JP3675304B2 - Arc welding condition setting method and arc welding condition setting device - Google Patents

Arc welding condition setting method and arc welding condition setting device Download PDF

Info

Publication number
JP3675304B2
JP3675304B2 JP2000169974A JP2000169974A JP3675304B2 JP 3675304 B2 JP3675304 B2 JP 3675304B2 JP 2000169974 A JP2000169974 A JP 2000169974A JP 2000169974 A JP2000169974 A JP 2000169974A JP 3675304 B2 JP3675304 B2 JP 3675304B2
Authority
JP
Japan
Prior art keywords
welding
conditions
appropriate
condition
condition setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000169974A
Other languages
Japanese (ja)
Other versions
JP2001347374A (en
Inventor
博之 戸塚
伸二 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000169974A priority Critical patent/JP3675304B2/en
Publication of JP2001347374A publication Critical patent/JP2001347374A/en
Application granted granted Critical
Publication of JP3675304B2 publication Critical patent/JP3675304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アーク溶接条件設定方法およびアーク溶接条件設定装置に関する。
【0002】
【従来の技術】
従来のアーク溶接条件自動算出方法は、図6に示すように、ワークの材質、板厚から溶接機器を選択する工程201と、継手形状、溶接速度(トーチ送り速度)、トーチ狙い位置等を前提条件として入力する工程202と、投入金属量(ワイヤ)と溶着金属量(ビード)の関係から溶接電流、電圧値を算出する工程203と、算出された溶接電流、電圧値で実際にアーク溶接を実行し演算した溶接条件が溶接不良を発生させない適当なものであったか否かを確認する溶接・確認工程204と、工程204で溶接不良、たとえばアンダーカット、スパッタ、溶け落ち、ハンピング(溶接ビード幅は溶接方向に変動する現象)などが発生したことが確認されると、前提条件等を変えて工程204の演算を再度実行し新たな溶接条件を算出して溶接するサイクルを、溶接不良が発生しないまで繰り返し行う、溶接工程を一部に含むフィードバック工程205と、からなっていた。
【0003】
【発明が解決しようとする課題】
しかし、従来のアーク溶接条件算出方法にはつぎの問題がある。
▲1▼ 溶接不良を発生させない適正溶接条件に到達するのに、溶接工程を含むフィードバック制御を行うので、適正溶接条件に到達するのに、時間とコストがかかり過ぎる。
▲2▼ 通常、量産での溶接条件は溶接電流、電圧、速度は固定である。従来の溶接条件算出方法では、ワーク隙間やトーチ狙い位置の変動要因が変動すると、それに応じて適正溶接電流、電圧、速度が変わり、固定条件とならず、実用的といえない。
▲3▼ 工程203での溶接条件の算出が金属量の釣合いのみで行っており、そして金属量は主に溶接電流値に依存するため、電圧、溶接速度、継手形状等の影響が大きいアンダーカット、ハンピング、スパッタ発生等の予想ができない。
本発明の目的は、溶接実行前の演算で適正溶接条件を設定できるアーク溶接条件設定方法およびアーク溶接条件設定装置を提供することにある。
本発明のもう一つの目的は、ワーク隙間やトーチ狙い位置等の変動要因が変動しても、変動要因の許容値内であれば、溶接電流、電圧等溶接条件を固定のままとすることができる、溶接変動要因に対して裕度をもたせたアーク溶接条件設定方法およびアーク溶接条件設定装置を提供することにある。
本発明のもう一つの目的は、アンダーカット、ハンピング、スパッタ発生等を抑制できるアーク溶接条件設定方法およびアーク溶接条件設定装置を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成する本発明はつぎの通りである。
(1) 溶接機器を選択し、溶接の前提条件を入力する工程と、
製品要求品質を入力し、溶接変動要因の許容範囲を入力する工程と、
過去の溶接実績を基にした相関分析結果および境界条件により、変動要因が前記許容範囲内で変動しても前記製品要求品質を満たす、適正溶接条件を算出する工程と、
からなるアーク溶接条件設定方法。
(2) 前記溶接機器の選択条件はワークの材質、板厚の少なくとも1つの条件を含み、前記溶接の前提条件は継手形状、ワーク板厚、溶接速度の少なくとも1つの条件を含み、前記製品要求品質は溶け込み深さ、脚長、のど厚の少なくとも1つに対する条件および/またはアンダーカット、溶け落ち、スパッタの少なくとも1つに対する不可条件を含み、前記溶接変動要因は隙、狙いずれ、エクステンションの少なくとも1つを含み、前記適正溶接条件は溶接電流、電圧、トーチ角度、狙い位置の少なくとも1つに対する条件を含む(1)記載のアーク溶接条件設定方法。
(3) 溶接機器を選択する溶接機器選択手段と、溶接の前提条件を読み込む前提条件読込手段と、製品要求品質を読み込む製品要求品質読込手段と、溶接変動要因の許容範囲を読み込む変動要因読込手段と、読み込まれたこれらのデータから過去の溶接実績を基にした相関分析結果および境界条件により、変動要因が前記許容範囲内で変動しても前記製品要求品質を満たす、適正溶接条件を演算する適正溶接条件算出手段と、を有するホストコンピュータと、
該ホストコンピュータで演算された適正溶接条件を溶接ロボットのロボットコントローラに転送する転送手段をもつ、前記ホストコンピュータと分割された携帯端末機と、
からなるアーク溶接条件設定装置。
【0005】
上記(1)、(2)のアーク溶接条件設定方法および上記(3)のアーク溶接条件設定装置では、溶接前の1度の演算で適正溶接条件を求めることができ、従来のような溶接を繰り返し行って適正溶接条件を求めないで済み、適正溶接条件を求めるための時間と費用を減少できる。
また、製品要求品質を読込み、溶接変動要因に許容範囲を読込み、過去の溶接実績を基にした相関分析結果および境界条件により、変動要因が許容範囲内で変動しても製品要求品質を満たす、適正溶接条件を求めるので、狙いズレ、隙間、エクステンション等の変動要因が入力された許容範囲内で変動しても、なお溶接は製品要求品質を満たす適正域にあるように裕度をもたせてあり、変動要因が変動しても溶接電流、電圧を変える必要がなく固定条件で溶接を存続できる。これは、現状の溶接電流、電圧一定の溶接にマッチするものである。
また、アンダーカット、ハンピング、溶け落ち、スパッタ発生等に対して境界条件を設けることにより、アンダーカット、ハンピング、溶け落ち、スパッタ発生等の各領域以外の領域で適正溶接条件を算出することにより、アンダーカット、ハンピング、溶け落ち、スパッタ発生を抑制できる。
【0006】
【発明の実施の形態】
本発明実施例のアーク溶接条件設定方法およびアーク溶接条件設定装置を、図1〜図5を参照して、説明する。溶接形状、溶接不良の種類は図3に示す。
本発明実施例のアーク溶接条件設定は、図5に示すように、ホストコンピュータ1と、ホストコンピュータと接続可能な端末機2と、端末機2に接続されるロボットコントローラ3とからなる。
ホストコンピュータ1は、入出力インターフェース(インプット/アウトプットインターフェース)1b、演算を実行するCPU1a、格納手段(RAM、ROM)1cを有する。
端末機2は、ホストコンピュータ1で演算された適正溶接条件を溶接ロボットのロボットコントローラ3に転送する転送手段2aと、入出力手段2bをもつ、ホストコンピュータ1と分割された携帯端末機からなる。端末機2は、携帯用小型コンピュータであってもよい。ホストコンピュータ1と端末機2とに分けたことにより、各設備毎のホストコンピュータの設置を必要とせず低コストの製作が可能であり、また、設計計画時にはホストコンピュータ1での作業で済み、設備完成前での条件の確認が可能である。また、端末機2でのオンラインティーチが可能になり、作業性が向上する。
ロボットコントローラ3は各アーク溶接ロボットに備えられている。
【0007】
ホストコンピュータ1には、図1に示す演算ルーチンがインストールされている。
該演算ルーチンは、溶接機器を選択する溶接機器選択手段(工程101を実行する手段)と、溶接の前提条件を読み込む前提条件読込手段(工程102を実行する手段)と、製品要求品質を読み込む製品要求品質読込手段(工程103を実行する手段)と、溶接変動要因の許容範囲を読み込む変動要因読込手段(工程104を実行する手段)と、読み込まれたこれらのデータから過去の溶接実績を基にした相関分析結果および境界条件により、変動要因が前記許容範囲内で変動しても前記製品要求品質を満たす、適正溶接条件を演算する適正溶接条件算出手段(工程105を実行する手段)と、を有する。
【0008】
上記において、溶接機器選択手段は、溶接される板材ワークの材質、板厚の少なくとも1つの条件から溶接機器を選択する。
前提条件読込手段は、継手形状、ワーク板厚、溶接速度の少なくとも1つの条件を読み込む。
製品要求品質読込手段は、溶け込み深さ、脚長、のど厚の少なくとも1つに対する条件および/またはアンダーカット、溶け落ち、スパッタの少なくとも1つに対する不可条件を読み込む。たとえば、溶け込みが20%以上、溶け落ち不可、アンダーカット不可、等と読み込む。
溶接変動要因読込手段は、隙(ワーク間の隙間量)、狙いずれ(トーチの狙い位置ずれ)、エクステンション(ワイヤのトーチからの突出量)の少なくとも1つを読み込む。たとえば、狙いずれが0.6mm以下等と読み込む。
適正溶接条件算出手段は、溶接電流、電圧、トーチ角度、狙い位置の少なくとも1つに対する適正条件を算出する。
【0009】
適正溶接条件算出手段では、つぎの演算が行われる。
製品溶接品質に係るパラメータ(たとえば、溶け込みX)と、それと相関関係をもつパラメータ(たとえば、電流I、電圧V、板厚d、継手形状、等)との相関分析を行う。相関関数は、過去の溶接実績を基にして、決定される。
X=f(電流I、電圧V、板厚d、継手形状、等)・・・・・(1)
と表せる。ワークと継手種類が決まると、板厚d、継手形状値は定数となり、電流Iと電圧Vとの間にも所定の関係
I=aV+b ・・・・・(2)
があるから、(1)式は、
X=f(電流I) ・・・・・(3)
となる。ここで、要求品質条件、たとえば溶け込みXが20%以上の条件から、電流の範囲が決まり、それを(2)式に代入して、電流I、電圧Vの範囲が、たとえば、
I=125A以上
V=21V以上
等と決まる。
一方、溶け落ち不可の条件(溶け込みがたとえば70%以下、この条件は、要求品質の条件であるとともに、境界条件でもある)より、たとえば、
I=280A以下
V=31V以下
等となり、電流I、電圧Vの範囲が決まる。上記は、溶け込み深さに関して述べたが、他の溶接品質パラメータについても同様に演算する。
上記のようにして、製品溶接品質に係るパラメータ(溶け込み深さ、脚長、のど厚等)とそれと相関関係をもつパラメータ(たとえば、電流I、電圧V、板厚d、継手形状、等)との相関分析から、要求製品品質を満たすための、後者のパラメータ(たとえば、電流I、電圧V、板厚d、継手形状、等)の条件範囲が求められる。
【0010】
ついで、変動要因(狙いずれ、隙、エクステンション等)が裕度(変動の許容最大値)をもって変動した場合にも、なお要求製品品質を満たすように、上記パラメータ(たとえば、電流I、電圧V、板厚d、継手形状、等)の条件範囲を減縮する演算をする。
たとえば、変動要因として狙いずれをとり、その変動の裕度が0.6mmとする。過去の溶接実績から、溶け込み深さと狙い位置との間に、図4の相関があったとする。図4の例では、狙い位置の+、−各方向の0.6mmのずれは溶け込み深さに各15%の変動を与えるから、要求品質で述べた溶け込み深さ20〜70%の範囲は、15%ずつ減縮されて、35〜55%となる。これに対応して(3)式を用いて電流値を算出すると、溶け込み深さ20〜70%に対応した電流値125〜280Aが、溶け込み深さ35〜55%に対応する電流値150〜250Aとなる。これに対応して、(2)式より、電圧値は、22.5〜29Vとなる。図2はこの範囲を示す。
