JP2007213997A - Solid polyelectrolyte membrane electrode assembly and solid polymer electrolyte fuel cell utilizing it - Google Patents

Solid polyelectrolyte membrane electrode assembly and solid polymer electrolyte fuel cell utilizing it Download PDF

Info

Publication number
JP2007213997A
JP2007213997A JP2006033207A JP2006033207A JP2007213997A JP 2007213997 A JP2007213997 A JP 2007213997A JP 2006033207 A JP2006033207 A JP 2006033207A JP 2006033207 A JP2006033207 A JP 2006033207A JP 2007213997 A JP2007213997 A JP 2007213997A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
electrolyte membrane
membrane
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006033207A
Other languages
Japanese (ja)
Other versions
JP5013501B2 (en
Inventor
Satoru Watanabe
渡邊  悟
Ichiro Toyoda
一郎 豊田
Yoshimi Yashima
吉見 八島
Masahiro Kitazawa
正広 北澤
Yoshio Nosaka
芳雄 野坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nagaoka University of Technology NUC
Original Assignee
Mitsubishi Heavy Industries Ltd
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nagaoka University of Technology NUC filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006033207A priority Critical patent/JP5013501B2/en
Publication of JP2007213997A publication Critical patent/JP2007213997A/en
Application granted granted Critical
Publication of JP5013501B2 publication Critical patent/JP5013501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell capable of achieving a low cost and a long life, and a solid polymer electrolyte fuel cell utilizing the same. <P>SOLUTION: The cell 10 has a fuel electrode membrane 12 arranged on one face side of a solid polymer electrolyte membrane 11 and an oxidation electrode membrane 13 arranged on the other face side. The solid polymer electrolyte membrane is provided with a fluorine system solid polymer electrolyte membrane 11a which is installed on oxidation electrode membrane 13 side and has a fluorine system resin as a skeleton and has a proton conductive group, a hydrocarbon system solid polymer electrolyte membrane 11b which is installed on the fuel electrode membrane 12 side and has as a skeleton a hydrocarbon system resin having a benzene ring as a main chain and carbon and hydrogen as a main component and has the proton conductive group, and a fluorine system solid polymer electrolyte membrane 11c which is installed between the fuel electrode membrane 12 and the hydrocarbon system solid polymer electrolyte membrane 11b and has a fluorine system resin as a skeleton and has the proton conductive group. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体高分子電解質膜電極接合体及びこれを利用する固体高分子電解質形燃料電池に関する。   The present invention relates to a solid polymer electrolyte membrane electrode assembly and a solid polymer electrolyte fuel cell using the same.

固体高分子電解質形燃料電池は、スルホン酸基等のようなプロトン(H+)伝導性基を有するフッ素樹脂等からなる固体高分子電解質膜を燃料極膜及び酸化極膜で挟んだ固体高分子電解質膜電極接合体(セル)を複数積層してスタックを構成し、水素(H2)を含有する燃料ガスを燃料極膜側に供給すると共に、酸素(O2)を含有する酸化ガスを酸化極膜側に供給し、上記固体高分子電解質膜を介して水素及び酸素を電気化学的に反応させることにより、電力を得ることができるようになっている。 A solid polymer electrolyte fuel cell is a solid polymer in which a solid polymer electrolyte membrane made of a fluororesin having a proton (H + ) conductive group such as a sulfonic acid group is sandwiched between a fuel electrode membrane and an oxide electrode membrane. A stack is formed by stacking a plurality of electrolyte membrane electrode assemblies (cells), and a fuel gas containing hydrogen (H 2 ) is supplied to the fuel electrode membrane side, and an oxidizing gas containing oxygen (O 2 ) is oxidized. Electric power can be obtained by supplying it to the electrode membrane side and allowing hydrogen and oxygen to react electrochemically through the solid polymer electrolyte membrane.

特開2005−317362号公報JP 2005-317362 A

ところで、前述したような従来の固体高分子電解質形燃料電池においては、上述した反応等の際に過酸化水素(H22)等の副反応物質が上記電極膜近傍で発生しやすいと共に、燃料極膜側に供給した燃料ガスの一部が上記固体高分子電解質膜を透過して酸化極膜側に到達することや、酸素極膜側に供給した酸化ガスの一部が上記固体高分子電解質膜を透過して燃料極膜側に到達する、いわゆるクロスオーバを起こしやすかった。このようにして生成する過酸化水素と、クロスオーバによって流入する上記ガスとが上記電極膜中の触媒近傍で共存してしまうと、当該過酸化水素からヒドロキシラジカル(・OH)が生成してしまうということが新たに明らかになった。特に、上記ヒドロキシラジカルは、上記電極膜の周縁端側が中央側よりも発生し易く、また、燃料極膜側よりも酸化極膜側で発生し易いことも新たに明らかになった。 By the way, in the conventional solid polymer electrolyte fuel cell as described above, side reaction substances such as hydrogen peroxide (H 2 O 2 ) are likely to be generated in the vicinity of the electrode film during the above-described reaction, Part of the fuel gas supplied to the fuel electrode membrane permeates the solid polymer electrolyte membrane and reaches the oxide electrode membrane side, or part of the oxidizing gas supplied to the oxygen electrode membrane side It was easy to cause a so-called crossover that permeated the electrolyte membrane and reached the fuel electrode membrane side. If the hydrogen peroxide thus generated and the gas flowing in due to crossover coexist in the vicinity of the catalyst in the electrode film, hydroxy radicals (.OH) are generated from the hydrogen peroxide. That was newly revealed. In particular, it has been newly clarified that the hydroxy radicals are more likely to be generated on the peripheral edge side of the electrode film than on the center side, and more easily on the oxide electrode film side than on the fuel electrode film side.

このようにしてヒドロキシラジカルが生成すると、固体高分子電解質膜と反応して、当該固体高分子電解質膜を徐々に分解して次第に劣化させてしまい、当該固体高分子電解質膜が短寿命となってしまう。   When the hydroxy radical is generated in this manner, it reacts with the solid polymer electrolyte membrane and gradually degrades and gradually degrades the solid polymer electrolyte membrane, and the solid polymer electrolyte membrane has a short life. End up.

このため、クロスオーバを生じにくく且つ耐ラジカル性の高い固体高分子電解質膜の材料の開発が種々検討されているが、非常に高コストなものとなってしまい、現状では実用化に難点があった。   For this reason, various studies have been made on the development of materials for solid polymer electrolyte membranes that are unlikely to cause crossover and have high radical resistance. However, they have become very expensive and presently have difficulties in practical use. It was.

このようなことから、本発明は、低コストで長寿命化を図ることができる固体高分子電解質膜電極接合体及びこれを利用する固体高分子電解質形燃料電池を提供することを目的とする。   In view of the above, an object of the present invention is to provide a solid polymer electrolyte membrane electrode assembly capable of extending the life at low cost and a solid polymer electrolyte fuel cell using the same.

前述した課題を解決するための、第一番目の発明に係る固体高分子電解質膜電極接合体は、固体高分子電解質膜の一方面側に燃料極膜を配設されると共に他方面側に酸化極膜を配設される固体高分子電解質膜電極接合体において、前記固体高分子電解質膜が、前記酸化極膜側に設けられてフッ素系樹脂を骨格とすると共にプロトン伝導性基を有するフッ素系固体高分子電解質膜と、前記燃料極膜側に設けられて主鎖にベンゼン環を有して炭素と水素とを主な組成とする炭化水素系樹脂を骨格とすると共にプロトン伝導性基を有する炭化水素系固体高分子電解質膜とを備えてなることを特徴とする。   The solid polymer electrolyte membrane electrode assembly according to the first invention for solving the above-mentioned problem is provided with a fuel electrode membrane on one side of the solid polymer electrolyte membrane and oxidized on the other side. A solid polymer electrolyte membrane / electrode assembly in which an electrode membrane is disposed, wherein the solid polymer electrolyte membrane is provided on the oxidation electrode membrane side and has a fluorine resin as a skeleton and a proton conductive group A solid polymer electrolyte membrane, and a hydrocarbon-based resin having a benzene ring in the main chain and having a main composition of carbon and hydrogen provided on the fuel electrode membrane side and having a proton conductive group And a hydrocarbon-based solid polymer electrolyte membrane.

