング工程では、図2に示すように、電鋳部4の形成予定部を除いてマスター部材11の外表面にマスキング部12(図中、散点模様で示す)が形成される。マスキング部12用の被覆材としては、非導電性、および電解質溶液に対する耐食性を有する既存品が選択使用される。   In the masking step, as shown in FIG. 2, a masking portion 12 (shown as a dotted pattern in the figure) is formed on the outer surface of the master member 11 except for the portion where the electroformed portion 4 is to be formed. As the covering material for the masking portion 12, an existing product having non-conductivity and corrosion resistance to the electrolyte solution is selectively used.

電鋳加工は、NiやCu等の金属イオンを含んだ電解質溶液にマスター部材11を浸漬させた後、マスター部材11に通電して、マスター部材11の表面のうち、マスキング部12が形成されていない領域に目的の金属を電着(電解析出)させることにより行われる。電解質溶液には、摺動特性向上のため、カーボンやPTFE等の摺動材を含有させるのが望ましく、さらに必要に応じてサッカリン等の応力緩和材を含有させてもよい。電着金属の種類は、ニードル軸2の案内面として求められる硬度、疲れ強さ等の物理的性質や、投入される潤滑油に対する耐食性等の化学的性質に応じて適宜選択される。   In electroforming, after the master member 11 is immersed in an electrolyte solution containing metal ions such as Ni and Cu, the master member 11 is energized, and the masking portion 12 is formed on the surface of the master member 11. It is carried out by electrodeposition (electrolytic deposition) of the target metal in a non-existing region. The electrolyte solution preferably contains a sliding material such as carbon or PTFE in order to improve the sliding characteristics, and may further contain a stress relaxation material such as saccharin if necessary. The type of electrodeposited metal is appropriately selected according to physical properties such as hardness and fatigue strength required for the guide surface of the needle shaft 2 and chemical properties such as corrosion resistance against the lubricating oil to be added.

以上の工程を経ることにより、図3に示すように、マスター部材11の円錐部11aのマスキング部12を除く領域に第1電鋳部4aを、軸部11bのマスキング部12を除く領域に第2電鋳部4bを被着した電鋳部材13が形成される。このとき、電鋳部4a、4bの内面は、マスター部材11の表面形状が高精度に転写された緻密面に形成され、一方電鋳部4a、4bの外表面は粗面に形成される。なお、電鋳部4a、4bの厚みは、これが厚すぎるとマスター部材11からの剥離性が低下し、逆に薄すぎると耐久性が低下するので、求められる性能やサイズ、さらには用途等に応じて最適な厚み(10μm〜200μm程度)に設定される。なお、両電鋳部4a、4bに求められる性質が大きく異なる場合には、個別に電鋳加工を行い、第1電鋳部4aと第2電鋳部4bとで電鋳金属の種類や厚みを異ならせることもできる。   Through the above steps, as shown in FIG. 3, the first electroformed part 4a is formed in the area excluding the masking part 12 of the conical part 11a of the master member 11, and the first electroformed part 4a is formed in the area excluding the masking part 12 of the shaft part 11b. The electroformed member 13 to which the two electroformed parts 4b are attached is formed. At this time, the inner surfaces of the electroformed parts 4a and 4b are formed on a dense surface in which the surface shape of the master member 11 is transferred with high accuracy, while the outer surfaces of the electroformed parts 4a and 4b are formed on a rough surface. In addition, since the peelability from the master member 11 will fall if the thickness of the electroformed parts 4a and 4b is too thick, on the contrary, if the thickness is too thin, the durability will be lowered. Accordingly, an optimum thickness (about 10 μm to 200 μm) is set. In addition, when the property calculated | required by both electroformed parts 4a and 4b differs greatly, it performs electroforming separately, and the kind and thickness of electroformed metal by the 1st electroformed part 4a and the 2nd electroformed part 4b Can be different.

電鋳部4は、以上に述べた電解メッキに準じた方法の他、無電解メッキに準じた方法で形成することもできる。その場合、マスター部材11の導電性やマスキング部12の絶縁性は不要となる。   The electroformed part 4 can be formed by a method according to electroless plating as well as a method according to the electrolytic plating described above. In that case, the conductivity of the master member 11 and the insulation of the masking portion 12 are not required.