したがって、減縮された電流値範囲125〜280A、電圧値範囲22.5〜29Vから溶接電流、電圧値を選定すると、狙いずれが許容値0.6mm内で変動しても、溶け込み深さ20%以上、溶け落ちなしが満足される。
上記は、変動要因が狙いずれで、溶接不良を生じさせない境界条件が溶け落ちなしの場合を述べたが、他の変動要因である、隙、エクステンションで、境界条件が他の溶接不良(アーク切れ、スパッタ、アンダーカット、ハンピング)を生じさせないについても、同様の、過去の実績を基にした、相関分析と境界条件とから、適正域(図2の適正マークが存在する三角形の領域)が求まり、この適正域内で、電流、電圧、トーチ角度、狙い位置を選定することにより、変動要因が変動しても、なお製品要求品質が満足され、かつアンダーカット、ハンピング、溶け落ち、スパッタ、アーク切れ等の溶接不良が生じない、適正溶接条件が求められる。
【0011】
本発明実施例のアーク溶接条件設定方法は、図1に示すように、溶接機器を選択し、溶接の前提条件を入力する工程101、102と、製品要求品質を入力し、溶接変動要因の許容範囲を入力する工程103、104と、過去の溶接実績を基にした相関分析結果および境界条件により、変動要因が前記許容範囲内で変動しても前記製品要求品質を満たす、適正溶接条件を算出する工程105と、からなる。工程101、102は何れの工程を先に実行してもよい。また、工程103、104は何れの工程を先に実行してもよい。
【0012】
工程101の溶接機器の選択条件はワークの材質、板厚の少なくとも1つの条件を含み、ワークの材質、板厚の少なくとも1つの条件から溶接機器、すなわち、トーチ、ワイヤ、電源等が選択される。
工程102の溶接の前提条件は継手形状、ワーク板厚、溶接速度の少なくとも1つの条件を含む。
工程103の製品要求品質は溶け込み深さ、脚長、のど厚の少なくとも1つに対する条件および/またはアンダーカット、溶け落ち、スパッタの少なくとも1つに対する不可条件を含む。
工程104の溶接変動要因は隙、狙いずれ、エクステンションの少なくとも1つを含む。
工程105の適正溶接条件は溶接電流、電圧、トーチ角度、狙い位置の少なくとも1つに対する条件を含む。
【0013】
工程をおって説明すると、つぎの通りである。
工程101で、ワークの材質、板厚を読込、それらの情報から溶接機器(トーチ、ワイヤ、電源等)を選択する。また、設備情報としてロボットの情報を読み込む。
工程102で、継手形状、母材(ワーク)板厚、溶接速度(トーチ速度)等の溶接前提条件を読み込む。
工程101、102は、個別の条件入力でも可能であるが、部品別(サスペンションアーム、ステアリングコラム等)に一括入力してもよい。
工程103で、製品要求品質(溶け込み深さ、脚長、のど厚等)を読込む。たとえば、溶け込みが20%以上、溶け落ち不可、アンダーカット不可などである。
工程104で、変動要因(狙いずれ、隙、エクステンション等)の許容範囲を入力する。たとえば、狙いずれが+、−各方向に対し、0.6mm以下といった許容範囲を入力する。
工程105で、過去の実績(試験結果を含む)を基にした、相関分析結果および境界条件により、適正溶接電流、電圧、トーチ角度、狙い位置を算出する。
【0014】
工程105では、条件算出のうち、品質を満たす溶け込み深さ等は電流、板厚の相関からある条件範囲が求められる。たとえば、前述のI=125〜280A、V=21〜31Vのように、ある条件範囲が求められる。その後、溶接不良抑制の境界条件を用いて、変動が生じても溶接不良を抑制できるように、条件範囲を限定し、適正領域を求める。たとえば、前述のI=150〜250A、V=22.5〜29Vのように、条件範囲を限定し、適正領域を求める。適正領域および各種溶接不良発生領域の一例を図2に示した。
そして、この適正領域内で、適正溶接条件(適正電流、電圧、トーチ角度、狙い位置等)を選定する。
【0015】
そして、この適正溶接条件にて、工程106にて、アーク溶接を実行する。
この条件で溶接した場合、溶接不良は発生しない筈であるが、実際には設備(ロボット)に起因する不良もあり、たとえば、溶接中のロボット姿勢の急激な変化によりワイヤ送給速度が安定せずにビードくびれ(ハンピング)が起こったりする。上記の適正条件算出には、設備情報が考慮されていないので、この種の問題はなお残る。
それを解決するために、溶接不良(設備によるもの)が発生した場合に、トラブルシューティング集を作成し、原因調査と対策を作成する。その場合、これをフローチャート式に構成しておき、ある溶接不良が発生すると、トラブルシュート集のフローチャートに従って、設備の何による溶接不良かがわかり、それに対して如何なる対策をとればよいかがわかるようにしておく。
【0016】
本発明実施例のアーク溶接条件設定方法およびアーク溶接条件設定装置により従来技術の問題がつぎのように解決される。以下の▲1▼〜▲3▼は、前述の解決すべき課題で述べた、問題▲1▼〜▲3▼に対応する。
▲1▼の適正溶接条件を求めるのに時間と費用がかかりすぎるという問題に対しては、つぎの通りに対策される。すなわち、本発明のアーク溶接条件設定方法およびアーク溶接条件設定装置では、溶接前の1度の演算で適正溶接条件を求めることができ、従来のような溶接を繰り返し行って適正溶接条件を求めないで済み、適正溶接条件を求めるための時間と費用を減少できる。
【0017】
▲2▼の電流、電圧が固定されないという問題に対しては、つぎの通りに対策される。すなわち、本発明のアーク溶接条件設定方法およびアーク溶接条件設定装置では、製品要求品質を読込み、溶接変動要因に許容範囲を読込み、過去の溶接実績を基にした相関分析結果および境界条件により、変動要因が許容範囲内で変動しても製品要求品質を満たす、適正溶接条件を求めるので、狙いズレ、隙間、エクステンション等の変動要因が、入力された許容範囲内で変動しても、なお溶接は製品要求品質を満たす適正域にありかつ溶接不良を生じないように裕度をもたせてあり、変動要因が変動しても溶接電流、電圧を変える必要がなく固定条件で溶接を存続できる。これは、現状の溶接電流、電圧一定の溶接にマッチするものであり。
【0018】
▲3▼の溶接不良の発生を予想できないという問題に対しては、つぎの通りに対策される。すなわち、本発明のアーク溶接条件設定方法およびアーク溶接条件設定装置では、アンダーカット、ハンピング、溶け落ち、スパッタ発生等に対して境界条件を設けることにより、アンダーカット、ハンピング、溶け落ち、スパッタ発生等の各領域以外の領域で適正溶接条件を算出することにより、アンダーカット、ハンピング、溶け落ち、スパッタの発生を抑制できる。
【0019】
【発明の効果】
請求項1、2のアーク溶接条件設定方法および請求項3のアーク溶接条件設定装置によれば、溶接前の1度の演算で適正溶接条件を求めることができ、従来のような溶接を繰り返し行って適正溶接条件を求めないで済み、適正溶接条件を求めるための時間と費用を減少できる。
また、製品要求品質を読込み、溶接変動要因に許容範囲を読込み、過去の溶接実績を基にした相関分析結果および境界条件により、変動要因が許容範囲内で変動しても製品要求品質を満たす、適正溶接条件を求めるので、狙いズレ、隙間、エクステンション等の変動要因が入力された許容範囲内で変動しても、なお溶接は製品要求品質を満たす適正域にあるように裕度をもたせてあり、変動要因が変動しても溶接電流、電圧を変える必要がなく固定条件で溶接を存続できる。これは、現状の溶接電流、電圧一定の溶接にマッチするものである。
また、アンダーカット、ハンピング、溶け落ち、スパッタ発生等に対して境界条件を設けることにより、アンダーカット、ハンピング、溶け落ち、スパッタ発生等の各領域以外の領域で適正溶接条件を算出することにより、アンダーカット、ハンピング、溶け落ち、スパッタ発生を抑制できる。
【図面の簡単な説明】
【図1】本発明実施例のアーク溶接条件設定方法の工程図である。
【図2】本発明実施例のアーク溶接条件設定方法の過去の実績を基にした境界条件と、溶接不良発生域および適正域を示すマップである。
【図3】ワークおよび溶接部の断面図である。
【図4】溶け込み深さと狙い位置との関係を示すグラフである。
【図5】本発明実施例のアーク溶接条件設定装置のブロック図である。
【図6】従来のアーク溶接条件設定方法の工程図である。
【符号の説明】
1 ホストコンピュータ
2 端末機
3 ロボットコントローラ
101 溶接機器選択工程
102 溶接前提条件入力工程
103 製品要求品質入力工程
104 溶接変動要因の許容範囲の入力工程
105 適正溶接条件算出工程
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an arc welding condition setting method and an arc welding condition setting device.
[0002]
[Prior art]
As shown in FIG. 6, the conventional arc welding condition automatic calculation method is based on the premise of a process 201 for selecting a welding device based on a workpiece material and a plate thickness, a joint shape, a welding speed (torch feed speed), a torch target position, and the like. Step 202 that is input as a condition, step 203 that calculates a welding current and voltage value from the relationship between the amount of input metal (wire) and the amount of weld metal (bead), and actual arc welding with the calculated welding current and voltage value Welding / confirmation step 204 for confirming whether or not the welding conditions calculated and executed are appropriate so as not to cause welding defects, and welding defects such as undercut, spatter, burn-off, humping (weld bead width is determined in step 204) When it is confirmed that a phenomenon that fluctuates in the welding direction) has occurred, the calculation in step 204 is performed again by changing the preconditions, etc., and new welding conditions are calculated to perform welding. The that cycle is repeated until the defective welding does not occur, a feedback step 205 partially including a welding process, consisted.
[0003]
[Problems to be solved by the invention]
However, the conventional arc welding condition calculation method has the following problems.
(1) Since feedback control including a welding process is performed to reach an appropriate welding condition that does not cause poor welding, it takes too much time and cost to reach the appropriate welding condition.