第二番目の発明に係る固体高分子電解質膜電極接合体は、第一番目の発明において、前記固体高分子電解質膜が、前記燃料極膜と前記炭化水素系固体高分子電解質膜との間に設けられてフッ素系樹脂を骨格とすると共にプロトン伝導性基を有するフッ素系固体高分子電解質膜をさらに備えてなることを特徴とする。   A solid polymer electrolyte membrane electrode assembly according to a second invention is the first invention, wherein the solid polymer electrolyte membrane is between the fuel electrode membrane and the hydrocarbon-based solid polymer electrolyte membrane. And a fluorine-containing solid polymer electrolyte membrane having a proton-conductive group and a fluorine-based resin as a skeleton.

第三番目の発明に係る固体高分子電解質膜電極接合体は、第一番目又は第二番目の発明において、前記固体高分子電解質膜の前記フッ素系固体高分子電解質膜が、前記電極膜の周縁端近傍のみに配設されていることを特徴とする。   A solid polymer electrolyte membrane electrode assembly according to a third aspect of the invention is the first or second aspect of the invention, wherein the fluorine-based solid polymer electrolyte membrane of the solid polymer electrolyte membrane is a peripheral edge of the electrode membrane. It is arranged only in the vicinity of the end.

第四番目の発明に係る固体高分子電解質膜電極接合体は、第一番目から第三番目の発明のいずれかにおいて、前記固体高分子電解質膜の前記フッ素系固体高分子電解質膜の前記フッ素系樹脂が、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−四フッ化エチレン共重合体(ETFE)、四フッ化エチレン−六フッ化エチレン共重合体(FEP)、四フッ化エチレン−六フッ化プロピレン共重合体(PFEP)、ポリ三フッ化塩化エチレン(PCTFE)、三フッ化塩化エチレン−エチレン共重合体(ECTFE)、四フッ化エチレン−パーフルオロジオキソール共重合体(TFE/PDD)のうちの少なくとも一種、又は、その誘導体であることを特徴とする。   A solid polymer electrolyte membrane electrode assembly according to a fourth aspect of the present invention is the fluorinated solid polymer electrolyte membrane of the solid polymer electrolyte membrane according to any one of the first to third aspects of the invention. Resin is polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoroethylene copolymer (FEP), tetrafluoroethylene-hexafluoropropylene copolymer (PFEP), poly (trifluoroethylene chloride) (PCTFE), trifluoride chloride Ethylene-ethylene copolymer (ECTFE), tetrafluoroethylene-perfluorodioxole copolymer (TFE / PD At least one of), or, characterized in that it is a derivative thereof.

第五番目の発明に係る固体高分子電解質膜電極接合体は、第一番目から第四番目の発明のいずれかにおいて、前記固体高分子電解質膜の前記炭化水素系固体高分子電解質膜の前記炭化水素系樹脂が、ポリベンゾオキサゾール(PBO)、ポリベンゾチアゾール(PBT)、ポリベンゾイミダゾール(PBI)、ポリフェニレンオキシド(PPO)、ポリフェニレンスルホキシド(PPSO)、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルフィドスルホン(PPS/SO2)、ポリパラフェニレン(PPP)、ポリスルホン(PSU)、ポリフェニレンスルホン(PPSU)、ポリエーテルスルホン(PES)、ポリエーテルエーテルスルホン(PEES)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリスチレン(PS)、ポリフェニレンエーテル(PPE)、ポリアリールエーテルスルホン(PAS)のうちの少なくとも一種、又は、その誘導体であることを特徴とする。   The solid polymer electrolyte membrane / electrode assembly according to a fifth aspect of the present invention is the solid polymer electrolyte membrane / electrode assembly according to any one of the first to fourth aspects, wherein the carbonization of the hydrocarbon-based solid polymer electrolyte membrane of the solid polymer electrolyte membrane is performed. Hydrogen-based resins are polybenzoxazole (PBO), polybenzothiazole (PBT), polybenzimidazole (PBI), polyphenylene oxide (PPO), polyphenylene sulfoxide (PPSO), polyphenylene sulfide (PPS), polyphenylene sulfide sulfone (PPS / SO2), polyparaphenylene (PPP), polysulfone (PSU), polyphenylenesulfone (PPSU), polyethersulfone (PES), polyetherethersulfone (PEES), polyetherketone (PEK), polyetheretherketone (PE) K), polyether ketone ketone (PEKK), polyimide (PI), polyetherimide (PEI), polystyrene (PS), polyphenylene ether (PPE), polyaryl ether sulfone (PAS), or It is a derivative.

第六番目の発明に係る固体高分子電解質膜電極接合体は、第一番目から第四番目の発明のいずれかにおいて、前記固体高分子電解質膜の前記炭化水素系固体高分子電解質膜の前記炭化水素系樹脂が、ビニル系高分子、ジエン系高分子、エーテル系高分子、縮合系エステル型高分子、縮合系アミド型高分子のうちの少なくとも一種、又は、その誘導体の、主鎖にベンゼン環を有するものであることを特徴とする。   A solid polymer electrolyte membrane electrode assembly according to a sixth aspect of the present invention provides the solid polymer electrolyte membrane electrode assembly according to any one of the first to fourth aspects of the invention, wherein the carbonization of the hydrocarbon-based solid polymer electrolyte membrane of the solid polymer electrolyte membrane is performed. The hydrogen resin is a benzene ring in the main chain of at least one of a vinyl polymer, a diene polymer, an ether polymer, a condensed ester polymer, a condensed amide polymer, or a derivative thereof. It is characterized by having.

また、前述した課題を解決するための、第七番目の発明に係る固体高分子電解質形燃料電池は、第一番目から第六番目の発明のいずれかの固体高分子電解質膜電極接合体を複数積層したスタックを備えていることを特徴とする。   A solid polymer electrolyte fuel cell according to the seventh aspect of the invention for solving the above-described problem is a plurality of solid polymer electrolyte membrane electrode assemblies according to any of the first to sixth aspects of the invention. It is characterized by having a stacked stack.

本発明に係る固体高分子電解質膜電極接合体及びこれを利用する固体高分子電解質形燃料電池によれば、固体高分子電解質膜が、酸化極膜側に設けられたフッ素系固体高分子電解質膜と、燃料極膜側に設けられた炭化水素系固体高分子電解質膜とを備えてなることから、燃料ガス及び酸化ガスのクロスオーバを大幅に抑制することができると共に、ラジカルによる固体高分子電解質膜の劣化を大幅に抑制することができ、さらに、低コストで作製することができるので、低コストで長寿命化を図ることができる。   According to the solid polymer electrolyte membrane electrode assembly and the solid polymer electrolyte fuel cell using the same according to the present invention, the solid polymer electrolyte membrane is a fluorine-based solid polymer electrolyte membrane provided on the oxidation electrode membrane side. And a hydrocarbon solid polymer electrolyte membrane provided on the fuel electrode membrane side, the crossover of the fuel gas and the oxidizing gas can be greatly suppressed, and the solid polymer electrolyte by radicals Deterioration of the film can be significantly suppressed, and furthermore, since the film can be manufactured at low cost, the life can be extended at low cost.

本発明に係る固体高分子電解質膜電極接合体及びこれを利用する固体高分子電解質形燃料電池の実施形態を図面に基づいて以下に説明するが、本発明は以下の実施形態に限定されるものではない。   Embodiments of a solid polymer electrolyte membrane electrode assembly and a solid polymer electrolyte fuel cell using the same according to the present invention will be described below with reference to the drawings. However, the present invention is limited to the following embodiments. is not.