次に、上記工程を経て製作された電鋳部材13は、ノズル本体3をインサート成形する成形型内にインサート部品として供給配置される。   Next, the electroformed member 13 manufactured through the above steps is supplied and arranged as an insert part in a mold for insert-molding the nozzle body 3.

図4は、ノズル本体3のインサート成形工程を概念的に示すもので、固定型14および可動型15からなる金型には、ランナ16a、ゲート16b、およびキャビティ16cが設けられる。ゲート16bは、この実施形態では点状ゲートであり、成形型の、成形すべき保持部5の軸方向一端面に対応する位置に、周方向等間隔に複数箇所(例えば、3箇所)設けられる。なお、ゲート形状は任意であり、成形すべき保持部5の形状や射出材料の種類に応じて、点状ゲートの他、フィルムゲートやディスクゲート等を採用してもよい。   FIG. 4 conceptually shows an insert molding process of the nozzle body 3, and a mold including the fixed mold 14 and the movable mold 15 is provided with a runner 16 a, a gate 16 b, and a cavity 16 c. In this embodiment, the gate 16b is a dotted gate, and is provided at a plurality of locations (for example, three locations) at equal intervals in the circumferential direction at positions corresponding to one end surface in the axial direction of the holding portion 5 to be molded. . The gate shape is arbitrary, and a film gate, a disk gate, or the like may be employed in addition to the point gate depending on the shape of the holding portion 5 to be molded and the type of injection material.

上記構成の金型において、電鋳部材11を位置決め配置した状態で可動型15を固定型14に接近させて型締めする。次に型締めした状態で、スプール(図示省略)、ランナ16a、およびゲート16bを介してキャビティ16c内に射出材料Pを充填し、保持部5を電鋳部材11と一体に成形する。   In the mold having the above configuration, the movable mold 15 is brought close to the fixed mold 14 and clamped with the electroformed member 11 positioned and arranged. Next, in a state where the mold is clamped, the injection material P is filled into the cavity 16c via the spool (not shown), the runner 16a, and the gate 16b, and the holding portion 5 is formed integrally with the electroformed member 11.

射出材料Pとしては、例えば樹脂材料が使用可能で、そのベース樹脂として、例えば液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT)、ポリエーテルエーテルケトン(PEEK)等の結晶性樹脂、あるいは、例えばポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等の非晶性樹脂が使用可能で、本実施形態では液晶ポリマーをベース樹脂として用いている。なお、これらはあくまでも使用可能な樹脂を例示したものであり、もちろん、この他の樹脂を使用することもできる。樹脂材料には、必要に応じて強化材(繊維状、粉末状等の形態は問わない)や導電材、および潤滑剤等の各種充填材を一種または二種以上配合することもできる。   As the injection material P, for example, a resin material can be used, and as its base resin, for example, liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polyether ether ketone (PEEK), etc. Resin or amorphous resin such as polysulfone (PSU), polyethersulfone (PES), polyphenylsulfone (PPSU), polyetherimide (PEI) can be used. In this embodiment, a liquid crystal polymer is used. Used as base resin. These are merely examples of resins that can be used. Of course, other resins can also be used. If necessary, the resin material may be mixed with one or more of various fillers such as a reinforcing material (in any form such as fiber or powder), a conductive material, and a lubricant.

射出材料Pとして金属材料を使用することもでき、その場合には、例えばマグネシウム合金やアルミニウム合金等の低融点金属が使用可能である。この他、金属粉とバインダーの混合物を射出成形した後、脱脂・焼結するいわゆるMIM成形や、セラミックとバインダーの混合物を射出成形した後、脱脂・焼結するいわゆるCIM成形を採用してもよい。   A metal material can also be used as the injection material P. In that case, a low melting point metal such as a magnesium alloy or an aluminum alloy can be used. In addition, so-called MIM molding in which a mixture of metal powder and binder is injection molded and then degreased and sintered, or so-called CIM molding in which a mixture of ceramic and binder is injection molded and then degreased and sintered may be employed. .