(2) Normally, welding current, voltage and speed are fixed in mass production. In the conventional welding condition calculation method, when the fluctuation factors of the workpiece gap and the torch aiming position change, the appropriate welding current, voltage, and speed change accordingly, and the fixed conditions are not established, so it is not practical.
(3) Since the welding conditions are calculated only in the balance of the amount of metal in the step 203, and the amount of metal mainly depends on the welding current value, the influence of voltage, welding speed, joint shape, etc. is large. , Humping, spatter generation, etc. cannot be predicted.
An object of the present invention is to provide an arc welding condition setting method and an arc welding condition setting apparatus capable of setting appropriate welding conditions by calculation before performing welding.
Another object of the present invention is to keep welding conditions such as welding current and voltage fixed even if fluctuation factors such as the work gap and the torch aiming position fluctuate, as long as they are within the allowable values of the fluctuation factors. Another object of the present invention is to provide an arc welding condition setting method and an arc welding condition setting device that can afford a welding variation factor.
Another object of the present invention is to provide an arc welding condition setting method and an arc welding condition setting device capable of suppressing undercut, humping, spatter generation and the like.
[0004]
[Means for Solving the Problems]
The present invention for achieving the above object is as follows.
(1) selecting welding equipment and inputting welding preconditions;
Enter the required product quality, enter the tolerance range of welding fluctuation factors,
A process of calculating appropriate welding conditions that satisfy the product required quality even if the variation factor fluctuates within the allowable range, based on a correlation analysis result and boundary conditions based on past welding results;
An arc welding condition setting method comprising:
(2) The selection conditions of the welding equipment include at least one condition of workpiece material and plate thickness, and the welding precondition includes at least one condition of joint shape, workpiece plate thickness and welding speed, and the product requirement Quality includes conditions for at least one of penetration depth, leg length, throat thickness and / or unconditional conditions for at least one of undercut, melt-down, spatter, and the welding variation factors include at least one of gap, aim, extension The arc welding condition setting method according to (1), wherein the appropriate welding condition includes a condition for at least one of a welding current, a voltage, a torch angle, and a target position.
(3) Welding equipment selection means for selecting a welding equipment, precondition reading means for reading the preconditions for welding, product requirement quality reading means for reading the product requirement quality, and fluctuation factor reading means for reading the allowable range of the welding fluctuation factor Based on the read data, correlation analysis results and boundary conditions based on past welding results are used to calculate appropriate welding conditions that satisfy the required product quality even if the fluctuation factors fluctuate within the allowable range. A suitable computer for calculating welding conditions;
A portable terminal divided from the host computer, having transfer means for transferring appropriate welding conditions calculated by the host computer to a robot controller of the welding robot;
An arc welding condition setting device comprising:
[0005]
In the arc welding condition setting method of (1) and (2) and the arc welding condition setting device of (3), the appropriate welding conditions can be obtained by one calculation before welding, and conventional welding is performed. It is not necessary to repeatedly determine the appropriate welding conditions, and the time and cost for determining the appropriate welding conditions can be reduced.
In addition, it reads the required product quality, reads the allowable range into the welding fluctuation factor, and satisfies the required product quality even if the fluctuation factor fluctuates within the allowable range due to the correlation analysis results and boundary conditions based on past welding results. Since appropriate welding conditions are determined, even if fluctuation factors such as target deviation, gap, extension, etc. fluctuate within the input allowable range, the tolerance is given so that the welding is in an appropriate range that satisfies the required product quality. Even if the fluctuation factors fluctuate, it is not necessary to change the welding current and voltage, and welding can be continued under fixed conditions. This matches the current welding current and constant voltage welding.
In addition, by setting boundary conditions for undercut, humping, meltdown, spatter generation, etc., by calculating appropriate welding conditions in areas other than each area such as undercut, humping, meltdown, spatter generation, Undercut, humping, melt-down, and spatter generation can be suppressed.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An arc welding condition setting method and an arc welding condition setting apparatus according to an embodiment of the present invention will be described with reference to FIGS. The types of weld shape and weld failure are shown in FIG.