[第一番目の実施形態]
本発明に係る固体高分子電解質膜電極接合体(以下「セル」という。)及びこれを利用する固体高分子電解質形燃料電池の第一番目の実施形態を図1に基づいて説明する。図1は、セルの概略構成図である。
[First embodiment]
A first embodiment of a solid polymer electrolyte membrane electrode assembly (hereinafter referred to as “cell”) and a solid polymer electrolyte fuel cell using the same according to the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a cell.

本実施形態に係るセルは、図1に示すように、固体高分子電解質膜11の一方面側に燃料極膜12を配設されると共に他方面側に酸化極膜13を配設されるセル10において、固体高分子電解質膜11が、酸化極膜13側に設けられてフッ素系樹脂を骨格とすると共にプロトン伝導性基を有するフッ素系固体高分子電解質膜11aと、燃料極膜12側に設けられて主鎖にベンゼン環を有して炭素と水素とを主な組成とする炭化水素系樹脂を骨格とすると共にプロトン伝導性基を有する炭化水素系固体高分子電解質膜11bとを備えてなると共に、燃料極膜12と炭化水素系固体高分子電解質膜11bとの間に設けられてフッ素系樹脂を骨格とすると共にプロトン伝導性基を有するフッ素系固体高分子電解質膜11cをさらに備えてなるもの、すなわち、上記炭化水素系固体高分子電解質膜11bを上記フッ素系固体高分子電解質膜11a,11cで挟んだものである。   As shown in FIG. 1, the cell according to this embodiment is a cell in which a fuel electrode membrane 12 is provided on one side of a solid polymer electrolyte membrane 11 and an oxide electrode membrane 13 is provided on the other side. 10, a solid polymer electrolyte membrane 11 is provided on the oxidation electrode membrane 13 side and has a fluorine-based resin as a skeleton and a proton conductive group on the fuel electrode membrane 12 side. And a hydrocarbon solid polymer electrolyte membrane 11b having a benzene ring in the main chain and having a skeleton of a hydrocarbon resin having a main composition of carbon and hydrogen and having a proton conductive group. In addition, a fluorine-based solid polymer electrolyte membrane 11c provided between the fuel electrode membrane 12 and the hydrocarbon-based solid polymer electrolyte membrane 11b and having a fluorine-based resin as a skeleton and a proton conductive group is further provided. What Ie, it is the hydrocarbon-based solid polymer electrolyte membrane 11b that is sandwiched between the fluorine-based solid polymer electrolyte membrane 11a, 11c.

前記フッ素系固体高分子電解質膜11a,11cは、フッ素系樹脂を骨格とすると共にプロトン(H+)伝導性基(例えば、スルホン酸基(SO3 -)等)を有する陽イオン交換体高分子(例えば、デュポン社製「ナフィオン(登録商標)」、旭硝子株式会社製「フレミオン(登録商標)」、旭化成株式会社製「アシプレックス(登録商標)」等)であり、骨格となる上記樹脂として、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−四フッ化エチレン共重合体(ETFE)、四フッ化エチレン−六フッ化エチレン共重合体(FEP)、四フッ化エチレン−六フッ化プロピレン共重合体(PFEP)、ポリ三フッ化塩化エチレン(PCTFE)、三フッ化塩化エチレン−エチレン共重合体(ECTFE)、四フッ化エチレン−パーフルオロジオキソール共重合体(TFE/PDD)のうちの少なくとも一種、又は、その誘導体等を挙げることができる。 The fluorinated solid polymer electrolyte membranes 11a and 11c are made of a cation exchanger polymer having a fluorinated resin as a skeleton and a proton (H + ) conductive group (for example, a sulfonic acid group (SO 3 )). For example, “Nafion (registered trademark)” manufactured by DuPont, “Flemion (registered trademark)” manufactured by Asahi Glass Co., Ltd., “Aciplex (registered trademark)” manufactured by Asahi Kasei Corporation, etc.) , Polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE) ), Tetrafluoroethylene-hexafluoroethylene copolymer (FEP), tetrafluoroethylene-hexafluoropropylene Among polymers (PFEP), poly (trifluoroethylene chloride) (PCTFE), trifluoroethylene chloride-ethylene copolymer (ECTFE), tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD) Or at least one of them, or a derivative thereof.

前記炭化水素系固体高分子電解質膜11bは、主鎖にベンゼン環を有して炭素(C)と水素(H)とを主な組成とする炭化水素系樹脂を骨格とする共に、プロトン(H+)伝導性基(例えば、スルホン酸基(SO3 -)等)を有する陽イオン交換体高分子であり、骨格となる上記樹脂として、例えば、ポリベンゾオキサゾール(PBO)、ポリベンゾチアゾール(PBT)、ポリベンゾイミダゾール(PBI)、ポリフェニレンオキシド(PPO)、ポリフェニレンスルホキシド(PPSO)、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルフィドスルホン(PPS/SO2)、ポリパラフェニレン(PPP)、ポリスルホン(PSU)、ポリフェニレンスルホン(PPSU)、ポリエーテルスルホン(PES)、ポリエーテルエーテルスルホン(PEES)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリスチレン(PS)、ポリフェニレンエーテル(PPE)、ポリアリールエーテルスルホン(PAS)のうちの少なくとも一種、又は、その誘導体等を挙げることができると共に、ビニル系高分子、ジエン系高分子、エーテル系高分子、縮合系エステル型高分子、縮合系アミド型高分子のうちの少なくとも一種(例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニリデン(PVDC)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル(PAN)、ポリメチルペンテン(TPX)、エチレン−ビニルアルコール共重合体(EVOH)、エチレン−酢酸ビニル共重合体(EVA)、熱可塑性ウレタン(TPU)、セルローストリアセテート(CTA)等)、又は、その誘導体の、主鎖にベンゼン環を設けたもの等を挙げることができ、特に、ポリフェニレンスルフィド(PPS)等であると、コスト的な面で、非常に好ましい。 The hydrocarbon-based solid polymer electrolyte membrane 11b is composed of a hydrocarbon-based resin having a benzene ring in the main chain and mainly composed of carbon (C) and hydrogen (H) as a skeleton and a proton (H + ) A cation exchanger polymer having a conductive group (for example, sulfonic acid group (SO 3 ) and the like), and examples of the resin serving as a skeleton include polybenzoxazole (PBO) and polybenzothiazole (PBT). , Polybenzimidazole (PBI), polyphenylene oxide (PPO), polyphenylene sulfoxide (PPSO), polyphenylene sulfide (PPS), polyphenylene sulfide sulfone (PPS / SO2), polyparaphenylene (PPP), polysulfone (PSU), polyphenylene sulfone ( PPSU), polyethersulfone (PES), polyether -Tersulfone (PEES), Polyetherketone (PEK), Polyetheretherketone (PEEK), Polyetherketoneketone (PEKK), Polyimide (PI), Polyetherimide (PEI), Polystyrene (PS), Polyphenyleneether (PPE) , At least one of polyaryl ether sulfone (PAS) or derivatives thereof, and vinyl polymers, diene polymers, ether polymers, condensed ester polymers, condensed systems. At least one of amide type polymers (for example, polyethylene (PE), polypropylene (PP), polyvinylidene chloride (PVDC), polyether nitrile (PEN), polyacrylonitrile (PAN), polymethylpentene (TPX), ethylene -Vinyla (Lucol copolymer (EVOH), ethylene-vinyl acetate copolymer (EVA), thermoplastic urethane (TPU), cellulose triacetate (CTA), etc.), or derivatives thereof having a benzene ring in the main chain, etc. In particular, polyphenylene sulfide (PPS) or the like is very preferable in terms of cost.

前記燃料極膜12は、Pt−Ru系の触媒を担持させたカーボン粉末をフッ素系陽イオン交換体高分子等の高分子電解質からなるバインダで膜状に結着したものである。   The fuel electrode membrane 12 is formed by binding a carbon powder carrying a Pt—Ru-based catalyst in a film shape with a binder made of a polymer electrolyte such as a fluorine-based cation exchanger polymer.

