JP2007216240A - Welding method - Google Patents

Welding method Download PDF

Info

Publication number
JP2007216240A
JP2007216240A JP2006037000A JP2006037000A JP2007216240A JP 2007216240 A JP2007216240 A JP 2007216240A JP 2006037000 A JP2006037000 A JP 2006037000A JP 2006037000 A JP2006037000 A JP 2006037000A JP 2007216240 A JP2007216240 A JP 2007216240A
Authority
JP
Japan
Prior art keywords
welding
amount
current
backing metal
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006037000A
Other languages
Japanese (ja)
Other versions
JP5188026B2 (en
Inventor
Hiroshi Matsumura
浩史 松村
Atsuhito Takada
篤人 高田
Keiji Okayama
敬二 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006037000A priority Critical patent/JP5188026B2/en
Publication of JP2007216240A publication Critical patent/JP2007216240A/en
Application granted granted Critical
Publication of JP5188026B2 publication Critical patent/JP5188026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding method capable of reliably preventing a backing strip from falling off or melting off. <P>SOLUTION: An end face of a backing strip 3 is abutted on an end face of a first member to be welded (a diaphragm 1), an upper side of the backing strip 3 is abutted on a lower side of a second member to be welded (a beam flange) 2, and a groove is arc-welded. In this condition, the welding condition is set so that the smaller contact length decreases the amount of a weld metal more according to the contact length which is the dimension in the vertical direction of an overlapping area of the end face of the backing strip 3 on the end face of the diaphragm 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、建築鉄骨の仕口溶接等に好適の溶接方法に関する。   The present invention relates to a welding method suitable for joint welding of architectural steel frames.

建築鉄骨の仕口溶接においては、2000年に建築基準法が改正され、組み立て形状に制約が生じた。この新基準においては、ダイアフラムに対してフランジがずれてはいけないということが要求される。このため、ダイアフラムとフランジの厚さは同一でもよいが、組立誤差及び溶接歪みの発生を考慮すると、図10に示すように、ダイアフラム1と梁フランジ2とを仕口溶接する際に、ダイアフラム1の端面の板厚方向の範囲内に、梁フランジ2の全板厚が収まるように組み立てることが通常行われている。即ち、梁フランジ2の厚さは、必ず、ダイアフラムの厚さよりも小さくなる。このため、ダイアフラム1と梁フランジ2との端面により形成される開先の下部に配置される裏当金3は、その側面がダイアフラム1の端面に接触することになる。   In joint welding of architectural steel frames, the Building Standards Act was revised in 2000, resulting in restrictions on the assembly shape. This new standard requires that the flange must not be displaced with respect to the diaphragm. For this reason, the thickness of the diaphragm and the flange may be the same. However, in consideration of assembly errors and generation of welding distortion, the diaphragm 1 is welded when the diaphragm 1 and the beam flange 2 are welded together as shown in FIG. Assembling is generally performed so that the total thickness of the beam flange 2 is within the range of the end face of the plate in the thickness direction. That is, the thickness of the beam flange 2 is always smaller than the thickness of the diaphragm. For this reason, the side surface of the backing metal 3 disposed at the lower portion of the groove formed by the end surfaces of the diaphragm 1 and the beam flange 2 comes into contact with the end surface of the diaphragm 1.

そして、この裏当金3の側面とダイアフラム1の端面との板厚方向の接触長さが、「裏当金のかかり」といわれ、ダイアフラム1の上面と、梁フランジ2の上面との間の高低差が「食い違い」といわれる。つまり、ダイアフラム1の厚さから、梁フランジ2の厚さを差し引いたものが、「裏当金のかかり」と「食い違い」とを加算したものとなる。よって、仕口溶接において、ダイアフラム1と梁フランジ2との配置態様によっては、「食い違い」が大きく、「裏当金のかかり」が小さい場合と、逆に、「食い違い」が小さく、「裏当金のかかり」が大きい場合とが生じる。このため、「裏当金のかかり」が小さい場合に、裏当金3がダイアフラム1の端面にかからない事態、つまり、裏当金3がダイアフラム1の端面にかからない場合が生じやすく、溶接時に、裏当金3の側面がダイアフラム1の端面から外れ、裏当金3が抜け落ち(溶け落ち)てしまうという問題点がある。   The contact length in the thickness direction between the side surface of the backing metal 3 and the end surface of the diaphragm 1 is said to be “the backing metal is applied”, and it is between the upper surface of the diaphragm 1 and the upper surface of the beam flange 2. The difference in height is said to be “difference”. In other words, the value obtained by subtracting the thickness of the beam flange 2 from the thickness of the diaphragm 1 is the sum of “the amount of buckling” and “difference”. Therefore, in joint welding, depending on the arrangement mode of the diaphragm 1 and the beam flange 2, the “difference” is large and the “backing buckle” is small, whereas the “difference” is small, There is a case where “the cost of money” is large. For this reason, when the amount of “backing metal” is small, there is a tendency that the backing metal 3 does not touch the end face of the diaphragm 1, that is, the case where the backing metal 3 does not touch the end face of the diaphragm 1. There is a problem in that the side face of the metal 3 is detached from the end face of the diaphragm 1 and the back metal 3 falls off (melts).