As shown in FIG. 5, the arc welding condition setting of the embodiment of the present invention includes a host computer 1, a terminal 2 that can be connected to the host computer, and a robot controller 3 that is connected to the terminal 2.
The host computer 1 has an input / output interface (input / output interface) 1b, a CPU 1a for executing calculations, and storage means (RAM, ROM) 1c.
The terminal 2 is composed of a portable terminal that is divided from the host computer 1 and has a transfer means 2a for transferring appropriate welding conditions calculated by the host computer 1 to the robot controller 3 of the welding robot and an input / output means 2b. The terminal 2 may be a portable small computer. By separating the host computer 1 and the terminal 2, it is possible to manufacture at a low cost without the need to install a host computer for each facility. It is possible to check the conditions before completion. In addition, online teaching at the terminal 2 is possible, and workability is improved.
A robot controller 3 is provided in each arc welding robot.
[0007]
A calculation routine shown in FIG. 1 is installed in the host computer 1.
The calculation routine includes a welding equipment selection means for selecting a welding equipment (means for executing step 101), a precondition reading means for reading a precondition for welding (means for executing step 102), and a product for reading the required product quality. Based on the required welding quality reading means (means for executing step 103), fluctuation factor reading means for reading the allowable range of welding fluctuation factors (means for executing step 104), and past welding results from these read data. Based on the correlation analysis result and the boundary condition, an appropriate welding condition calculation means (means for executing step 105) for calculating an appropriate welding condition that satisfies the product required quality even if the fluctuation factor fluctuates within the allowable range, Have.
[0008]
In the above, the welding equipment selection means selects the welding equipment from at least one condition of the material and thickness of the plate work to be welded.
The precondition reading means reads at least one condition of the joint shape, workpiece thickness, and welding speed.
The product requirement quality reading means reads a condition for at least one of a penetration depth, a leg length, and a throat thickness and / or an unconditional condition for at least one of an undercut, a melt-down, and a spatter. For example, it is read that the penetration is 20% or more, cannot be melted down, cannot be undercut, and so on.
The welding fluctuation factor reading means reads at least one of a gap (a gap amount between workpieces), a target (shift of the target position of the torch), and an extension (amount of protrusion of the wire from the torch). For example, the target is read as 0.6 mm or less.
The appropriate welding condition calculation means calculates an appropriate condition for at least one of a welding current, a voltage, a torch angle, and a target position.
[0009]
In the appropriate welding condition calculation means, the following calculation is performed.
Correlation analysis is performed between a parameter (for example, penetration X) related to product welding quality and a parameter (for example, current I, voltage V, plate thickness d, joint shape, etc.) having a correlation therewith. The correlation function is determined based on past welding results.
X = f (current I, voltage V, plate thickness d, joint shape, etc.) (1)
It can be expressed. When the workpiece and joint type are determined, the plate thickness d and joint shape value are constants, and the predetermined relationship between current I and voltage V is I = aV + b (2)
Therefore, equation (1) is
X = f (current I) (3)
It becomes. Here, the range of the current is determined from the required quality condition, for example, the condition where the penetration X is 20% or more, and is substituted into the equation (2).
It is determined that I = 125A or more, V = 21V or more, and the like.
On the other hand, from the condition of not being burnt out (melting is 70% or less, for example, this condition is a requirement quality and a boundary condition), for example,
I = 280A or less, V = 31V or less, and the like, and the range of current I and voltage V is determined. Although the above has described the penetration depth, other welding quality parameters are similarly calculated.
As described above, the parameters relating to the product welding quality (penetration depth, leg length, throat thickness, etc.) and the parameters (for example, current I, voltage V, plate thickness d, joint shape, etc.) correlated therewith. From the correlation analysis, the condition range of the latter parameters (for example, current I, voltage V, plate thickness d, joint shape, etc.) to satisfy the required product quality is obtained.
[0010]
Next, even if the fluctuation factors (target, gap, extension, etc.) fluctuate with tolerance (allowable maximum value of fluctuation), the above parameters (for example, current I, voltage V, Calculation to reduce the range of conditions (plate thickness d, joint shape, etc.).
For example, the target is taken as a variation factor, and the tolerance of the variation is 0.6 mm. Assume that there is a correlation in FIG. 4 between the penetration depth and the target position based on past welding results. In the example of FIG. 4, a shift of 0.6 mm in each of the target positions + and − gives a 15% variation in the penetration depth. Therefore, the range of the penetration depth of 20 to 70% described in the required quality is as follows. Reduced by 15% to 35-55%. Correspondingly, when the current value is calculated using the expression (3), the current values 125 to 280A corresponding to the penetration depth 20 to 70% are changed to the current values 150 to 250A corresponding to the penetration depth 35 to 55%. It becomes. Correspondingly, the voltage value is 22.5 to 29 V from the equation (2). FIG. 2 shows this range.