前記酸化極膜13は、Pt系の触媒を担持させたカーボン粉末をフッ素系陽イオン交換体高分子等の高分子電解質からなるバインダで膜状に結着したものである。   The oxide electrode film 13 is formed by binding a carbon powder carrying a Pt-based catalyst in a film shape with a binder made of a polymer electrolyte such as a fluorine-based cation exchanger polymer.

このような構造をなすセル10を、ガス拡散性及び導電性を有するガス拡散層であるカーボンクロス又はカーボンペーパで挟持し、さらに、一方面に燃料ガス流路を形成されると共に他方面に酸化ガス流路を形成された導電性を有するセパレータ等を介して複数積層することにより、スタックが構成される。   The cell 10 having such a structure is sandwiched between carbon cloth or carbon paper, which is a gas diffusion layer having gas diffusibility and conductivity, and further, a fuel gas flow path is formed on one side and oxidized on the other side. A stack is configured by stacking a plurality of layers through conductive separators in which gas flow paths are formed.

このようなスタックを備える本実施形態に係る固体高分子電解質形燃料電池においては、水素(H2)を含有する燃料ガスを各セパレータの燃料ガス流路に送給して各セル10の燃料極膜12に前記ガス拡散層を介してそれぞれ供給すると共に、酸素(O2)を含有する酸化ガスを各セパレータの酸化ガス流路に送給して各セル10の酸化極膜13に前記ガス拡散層を介してそれぞれ供給すると、各セル10において、水素と酸素とが電気化学的に反応することにより、電気を取り出すことができる。 In the solid polymer electrolyte fuel cell according to the present embodiment having such a stack, a fuel gas containing hydrogen (H 2 ) is supplied to the fuel gas flow path of each separator, and the fuel electrode of each cell 10 is supplied. Each of the gas diffusion layers is supplied to the membrane 12 through the gas diffusion layer, and an oxidizing gas containing oxygen (O 2 ) is supplied to the oxidizing gas flow path of each separator to diffuse the gas into the oxidation electrode film 13 of each cell 10. When supplied through the layers, electricity can be taken out by hydrogen and oxygen reacting electrochemically in each cell 10.

そして、反応に供された使用済みの燃料ガスは、各セパレータの燃料ガス流路からスタックの外部へ排出され、反応に供された使用済みの酸化ガスは、各セパレータの酸化ガス流路からスタックの外部へ排出される。   The spent fuel gas used for the reaction is discharged from the fuel gas flow path of each separator to the outside of the stack, and the used oxidizing gas used for the reaction is stacked from the oxidizing gas flow path of each separator. It is discharged outside.

ここで、上記固体高分子電解質膜11は、前記炭化水素系固体高分子電解質膜11bを前記フッ素系固体高分子電解質膜11a,11cで挟んだもの、すなわち、高耐ラジカル性を有するものの、ガスバリア性の低い上記フッ素系固体高分子電解質膜11a,11cをヒドロキシラジカルの発生しやすい上記電極膜12,13側にそれぞれ位置させると共に、上記フッ素系固体高分子電解質膜11a,11cよりも非常に低コストであり且つ主鎖にベンゼン環を有するために非常にリジットな構造となって高ガスバリア性を発現できるものの、耐ラジカル性の低い上記炭化水素系固体高分子電解質膜11bを上記フッ素系固体高分子電解質膜11a,11c間に介在させたものとなっている。   Here, the solid polymer electrolyte membrane 11 is a gas barrier in which the hydrocarbon solid polymer electrolyte membrane 11b is sandwiched between the fluorine solid polymer electrolyte membranes 11a and 11c, that is, having high radical resistance. The fluorinated solid polymer electrolyte membranes 11a and 11c having low properties are positioned on the electrode membranes 12 and 13 side where hydroxyl radicals are likely to be generated, and are much lower than the fluorinated solid polymer electrolyte membranes 11a and 11c. The hydrocarbon-based solid polymer electrolyte membrane 11b having low radical resistance can be used for the above-mentioned fluorine-based solid polymer, although it is costly and has a very rigid structure because it has a benzene ring in the main chain. It is interposed between the molecular electrolyte membranes 11a and 11c.

このため、本実施形態に係る固体高分子電解質形燃料電池においては、各セル10の燃料極膜12に燃料ガスを供給すると共に各セル10の酸素極膜13に酸化ガスを供給したとしても、高ガスバリア性の上記炭化水素系固体高分子電解質膜11bが当該電極膜12,13間に介在しているので、上記ガスのクロスオーバを大幅に抑制することができる。   For this reason, in the solid polymer electrolyte fuel cell according to this embodiment, even if the fuel gas is supplied to the fuel electrode membrane 12 of each cell 10 and the oxidizing gas is supplied to the oxygen electrode membrane 13 of each cell 10, Since the hydrocarbon-based solid polymer electrolyte membrane 11b having high gas barrier properties is interposed between the electrode membranes 12 and 13, the crossover of the gas can be greatly suppressed.

また、上述した反応等の際に上記電極膜12,13近傍で過酸化水素(H22)等の副反応物質が発生して、わずかながらもヒドロキシラジカルが上記電極膜12,13中の前記触媒近傍で発生したとしても、高耐ラジカル性を有する上記フッ素系固体高分子電解質膜11a,11cが、耐ラジカル性の低い上記炭化水素系固体高分子電解質膜11bと上記電極膜12,13との間に介在するように当該炭化水素系固体高分子電解質膜11bをラミネートしているので、当該ラジカルによる当該炭化水素系固体高分子電解質膜11bの劣化を大幅に抑制することができる。 Further, during the above-described reaction or the like, side reaction substances such as hydrogen peroxide (H 2 O 2 ) are generated in the vicinity of the electrode films 12 and 13, and a slight amount of hydroxy radicals are contained in the electrode films 12 and 13. Even if it occurs in the vicinity of the catalyst, the fluorine-based solid polymer electrolyte membranes 11a and 11c having high radical resistance become the hydrocarbon-based solid polymer electrolyte membrane 11b and the electrode films 12 and 13 having low radical resistance. Since the hydrocarbon-based solid polymer electrolyte membrane 11b is laminated so as to be interposed between the two, the degradation of the hydrocarbon-based solid polymer electrolyte membrane 11b due to the radicals can be significantly suppressed.

さらに、上記フッ素系固体高分子電解質膜11a,11cよりも低コストな上記炭化水素系固体高分子電解質膜11bを当該フッ素系固体高分子電解質膜11a,11cの間に設けて固体高分子電解質膜11を構成しているので、すべてフッ素系固体高分子電解質膜からなる固体高分子電解質膜の場合よりも、低コストで得ることができる。   Furthermore, the hydrocarbon-based solid polymer electrolyte membrane 11b, which is lower in cost than the fluorine-based solid polymer electrolyte membranes 11a, 11c, is provided between the fluorine-based solid polymer electrolyte membranes 11a, 11c, thereby solid polymer electrolyte membranes. 11 can be obtained at a lower cost than in the case of a solid polymer electrolyte membrane consisting entirely of a fluorine-based solid polymer electrolyte membrane.

したがって、本実施形態に係るセル10及び固体高分子電解質形燃料電池によれば、低コストで長寿命化を図ることができる。   Therefore, according to the cell 10 and the solid polymer electrolyte fuel cell according to the present embodiment, it is possible to extend the life at low cost.