特に、アーク溶接ロボットによる自動溶接(特許文献1参照)においては、裏当金3のダイアフラム1へのかかり具合とは無関係に、ルートギャップに応じて溶接条件を生成し、又は選択するため、かかりが浅い場合には、頻繁に裏当金の抜け落ち(溶け落ち)が発生するという問題点がある。   In particular, in automatic welding by an arc welding robot (see Patent Document 1), since the welding condition is generated or selected according to the root gap regardless of the degree of application of the backing metal 3 to the diaphragm 1, it is necessary to In the case where the thickness is shallow, there is a problem that the backing money frequently falls out (melts).

特開平5−329644号公報JP-A-5-329644

上述のように、建築鉄骨の仕口溶接における新基準に適合させるために、裏当金のダイアフラムへのかかり具合が問題となってきたが、従来のアーク溶接方法、特に、溶接ロボットによる自動溶接においては、かかりが浅い場合の裏当金の抜け落ち(溶け落ち)を確実に防止することはできない。   As described above, in order to meet the new standard in joint welding of architectural steel frames, the degree to which the backing metal is applied to the diaphragm has been a problem, but conventional arc welding methods, particularly automatic welding by welding robots In this case, it is impossible to reliably prevent the falling off (melting) of the backing metal when the hook is shallow.

このため、従来、溶接ロボットで溶接を行うために、裏当金の厚さを補うために、ロボットによる溶接の前に、作業員が補修溶接(補修溶接部4)を行う必要が生じ、作業時間が長くなると共に、コストが高くなるという問題点がある。   For this reason, conventionally, in order to perform welding with a welding robot, in order to compensate for the thickness of the backing metal, it is necessary for an operator to perform repair welding (the repair welding portion 4) before welding by the robot. There is a problem that the time is increased and the cost is increased.

本発明はかかる問題点に鑑みてなされたものであって、一方の被溶接材の端面に裏当金の端面が重なり、他方の被溶接材の下面に裏当金の上面が重なるような開先形状の新基準の仕口溶接においても、裏当金の抜け落ち及び溶け落ちを確実に防止することができる溶接方法を提供することを目的とする。   The present invention has been made in view of such a problem, and is such that the end surface of the backing metal overlaps the end surface of one welded material and the upper surface of the backing metal overlaps the lower surface of the other welded material. It is an object of the present invention to provide a welding method capable of reliably preventing the backing metal from falling off and melting even in the new standard joint welding of the tip shape.

本発明に係る溶接方法は、開先部にて、第1の被溶接材の端面に裏当金の端面を当接させ、第2の被溶接材の下面に前記裏当金の上面を当接させて、前記開先部をアーク溶接する溶接方法において、前記裏当金の端面が前記第1の被溶接材の端面に重なる領域の上下方向の寸法であるかかり量に応じて、前記かかり量が小さい方が溶着金属量が少なくなるように、溶接条件を設定することを特徴とする。   In the welding method according to the present invention, the end surface of the backing metal is brought into contact with the end surface of the first welded material at the groove portion, and the upper surface of the backing metal is applied to the lower surface of the second welded material. In the welding method in which the groove portion is arc-welded in contact with each other, the end face of the backing metal is the vertical dimension of the region overlapping the end face of the first workpiece to be welded. Welding conditions are set such that the smaller the amount, the smaller the amount of deposited metal.

この溶接方法は、例えば、溶接ロボットによる自動溶接方法に適用され、前記かかり量は、入力動作又はセンシング動作により、溶接プログラムに設定されるものである。   This welding method is applied to, for example, an automatic welding method using a welding robot, and the applied amount is set in a welding program by an input operation or a sensing operation.

また、前記かかり量が小さい場合には、例えば、溶接電流を低くすることにより、溶着金属量が少なくなるように制御する。   Further, when the applied amount is small, for example, the welding current is controlled to be low by reducing the welding current.

そして、溶接線の端部から5乃至30mmの部分を溶接始端部及び溶接終端部とし、その間の部分を本溶接部として、前記かかり量が6mm以下の場合に、前記溶接始端部の溶接電流を本溶接の溶接電流よりも5乃至20A高くすることが好ましい。   Then, when a portion between 5 and 30 mm from the end of the weld line is a welding start end and a welding end, and a portion between them is a main welding portion, when the applied amount is 6 mm or less, the welding current of the welding start end is It is preferably 5 to 20 A higher than the welding current of the main welding.

また、溶接線の端部から5乃至30mmの部分を溶接始端部及び溶接終端部とし、その間の部分を本溶接部として、前記かかり量が6mm以下の場合に、前記溶接終端部の溶接電流を本溶接の溶接電流よりも5乃至20A低くすることが好ましい。   In addition, when a portion of 5 to 30 mm from the end of the weld line is a welding start end and a welding end, and a portion between them is a main welding portion, when the applied amount is 6 mm or less, the welding current of the welding end is set. It is preferably 5 to 20 A lower than the welding current of the main welding.

本発明によれば、裏当金のかかり量が小さい場合に、例えば、溶接電流が小さくなるように、又は溶接速度が速くなるようにして、溶接部に印加されるエネルギが小さくなるようにし、かかり量に応じて、溶接条件を調整するので、かかり量が小さい場合にも裏当金が抜け落ちたり、溶け落ちたりすることがない。   According to the present invention, when the amount of backing metal applied is small, for example, the welding current is reduced or the welding speed is increased so that the energy applied to the welded portion is reduced, Since the welding conditions are adjusted according to the amount applied, the backing metal does not fall out or melt even when the amount applied is small.