Therefore, when the welding current and voltage value are selected from the reduced current value range 125 to 280A and the voltage value range 22.5 to 29V, the penetration depth is 20% regardless of the target fluctuation within the allowable value of 0.6 mm. As described above, no burn-through is satisfied.
The above describes a case where the boundary condition that does not cause welding defects is not burned out, regardless of the variation factor. However, other variation factors, such as gaps and extensions, have other welding defects (arc breakage). , Sputter, undercut, and humping), the appropriate region (triangle region where the proper mark in FIG. 2 exists) is obtained from the correlation analysis and the boundary conditions based on the past results. By selecting the current, voltage, torch angle, and target position within this proper range, the required quality of the product is still satisfied even if the fluctuation factors fluctuate, and undercut, humping, burnout, spatter, arc breakage Appropriate welding conditions are required so that welding defects such as these do not occur.
[0011]
As shown in FIG. 1, the arc welding condition setting method according to the embodiment of the present invention selects the welding equipment, inputs the welding preconditions 101 and 102, inputs the required product quality, and accepts the welding fluctuation factor. Calculate the appropriate welding conditions that satisfy the required product quality even if the fluctuation factors fluctuate within the allowable range, based on the correlation analysis results and boundary conditions based on the past welding results and the processes 103 and 104 for inputting the ranges. Step 105. Any of the steps 101 and 102 may be executed first. In addition, any of steps 103 and 104 may be executed first.
[0012]
The selection conditions of the welding equipment in step 101 include at least one condition of the workpiece material and the plate thickness, and the welding equipment, that is, a torch, a wire, a power source, and the like are selected from at least one of the workpiece material and the plate thickness. .
Preconditions for welding in step 102 include at least one of the joint shape, workpiece thickness, and welding speed.
The product requirement quality in step 103 includes conditions for at least one of penetration depth, leg length, and throat thickness and / or conditions for at least one of undercut, meltdown, and spatter.
The welding variation factor in Step 104 includes at least one of a gap, an aim, and an extension.
The appropriate welding conditions in Step 105 include conditions for at least one of welding current, voltage, torch angle, and target position.
[0013]
The process will be described as follows.
In step 101, the material and thickness of the workpiece are read, and welding equipment (torch, wire, power source, etc.) is selected from the information. Also, robot information is read as equipment information.
In step 102, welding preconditions such as joint shape, base metal (workpiece) plate thickness, welding speed (torch speed), etc. are read.
Steps 101 and 102 may be input individually, but may be input collectively for each part (suspension arm, steering column, etc.).
In step 103, the required product quality (penetration depth, leg length, throat thickness, etc.) is read. For example, the penetration is 20% or more, the melt-down is not possible, the undercut is not possible.
In step 104, an allowable range of variation factors (target, gap, extension, etc.) is input. For example, an allowable range such as 0.6 mm or less is input for each direction of the + and − directions.
In step 105, the appropriate welding current, voltage, torch angle, and target position are calculated based on the correlation analysis result and the boundary condition based on the past results (including the test result).
[0014]
In step 105, in the condition calculation, a certain condition range is obtained from the correlation between the current and the plate thickness for the penetration depth or the like that satisfies the quality. For example, a certain condition range is obtained such as I = 125 to 280A and V = 21 to 31V. Thereafter, the boundary condition for suppressing welding failure is used to limit the condition range so that the welding failure can be suppressed even if fluctuation occurs, and an appropriate region is obtained. For example, the condition range is limited such that I = 150 to 250 A and V = 22.5 to 29 V, and the appropriate area is obtained. An example of the appropriate region and various welding failure occurrence regions is shown in FIG.
Then, within this appropriate region, appropriate welding conditions (appropriate current, voltage, torch angle, aiming position, etc.) are selected.
[0015]
Then, arc welding is performed in step 106 under the proper welding conditions.
If welding is performed under these conditions, welding defects should not occur, but there are actually defects due to equipment (robots). For example, the wire feed speed is stabilized by a sudden change in the robot posture during welding. The bead constriction (humping) occurs. This kind of problem still remains because the above-mentioned calculation of appropriate conditions does not consider the facility information.