[第二番目の実施形態]
本発明に係るセル及びこれを利用する固体高分子電解質形燃料電池の第二番目の実施形態を図2に基づいて説明する。図2は、セルの概略構成図である。なお、前述した第一番目の実施形態の場合と同様な部分については、前述した第一番目の実施形態の説明で用いた符号と同様な符号を用いることにより、前述した第一番目の実施形態での説明と重複する説明を省略する。
[Second Embodiment]
A second embodiment of a cell according to the present invention and a solid polymer electrolyte fuel cell utilizing the same will be described with reference to FIG. FIG. 2 is a schematic configuration diagram of a cell. In addition, about the part similar to the case of 1st embodiment mentioned above, by using the code | symbol similar to the code | symbol used in description of 1st embodiment mentioned above, 1st embodiment mentioned above is used. The description overlapping with the description in is omitted.

本実施形態に係るセルは、図2に示すように、固体高分子電解質膜21の一方面側に燃料極膜12を配設されると共に他方面側に酸化極膜13を配設されるセル20において、固体高分子電解質膜21が、酸化極膜13側に設けられてフッ素系樹脂を骨格とすると共にプロトン伝導性基を有するフッ素系固体高分子電解質膜21aと、燃料極膜12側に設けられて主鎖にベンゼン環を有して炭素と水素とを主な組成とする炭化水素系樹脂を骨格とすると共にプロトン伝導性基を有する炭化水素系固体高分子電解質膜21bとを備えてなると共に、燃料極膜12と炭化水素系固体高分子電解質膜21bとの間に設けられてフッ素系樹脂を骨格とすると共にプロトン伝導性基を有するフッ素系固体高分子電解質膜21cをさらに備えてなり、且つ、フッ素系固体高分子電解質膜21a,21cが、前記電極膜12,13の周縁端近傍のみに配設されているもの、すなわち、上記電極膜12,13の周縁端近傍に対応するように両面側に周縁端に沿って段部21ba,21bcをそれぞれ形成された炭化水素系固体高分子電解質膜21bの当該段部21ba,21bcに、額縁形(ロ字形)のフッ素系固体高分子電解質膜21a,21cを嵌め込むように設けた固体高分子電解質膜21が用いられている。   As shown in FIG. 2, the cell according to this embodiment is a cell in which a fuel electrode film 12 is disposed on one side of a solid polymer electrolyte membrane 21 and an oxide electrode film 13 is disposed on the other side. 20, a solid polymer electrolyte membrane 21 is provided on the oxidation electrode membrane 13 side, and has a fluorine resin as a skeleton and a proton conductive group, and a solid polymer electrolyte membrane 21 a on the fuel electrode membrane 12 side. A hydrocarbon solid polymer electrolyte membrane 21b having a benzene ring in the main chain and having a skeleton of a hydrocarbon resin having a main composition of carbon and hydrogen and having a proton conductive group. In addition, a fluorine-based solid polymer electrolyte membrane 21c provided between the fuel electrode membrane 12 and the hydrocarbon-based solid polymer electrolyte membrane 21b and having a fluorine-based resin as a skeleton and having a proton conductive group is further provided. And The fluorine-based solid polymer electrolyte membranes 21a and 21c are disposed only in the vicinity of the peripheral edges of the electrode films 12 and 13, that is, on both sides so as to correspond to the vicinity of the peripheral edges of the electrode films 12 and 13. On the stepped portions 21ba and 21bc of the hydrocarbon-based solid polymer electrolyte membrane 21b in which stepped portions 21ba and 21bc are respectively formed along the peripheral edge, a frame-shaped (b-shaped) fluorine-based solid polymer electrolyte membrane 21a, A solid polymer electrolyte membrane 21 provided so as to fit 21c is used.

このような構造をなすセル20は、例えば、額縁形(ロ字形)に切り抜いたフッ素系固体高分子電解質膜21aを平板状の炭化水素系固体高分子電解質膜の一方の面に配設して、額縁形(ロ字形)の上記フッ素系固体高分子電解質膜21aの内側の空間部分に、当該空間部分の形状に対応する炭化水素系固体高分子電解質膜を配設する、又は、炭化水素系固体高分子電解質膜の材料スラリを塗布して乾燥させた後、額縁形(ロ字形)に切り抜いたフッ素系固体高分子電解質膜21cを他方の面に配設して、額縁形(ロ字形)の上記フッ素系固体高分子電解質膜21cの内側の空間部分に、当該空間部分の形状に対応する炭化水素系固体高分子電解質膜を配設する、又は、炭化水素系固体高分子電解質膜の材料スラリを塗布して乾燥させることにより、両面側に周縁端に沿って溝部21ba,21bcをそれぞれ形成した炭化水素系固体高分子電解質膜21bの当該段部21ba,21bcに、額縁形(ロ字形)のフッ素系固体高分子電解質膜21a,21cを嵌め込むように設けた固体高分子電解質膜21を容易に得ることができ、当該固体高分子電解質膜21に前記電極膜12,13をホットプレスで接合することにより、容易に製造することができる。   In the cell 20 having such a structure, for example, a fluorine-based solid polymer electrolyte membrane 21a cut out in a frame shape (b-shaped) is disposed on one surface of a flat-plate hydrocarbon solid polymer electrolyte membrane. A hydrocarbon-based solid polymer electrolyte membrane corresponding to the shape of the space portion is disposed in the space portion inside the fluorine-based solid polymer electrolyte membrane 21a having a frame shape (b-shaped), or a hydrocarbon-based After applying and drying the material slurry of the solid polymer electrolyte membrane, a fluorine-based solid polymer electrolyte membrane 21c cut out into a frame shape (b-shaped) is disposed on the other surface, and the frame shape (b-shaped) The hydrocarbon solid polymer electrolyte membrane corresponding to the shape of the space portion is disposed in the space portion inside the fluorine-based solid polymer electrolyte membrane 21c, or the material of the hydrocarbon solid polymer electrolyte membrane Apply slurry and dry Further, a frame-shaped (b-shaped) fluorine-based solid polymer electrolyte membrane is formed on the stepped portions 21ba and 21bc of the hydrocarbon-based solid polymer electrolyte membrane 21b in which grooves 21ba and 21bc are formed along the peripheral edge on both sides. The solid polymer electrolyte membrane 21 provided so as to be fitted with 21a and 21c can be easily obtained, and the electrode membranes 12 and 13 are joined to the solid polymer electrolyte membrane 21 by hot pressing, so that it can be easily manufactured. can do.

つまり、前述した第一番目の実施形態に係るセル10は、炭化水素系固体高分子電解質膜11bの面全体にわたってフッ素系固体高分子電解質膜11a,11cを設けた固体高分子電解質膜11を適用するようにしたが、本実施形態に係るセル20は、炭化水素系固体高分子電解質膜21bの、前記電極膜12,13の周縁端近傍と接触し得る部分のみにフッ素系固体高分子電解質膜21a,21cを設けた固体高分子電解質膜21を適用するようにしたのである。   That is, the cell 10 according to the first embodiment described above applies the solid polymer electrolyte membrane 11 provided with the fluorine-based solid polymer electrolyte membranes 11a and 11c over the entire surface of the hydrocarbon-based solid polymer electrolyte membrane 11b. However, the cell 20 according to the present embodiment includes a fluorine-based solid polymer electrolyte membrane only on a portion of the hydrocarbon-based solid polymer electrolyte membrane 21b that can be in contact with the vicinity of the peripheral edges of the electrode films 12 and 13. The solid polymer electrolyte membrane 21 provided with 21a and 21c is applied.

このような構造をなすセル20を前述した第一番目の実施形態の場合と同様にして積層することにより構成されるスタックを備える本実施形態に係る固体高分子電解質形燃料電池においては、前述した第一番目の実施形態の場合と同様に、燃料ガスを各セル20の燃料極膜12に供給すると共に、酸化ガスを各セル20の酸化極膜13に供給すると、各セル20において水素と酸素とが電気化学的に反応して、電気を取り出すことができる。   In the solid polymer electrolyte fuel cell according to this embodiment provided with a stack constituted by stacking the cells 20 having such a structure in the same manner as in the first embodiment described above, Similarly to the case of the first embodiment, when the fuel gas is supplied to the fuel electrode film 12 of each cell 20 and the oxidizing gas is supplied to the oxide electrode film 13 of each cell 20, hydrogen and oxygen are supplied in each cell 20. Can react electrochemically and take out electricity.