以下、本発明の実施の形態について、添付の図面を参照して具体的に説明する。図1は本発明の実施形態に係る溶接方法を示す断面図である。図2は、仕口の突き合わせ溶接部を示す模式図であり、図3は図1に示す裏当金の設置形態を示す斜視図である。図2に示すように、コラム柱は、ダイアフラム1に対して、高さが低いと共に、板厚が薄い梁フランジ2を突き合わせたものであり、SRCも同様に板厚が厚いダイアフラム1に対して板厚が薄い梁フランジ2を突き合わせたものである。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a welding method according to an embodiment of the present invention. FIG. 2 is a schematic view showing a butt weld portion of a joint, and FIG. 3 is a perspective view showing an installation form of the backing metal shown in FIG. As shown in FIG. 2, the column pillar is a structure in which the beam flange 2 having a low thickness and a small plate thickness is abutted against the diaphragm 1, and the SRC is similarly used for the diaphragm 1 having a large plate thickness. The beam flange 2 having a small plate thickness is abutted against each other.

そして、例えば、図3に示すように、組立誤差及び溶接歪みを考慮しつつ、仕口溶接の新基準に適合するために、第1の被溶接材としてのダイアフラム1の板厚が第2の被溶接材としての梁フランジ2の板厚よりも大きくなるように設計されており、このダイアフラム1の側面に、裏当金3の端面の一部が当接して、この一部の領域でダイアフラム1の側面と裏当金3の端面とが重なり、この裏当金3の表面の一部が、梁フランジ2の下面に接触するように、裏当金3を配置する。この場合に、ダイアフラム1の板厚をt1、梁フランジ2の板厚をt2、裏当金3の端面とダイアフラム1の端面との間の接触領域の上下方向の長さであるかかり量をx、ダイアフラム1の上面と梁フランジ2の上面との間の高低差を食い違い量yとする。このとき、t1=t2+x+yである。   And, for example, as shown in FIG. 3, the plate thickness of the diaphragm 1 as the first material to be welded is set to the second thickness in order to meet the new standard of joint welding while taking assembly errors and welding distortion into consideration. It is designed to be larger than the plate thickness of the beam flange 2 as a material to be welded, and a part of the end face of the backing metal 3 is in contact with the side surface of the diaphragm 1, and the diaphragm is in this part of the region. The backing metal 3 is arranged so that the side surface of 1 and the end surface of the backing metal 3 overlap, and a part of the surface of the backing metal 3 is in contact with the lower surface of the beam flange 2. In this case, the plate thickness of the diaphragm 1 is t1, the plate thickness of the beam flange 2 is t2, and the amount of the vertical area of the contact area between the end face of the backing metal 3 and the end face of the diaphragm 1 is x. The height difference between the upper surface of the diaphragm 1 and the upper surface of the beam flange 2 is defined as a discrepancy amount y. At this time, t1 = t2 + x + y.

そして、自動アーク溶接ロボットにより、図1に示す開先を溶接する。図5は自動溶接装置の制御ブロック図である。溶接トーチ11、ワイヤ送給装置12及び溶接ロボット本体13等の装置部10に対し、溶接電源14の送給モータ制御装置15がワイヤ送給装置12のワイヤ送給を制御する。また、センシング電圧印加装置16が溶接ロボット本体13にセンシング電圧を供給する。また、制御装置17(ロボットコントローラ)は、演算装置18,外部制御装置19及び記憶装置20を有し、溶接電源14及び装置部10を制御するようになっている。パーソナルコンピュータ(以下、パソコンという)21から制御装置17を制御する信号が制御装置17に入力される。パソコン21は、寸法データ入力インターフェイスを備え、データ生成演算処理及びデータ送受信処理を実行して、制御装置17に信号を送受する。   And the groove | channel shown in FIG. 1 is welded with an automatic arc welding robot. FIG. 5 is a control block diagram of the automatic welding apparatus. A feeding motor control device 15 of the welding power source 14 controls the wire feeding of the wire feeding device 12 with respect to the device section 10 such as the welding torch 11, the wire feeding device 12 and the welding robot body 13. The sensing voltage application device 16 supplies a sensing voltage to the welding robot body 13. In addition, the control device 17 (robot controller) includes a calculation device 18, an external control device 19, and a storage device 20, and controls the welding power source 14 and the device unit 10. A signal for controlling the control device 17 is input from the personal computer (hereinafter referred to as a personal computer) 21 to the control device 17. The personal computer 21 includes a dimension data input interface, executes data generation calculation processing and data transmission / reception processing, and transmits and receives signals to the control device 17.

次に、上述の自動アーク溶接ロボットを使用する本発明の実施形態について説明する。先ず、図4に示すように、ダイアフラム1と梁フランジ2との間の溶接部に、裏当金3を溶接により仮固定した仕口を、溶接ロボット本体13の近傍の位置に配置する。   Next, an embodiment of the present invention using the above-described automatic arc welding robot will be described. First, as shown in FIG. 4, a joint in which the backing metal 3 is temporarily fixed to the welded portion between the diaphragm 1 and the beam flange 2 by welding is disposed at a position near the welding robot body 13.

そして、パソコン21からワーク寸法を入力する。このワーク寸法は、継手位置、ダイアフラム1の板厚、梁フランジ2の板厚、フランジ幅等である。その後、パソコン21が、センシングデータの生成を開始し、得られたセンシングデータを制御装置17に送信する。制御装置17においては、溶接トーチ11,ワイヤ送給装置12及び溶接ロボット本体13に対し、センシング動作を実行させ、継手位置を補正し、フランジ幅を補正し、ルートギャップをセンシングし、更に食い違い量yをセンシングする。このアーク溶接ロボットによる開先ルートギャップの検出方法としては、前述の特許文献1に記載された方法がある。具体的には、少なくとも一つの溶接継手形成部材表面からの設定開先深さに対して所定深さの検出開始位置を求めておき、この検出開始位置で開先幅方向の両開先面を検出し、この両開先面の検出位置データと、設定開先深さと検出開始位置との差と、予め設定されている開先面の角度とに基づいて、開先ルートギャップを求めるものである。   Then, the workpiece dimensions are input from the personal computer 21. The workpiece dimensions are the joint position, the plate thickness of the diaphragm 1, the plate thickness of the beam flange 2, the flange width, and the like. Thereafter, the personal computer 21 starts generating sensing data and transmits the obtained sensing data to the control device 17. In the control device 17, the welding torch 11, the wire feeding device 12, and the welding robot body 13 are subjected to sensing operations, the joint positions are corrected, the flange width is corrected, the route gap is sensed, and the discrepancy amount is further increased. Sense y. As a method for detecting a groove route gap by the arc welding robot, there is a method described in Patent Document 1 described above. Specifically, a detection start position of a predetermined depth with respect to a set groove depth from the surface of at least one weld joint forming member is obtained, and both groove surfaces in the groove width direction are determined at the detection start position. Detecting the groove root gap based on the detected position data of both the groove surfaces, the difference between the set groove depth and the detection start position, and the preset angle of the groove surface. is there.

食い違い量yは、図4に示すように、ダイアフラム1の表面と、梁フランジ2の表面とをセンシングし、その表面位置の差から、算出することができる。   As shown in FIG. 4, the discrepancy amount y can be calculated from the difference between the surface positions of the surface of the diaphragm 1 and the surface of the beam flange 2 sensed.

センシング動作を実行後、制御装置17はパソコン21に向けてセンシングデータを送信し、パソコン21は、各センシングデータから、ルートギャップ、食い違い量y及び裏当金3のかかり量xを算出する。かかり量xは、ダイアフラム1の板厚t1と梁フランジ2の板厚t2とがパソコン21に入力されているので、食い違い量yの測定結果から、x=t1−t2−yとして算出することができる。パソコン21に設定されたソフトウエアにより、この裏当金かかり量xに基づいて、予め用意した溶接条件データベースから、1パス目の溶接条件を算出する。この裏当金かかり量xにより決まる溶接条件が、基準ギャップにおける溶接条件である。なお、この溶接条件は、下記表1に示すような数点のポイント(かかり量)について、データとして保持されており、かかり量がこれらのポイント間の値であった場合には、これらの間に直線補間することにより算出することができる。この溶接条件とは、溶接電流、アーク電圧、溶接速度及び溶接ワイヤ送給量等である。そして、この基準ギャップでの溶接条件に対し、更に、実際のルートギャップでののど厚が前記基準ギャップでののど厚と同等となる溶接速度を算出する。また、パソコン21は、センシングに基づいて動作軌跡も生成する。   After executing the sensing operation, the control device 17 transmits the sensing data to the personal computer 21, and the personal computer 21 calculates the route gap, the difference amount y and the amount x of the backing money 3 from each sensing data. Since the plate thickness t1 of the diaphragm 1 and the plate thickness t2 of the beam flange 2 are input to the personal computer 21, the amount x can be calculated as x = t1−t2−y from the measurement result of the discrepancy amount y. it can. The software set in the personal computer 21 calculates a welding condition for the first pass from a prepared welding condition database based on the amount x of the backing metal. The welding condition determined by the amount x of backing metal is the welding condition at the reference gap. Note that this welding condition is held as data for several points (amounts) as shown in Table 1 below. If the amount is a value between these points, Can be calculated by linear interpolation. The welding conditions include a welding current, an arc voltage, a welding speed, a welding wire feed amount, and the like. Then, for the welding condition at the reference gap, a welding speed at which the throat thickness at the actual route gap is equal to the throat thickness at the reference gap is calculated. The personal computer 21 also generates an operation locus based on sensing.

その後、パソコン21は動作軌跡と溶接条件とを制御装置17に送信し、制御装置17はこの動作軌跡及び溶接条件に基づいて、溶接を開始すべく、装置10及び溶接電源14を制御する。   Thereafter, the personal computer 21 transmits the operation trajectory and the welding conditions to the control device 17, and the control device 17 controls the apparatus 10 and the welding power source 14 to start welding based on the operation trajectory and the welding conditions.

溶接条件データベースから、裏当金のかかり量に基づく溶接条件を算出する方法としては、例えば、下記表1に示すように、裏当金のかかり量に依存する溶接条件データをデータベースに登録しておき、前述の如く、センシング動作により求めたかかり量に基づいて、表1から溶接条件を抽出する。   As a method for calculating welding conditions based on the amount of backing metal from the welding condition database, for example, as shown in Table 1 below, welding condition data depending on the amount of backing metal is registered in the database. As described above, the welding conditions are extracted from Table 1 based on the amount obtained by the sensing operation.

Figure 2007216240
Figure 2007216240

図6は表1における溶接電流と溶接速度を裏当金のかかり量に対してプロットした図である。この表1及び図6に示すデータベースから、裏当金かかり量に基づいて抽出された基準ルートギャップにおける溶接条件に対し、電流値に対するワイヤ送給量及び溶着効率等から、基準ギャップののど厚と同一ののど厚になる実際のギャップでの溶接速度を求め、これを実行用の溶接速度とする。   FIG. 6 is a diagram in which the welding current and welding speed in Table 1 are plotted against the amount of backing metal applied. From the database shown in Table 1 and FIG. 6, for the welding conditions in the reference route gap extracted based on the amount of backing metal, the throat thickness of the reference gap from the wire feed amount and welding efficiency with respect to the current value, etc. The welding speed at an actual gap having the same throat thickness is obtained, and this is set as a working welding speed.

図8は、開先に供給された溶接金属の形状を模式的に示す斜視図である。S1及びS2は溶接金属の開先断面積を示す。表1から求めた基準ルートギャップはG1であり、実際のギャップはG2である。また、表1から求めた溶接速度はv1であり、これを基に算出される溶接速度はv2である。のど厚はいずれの溶接金属の場合もhである。本実施形態においては、表1から求められた基準ギャップG1と実際のギャップG2とが異なる場合、表1から求めた溶接速度を、のど厚hが同一になるように変更する。即ち、S1×v1=S2×v2となるように、v2を算出し、このv2を実際の溶接速度とする。   FIG. 8 is a perspective view schematically showing the shape of the weld metal supplied to the groove. S1 and S2 indicate the groove cross-sectional area of the weld metal. The reference route gap obtained from Table 1 is G1, and the actual gap is G2. Moreover, the welding speed calculated | required from Table 1 is v1, and the welding speed calculated based on this is v2. The throat thickness is h for any weld metal. In the present embodiment, when the reference gap G1 obtained from Table 1 and the actual gap G2 are different, the welding speed obtained from Table 1 is changed so that the throat thickness h is the same. That is, v2 is calculated so that S1 × v1 = S2 × v2, and v2 is set as an actual welding speed.

上述の如く、本発明の実施形態に係る溶接方法においては、表1及び図6に示すように、裏当金3のかかり量xに応じて、溶接電流及び溶接速度等の溶接条件を決める。一例としては、のど厚を一定に保持することをせず、裏当金3のかかり量xが小さくなった場合には、図6及び表1に従って、溶接電流(ワイヤ送り速度)を低減し、溶接電流を低減しても、それに相当する溶接速度の減速は行わない。このため、溶接電流の低下により、単位溶接長あたりの溶着金属量は低下する。このように、溶接条件を設定して、ダイアフラム1と梁フランジ2との間の開先を初層溶接する。同一の開先(ルートギャップ及びのど厚が同一で、必要とする溶着金属の体積が同一)を溶接しようとするとき、通電チップから送給される溶接ワイヤの突き出し長さが一定の場合において、溶接電流はワイヤ送り速度の関数で表すことができ、溶接電流を上げると、ワイヤ送り速度も上がる。これに従って、体積一定の前提条件のときには、溶接電流と溶接速度との関係は、図7の■で示すようになる。これに対し、本発明においては、裏当金のかかり量が小さくなり、かかりが浅くなるに従って、溶け落ちが生じやすくなるときに、図7の◆で示すように、体積が一定のときと比べて、溶接速度を速くし、溶着金属の体積が少なくなる条件にて溶接する。即ち、本発明においては、裏当金のかかり量が小さくなり、溶け落ちが生じやすくなるときに、溶接電流を低下させるが、このとき、溶着金属の体積を一定に保持するに必要な溶接速度の低下はせずに、溶接速度の低下の程度は少ない。従って、溶着金属の量は低下する。なお、表1において、かかり量が小さい場合に、溶接速度が低下している。これは以下の理由による。自動溶接においては、通常、ワイヤ突き出し長さが一定であり、このとき、ワイヤ送給量は溶接電流の関数で表される。例えば、ワイヤ径が1.2mm、ワイヤ突き出し長さが25mmの場合、多少のバラツキがあるが、溶接電流が200Aのときワイヤ送給量は8m/分程度、250Aのとき10m/分程度、300Aのとき13m/分程度である。そして、溶着量(g/cm)は、ワイヤ送給量(g/分)/溶接速度(cm/分)×溶着効率(%)として算出される。従って、溶接速度単独でみれば、溶接速度が遅くなれば、溶着量は増えるが、本実施形態のように、かかり量が小さい場合に、溶接電流値を下げており、従って、ワイヤ送給速度も低下した場合に、溶着量は、溶接速度が低下しても、低下する場合がある。本実施形態は、このように、かかり量が小さい場合に、溶接電流を低減することにより、溶接速度は遅くなっても、溶着量を減少させるものである。   As described above, in the welding method according to the embodiment of the present invention, as shown in Table 1 and FIG. 6, the welding conditions such as the welding current and the welding speed are determined according to the amount x of the backing metal 3. As an example, when the applied amount x of the backing metal 3 is reduced without keeping the throat thickness constant, the welding current (wire feed speed) is reduced according to FIG. 6 and Table 1, Even if the welding current is reduced, the corresponding welding speed is not reduced. For this reason, the amount of deposited metal per unit weld length decreases due to a decrease in welding current. In this way, the welding conditions are set, and the groove between the diaphragm 1 and the beam flange 2 is first layer welded. When welding the same groove (the same root gap and throat thickness and the same weld metal volume is required), when the protruding length of the welding wire fed from the current-carrying tip is constant, The welding current can be expressed as a function of the wire feed rate, and the wire feed rate increases as the welding current increases. Accordingly, when the volume is a precondition, the relationship between the welding current and the welding speed is as shown by (2) in FIG. On the other hand, in the present invention, when the amount of the backing metal is reduced, and when the amount of the backing becomes shallower, it becomes easier for the burnout to occur, as shown by ◆ in FIG. 7, compared with the case where the volume is constant. Thus, welding is performed under conditions where the welding speed is increased and the volume of the deposited metal is reduced. That is, in the present invention, the welding current is reduced when the amount of the backing metal is reduced and melting is likely to occur. At this time, the welding speed required to keep the volume of the deposited metal constant. The degree of decrease in welding speed is small. Therefore, the amount of deposited metal is reduced. In Table 1, when the applied amount is small, the welding speed is reduced. This is due to the following reason. In automatic welding, the wire protrusion length is usually constant, and at this time, the wire feed amount is expressed as a function of the welding current. For example, when the wire diameter is 1.2 mm and the wire protrusion length is 25 mm, there is some variation, but when the welding current is 200 A, the wire feed amount is about 8 m / min, when 250 A, about 10 m / min, 300 A In this case, it is about 13 m / min. The welding amount (g / cm) is calculated as wire feed amount (g / min) / welding speed (cm / min) × welding efficiency (%). Accordingly, if the welding speed alone is viewed, the welding amount increases if the welding speed is slow, but the welding current value is reduced when the applied amount is small as in this embodiment, and therefore the wire feed speed. In this case, the welding amount may decrease even if the welding speed decreases. In this embodiment, when the applied amount is small, the welding amount is reduced by reducing the welding current even if the welding speed is reduced.

これにより、裏当金3のかかり量が小さい場合に、溶着金属の量が少なくなり、裏当金3の溶け落ちが防止される。また、溶接電流が低下すると、一般的にはエネルギが低下するため、溶け込みは浅くなる傾向になる。しかし、裏当金のかかりが浅い場合には、もともと熱容量が小さくなっているため、溶けやすい状態にあるといえる。また、溶接電流に対して溶接速度が速くなる(溶接金属量が減少する)とアークが出ている箇所に、溶けた金属が流れ込み難くなる。このため、アークは、裏当金、開先面及び立板(ダイアフラム側面)に直接あたりやすくなり、溶けやすくなる。これらの理由により、溶接電流を低下させても、必要な溶け込みが得られる。   Thereby, when the applied amount of the backing metal 3 is small, the amount of the deposited metal is reduced, and the backing metal 3 is prevented from being melted down. Further, when the welding current is reduced, energy is generally reduced, so that the penetration tends to become shallow. However, when the backing metal is shallow, it can be said that it is in a state of being easily melted because the heat capacity is originally small. In addition, when the welding speed is increased with respect to the welding current (the amount of weld metal is reduced), it is difficult for molten metal to flow into the portion where the arc is present. For this reason, the arc tends to directly hit the backing metal, the groove surface, and the standing plate (diaphragm side surface), and easily melts. For these reasons, the necessary penetration can be obtained even if the welding current is reduced.

なお、上述の如く、本発明においては、かかり量xに応じて、溶接条件をかかり量xが小さい場合に溶着金属量が少なくなるように、制御するが、これは、本溶接の溶接条件を示している。この場合において、溶接始端部及び終端部においては、その本溶接の溶接条件よりも異なるものとすることが好ましい。   As described above, in the present invention, the welding conditions are controlled in accordance with the applied amount x so that the amount of deposited metal is reduced when the applied amount x is small. Show. In this case, it is preferable that the welding start and end portions are different from the welding conditions of the main welding.

溶接始端部及び溶接終端部とは、溶接線の端部から5乃至30mmの部分をいう。そして、これらの溶接始端部及び溶接終端部の間の部分が本溶接部である。この場合に、かかり量が6mm以下の場合には、溶接始端部の溶接電流を本溶接の溶接電流よりも5乃至20A高くすることが好ましい。初層溶接においては、必ずその継手の1パス目に相当するが、溶接始端部は、更にその継手に始めてアークを出す(熱を印加する)部分であり、母材温度が低い。このため、溶け落ちもしにくい代わりに、溶け込みも得にくい。従って、溶接始端部は定常部に比して、溶接電流を高めに設定する。   The welding start end portion and the welding end portion refer to portions of 5 to 30 mm from the end of the weld line. And the part between these welding start-end parts and welding termination | terminus parts is a main welding part. In this case, when the applied amount is 6 mm or less, it is preferable to make the welding current at the welding start end portion 5 to 20 A higher than the welding current of the main welding. In the first layer welding, this always corresponds to the first pass of the joint, but the welding start end portion is a portion where an arc is first generated (heat is applied) to the joint, and the base material temperature is low. For this reason, in spite of being hard to melt down, it is hard to obtain melt. Therefore, the welding start end is set to a higher welding current than the steady portion.

また、かかり量が6mm以下の場合に、溶接終端部の溶接電流を本溶接の溶接電流よりも5乃至20A低くすることが好ましい。この場合は、溶接始端部の場合と逆に、定常部の溶接により、母材の温度が上昇している。また、端部は熱が逃げにくいことから、溶け落ちしやすく、溶け込みも大きい。従って、溶接終端部については、溶接電流を定常部に比して低めに設定する。   Further, when the applied amount is 6 mm or less, it is preferable that the welding current at the welding end portion is 5 to 20 A lower than the welding current of the main welding. In this case, contrary to the case of the welding start end, the temperature of the base material is increased by welding of the steady portion. In addition, since the heat hardly escapes from the end portion, the end portion is easily melted down, and the penetration is large. Accordingly, the welding current is set lower for the welding end portion than for the steady portion.

なお、表1に示すように、ルートギャップが例えば3mmと一定の場合ではなく、ルートギャップも変数として含める場合は、下記表2及び図9に示すように、裏当金のかかり量に対して溶接電流及び溶接速度を定めることができる。なお、溶接速度及び溶接電流が変化する範囲をハッチングにて示す。   As shown in Table 1, when the route gap is not fixed as 3 mm, for example, and the route gap is also included as a variable, as shown in Table 2 and FIG. The welding current and welding speed can be determined. The range in which the welding speed and welding current change is indicated by hatching.

なお、上記実施形態においては、かかり量を、センシング動作により求めているが、これに限らず、裏当金のかかり量xを作業員がパソコン21に手入力することとしてもよい。   In the embodiment described above, the amount to be applied is obtained by the sensing operation. However, the present invention is not limited to this, and the worker may manually input the amount x of the backing money to the personal computer 21.

本発明の実施形態に係る溶接方法を示す開先部の模式図である。It is a schematic diagram of a groove part showing a welding method according to an embodiment of the present invention. 仕口の突き合わせ溶接部の例を示す模式図である。It is a schematic diagram which shows the example of the butt-welding part of a joint. ダイアフラムと梁フランジとの間の開先に裏当金が設置されて、図1に示す開先を形成する場所の一例を示す斜視図で有る。It is a perspective view which shows an example of the place where the backing metal is installed in the groove | channel between a diaphragm and a beam flange, and forms the groove | channel shown in FIG. センシングにより食い違い量yを求める方法を示す図である。It is a figure which shows the method of calculating | requiring the discrepancy amount y by sensing. 自動溶接装置の制御方法を示すブロック図である。It is a block diagram which shows the control method of an automatic welding apparatus. 裏当金かかり量と、溶接電流及び溶接速度の設定値との関係を示すグラフ図である。It is a graph which shows the relationship between amount of backing money, and the setting value of welding current and welding speed. 溶着金属の体積一定の溶接方法と、本発明の裏当金かかり量に応じて溶接速度を変化させる方法とを比較して示すグラフ図である。It is a graph which compares and shows the welding method with constant volume of a deposit metal, and the method of changing a welding speed according to the amount of backing metal of this invention. 開先に供給された溶接金属の形状を模式的に示す斜視図である。It is a perspective view which shows typically the shape of the weld metal supplied to the groove. 裏当金のかかりと溶接電流及び溶接電圧との関係を示すグラフ図である。It is a graph which shows the relationship between application | coating of backing metal, welding current, and welding voltage. 従来の溶接方法において、補修溶接部を示す模式図である。It is a schematic diagram which shows a repair welding part in the conventional welding method.

符号の説明Explanation of symbols

1:ダイアフラム
2:梁フランジ
3:裏当金
4:補修溶接部
1: Diaphragm 2: Beam flange 3: Back metal 4: Repair weld

Claims (5)

開先部にて、第1の被溶接材の端面に裏当金の端面を当接させ、第2の被溶接材の下面に前記裏当金の上面を当接させて、前記開先部をアーク溶接する溶接方法において、前記裏当金の端面が前記第1の被溶接材の端面に重なる領域の上下方向の寸法であるかかり量に応じて、前記かかり量が小さい方が溶着金属量が少なくなるように、溶接条件を設定することを特徴とする溶接方法。 At the groove portion, the end surface of the backing metal is brought into contact with the end surface of the first workpiece, the upper surface of the backing metal is brought into contact with the lower surface of the second workpiece, and the groove portion In the welding method for arc welding, in accordance with the amount of application that is the vertical dimension of the region where the end surface of the backing metal overlaps the end surface of the first material to be welded, the smaller the amount applied, the amount of deposited metal Welding method characterized by setting welding conditions so that there is less. 溶接ロボットによる自動溶接方法に適用され、前記かかり量は、入力動作又はセンシング動作により、溶接プログラムに設定されることを特徴とする請求項1に記載の溶接方法。 The welding method according to claim 1, wherein the welding method is applied to an automatic welding method using a welding robot, and the applied amount is set in a welding program by an input operation or a sensing operation. 前記かかり量が小さい場合に、溶接電流を低くすることにより、溶着金属量が少なくなるようにすることを特徴とする請求項1又は2に記載の溶接方法。 3. The welding method according to claim 1, wherein when the applied amount is small, the welding current amount is reduced by reducing the welding current. 4. 溶接線の端部から5乃至30mmの部分を溶接始端部及び溶接終端部とし、その間の部分を本溶接部として、前記かかり量が6mm以下の場合に、前記溶接始端部の溶接電流を本溶接の溶接電流よりも5乃至20A高くすることを特徴とする請求項1乃至3のいずれか1項に記載の溶接方法。 When the welding distance is 6 mm or less, the welding current at the welding start end is set to the main welding when the portion between 5 and 30 mm from the end of the weld line is set as the welding start end and the welding end and the portion between them is the main welding. The welding method according to any one of claims 1 to 3, wherein the welding current is higher by 5 to 20A than the welding current. 溶接線の端部から5乃至30mmの部分を溶接始端部及び溶接終端部とし、その間の部分を本溶接部として、前記かかり量が6mm以下の場合に、前記溶接終端部の溶接電流を本溶接の溶接電流よりも5乃至20A低くすることを特徴とする請求項1乃至4のいずれか1項に記載の溶接方法。


A portion between 5 and 30 mm from the end portion of the weld line is used as a welding start end portion and a welding end portion, and a portion between them is a main welding portion. When the applied amount is 6 mm or less, the welding current of the welding end portion is subjected to main welding. 5. The welding method according to claim 1, wherein the welding current is 5 to 20 A lower than the welding current.


JP2006037000A 2006-02-14 2006-02-14 Welding method Active JP5188026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037000A JP5188026B2 (en) 2006-02-14 2006-02-14 Welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037000A JP5188026B2 (en) 2006-02-14 2006-02-14 Welding method

Publications (2)

Publication Number Publication Date
JP2007216240A true JP2007216240A (en) 2007-08-30
JP5188026B2 JP5188026B2 (en) 2013-04-24

Family

ID=38494041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037000A Active JP5188026B2 (en) 2006-02-14 2006-02-14 Welding method

Country Status (1)

Country Link
JP (1) JP5188026B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272475A (en) * 1985-09-26 1987-04-03 Toshiba Corp Welding control device
JPH06226497A (en) * 1993-02-03 1994-08-16 Kamimoto Tekkosho:Yugen Welding backing strip
JP2001347374A (en) * 2000-06-07 2001-12-18 Toyota Motor Corp Method and device for setting arc welding condition
JP2004141939A (en) * 2002-10-25 2004-05-20 Suzuki Motor Corp Welding equipment
JP2004174523A (en) * 2002-11-25 2004-06-24 Toyota Motor Corp Method for controlling arc welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272475A (en) * 1985-09-26 1987-04-03 Toshiba Corp Welding control device
JPH06226497A (en) * 1993-02-03 1994-08-16 Kamimoto Tekkosho:Yugen Welding backing strip
JP2001347374A (en) * 2000-06-07 2001-12-18 Toyota Motor Corp Method and device for setting arc welding condition
JP2004141939A (en) * 2002-10-25 2004-05-20 Suzuki Motor Corp Welding equipment
JP2004174523A (en) * 2002-11-25 2004-06-24 Toyota Motor Corp Method for controlling arc welding

Also Published As

Publication number Publication date
JP5188026B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
US6649870B1 (en) System and method facilitating fillet weld performance
JP4891726B2 (en) Robot controller for controlling tandem arc welding system and arc scanning control method using the same
TWI801903B (en) Control method of mobile welding robot, welding control device, mobile welding robot and welding system
CN111050967B (en) System and method for adaptively controlling preheating of welding wire
CN101274386B (en) One side welding device and one side welding method
JP2016540650A (en) System and method for automatic height adjustment of torch
EP3290145A1 (en) Horizontal fillet welding method, horizontal fillet welding system, and program
JP4420863B2 (en) Control method of laser arc composite welding
TWI735215B (en) Welding control method of portable welding robot, welding control device, portable welding robot and welding system
JP3361239B2 (en) Method and apparatus for welding in groove with welding arc
JP5489274B2 (en) Arc start method for multi-electrode single-side welding apparatus and multi-electrode single-side welding apparatus
JP5188026B2 (en) Welding method
KR20210039300A (en) Sliding copper backing plate for welding and welding method
JP2014030841A (en) Arc following welding method and welding device
WO2018088372A1 (en) Arc welding display device and display method
JP7491860B2 (en) Method, control device, welding system, and program for controlling electroslag welding or electrogas welding
JP3675304B2 (en) Arc welding condition setting method and arc welding condition setting device
JP4640908B2 (en) Welding apparatus and welding method
JP7376377B2 (en) Gas shielded arc welding output control method, welding system, welding power source and welding control device
JPH02205267A (en) Consumable electrode arc welding method
KR20120131563A (en) Gma root pass welding method for overcoming root gap variation and stable back bead formation by controlling the relative arc force
JP2016150349A (en) Welding system
JP2007185666A (en) Method for arc welding robot control
JP4038458B2 (en) Multi-electrode circumferential electrogas arc welding method
US20210046573A1 (en) One-side submerged arc welding method and one-side submerged arc welding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120208

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150