In order to solve it, when a welding defect (due to equipment) occurs, a troubleshooting collection is created, and the cause investigation and countermeasures are created. In this case, this is configured in a flow chart so that when a certain welding failure occurs, it is possible to know what kind of welding failure is caused by the equipment according to the troubleshooting flowchart and what countermeasures should be taken. Keep it.
[0016]
The problems of the prior art are solved as follows by the arc welding condition setting method and the arc welding condition setting apparatus of the embodiment of the present invention. The following (1) to (3) correspond to the problems (1) to (3) described in the problem to be solved.
The following measures are taken against the problem that it takes too much time and money to obtain the appropriate welding condition (1). That is, in the arc welding condition setting method and the arc welding condition setting device of the present invention, the appropriate welding condition can be obtained by one calculation before welding, and the conventional welding is repeatedly performed and the appropriate welding condition is not obtained. This reduces the time and cost required to determine the proper welding conditions.
[0017]
For the problem (2) that the current and voltage are not fixed, the following measures are taken. That is, in the arc welding condition setting method and the arc welding condition setting apparatus of the present invention, the product required quality is read, the allowable range is read as the welding fluctuation factor, and the fluctuation is caused by the correlation analysis result and the boundary condition based on the past welding results. Even if the factors fluctuate within the permissible range, the optimum welding conditions that satisfy the required product quality are obtained, so even if fluctuating factors such as target deviation, gap, and extension fluctuate within the input permissible range, welding is still possible. It is in an appropriate range that satisfies the required product quality and has a tolerance so as not to cause welding defects. Even if the fluctuation factors fluctuate, welding current and voltage do not need to be changed and welding can be continued under fixed conditions. This matches the current welding current and constant voltage welding.
[0018]
For the problem (3) that the occurrence of poor welding cannot be predicted, the following measures are taken. That is, in the arc welding condition setting method and the arc welding condition setting device of the present invention, by setting boundary conditions for undercut, humping, melting, spatter generation, etc., undercut, humping, melting, spatter generation, etc. By calculating appropriate welding conditions in regions other than these regions, undercuts, humping, melt-down, and generation of spatter can be suppressed.
[0019]
【The invention's effect】
According to the arc welding condition setting method of claims 1 and 2 and the arc welding condition setting device of claim 3, the appropriate welding conditions can be obtained by one calculation before welding, and conventional welding is repeatedly performed. Therefore, it is not necessary to obtain appropriate welding conditions, and the time and cost for obtaining appropriate welding conditions can be reduced.
In addition, it reads the required product quality, reads the allowable range into the welding fluctuation factor, and satisfies the required product quality even if the fluctuation factor fluctuates within the allowable range due to the correlation analysis results and boundary conditions based on past welding results. Since appropriate welding conditions are determined, even if fluctuation factors such as target deviation, gap, extension, etc. fluctuate within the input allowable range, tolerance is given so that welding is in an appropriate range that satisfies the required product quality. Even if the fluctuation factors fluctuate, it is not necessary to change the welding current and voltage, and welding can be continued under fixed conditions. This matches the current welding current and constant voltage welding.
In addition, by setting boundary conditions for undercut, humping, meltdown, spatter generation, etc., by calculating appropriate welding conditions in areas other than each area such as undercut, humping, meltdown, spatter generation, Undercut, humping, melt-down, and spatter generation can be suppressed.
[Brief description of the drawings]
FIG. 1 is a process diagram of an arc welding condition setting method according to an embodiment of the present invention.
FIG. 2 is a map showing boundary conditions based on past results of an arc welding condition setting method according to an embodiment of the present invention, a welding failure occurrence area, and an appropriate area.
FIG. 3 is a cross-sectional view of a workpiece and a welded portion.
FIG. 4 is a graph showing a relationship between a penetration depth and a target position.
FIG. 5 is a block diagram of an arc welding condition setting device according to an embodiment of the present invention.
FIG. 6 is a process diagram of a conventional arc welding condition setting method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Host computer 2 Terminal 3 Robot controller 101 Welding equipment selection process 102 Welding precondition input process 103 Product requirement quality input process 104 Welding variation factor allowable range input process 105 Appropriate welding condition calculation process