ここで、上記固体高分子電解質膜21は、炭化水素系固体高分子電解質膜21bの、前記電極膜12,13の周縁端近傍と接触し得る部分のみにフッ素系固体高分子電解質膜21a,21cを設けたもの、すなわち、高ガスバリア性を発現できるものの耐ラジカル性の低い炭化水素系固体高分子電解質膜21bに対して、高耐ラジカル性を有するもののガスバリア性が低く炭化水素系固体高分子電解質膜21bよりも高コストなフッ素系固体高分子電解質膜21a,21cを、ヒドロキシラジカルの発生しやすい上記電極膜12,13の周縁端側のみにそれぞれ設けたものとなっている。   Here, the solid polymer electrolyte membrane 21 is a fluorine-based solid polymer electrolyte membrane 21a, 21c only on a portion of the hydrocarbon-based solid polymer electrolyte membrane 21b that can be in contact with the vicinity of the peripheral edge of the electrode films 12, 13. That is, the hydrocarbon-based solid polymer electrolyte membrane 21b that has high radical resistance but has low radical resistance compared to the hydrocarbon-based solid polymer electrolyte membrane 21b that exhibits high gas barrier properties but has low radical resistance has low gas barrier properties. The fluorine-based solid polymer electrolyte membranes 21a and 21c, which are more expensive than the membrane 21b, are provided only on the peripheral edge sides of the electrode membranes 12 and 13 where hydroxy radicals are easily generated.

このため、本実施形態に係る固体高分子電解質形燃料電池においては、前述した第一番目の実施形態の場合と同様に、各セル20の燃料極膜12に燃料ガスを供給すると共に各セル20の酸素極膜13に酸化ガスを供給したとしても、高ガスバリア性の炭化水素系固体高分子電解質膜21bが当該電極膜12,13間に介在しているので、上記ガスのクロスオーバを大幅に抑制することができる。   For this reason, in the solid polymer electrolyte fuel cell according to the present embodiment, fuel gas is supplied to the fuel electrode film 12 of each cell 20 and each cell 20 as in the case of the first embodiment described above. Even if the oxidizing gas is supplied to the oxygen electrode film 13, the gas-based crossover of the gas is greatly reduced because the hydrocarbon-based polymer electrolyte membrane 21b having a high gas barrier property is interposed between the electrode films 12 and 13. Can be suppressed.

また、上述した反応等の際に上記電極膜12,13近傍で過酸化水素(H22)等の副反応物質が発生して、わずかながらもヒドロキシラジカルが上記電極膜12,13中の前記触媒近傍で発生したとしても、高耐ラジカル性を有するフッ素系固体高分子電解質膜21a,21cが、ヒドロキシラジカルの発生しやすい上記電極膜12,13の周縁端側と耐ラジカル性の低い炭化水素系固体高分子電解質膜21bとの間に介在するように当該炭化水素系固体高分子電解質膜21bの周縁端側に位置しているので、当該ラジカルによる当該炭化水素系固体高分子電解質膜21bの劣化を大幅に抑制することができる。 Further, during the above-described reaction or the like, side reaction substances such as hydrogen peroxide (H 2 O 2 ) are generated in the vicinity of the electrode films 12 and 13, and a slight amount of hydroxy radicals are contained in the electrode films 12 and 13. Even if it occurs in the vicinity of the catalyst, the fluorine-based solid polymer electrolyte membranes 21a and 21c having high radical resistance are formed on the peripheral edge side of the electrode films 12 and 13 where hydroxyl radicals are likely to be generated, and carbonization having low radical resistance. Since it is located on the peripheral edge side of the hydrocarbon-based solid polymer electrolyte membrane 21b so as to be interposed between the hydrogen-based solid polymer electrolyte membrane 21b, the hydrocarbon-based solid polymer electrolyte membrane 21b due to the radicals. Can be greatly suppressed.

さらに、炭化水素系固体高分子電解質膜21bよりも高コストなフッ素系固体高分子電解質膜21a,21cをヒドロキシラジカルの発生しやすい上記電極膜12,13の周縁端側のみに設けて固体高分子電解質膜21を構成しているので、前述した第一番目の実施形態の場合よりも、さらに低コストで得ることができる。   Furthermore, the fluorine-based solid polymer electrolyte membranes 21a and 21c, which are more expensive than the hydrocarbon-based solid polymer electrolyte membrane 21b, are provided only on the peripheral edge side of the electrode membranes 12 and 13 where hydroxyl radicals are easily generated. Since the electrolyte membrane 21 is configured, it can be obtained at a lower cost than in the case of the first embodiment described above.

したがって、本実施形態に係るセル20及び固体高分子電解質形燃料電池によれば、前述した第一番目の実施形態の場合と同様な効果を得ることができると共に、前述した第一番目の実施形態の場合よりも、さらに低コスト化を図ることができる。   Therefore, according to the cell 20 and the solid polymer electrolyte fuel cell according to the present embodiment, the same effects as those of the first embodiment described above can be obtained, and the first embodiment described above. The cost can be further reduced as compared with the above case.

[他の実施形態]
なお、前述した第一,二番目の実施形態では、炭化水素系固体高分子電解質膜11b,21bの両面側にフッ素系固体高分子電解質膜11a,11c,21a,21cをそれぞれ配設した固体高分子電解質膜11,21を適用したセル10,20の場合について説明したが、前記ヒドロキシラジカルは、燃料極膜12側よりも酸化極膜13側で発生し易いことから、他の実施形態として、例えば、図3,4に示すように、炭化水素系固体高分子電解質膜11b,41bの酸化極膜13側のみにフッ素系固体高分子電解質膜11a,21aを配設した固体高分子電解質膜31,41を用いたセル30,40、すなわち、固体高分子電解質膜31,41の一方面側に燃料極膜12を配設されると共に他方面側に酸化極膜13を配設されるセル30,40において、固体高分子電解質膜31,41が、酸化極膜13側に設けられてフッ素系樹脂を骨格とすると共にプロトン伝導性基を有するフッ素系固体高分子電解質膜11a,21aと、燃料極膜12側に設けられて主鎖にベンゼン環を有して炭素と水素とを主な組成とする炭化水素系樹脂を骨格とすると共にプロトン伝導性基を有する炭化水素系固体高分子電解質膜11b,41bとのみを備えてなることも可能である。この場合には、前述した第一,二番目の実施形態の場合と同様な効果を得ることができると共に、前述した第一,二番目の実施形態の場合よりも、さらに低コスト化を図ることができる。
[Other Embodiments]
In the first and second embodiments described above, the solid polymer electrolyte membranes 11a, 11c, 21a, and 21c are disposed on both sides of the hydrocarbon solid polymer electrolyte membranes 11b and 21b, respectively. Although the case of the cells 10 and 20 to which the molecular electrolyte membranes 11 and 21 are applied has been described, the hydroxy radical is more likely to be generated on the oxide electrode membrane 13 side than on the fuel electrode membrane 12 side. For example, as shown in FIGS. 3 and 4, a solid polymer electrolyte membrane 31 in which fluorine-based solid polymer electrolyte membranes 11a and 21a are disposed only on the oxidation electrode membrane 13 side of the hydrocarbon-based solid polymer electrolyte membranes 11b and 41b. , 41, that is, the cell 30 in which the fuel electrode membrane 12 is disposed on one side of the solid polymer electrolyte membranes 31, 41 and the oxide electrode membrane 13 is disposed on the other surface side. 40, the solid polymer electrolyte membranes 31 and 41 are provided on the oxide electrode membrane 13 side, have a fluorine resin as a skeleton, and have a proton conductive group, fluorine polymer solid polymer electrolyte membranes 11a and 21a, and a fuel electrode. A hydrocarbon-based solid polymer electrolyte membrane 11b provided on the membrane 12 side and having a benzene ring in the main chain and having a skeleton of a hydrocarbon-based resin having a main composition of carbon and hydrogen and having a proton conductive group , 41b can also be provided. In this case, the same effects as those of the first and second embodiments described above can be obtained, and the cost can be further reduced as compared with the cases of the first and second embodiments described above. Can do.