なお、上述したとおり、電鋳加工の特性上、電鋳部4(第1電鋳部4a、第2電鋳部4b)の内面はマスター部材11の表面精度が高精度に転写される緻密面に形成され、一方、外表面は粗面に形成される。したがって、射出成形時には、射出材料Pが電鋳部表面の微小な凹凸に入り込み、電鋳部4と保持部5は、いわゆるアンカー効果によって相互に強固に固着する。これにより、使用時等における両者の分離が効果的に防止される。   As described above, due to the characteristics of electroforming, the inner surface of the electroformed part 4 (first electroformed part 4a, second electroformed part 4b) is a dense surface on which the surface accuracy of the master member 11 is transferred with high accuracy. On the other hand, the outer surface is formed into a rough surface. Therefore, at the time of injection molding, the injection material P enters minute irregularities on the surface of the electroformed part, and the electroformed part 4 and the holding part 5 are firmly fixed to each other by a so-called anchor effect. Thereby, separation of both at the time of use etc. is prevented effectively.

材料の固化後、型開きすると、図5に示すように、マスター部材11と電鋳部4、および保持部5とが一体となった成形品17が得られる。ところで、保持部5を成形する射出材料Pのベース樹脂として用いた液晶ポリマーは特有の成形収縮挙動を示すものであり、内面が外径側に後退するように収縮する。本実施形態では、この特性を利用して、図示する空間部9が材料の固化に伴って形成される。   When the mold is opened after the material is solidified, as shown in FIG. 5, a molded product 17 in which the master member 11, the electroformed part 4, and the holding part 5 are integrated is obtained. By the way, the liquid crystal polymer used as the base resin of the injection material P for molding the holding portion 5 exhibits a specific molding shrinkage behavior, and shrinks so that the inner surface recedes to the outer diameter side. In the present embodiment, using this characteristic, the illustrated space portion 9 is formed as the material is solidified.

この成形品17は、その後の分離工程において電鋳部4と保持部5とが一体となったもの(ノズル本体3)と、マスター部材11とに分離される。   In the subsequent separation step, the molded product 17 is separated into one in which the electroformed part 4 and the holding part 5 are integrated (nozzle body 3) and the master member 11.

分離工程では、例えばマスター部材11あるいは電鋳部4(ノズル本体3)に衝撃を与え、電鋳部4(第1電鋳部4a、および第2電鋳部4b)の内面を拡径させることにより、マスター部材11の表面から電鋳部4を剥離させ、電鋳部4の内面とマスター部材11の外面との間に微小隙間(1μm〜数μm程度)を形成する。これにより、電鋳部4と保持部5とが一体となったもの(ノズル本体3)とマスター部材11とを分離させることができる。なお、マスター部材11の表面から電鋳部4を剥離させる際には、上記のように衝撃を与えるほか、例えば電鋳部4とマスター部材11との熱膨張量差を利用することもできる。   In the separation step, for example, an impact is applied to the master member 11 or the electroformed part 4 (nozzle body 3), and the inner surface of the electroformed part 4 (the first electroformed part 4a and the second electroformed part 4b) is expanded. Thus, the electroformed part 4 is peeled from the surface of the master member 11, and a minute gap (about 1 μm to several μm) is formed between the inner surface of the electroformed part 4 and the outer surface of the master member 11. Thereby, the thing (nozzle main body 3) with which the electroformed part 4 and the holding | maintenance part 5 were united and the master member 11 can be isolate | separated. In addition, when peeling the electroformed part 4 from the surface of the master member 11, in addition to giving an impact as described above, for example, a difference in thermal expansion between the electroformed part 4 and the master member 11 can be used.

その後、マスター部材11から分離されたノズル本体3のうち、第1電鋳部4a近傍から外部に抜ける径方向の貫通穴8を機械加工等によって設け、マスター部材11とは別に製作したニードル軸2をノズル本体3に挿入することにより、図1に示すノズルユニット1が完成する。分離されたマスター部材11は、繰り返し電鋳加工に用いることができるので、高精度なノズル本体3が低コストに量産できる。なお、分離されたマスター部材11は、再度ノズル本体3に挿入してニードル軸2として用いることもできる。この場合には、バルブ部2aおよび軸部2b側も高精度な面となるので、間隔7の幅をより高精度に管理することが可能となる。   After that, in the nozzle body 3 separated from the master member 11, a radial through-hole 8 extending from the vicinity of the first electroformed part 4 a to the outside is provided by machining or the like, and the needle shaft 2 manufactured separately from the master member 11. Is inserted into the nozzle body 3 to complete the nozzle unit 1 shown in FIG. Since the separated master member 11 can be repeatedly used for electroforming, the highly accurate nozzle body 3 can be mass-produced at low cost. The separated master member 11 can be inserted into the nozzle body 3 again and used as the needle shaft 2. In this case, since the valve portion 2a and the shaft portion 2b side are also highly accurate surfaces, the width of the interval 7 can be managed with higher accuracy.

なお、貫通穴8は、上記のように後加工で形成する他、図4に示す射出成形工程において、貫通穴8の相当部位にピンを配置して射出成形を行い、固化後にピンを抜くことで形成することもできる。   The through hole 8 is formed by post-processing as described above, and in the injection molding process shown in FIG. 4, a pin is disposed at a corresponding portion of the through hole 8 to perform injection molding, and the pin is removed after solidification. It can also be formed.

なお、以上の説明では、空間部9を保持部5の成形収縮によって形成する構成を示したが、射出材料Pを構成するベース材料として液晶ポリマー以外の材料を用いる場合には、例えば図6に示すように、保持部5を成形する材料とは異なる材料、より好ましくは、射出成形時に生じる加工熱等で溶融しない別材料で油溜り成形部18をマスター部材11に設け、このマスター部材11を用いて上述した各工程を経ればよい。この油溜り成形部18は、例えば溶剤等を用いて除去することができる。   In the above description, the configuration in which the space portion 9 is formed by molding shrinkage of the holding portion 5 is shown. However, when a material other than the liquid crystal polymer is used as the base material constituting the injection material P, for example, FIG. As shown, an oil sump molding portion 18 is provided on the master member 11 with a material different from the material for molding the holding portion 5, more preferably with another material that does not melt due to processing heat generated at the time of injection molding. The above-described steps may be used. This oil pool forming part 18 can be removed using, for example, a solvent.

以上に示すように、本発明では、ノズル本体3の内面のうち、流通孔6のシート面4a1およびニードル軸2の案内面4b1が、それぞれ第1電鋳部4aの内面と第2電鋳部4bの内周面とで構成される。電鋳加工の特性上、各部に対応するマスター部材11の表面精度を高めておけば、電鋳部の内面はマスター11の表面が高精度に転写された緻密面となるから、特段の仕上げ加工を施すことなく容易かつ低コストに高精度なシート面および案内面を形成することができる。これにより、間隔7の幅精度を高め、またニードル軸2の動作精度を高めて、軸受隙間内への潤滑油の供給量を高精度に管理することができる。また、上述した電鋳加工の特性から、機械加工では特に難加工となる小型のノズル本体3の内面も容易に高精度化することができるので、微細な流量管理が可能なノズルユニット1が容易かつ高精度に得られる。   As described above, in the present invention, among the inner surface of the nozzle body 3, the sheet surface 4a1 of the flow hole 6 and the guide surface 4b1 of the needle shaft 2 are respectively the inner surface of the first electroformed part 4a and the second electroformed part. 4b and the inner peripheral surface. If the surface accuracy of the master member 11 corresponding to each part is increased due to the characteristics of electroforming, the inner surface of the electroformed part becomes a dense surface in which the surface of the master 11 is transferred with high accuracy. It is possible to form a highly accurate sheet surface and guide surface easily and at low cost without applying the step. Thereby, the width precision of the space | interval 7 can be raised, the operation precision of the needle shaft 2 can be raised, and the supply amount of the lubricating oil into the bearing gap can be managed with high precision. Moreover, since the inner surface of the small nozzle body 3, which is particularly difficult to machine, can be easily improved because of the above-described characteristics of electroforming, the nozzle unit 1 capable of fine flow rate management is easy. And it can be obtained with high accuracy.

なお、以上では、第2電鋳部4bを断面真円形状に形成したが、これを断面矩形状、あるいは断面楕円状等に形成してニードル軸2の回り止めを図ったノズルユニットを構成することもできる(図示省略)。このような構成のノズルユニットは、マスター部材11の軸部11bを、これに適合する断面矩形状、あるいは断面楕円状に形成するだけで、容易かつ高精度に形成することができる。   In the above, the second electroformed part 4b is formed in a perfect circular shape in cross section, but this is formed in a rectangular cross section or an elliptical cross section to constitute a nozzle unit that prevents the needle shaft 2 from rotating. (Not shown). The nozzle unit having such a configuration can be formed easily and with high accuracy simply by forming the shaft portion 11b of the master member 11 into a rectangular cross section or an elliptical cross section conforming thereto.

図7は、本発明の他の実施形態を示すものである。図示例の形態は、以上で説明を行ったような、潤滑油の流量調整(間隔7の幅調整)をニードル軸2(バルブ部2a)の直線移動で行うものではなく、ニードル軸2の回転角で行う形態を例示したもので、第2電鋳部4bの内面(案内面)には螺旋溝4b2が形成されている。このように案内面を螺旋状に形成することにより、バルブ部2aの回転角からその位置管理を行うことができるので、より高精度な流量調整が可能となる。この種の螺旋状案内面を設けるのは一般に困難であるが、電鋳加工であれば、この種の螺旋状案内面が容易かつ低コストに得られる。なお、その他の構成は図1に示す形態と同様であるので、共通の参照番号を付与して重複説明を省略する。   FIG. 7 shows another embodiment of the present invention. The form of the illustrated example does not perform the flow rate adjustment (width adjustment of the interval 7) of the lubricating oil by the linear movement of the needle shaft 2 (valve portion 2a) as described above, but the rotation of the needle shaft 2 The form performed by the corner is illustrated, and a spiral groove 4b2 is formed on the inner surface (guide surface) of the second electroformed part 4b. Since the guide surface is formed in a spiral shape in this way, the position can be managed from the rotation angle of the valve portion 2a, so that the flow rate can be adjusted with higher accuracy. Although it is generally difficult to provide this type of spiral guide surface, this type of spiral guide surface can be obtained easily and at low cost by electroforming. Since the other configuration is the same as that shown in FIG. 1, a common reference number is assigned and redundant description is omitted.

なお、以上の説明では、バルブ部2aの軸部2b側の一端を、軸部2bと同径に形成した構成を示しているが、バルブ部2aの軸部2b側の一端を軸部2bの外径よりも大径として、ニードル軸2の抜け止めを図る構成とすることもできる。   In the above description, one end of the valve portion 2a on the shaft portion 2b side is formed to have the same diameter as that of the shaft portion 2b. However, one end of the valve portion 2a on the shaft portion 2b side is connected to the shaft portion 2b. It can also be set as the structure which makes the diameter larger than an outer diameter and prevents the needle shaft 2 from coming off.

また、以上の説明では、流通孔6のシート面4a2をテーパ面に形成する形態を示したが、シート面は、球状面等に形成することもできる。   Moreover, although the form which forms the sheet | seat surface 4a2 of the circulation hole 6 in a taper surface was shown in the above description, a sheet | seat surface can also be formed in a spherical surface.

本発明の構成は上述したような特徴を有するものであるから、潤滑油を供給する給油装置として用いる他、高精度な流量調整が求められる他の装置、例えば樹脂材料を射出する射出成形機や、エンジン等に燃料を噴射させる燃料噴射装置等において、溶融樹脂や燃料等の流量調整を行うもの、さらには流量調整弁としても好ましく使用することができる。   Since the configuration of the present invention has the above-described features, it is used as an oil supply device that supplies lubricating oil, and other devices that require highly accurate flow rate adjustment, such as an injection molding machine that injects a resin material, In a fuel injection device or the like for injecting fuel to an engine or the like, it can be preferably used as a device for adjusting the flow rate of molten resin or fuel, and also as a flow rate adjusting valve.

流量調整装置の一例を概念的に示す断面図である。It is sectional drawing which shows an example of a flow regulating device notionally. マスター部材にマスキング部を形成した状態を示す斜視図である。It is a perspective view which shows the state which formed the masking part in the master member. 電鋳部材の斜視図である。It is a perspective view of an electroformed member. インサート成形工程を概念的に示す断面図である。It is sectional drawing which shows an insert molding process notionally. インサート成形後のマスター部材の斜視図である。It is a perspective view of the master member after insert molding. 他の実施形態にかかる流量調整装置のインサート成形工程を概念的に示す断面図である。It is sectional drawing which shows notionally the insert molding process of the flow volume adjustment apparatus concerning other embodiment. 流量調整装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a flow regulating device.

符号の説明Explanation of symbols

1 ノズルユニット
2 ニードル軸
2a バルブ部
2b 軸部
3 ノズル本体
4 電鋳部
4a 第1電鋳部
4b 第2電鋳部
4a1 シート面
4b1 案内面
5 保持部
6 流通孔
7 間隔
8 貫通穴
11 マスター部材
12 マスキング部
13 電鋳部材
DESCRIPTION OF SYMBOLS 1 Nozzle unit 2 Needle shaft 2a Valve | bulb part 2b Shaft part 3 Nozzle main body 4 Electroformed part 4a 1st electroformed part 4b 2nd electroformed part 4a1 Sheet surface 4b1 Guide surface 5 Holding | maintenance part 6 Flowing hole 7 Space | interval 8 Through-hole 11 Master Member 12 Masking part 13 Electroformed member

Claims (5)

流体が流れる流通孔を有する本体と、往復移動可能のバルブ部とを有し、流通孔にバルブ部の形状に対応したシート面を設け、バルブ部の往復移動でバルブ部とシート面との間隔を調整して流体の流量調整を行う流量調整装置において、
流通孔の少なくともシート面を、電鋳部で形成した流量調整装置。
It has a main body having a flow hole through which fluid flows and a valve part that can reciprocate. A seat surface corresponding to the shape of the valve part is provided in the flow hole. In the flow adjustment device that adjusts the flow rate of the fluid by adjusting
A flow rate adjusting device in which at least the sheet surface of the flow hole is formed by an electroformed part.
本体にバルブ部の往復移動を案内する案内面を設け、この案内面を電鋳部で形成した請求項1記載の流量調整装置。   The flow rate adjusting device according to claim 1, wherein a guide surface for guiding reciprocation of the valve portion is provided on the main body, and the guide surface is formed by an electroformed portion. シート面および案内面を形成する各電鋳部が、共通のマスターを用いて成形されている請求項2記載の流量調整装置。   The flow rate adjusting device according to claim 2, wherein each electroformed part forming the sheet surface and the guide surface is formed using a common master. 案内面を非真円形状とした請求項2記載の流量調整装置。   The flow rate adjusting device according to claim 2, wherein the guide surface has a non-circular shape. 案内面を螺旋状とした請求項2記載の流量調整装置。   The flow rate adjusting device according to claim 2, wherein the guide surface has a spiral shape.
JP2006042576A 2006-02-20 2006-02-20 Flow regulating device Withdrawn JP2007218398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006042576A JP2007218398A (en) 2006-02-20 2006-02-20 Flow regulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006042576A JP2007218398A (en) 2006-02-20 2006-02-20 Flow regulating device

Publications (1)

Publication Number Publication Date
JP2007218398A true JP2007218398A (en) 2007-08-30

Family

ID=38495917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006042576A Withdrawn JP2007218398A (en) 2006-02-20 2006-02-20 Flow regulating device

Country Status (1)

Country Link
JP (1) JP2007218398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030696A (en) * 2007-07-26 2009-02-12 Fuji Koki Corp Flow control valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030696A (en) * 2007-07-26 2009-02-12 Fuji Koki Corp Flow control valve

Similar Documents

Publication Publication Date Title
KR101414110B1 (en) Bearing device
US8419281B2 (en) Bearing member and method for manufacturing the same, and bearing unit having bearing member and method for manufacturing the same
CN101203685B (en) Fluid dynamic bearing apparatus
CN101395393A (en) Fluid bearing device
US20090110339A1 (en) Bearing Device with Sliding Bearing
JP2007218398A (en) Flow regulating device
JP2007192317A (en) Sliding bearing unit
JP2007333153A (en) Hydrostatic bearing device
JP4828961B2 (en) Sliding device
JP4531629B2 (en) Sliding device
JP4813211B2 (en) Sliding bearing, motor equipped with the same, and manufacturing method of sliding bearing
JP4794964B2 (en) Bearing device and motor equipped with the same
JP4794966B2 (en) Bearing device, motor provided with the same, and method for manufacturing bearing device
JP2006342912A (en) Bearing device
JP4633591B2 (en) Plain bearing
JP4642686B2 (en) Sliding bearing manufacturing method
JP4482436B2 (en) Manufacturing method of bearing unit
US8469596B2 (en) Electroformed bearing and method of manufacturing same
JP4890066B2 (en) Hydrodynamic bearing device and fan motor having the same
JP2007092845A (en) Bearing device
JP4896430B2 (en) Bearing device and motor using the bearing device
JP2007162883A (en) Bearing device
JP2009149943A (en) Bearing member and method of manufacturing the same
JP4937621B2 (en) Hydrodynamic bearing device
JP2007085391A (en) Slide bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512