Claims (3)

溶接機器を選択し、溶接の前提条件を入力する工程と、
製品要求品質を入力し、溶接変動要因の許容範囲を入力する工程と、
過去の溶接実績を基にした相関分析結果および境界条件により、変動要因が前記許容範囲内で変動しても前記製品要求品質を満たす、適正溶接条件を算出する工程と、
からなるアーク溶接条件設定方法。
Selecting welding equipment and entering welding prerequisites;
Enter the required product quality, enter the tolerance range of welding fluctuation factors,
A process of calculating appropriate welding conditions that satisfy the product required quality even if a variation factor fluctuates within the allowable range according to a correlation analysis result and boundary conditions based on past welding results;
An arc welding condition setting method comprising:
前記溶接機器の選択条件はワークの材質、板厚の少なくとも1つの条件を含み、前記溶接の前提条件は継手形状、ワーク板厚、溶接速度の少なくとも1つの条件を含み、前記製品要求品質は溶け込み深さ、脚長、のど厚の少なくとも1つに対する条件および/またはアンダーカット、溶け落ち、スパッタの少なくとも1つに対する不可条件を含み、前記溶接変動要因は隙、狙いずれ、エクステンションの少なくとも1つを含み、前記適正溶接条件は溶接電流、電圧、トーチ角度、狙い位置の少なくとも1つに対する条件を含む請求項1記載のアーク溶接条件設定方法。The selection conditions of the welding equipment include at least one condition of workpiece material and plate thickness, the preconditions for welding include at least one condition of joint shape, workpiece plate thickness, and welding speed, and the required quality of the product blends. Including conditions for at least one of depth, leg length, throat thickness and / or unconditional conditions for at least one of undercut, burn-through, and spatter, and the welding variation factor includes at least one of gap, aim, extension The arc welding condition setting method according to claim 1, wherein the appropriate welding conditions include a condition for at least one of a welding current, a voltage, a torch angle, and a target position. 溶接機器を選択する溶接機器選択手段と、溶接の前提条件を読み込む前提条件読込手段と、製品要求品質を読み込む製品要求品質読込手段と、溶接変動要因の許容範囲を読み込む変動要因読込手段と、読み込まれたこれらのデータから過去の溶接実績を基にした相関分析結果および境界条件により、変動要因が前記許容範囲内で変動しても前記製品要求品質を満たす、適正溶接条件を演算する適正溶接条件算出手段と、を有するホストコンピュータと、
該ホストコンピュータで演算された適正溶接条件を溶接ロボットのロボットコントローラに転送する転送手段をもつ、前記ホストコンピュータと分割された携帯端末機と、
からなるアーク溶接条件設定装置。
Welding equipment selection means for selecting welding equipment, precondition reading means for reading preconditions for welding, product requirement quality reading means for reading product requirement quality, fluctuation factor reading means for reading the allowable range of welding fluctuation factors, and reading Based on the results of correlation analysis based on past welding results and boundary conditions, the appropriate welding conditions for calculating the appropriate welding conditions satisfying the required product quality even if the fluctuation factors fluctuate within the allowable range. A host computer having calculation means;
A portable terminal divided from the host computer, having transfer means for transferring appropriate welding conditions calculated by the host computer to the robot controller of the welding robot;
An arc welding condition setting device comprising:
JP2000169974A 2000-06-07 2000-06-07 Arc welding condition setting method and arc welding condition setting device Expired - Fee Related JP3675304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000169974A JP3675304B2 (en) 2000-06-07 2000-06-07 Arc welding condition setting method and arc welding condition setting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000169974A JP3675304B2 (en) 2000-06-07 2000-06-07 Arc welding condition setting method and arc welding condition setting device