また、前述した第一,二番目の実施形態等においては、セル10,20を複数積層したスタックを固体高分子電解質形燃料電池に利用した場合について説明したが、他の実施形態として、例えば、前記セル10,20,30,40を複数積層して構成されるスタックに原料水を供給して当該セル10,20,30,40で当該原料水を電気分解させることにより、オゾンを含む酸素と水素とを発生させるオゾン発生装置に利用することも可能である。   In the first and second embodiments described above, the case where a stack in which a plurality of cells 10 and 20 are stacked is used for a solid polymer electrolyte fuel cell has been described. As another embodiment, for example, By supplying raw water to a stack formed by stacking a plurality of the cells 10, 20, 30, 40, and electrolyzing the raw water in the cells 10, 20, 30, 40, oxygen containing ozone and It can also be used for an ozone generator that generates hydrogen.

本発明に係る固体高分子電解質膜電極接合体及びこれを利用する固体高分子電解質形燃料電池は、低コストで長寿命化を図ることができることから、各種産業において、極めて有効に利用することができる。   The solid polymer electrolyte membrane electrode assembly according to the present invention and the solid polymer electrolyte fuel cell using the same can be used effectively in various industries because the lifetime can be extended at low cost. it can.

本発明に係る固体高分子電解質膜電極接合体の第一番目の実施形態の概略構成図である。It is a schematic block diagram of 1st embodiment of the solid polymer electrolyte membrane electrode assembly which concerns on this invention. 本発明に係る固体高分子電解質膜電極接合体の第二番目の実施形態の概略構成図である。It is a schematic block diagram of 2nd embodiment of the solid polymer electrolyte membrane electrode assembly which concerns on this invention. 本発明に係る固体高分子電解質膜電極接合体の第一番目の実施形態の他の例の概略構成図である。It is a schematic block diagram of the other example of 1st embodiment of the solid polymer electrolyte membrane electrode assembly which concerns on this invention. 本発明に係る固体高分子電解質膜電極接合体の第二番目の実施形態の他の例の概略構成図である。It is a schematic block diagram of the other example of 2nd embodiment of the polymer electrolyte membrane electrode assembly which concerns on this invention.

符号の説明Explanation of symbols

10,20,30,40 固体高分子電解質膜電極接合体(セル)
11,21,31,41 固体高分子電解質膜
11a,11c,21a,21c フッ素系固体高分子電解質膜
11b,21b,31b,41b 炭化水素系固体高分子電解質膜
21ba,21bc 段部
12 燃料極膜
13 酸化極膜
10, 20, 30, 40 Solid polymer electrolyte membrane electrode assembly (cell)
11, 21, 31, 41 Solid polymer electrolyte membrane 11a, 11c, 21a, 21c Fluorine-based solid polymer electrolyte membrane 11b, 21b, 31b, 41b Hydrocarbon-based solid polymer electrolyte membrane 21ba, 21bc Step 12 Fuel electrode membrane 13 Oxidized electrode membrane

Claims (7)

固体高分子電解質膜の一方面側に燃料極膜を配設されると共に他方面側に酸化極膜を配設される固体高分子電解質膜電極接合体において、
前記固体高分子電解質膜が、
前記酸化極膜側に設けられてフッ素系樹脂を骨格とすると共にプロトン伝導性基を有するフッ素系固体高分子電解質膜と、
前記燃料極膜側に設けられて主鎖にベンゼン環を有して炭素と水素とを主な組成とする炭化水素系樹脂を骨格とすると共にプロトン伝導性基を有する炭化水素系固体高分子電解質膜と
を備えてなる
ことを特徴とする固体高分子電解質膜電極接合体。
In the solid polymer electrolyte membrane electrode assembly in which the fuel electrode membrane is disposed on one side of the solid polymer electrolyte membrane and the oxide electrode membrane is disposed on the other surface side,
The solid polymer electrolyte membrane is
A fluorine-based solid polymer electrolyte membrane provided on the oxidation electrode membrane side and having a fluorine-based resin as a skeleton and having a proton conductive group;
A hydrocarbon-based solid polymer electrolyte having a benzene ring in the main chain and having a main component of carbon and hydrogen as a skeleton and a proton-conducting group provided on the fuel electrode membrane side A solid polymer electrolyte membrane electrode assembly comprising a membrane.
請求項1において、
前記固体高分子電解質膜が、
前記燃料極膜と前記炭化水素系固体高分子電解質膜との間に設けられて、フッ素系樹脂を骨格とすると共にプロトン伝導性基を有するフッ素系固体高分子電解質膜をさらに備えてなる
ことを特徴とする固体高分子電解質膜電極接合体。
In claim 1,
The solid polymer electrolyte membrane is
A fluorine-based solid polymer electrolyte membrane that is provided between the fuel electrode membrane and the hydrocarbon-based solid polymer electrolyte membrane and has a fluorine-based resin as a skeleton and a proton conductive group; A solid polymer electrolyte membrane electrode assembly characterized.
請求項1又は請求項2において、
前記固体高分子電解質膜の前記フッ素系固体高分子電解質膜が、前記電極膜の周縁端近傍のみに配設されている
ことを特徴とする固体高分子電解質膜電極接合体。
In claim 1 or claim 2,
The solid polymer electrolyte membrane electrode assembly, wherein the fluorine-based solid polymer electrolyte membrane of the solid polymer electrolyte membrane is disposed only in the vicinity of the peripheral edge of the electrode membrane.
請求項1から請求項3のいずれかにおいて、
前記固体高分子電解質膜の前記フッ素系固体高分子電解質膜の前記フッ素系樹脂が、
ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−四フッ化エチレン共重合体(ETFE)、四フッ化エチレン−六フッ化エチレン共重合体(FEP)、四フッ化エチレン−六フッ化プロピレン共重合体(PFEP)、ポリ三フッ化塩化エチレン(PCTFE)、三フッ化塩化エチレン−エチレン共重合体(ECTFE)、四フッ化エチレン−パーフルオロジオキソール共重合体(TFE/PDD)のうちの少なくとも一種、又は、その誘導体である
ことを特徴とする固体高分子電解質膜電極接合体。
In any one of Claims 1-3,
The fluorine resin of the fluorine-based solid polymer electrolyte membrane of the solid polymer electrolyte membrane is:
Polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE) , Tetrafluoroethylene-hexafluoroethylene copolymer (FEP), Tetrafluoroethylene-hexafluoropropylene copolymer (PFEP), Polytrifluoroethylene chloride (PCTFE), Trifluoroethylene chloride-ethylene A solid polymer electrolyte membrane / electrode assembly comprising at least one of a copolymer (ECTFE) and a tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD) or a derivative thereof .
請求項1から請求項4のいずれかにおいて、
前記固体高分子電解質膜の前記炭化水素系固体高分子電解質膜の前記炭化水素系樹脂が、
ポリベンゾオキサゾール(PBO)、ポリベンゾチアゾール(PBT)、ポリベンゾイミダゾール(PBI)、ポリフェニレンオキシド(PPO)、ポリフェニレンスルホキシド(PPSO)、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルフィドスルホン(PPS/SO2)、ポリパラフェニレン(PPP)、ポリスルホン(PSU)、ポリフェニレンスルホン(PPSU)、ポリエーテルスルホン(PES)、ポリエーテルエーテルスルホン(PEES)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリスチレン(PS)、ポリフェニレンエーテル(PPE)、ポリアリールエーテルスルホン(PAS)のうちの少なくとも一種、又は、その誘導体である
ことを特徴とする固体高分子電解質膜電極接合体。
In any one of Claims 1-4,
The hydrocarbon resin of the hydrocarbon-based solid polymer electrolyte membrane of the solid polymer electrolyte membrane is:
Polybenzoxazole (PBO), polybenzothiazole (PBT), polybenzimidazole (PBI), polyphenylene oxide (PPO), polyphenylene sulfoxide (PPSO), polyphenylene sulfide (PPS), polyphenylene sulfide sulfone (PPS / SO2), polypara Phenylene (PPP), Polysulfone (PSU), Polyphenylenesulfone (PPSU), Polyethersulfone (PES), Polyetherethersulfone (PEES), Polyetherketone (PEK), Polyetheretherketone (PEEK), Polyetherketoneketone (PEKK), polyimide (PI), polyetherimide (PEI), polystyrene (PS), polyphenylene ether (PPE), polyaryl ether sulfo At least one of (PAS), or a solid polymer electrolyte membrane electrode assembly, which is a derivative thereof.
請求項1から請求項4のいずれかにおいて、
前記固体高分子電解質膜の前記炭化水素系固体高分子電解質膜の前記炭化水素系樹脂が、
ビニル系高分子、ジエン系高分子、エーテル系高分子、縮合系エステル型高分子、縮合系アミド型高分子のうちの少なくとも一種、又は、その誘導体の、主鎖にベンゼン環を有するものである
ことを特徴とする固体高分子電解質膜電極接合体。
In any one of Claims 1-4,
The hydrocarbon resin of the hydrocarbon-based solid polymer electrolyte membrane of the solid polymer electrolyte membrane is:
At least one of vinyl polymers, diene polymers, ether polymers, condensed ester polymers, condensed amide polymers, or derivatives thereof having a benzene ring in the main chain A solid polymer electrolyte membrane electrode assembly characterized by the above.
請求項1から請求項6のいずれかの固体高分子電解質膜電極接合体を複数積層したスタックを備えている
ことを特徴とする固体高分子電解質形燃料電池。
A solid polymer electrolyte fuel cell, comprising a stack in which a plurality of the solid polymer electrolyte membrane electrode assemblies according to claim 1 are stacked.
JP2006033207A 2006-02-10 2006-02-10 Solid polymer electrolyte membrane electrode assembly and solid polymer electrolyte fuel cell using the same Active JP5013501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033207A JP5013501B2 (en) 2006-02-10 2006-02-10 Solid polymer electrolyte membrane electrode assembly and solid polymer electrolyte fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033207A JP5013501B2 (en) 2006-02-10 2006-02-10 Solid polymer electrolyte membrane electrode assembly and solid polymer electrolyte fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2007213997A true JP2007213997A (en) 2007-08-23
JP5013501B2 JP5013501B2 (en) 2012-08-29

Family

ID=38492230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033207A Active JP5013501B2 (en) 2006-02-10 2006-02-10 Solid polymer electrolyte membrane electrode assembly and solid polymer electrolyte fuel cell using the same

Country Status (1)

Country Link
JP (1) JP5013501B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081129A (en) * 2007-09-07 2009-04-16 Toray Ind Inc Membrane-electrode assembly for hydrogen fuel cell
JP2009163988A (en) * 2008-01-07 2009-07-23 Toyota Motor Corp Membrane electrode assembly for fuel cell, and method of manufacturing the same
WO2009110154A1 (en) * 2008-03-07 2009-09-11 ダイハツ工業株式会社 Bonded body of membrane and electrode
JP2012099336A (en) * 2010-11-02 2012-05-24 Hitachi Ltd Polymer electrolyte membrane, and membrane electrode assembly and solid polymer fuel cell each using the same
KR20210142623A (en) * 2019-03-28 2021-11-25 도레이 카부시키가이샤 Multilayer electrolyte membrane, membrane electrode composite, water electrolysis type hydrogen generator, and method for manufacturing multilayer electrolyte membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103992A (en) * 1992-09-22 1994-04-15 Tanaka Kikinzoku Kogyo Kk Plymer solid electrolyte fuel cell
WO2004051776A1 (en) * 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same
JP2004220995A (en) * 2003-01-17 2004-08-05 Toyota Motor Corp Film-electrode junction, its manufacturing method, and fuel cell
WO2005104280A1 (en) * 2004-04-26 2005-11-03 Toshiba Fuel Cell Power Systems Corporation Fuel cell and method for manufacturing fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103992A (en) * 1992-09-22 1994-04-15 Tanaka Kikinzoku Kogyo Kk Plymer solid electrolyte fuel cell
WO2004051776A1 (en) * 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same
JP2004220995A (en) * 2003-01-17 2004-08-05 Toyota Motor Corp Film-electrode junction, its manufacturing method, and fuel cell
WO2005104280A1 (en) * 2004-04-26 2005-11-03 Toshiba Fuel Cell Power Systems Corporation Fuel cell and method for manufacturing fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081129A (en) * 2007-09-07 2009-04-16 Toray Ind Inc Membrane-electrode assembly for hydrogen fuel cell
JP2009163988A (en) * 2008-01-07 2009-07-23 Toyota Motor Corp Membrane electrode assembly for fuel cell, and method of manufacturing the same
WO2009110154A1 (en) * 2008-03-07 2009-09-11 ダイハツ工業株式会社 Bonded body of membrane and electrode
JP2009217999A (en) * 2008-03-07 2009-09-24 Daihatsu Motor Co Ltd Membrane-electrode assembly
JP2012099336A (en) * 2010-11-02 2012-05-24 Hitachi Ltd Polymer electrolyte membrane, and membrane electrode assembly and solid polymer fuel cell each using the same
KR20210142623A (en) * 2019-03-28 2021-11-25 도레이 카부시키가이샤 Multilayer electrolyte membrane, membrane electrode composite, water electrolysis type hydrogen generator, and method for manufacturing multilayer electrolyte membrane
KR102562959B1 (en) * 2019-03-28 2023-08-04 도레이 카부시키가이샤 Laminated electrolyte membrane, membrane electrode composite and water electrolytic hydrogen generator, and manufacturing method of laminated electrolyte membrane

Also Published As

Publication number Publication date
JP5013501B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP6312666B2 (en) Ion conductive membrane
JP2009505364A (en) Method for producing catalyst-coated membrane
JP5013501B2 (en) Solid polymer electrolyte membrane electrode assembly and solid polymer electrolyte fuel cell using the same
JP2010170896A (en) Fuel cell
JP4838566B2 (en) Solid polymer electrolyte membrane electrode assembly and solid polymer electrolyte fuel cell using the same
JP2008204953A (en) Fuel cell stack and fuel cell system
JP6675320B2 (en) Membrane seal assembly
JP4965833B2 (en) Solid polymer electrolyte membrane electrode assembly and solid polymer fuel cell
JP2008305674A (en) Fuel cell
JP4700140B2 (en) Polymer electrolyte fuel cell stack
JP5981205B2 (en) Electrolyte membrane / electrode structure
US11271234B2 (en) Fuel cell with improved durability
JP5087216B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
US10199667B2 (en) Segmented cation-anion exchange membrane for self-humidification of fuel cells and method of making
JP6356436B2 (en) Electrolyte membrane / electrode structure
JP2009059604A (en) Hybrid membrane for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell
JP2004220995A (en) Film-electrode junction, its manufacturing method, and fuel cell
JP5312820B2 (en) FUEL CELL, FUEL CELL STACK HAVING THE SAME AND FUEL CELL MANUFACTURING METHOD
JP5356190B2 (en) Polymer electrolyte fuel cell
JP2007184190A (en) Membrane-electrode assembly for fuel cell
JP6412995B2 (en) Manufacturing method of electrolyte membrane / electrode structure
JP2007165083A (en) Fuel cell
JP2008305675A (en) Fuel cell
CA2970019A1 (en) Methods for fabricating membrane electrode assemblies with protective film for enhanced durability in fuel cells
JP2015156334A (en) High-polymer electrolyte type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5013501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250