Publications (2)

Publication Number Publication Date
JP2001347374A JP2001347374A (en) 2001-12-18
JP3675304B2 true JP3675304B2 (en) 2005-07-27

Family

ID=18672753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000169974A Expired - Fee Related JP3675304B2 (en) 2000-06-07 2000-06-07 Arc welding condition setting method and arc welding condition setting device

Country Status (1)

Country Link
JP (1) JP3675304B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106994545A (en) * 2015-10-21 2017-08-01 株式会社神户制钢所 Device for assisting in setting and setting householder method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747831B2 (en) * 2005-12-22 2011-08-17 株式会社大林組 Welding management method, welding management system, steel structure, IC tag
JP5188026B2 (en) * 2006-02-14 2013-04-24 株式会社神戸製鋼所 Welding method
JP5474477B2 (en) * 2009-09-30 2014-04-16 富士重工業株式会社 Welding condition setting device and welding condition setting program
KR101229876B1 (en) * 2010-11-18 2013-02-05 한국생산기술연구원 Welding method using a database of optimum welding condition
JP6052918B2 (en) 2015-02-27 2016-12-27 株式会社神戸製鋼所 Setting support apparatus, setting support method, and program
WO2023140008A1 (en) * 2022-01-24 2023-07-27 パナソニックIpマネジメント株式会社 Power supply device for welder, method for generating welding conditions, system for assisting generation of welding conditions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106994545A (en) * 2015-10-21 2017-08-01 株式会社神户制钢所 Device for assisting in setting and setting householder method
CN106994545B (en) * 2015-10-21 2020-01-21 株式会社神户制钢所 Setting support device and setting support method

Also Published As

Publication number Publication date
JP2001347374A (en) 2001-12-18

Similar Documents

Publication Publication Date Title
US6649870B1 (en) System and method facilitating fillet weld performance
CA2515228C (en) Control system using working robot, and work processing method using this system
CN1425527A (en) Electric arc welding device and its control method
JP2008093670A (en) Robot control device for controlling tandem arc welding system, and arc copy control method using the same
JPH05329645A (en) Arc sensor monitoring device and its using method
JP2006247663A (en) Welding method and welding apparatus
JP3675304B2 (en) Arc welding condition setting method and arc welding condition setting device
US6294753B1 (en) Resistance welding machine control method
JP6672551B2 (en) Display device and display method for arc welding
CN114951906A (en) Welding system and method for operating a welding system
JPH09262670A (en) Status indicating method of welding equipment
US20220111460A1 (en) A method for automatic welding of a structural steel assembly and an automatic welding system for welding of a structural steel assembly
JP3532067B2 (en) Arc sensor copying control method
CN106470789A (en) Electric arc welds Quality estimation system
JPH07276075A (en) Method for detecting abnormality at welding time
JP2617545B2 (en) Consumable electrode arc welding method
JP2904249B2 (en) Welding method by welding robot
JP2003225765A (en) Position detecting method in automatic welding machine
JP7365544B2 (en) Welding machine and welding system equipped with it
JPWO2004087361A1 (en) Resistance welding equipment
JPH09216059A (en) Electrode non-consumption type welding robot and arc welding method using it
KR0184978B1 (en) A welding current control method
KR102250332B1 (en) Welding torch with variable electrode
JP3208276B2 (en) Groove width copying method
JP3243390B2 (en) Groove width copying method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees