JP2007184190A - Membrane-electrode assembly for fuel cell - Google Patents

Membrane-electrode assembly for fuel cell Download PDF

Info

Publication number
JP2007184190A
JP2007184190A JP2006002467A JP2006002467A JP2007184190A JP 2007184190 A JP2007184190 A JP 2007184190A JP 2006002467 A JP2006002467 A JP 2006002467A JP 2006002467 A JP2006002467 A JP 2006002467A JP 2007184190 A JP2007184190 A JP 2007184190A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte membrane
membrane
fuel cell
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006002467A
Other languages
Japanese (ja)
Inventor
Yousuke Ooyabe
陽介 大矢部
Shinji Nezu
伸治 根津
Naoki Ito
直樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2006002467A priority Critical patent/JP2007184190A/en
Publication of JP2007184190A publication Critical patent/JP2007184190A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane-electrode assembly for a fuel cell with improved durability by restraining permeation of fuel and an oxidant between an anode and a cathode. <P>SOLUTION: The membrane-electrode assembly for the fuel cell 10 is formed by laminating the anode; a polymer electrolyte membrane 2 having proton conductivity; an inside electrode 3 having electron conductivity; an electron conductive polymer electrolyte membrane 4 having proton conductivity and electron conductivity; and the cathode 5; in a thickness direction of the polymer electrolyte membrane 2 in this sequence. A thickness of the polymer electrolyte membrane 2 is thinner than that of the electron conductive polymer electrolyte membrane 4. The fuel cell utilizing the membrane-electrode assembly for fuel cell use 10 is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は耐久性の優れた燃料電池用膜電極接合体および燃料電池に関する。   The present invention relates to a fuel cell membrane electrode assembly and a fuel cell having excellent durability.

燃料電池は、自動車や家庭用の電源として、広範な普及が期待されている。電解質の種類に応じて各種の燃料電池が研究されている。   Fuel cells are expected to be widely spread as power sources for automobiles and households. Various fuel cells have been studied depending on the type of electrolyte.

プロトン伝導体を電解質とする燃料電池では、燃料極に供給された水素やメタノール等の燃料が燃料極(アノード)で酸化され、プロトンと電子とが生成される。プロトンは電解質であるプロトン伝導体を伝導して対極の酸化剤極(カソード)に到達して、酸化剤極に供給された酸素と燃料極から外部負荷を通って供給される電子と反応して水を生成する。この際、燃料極と酸化剤極の間には、使用する燃料と酸素の反応で水が生成する際の自由エネルギー変化に相当する電圧が発生し、これが、電気エネルギーとして外部に取り出される。   In a fuel cell using a proton conductor as an electrolyte, a fuel such as hydrogen or methanol supplied to the fuel electrode is oxidized at the fuel electrode (anode) to generate protons and electrons. Proton passes through the proton conductor that is the electrolyte and reaches the oxidant electrode (cathode) of the counter electrode, and reacts with oxygen supplied to the oxidant electrode and electrons supplied from the fuel electrode through the external load. Produce water. At this time, a voltage corresponding to a free energy change is generated between the fuel electrode and the oxidant electrode when water is generated by the reaction between the fuel to be used and oxygen, and this is taken out as electric energy.

プロトン伝導体で形成されている電解質では、理想的にはプロトンのみを透過して、燃料や酸化剤を透過しない方が好ましい。しかしながら現在使用されている電解質では燃料や酸化剤の透過を完全に阻止することができない。燃料や酸化剤の透過は、電解質の膜の耐久性の更なる長寿命化の妨げとなる。   In an electrolyte formed of a proton conductor, ideally, it is preferable that only protons permeate, but not fuel or oxidant. However, currently used electrolytes cannot completely block the permeation of fuels and oxidants. The permeation of fuel and oxidant hinders further extension of the durability of the electrolyte membrane.

特許文献1には、膜の内部に触媒層を形成した高分子固体電解質型燃料電池が開示されている。この触媒層は燃料極及び酸化剤極に対して電気的に絶縁されている。特許文献1によれば、燃料極から膜に透過した水素、酸化剤極から膜に透過した酸素が触媒層で互いに反応して水を生成し、これによりガス透過が低減されると記載されている。
特開平6−103992号公報([0006]、[0018]、図1) しかしながら上記した特許文献1によれば、燃料極から膜に透過した水素、酸化剤極から膜に透過した酸素が化学量論比的に2対1であるときにのみなりたち、それ以外の場合には、透過量が多い側のガスは完全には消費されず、そのまま対極側に透過してしまう。このため電解質の膜の耐久性の更なる長寿命化には、改善の余地がある。
Patent Document 1 discloses a solid polymer electrolyte fuel cell in which a catalyst layer is formed inside a membrane. This catalyst layer is electrically insulated from the fuel electrode and the oxidant electrode. According to Patent Document 1, it is described that hydrogen permeated from the fuel electrode to the membrane and oxygen permeated from the oxidant electrode to the membrane react with each other to generate water, thereby reducing gas permeation. Yes.
JP-A-6-103992 ([0006], [0018], FIG. 1) However, according to the above-mentioned patent document 1, hydrogen permeated from the fuel electrode to the membrane and oxygen permeated from the oxidizer electrode to the membrane are in stoichiometric amounts. In theory, it is only when the ratio is 2 to 1, and in other cases, the gas having the larger permeation amount is not completely consumed but permeates the counter electrode as it is. For this reason, there is room for improvement in further extending the durability of the electrolyte membrane.

さらに我々の研究によれば、水素と酸素とが白金触媒上で化学的に反応するときにおいて、白金触媒の電位があるレベルよりも低いときには、ラジカルが発生するおそれがあり、このため電解質の膜の耐久性の更なる長寿命化を図るためには、更なる改善の余地がある。   Furthermore, according to our research, when hydrogen and oxygen chemically react on a platinum catalyst, radicals may be generated when the potential of the platinum catalyst is lower than a certain level, and thus the electrolyte membrane. There is room for further improvement in order to further extend the durability of the steel.

本発明は上記課題を解決したもので、アノードとカソードの間の燃料及び酸化剤の透過を抑制し、耐久性に優れた燃料電池用膜電極接合体および燃料電池を提供する。   The present invention solves the above-mentioned problems, and provides a membrane electrode assembly for fuel cells and a fuel cell that suppress permeation of fuel and oxidant between the anode and the cathode and have excellent durability.

本発明者らは燃料電池について研究を進めている。そして、本発明者は、燃料電池の電解質の内部に内部電極を設け、この内部電極の電極電位を制御すれば、電解質内の燃料の移動、酸化剤の移動を制御することができ、ひいては燃料の透過、酸化剤の透過を抑制できることを知見し、試験で確認した。   The present inventors are conducting research on fuel cells. Then, the present inventor can control the movement of the fuel and the oxidant in the electrolyte by providing an internal electrode inside the electrolyte of the fuel cell and controlling the electrode potential of the internal electrode. It was found that the permeation of the oxidant and the permeation of the oxidizing agent can be suppressed, and was confirmed by tests.

さらに本発明者らは、内部電極と酸化剤極とを短絡的に導通または抵抗負荷を介して導通させることにより、内部電位の静止電位よりも高い電位を内部電極に与えることができ、外部電源等を用いることなく、燃料ガスや酸化剤ガスを内部電極で酸化あるいは還元することにより、対極への燃料の透過、対極への酸化剤の透過を抑え、電解質の膜の劣化を抑える技術を開発した。   Furthermore, the present inventors can apply a potential higher than the static potential of the internal potential to the internal electrode by short-circuiting the internal electrode and the oxidizer electrode or conducting the resistance via a resistive load, Development of technology that suppresses deterioration of the electrolyte membrane by suppressing fuel permeation to the counter electrode and permeation of oxidant to the counter electrode by oxidizing or reducing fuel gas or oxidant gas at the internal electrode without using did.

さらに本発明者らは、内部電極を電気化学的に分極させる電気化学的分極手段を設けることにより、内部電極を静止電位から分極させて酸化電流あるいは還元電流を流して、内部電極の近傍に存在する水素を酸化あるいは酸素を還元することにより、高分子電解質の内部に透過した水素と酸素が対極側に到達することを抑え、電解質の膜の劣化を抑える技術を開発した。そして、本発明者らは、内部電極と一方の電極の間に電子伝導性高分子電解質を設けることにより内部電極の電気化学的分極が実現できることを明らかにした。   Furthermore, the present inventors provide an electrochemical polarization means that electrochemically polarizes the internal electrode, so that the internal electrode is polarized from a static potential and an oxidation current or a reduction current flows to exist in the vicinity of the internal electrode. We have developed a technology that suppresses the deterioration of the electrolyte membrane by preventing the hydrogen and oxygen that have permeated inside the polymer electrolyte from reaching the counter electrode by oxidizing the hydrogen to be oxidized or reducing oxygen. Then, the present inventors have clarified that the electrochemical polarization of the internal electrode can be realized by providing an electron conductive polymer electrolyte between the internal electrode and one of the electrodes.

しかし、内部電極で透過してきた燃料と酸化剤を反応させ、反応余剰の燃料または酸化剤を電子伝導性高分子電解質で電気的に接続しておいた内部電極とカソードまたはアノードとの間での電気化学的分極を利用して酸化または還元させるためには予め内部電極で燃料または酸化剤のいずれを完全に消費させるか決めておき、カソードまたはアノードのいずれの電極と内部電極との間に電子伝導性高分子電解質を設けるか決めておく必要がある。運転条件によっては決めておいた反応物質とは逆の反応物質が余剰になり、反応物質透過抑制機能が働かなくなる場合があることが判明した。そこで本発明者らは、このようなことが生じないようにするため鋭意研究し本発明に至った。   However, the fuel permeated through the internal electrode reacts with the oxidant, and the surplus fuel or oxidant is electrically connected with the electron conductive polymer electrolyte between the internal electrode and the cathode or anode. In order to oxidize or reduce by using electrochemical polarization, it is determined in advance whether the fuel or the oxidant is completely consumed by the internal electrode, and the electron between the cathode or the anode and the internal electrode is determined. It is necessary to decide whether to provide a conductive polymer electrolyte. Depending on the operating conditions, it has been found that there is a surplus of reactants that are opposite to the determined reactants, and the reactant permeation suppression function may not work. Therefore, the present inventors have intensively studied to prevent this from occurring, and have arrived at the present invention.

上記技術的課題を解決するために、請求項1の発明では、アノードと、プロトン伝導性を有する高分子電解質膜と、電子伝導性を有する内部電極と、プロトン伝導性と電子伝導性を有する電子伝導性高分子電解質膜と、カソードとがこの順で前記高分子電解質膜の厚み方向に積層され、前記高分子電解質膜の厚さが前記電子伝導性高分子電解質膜の厚さより薄いことを特徴とする燃料電池用膜電極接合体としている。   In order to solve the above technical problem, in the invention of claim 1, an anode, a polymer electrolyte membrane having proton conductivity, an internal electrode having electron conductivity, and an electron having proton conductivity and electron conductivity are provided. A conductive polymer electrolyte membrane and a cathode are laminated in this order in the thickness direction of the polymer electrolyte membrane, and the thickness of the polymer electrolyte membrane is thinner than the thickness of the electron conductive polymer electrolyte membrane The membrane electrode assembly for a fuel cell.

請求項2の発明では、前記高分子電解質膜の厚さが30μm以下であることを特徴とする請求項1記載の燃料電池用膜電極接合体としている。   According to a second aspect of the present invention, the membrane electrode assembly for a fuel cell according to the first aspect is characterized in that the thickness of the polymer electrolyte membrane is 30 μm or less.

請求項3の発明では、前記高分子電解質膜の厚さが20μm以下であることを特徴とする請求項1記載の燃料電池用膜電極接合体としている。   In the invention of claim 3, the membrane electrode assembly for a fuel cell according to claim 1 is characterized in that the thickness of the polymer electrolyte membrane is 20 μm or less.

請求項4の発明では、請求項1〜3のいずれか1項に記載の燃料電池用膜電極接合体が設けられていることを特徴とする燃料電池としている。   According to a fourth aspect of the invention, there is provided a fuel cell comprising the fuel cell membrane electrode assembly according to any one of the first to third aspects.

請求項1の発明によれば、高分子電解質膜の厚さが電子伝導性高分子電解質膜の厚さより薄いので、高分子電解質膜を透過してくる燃料、電子伝導性高分子電解質膜を透過してくる酸化剤を内部電極の作用によって確実に消費でき、耐久性を向上できる。     According to the first aspect of the present invention, since the thickness of the polymer electrolyte membrane is thinner than the thickness of the electron conductive polymer electrolyte membrane, the fuel that permeates the polymer electrolyte membrane, the permeate through the electron conductive polymer electrolyte membrane Thus, the oxidizing agent can be consumed reliably by the action of the internal electrode, and the durability can be improved.

請求項2の発明によれば、高分子電解質膜の厚さが30μm以下であるので、優れた耐久性と共に優れた電池性能も併せ持つことができる。     According to invention of Claim 2, since the thickness of a polymer electrolyte membrane is 30 micrometers or less, it can have the battery performance which was excellent with the outstanding durability.

請求項3の発明によれば、高分子電解質膜の厚さが20μm以下であるので、より優れた電池性能を併せ持つことができる。。     According to invention of Claim 3, since the thickness of a polymer electrolyte membrane is 20 micrometers or less, it can have more superior battery performance. .

請求項4の発明によれば、優れた耐久性を有する膜電極接合体を使用しているので、燃料電池の耐久性を向上できる。     According to the invention of claim 4, since the membrane electrode assembly having excellent durability is used, the durability of the fuel cell can be improved.

以下、本発明の実施例について、図面に基づいて説明する。図1は一実施形態の膜電極接合体の構造を説明する説明断面図である。膜電極接合体10は、アノード1と、プロトン伝導性を有する高分子電解質膜2と、電子伝導性を有する内部電極3と、プロトン伝導性と電子伝導性を有する電子伝導性高分子電解質膜4と、カソード5がこの順で高分子電解質膜2の厚み方向に積層されている。高分子電解質膜2の厚さは電子伝導性高分子電解質膜4の厚さより薄くなっている。アノード1には触媒層11と拡散層12が設けられ、拡散層12の上に触媒層11が設けられている。触媒層11は高分子電解質膜2と接合されている。カソード5には触媒層51と拡散層52が設けられ、拡散層52の上に触媒層51が設けられている、触媒層51は電子伝導性高分子電解質膜4と接合されている。下記の実施例では電子伝導性高分子電解質膜4は、電解質を溶媒に溶解した電解質溶液と導電性(電子伝導性)固形成分を混合したペーストからキャスト電子伝導性高分子電解質膜を作製したものを所定枚数積層して製作している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory cross-sectional view illustrating the structure of a membrane electrode assembly according to an embodiment. The membrane electrode assembly 10 includes an anode 1, a polymer electrolyte membrane 2 having proton conductivity, an internal electrode 3 having electron conductivity, and an electron conductive polymer electrolyte membrane 4 having proton conductivity and electron conductivity. The cathode 5 is laminated in the thickness direction of the polymer electrolyte membrane 2 in this order. The thickness of the polymer electrolyte membrane 2 is thinner than the thickness of the electron conductive polymer electrolyte membrane 4. The anode 1 is provided with a catalyst layer 11 and a diffusion layer 12, and the catalyst layer 11 is provided on the diffusion layer 12. The catalyst layer 11 is joined to the polymer electrolyte membrane 2. A catalyst layer 51 and a diffusion layer 52 are provided on the cathode 5, and the catalyst layer 51 is provided on the diffusion layer 52. The catalyst layer 51 is joined to the electron conductive polymer electrolyte membrane 4. In the following embodiment, the electron conductive polymer electrolyte membrane 4 is a cast electron conductive polymer electrolyte membrane made from a paste in which an electrolyte solution in which an electrolyte is dissolved in a solvent and a conductive (electron conductive) solid component are mixed. Are manufactured by laminating a predetermined number of sheets.

内部電極3としては、触媒金属のみで構成することができる。また、この触媒金属に炭素等の電子伝導性材料、高分子電解質を配合することができる。内部電極3は高分子電解質膜、電子伝導性高分子電解質膜内を拡散してきた水素、酸素をプロトン、水等に変える機能を持つ。また、内部電極3はプロトンが透過する機能を持つ。内部電極3は高分子電解質膜と電子伝導性高分子電解質膜をこの内部電極3で分離するように配置されて使用される。     The internal electrode 3 can be composed only of a catalyst metal. In addition, an electron conductive material such as carbon and a polymer electrolyte can be blended with the catalyst metal. The internal electrode 3 has a function of changing hydrogen and oxygen diffused in the polymer electrolyte membrane and the electron conductive polymer electrolyte membrane into protons, water and the like. Further, the internal electrode 3 has a function of transmitting protons. The internal electrode 3 is used by being arranged so that the polymer electrolyte membrane and the electron conductive polymer electrolyte membrane are separated by the internal electrode 3.

以下の説明では燃料として燃料ガス、酸化剤として酸化剤ガスを用いた場合で説明する。図2は実施形態の膜電極接合体を使用した燃料電池単セルの説明断面図である。膜電極接合体10はセパレータ6と7で挟持されている。セパレータ6はアノード1に当接されており、アノード1側の面には燃料ガス流路6bが設けられている。燃料ガス(純水素、水素含有ガスなど)は、燃料ガス入口6aから供給され燃料ガス流路6bを通って燃料ガス出口6cから排出される。燃料ガス流路6bから燃料ガス中の水素がアノード1に供給される。セパレータ7はカソード5に当接されており、カソード5側の面には酸化剤ガス流路7bが設けられている。酸化剤ガス(純酸素、空気などの酸素含有ガスなど)は、酸化剤ガス入口7aから供給され酸化剤ガス流路7bを通って酸化剤ガス出口7cから排出される。酸化剤ガス流路7bから酸化剤ガス中の水素がアノード1に供給される。ここでは燃料電池単セルで説明したが、一般的には複数の単セルを積層することにより燃料電池が構成されている。   In the following description, the case where fuel gas is used as the fuel and oxidant gas is used as the oxidant will be described. FIG. 2 is an explanatory sectional view of a fuel cell single cell using the membrane electrode assembly of the embodiment. The membrane electrode assembly 10 is sandwiched between separators 6 and 7. The separator 6 is in contact with the anode 1, and a fuel gas channel 6 b is provided on the surface on the anode 1 side. Fuel gas (pure hydrogen, hydrogen-containing gas, etc.) is supplied from the fuel gas inlet 6a, discharged through the fuel gas passage 6b, and discharged from the fuel gas outlet 6c. Hydrogen in the fuel gas is supplied to the anode 1 from the fuel gas flow path 6b. The separator 7 is in contact with the cathode 5, and an oxidant gas flow path 7b is provided on the surface on the cathode 5 side. Oxidant gas (pure oxygen, oxygen-containing gas such as air) is supplied from the oxidant gas inlet 7a and discharged from the oxidant gas outlet 7c through the oxidant gas flow path 7b. Hydrogen in the oxidant gas is supplied to the anode 1 from the oxidant gas flow path 7b. Although the fuel cell unit cell is described here, the fuel cell is generally configured by stacking a plurality of unit cells.

図3は実施例1の膜電極接合体の構造を説明する説明断面図である。基本的には図1の構造と同じであるので、同じ部位には同じ符号を付け説明を省略する。実施例1では電子伝導性高分子電解質膜4は4枚のキャスト電子伝導性高分子電解質膜41、42、43、44から構成されている。   FIG. 3 is an explanatory cross-sectional view illustrating the structure of the membrane / electrode assembly of Example 1. Since it is basically the same as the structure shown in FIG. In Example 1, the electron conductive polymer electrolyte membrane 4 is composed of four cast electron conductive polymer electrolyte membranes 41, 42, 43 and 44.

フッ素系電解質溶液(デュポン株式会社製:Nafion20wt%溶液)と高導電性カーボンファイバー(昭和電工株式会社:VGCF)約10wt%を混合し、均一に分散させたペーストを調製し、ポリ4フッ化エチレン(以下、PTFEという)フィルム上にアプリケータで塗布、乾燥してキャスト電子伝導性高分子電解質膜転写シート(膜厚:約12μm)を作製した。このシートを厚み約1mmのPTFEシートで挟み、ホットプレスしてPTFEフィルム上から電子伝導性高分子電解質膜41を剥離した。同様にして電子伝導性高分子電解質膜42、43、44を作製した。   A paste containing fluorinated electrolyte solution (manufactured by DuPont: Nafion 20 wt% solution) and about 10 wt% of highly conductive carbon fiber (Showa Denko KK: VGCF) is prepared and uniformly dispersed, and polytetrafluoroethylene A cast electron-conducting polymer electrolyte membrane transfer sheet (film thickness: about 12 μm) was prepared by applying and drying on a film (hereinafter referred to as PTFE) with an applicator. This sheet was sandwiched between PTFE sheets having a thickness of about 1 mm, and hot-pressed to peel the electron conductive polymer electrolyte membrane 41 from the PTFE film. Similarly, electron conductive polymer electrolyte membranes 42, 43, and 44 were produced.

白金担持カーボン(田中貴金属株式会社製:白金担持量60wt%)とフッ素系電解質溶液(旭化成株式会社製:Aciplex5wt%溶液)を混合して調製した白金触媒ペーストをアプリケータでエチレン・4フッ化共重合樹脂(以下、ETFEという)フィルム上に塗工・乾燥させて内部電極層3(白金量:約0.15mg/cm)を形成した内部電極層転写シートを作製した。このシートの内部電極層3上に先に製作した電子伝導性高分子電解質膜41、42、43、44を順に重ね合わせ、ホットプレスして、電子伝導性高分子電解質膜4(全体の厚さ約48μm)と内部電極層3を接合して電子伝導性高分子電解質膜層4/内部電極層3接合体を作製した。 A platinum catalyst paste prepared by mixing platinum-supported carbon (Tanaka Kikinzoku Co., Ltd .: platinum support 60 wt%) and fluorine electrolyte solution (Asahi Kasei Co., Ltd .: Aciplex 5 wt% solution) is mixed with ethylene tetrafluoride using an applicator. An internal electrode layer transfer sheet in which an internal electrode layer 3 (platinum amount: about 0.15 mg / cm 2 ) was formed by coating and drying on a polymerized resin (hereinafter referred to as ETFE) film was produced. The electron conductive polymer electrolyte membranes 41, 42, 43, 44 previously produced on the internal electrode layer 3 of this sheet are superposed in order and hot pressed to form the electron conductive polymer electrolyte membrane 4 (total thickness). About 48 μm) and the internal electrode layer 3 were joined to produce an electron conductive polymer electrolyte membrane layer 4 / internal electrode layer 3 assembly.

これと別に内部電極層3と同じ工法でPTFEフィルム上に触媒層11を形成した第1触媒層転写シートを作製した。同様にPTFEフィルム上に触媒層51aを形成した第2触媒層転写シートを作製した。第1触媒層転写シート、第2触媒層転写シートとそれぞれを電極サイズに切り出した。   Separately, a first catalyst layer transfer sheet in which the catalyst layer 11 was formed on the PTFE film by the same method as the internal electrode layer 3 was produced. Similarly, the 2nd catalyst layer transfer sheet which formed the catalyst layer 51a on the PTFE film was produced. The first catalyst layer transfer sheet and the second catalyst layer transfer sheet were cut into electrode sizes.

高分子電解質膜2としてETFE膜にスチレンを放射線グラフト重合した部分フッ素炭化水素系膜を使用した。高分子電解質膜2の厚さは35μmである。   As the polymer electrolyte membrane 2, a partially fluorohydrocarbon membrane obtained by radiation graft polymerization of styrene on an ETFE membrane was used. The thickness of the polymer electrolyte membrane 2 is 35 μm.

高分子電解質膜2の一方面に触媒層11が当接するように第1触媒層転写シートを配置し、高分子電解質膜2の他方面に内部電極層3が当接するように電子伝導性高分子電解質膜層4/内部電極層3接合体を配置し、さらに電子伝導性高分子電解質膜層4/内部電極層3接合体の電子伝導性高分子電解質膜層4に触媒層51aが当接するように第2触媒層転写シートを配置した。そして、第1触媒層転写シート、第2触媒層転写シートそれぞれの外側から加圧してホットプレスし、PTFEフィルムを剥離して触媒層11/高分子電解質膜2/内部電極層3/電子伝導性高分子電解質膜4/触媒層51a接合体を作製した。   The first catalyst layer transfer sheet is disposed so that the catalyst layer 11 is in contact with one surface of the polymer electrolyte membrane 2, and the electron conductive polymer is so disposed that the internal electrode layer 3 is in contact with the other surface of the polymer electrolyte membrane 2. The electrolyte membrane layer 4 / internal electrode layer 3 assembly is disposed, and the catalyst layer 51a is in contact with the electron conductive polymer electrolyte membrane layer 4 of the electron conductive polymer electrolyte membrane layer 4 / internal electrode layer 3 assembly. The 2nd catalyst layer transfer sheet was arrange | positioned. Then, pressure is applied from the outside of each of the first catalyst layer transfer sheet and the second catalyst layer transfer sheet, hot pressing is performed, the PTFE film is peeled off, and the catalyst layer 11 / polymer electrolyte membrane 2 / internal electrode layer 3 / electron conductivity is removed. A polymer electrolyte membrane 4 / catalyst layer 51a assembly was produced.

市販のカーボンペーパー(東レ株式会社製:TGP−H−60)をカーボンブラックとPTFEの混合デイスパージョン溶液に浸漬して、約360℃で1時間焼成して撥水化処理を施し拡散層12と拡散層52を作製した。拡散層52の一方面に上述と同様の手法で作製した白金触媒ペーストを塗布して触媒層51bを形成し、触媒層51b/拡散層52接合体を作製した。   A commercially available carbon paper (manufactured by Toray Industries, Inc .: TGP-H-60) is immersed in a mixed dispersion solution of carbon black and PTFE, fired at about 360 ° C. for 1 hour, subjected to water repellency treatment, and diffusion layer 12 A diffusion layer 52 was prepared. A platinum catalyst paste produced by the same method as described above was applied to one surface of the diffusion layer 52 to form a catalyst layer 51b, and a catalyst layer 51b / diffusion layer 52 assembly was produced.

触媒層11/高分子電解質膜2/内部電極層3/電子伝導性高分子電解質膜4/触媒層51a接合体の触媒層11に拡散層12を当接させ、触媒層51aに触媒層51bが当接するように触媒層51b/拡散層52接合体を配置し、拡散層12と拡散層52の外側からホットプレスして膜電極接合体10を作製した。触媒層51aと触媒層51bにより触媒層51が形成されている。触媒層11、触媒層51の白金量はそれぞれ0.2mg/cm、1.0mg/cmである。 Catalyst layer 11 / Polymer electrolyte membrane 2 / Internal electrode layer 3 / Electron conductive polymer electrolyte membrane 4 / Catalyst layer 51a The diffusion layer 12 is brought into contact with the catalyst layer 11 of the assembly, and the catalyst layer 51b is formed on the catalyst layer 51a. The catalyst layer 51b / diffusion layer 52 assembly was disposed so as to be in contact with each other, and hot pressing was performed from the outside of the diffusion layer 12 and the diffusion layer 52 to produce the membrane electrode assembly 10. The catalyst layer 51 is formed by the catalyst layer 51a and the catalyst layer 51b. The platinum amounts of the catalyst layer 11 and the catalyst layer 51 are 0.2 mg / cm 2 and 1.0 mg / cm 2 , respectively.

電子伝導性高分子電解質膜4を電子伝導性高分子電解質膜41と42を重ねて作製し全体の厚さ約24μmとし、高分子電解質膜2の厚さを約17μmとした以外は実施例1と同様にして膜電極接合体10を作製した。高分子電解質膜2は実施例1と同じスチレンを放射線グラフト重合した部分フッ素炭化水素系膜である。   Example 1 except that the electron conductive polymer electrolyte membrane 4 is produced by superimposing the electron conductive polymer electrolyte membranes 41 and 42 to a total thickness of about 24 μm, and the thickness of the polymer electrolyte membrane 2 is about 17 μm. A membrane electrode assembly 10 was produced in the same manner as described above. The polymer electrolyte membrane 2 is a partially fluorohydrocarbon membrane obtained by radiation graft polymerization of styrene as in Example 1.

比較例1Comparative Example 1

実施例1と同じ厚さ(約35μm)の高分子電解質膜2を使用した以外は実施例2と同様にして膜電極接合体10を作製した。電子伝導性高分子電解質膜4の全体の厚さは約24μmである。   A membrane / electrode assembly 10 was produced in the same manner as in Example 2, except that the polymer electrolyte membrane 2 having the same thickness (about 35 μm) as in Example 1 was used. The total thickness of the electron conductive polymer electrolyte membrane 4 is about 24 μm.

比較例2Comparative Example 2

電子伝導性高分子電解質膜4を電子伝導性高分子電解質膜41を使用した以外実施例2と同様にして膜電極接合体10を作製した。電子伝導性高分子電解質膜4の全体の厚さ約12μm、高分子電解質膜2の厚さは約17μmである。   A membrane / electrode assembly 10 was produced in the same manner as in Example 2 except that the electron conductive polymer electrolyte membrane 4 was replaced with the electron conductive polymer electrolyte membrane 41. The total thickness of the electron conductive polymer electrolyte membrane 4 is about 12 μm, and the thickness of the polymer electrolyte membrane 2 is about 17 μm.

比較例3Comparative Example 3

内部電極を持たない一般的な膜電極接合体を作製した。図4は比較例3の膜電極接合体の構造を説明する説明断面図である。実施形態と同じ部位には同じ符号を付けている。高分子電解質膜3の両面にはアノード1とカソード5が配置され、互いに接合されて膜電極接合体20が形成されている。拡散層12、52は実施例1と同じものを使用した。触媒層11、51を構成する材料も実施例1と同じで、触媒層51は触媒層51a、触媒層51bの2層構造である。触媒層11、51それぞれの白金量は約0.2mg/cm、約1.4mg/cmである。である。高分子電解質膜3も実施例1と同じものを使用した。その厚さは約35μmである。 A general membrane electrode assembly having no internal electrode was prepared. FIG. 4 is an explanatory cross-sectional view illustrating the structure of the membrane / electrode assembly of Comparative Example 3. The same parts as those in the embodiment are given the same reference numerals. The anode 1 and the cathode 5 are disposed on both surfaces of the polymer electrolyte membrane 3 and are joined together to form a membrane electrode assembly 20. The same diffusion layers 12 and 52 as in Example 1 were used. The materials constituting the catalyst layers 11 and 51 are also the same as in Example 1, and the catalyst layer 51 has a two-layer structure of a catalyst layer 51a and a catalyst layer 51b. The platinum amount of each of the catalyst layers 11 and 51 is about 0.2 mg / cm 2 and about 1.4 mg / cm 2 . It is. The same polymer electrolyte membrane 3 as in Example 1 was used. Its thickness is about 35 μm.

(膜電極接合体の評価)
実施例1、2および比較例3について図2に示す単セルを作製し、燃料ガスとして純水素、酸化剤ガスとして空気を使用して電流密度−電圧性能を評価した。純水素、空気の圧力は常圧(1ata)、ガス利用率は純水素80%、空気40%、ガス加湿モル比はH/Air=0.2/0.2(バブラー温度56℃)、燃料電池温度(循環水入口温度)は75℃の条件で評価した。その結果を図5に示す。
(Evaluation of membrane electrode assembly)
The single cells shown in FIG. 2 were prepared for Examples 1 and 2 and Comparative Example 3, and the current density-voltage performance was evaluated using pure hydrogen as the fuel gas and air as the oxidant gas. Pure hydrogen, air pressure is normal pressure (1 ata), gas utilization rate is 80% pure hydrogen, air 40%, gas humidification molar ratio is H 2 /Air=0.2/0.2 (bubbler temperature 56 ° C.), The fuel cell temperature (circulated water inlet temperature) was evaluated under the condition of 75 ° C. The result is shown in FIG.

次に耐久性を評価するため、実施例1、2および比較例3の単セルにより燃料ガスとして純水素、酸化剤ガスとして空気を使用して0.1A/cm負荷1分間−開回路3分間のON−OFFサイクル運転試験(開回路時耐久試験)を行った。評価条件は純水素、空気の圧力は常圧(1ata)、ガス利用率は純水素80%、空気40%、ガス加湿モル比はH/Air=0.2/0.2(バブラー温度56℃)、燃料電池温度(循環水入口温度)は75℃である。開回路モード時のセル電圧変化を図6に、負荷モード時のセル電圧変化を図7に示す。 Next, in order to evaluate the durability, by using pure hydrogen as a fuel gas and air as an oxidant gas by the single cells of Examples 1, 2 and Comparative Example 3, 0.1 A / cm 2 load for 1 minute-open circuit 3 A minute ON-OFF cycle operation test (open circuit endurance test) was conducted. Evaluation conditions are pure hydrogen, air pressure is normal pressure (1 ata), gas utilization rate is pure hydrogen 80%, air 40%, gas humidification molar ratio is H 2 /Air=0.2/0.2 (bubbler temperature 56 ° C), the fuel cell temperature (circulating water inlet temperature) is 75 ° C. FIG. 6 shows the cell voltage change in the open circuit mode, and FIG. 7 shows the cell voltage change in the load mode.

図5の電流密度−電圧性能評価結果によれば、実施例1の場合、比較例3より発電性能が低くなっている。これは膜電極接合体を構成する高分子電解質膜/内部電極層/電子伝導性高分子電解質膜の部分が厚くなっているためである。しかし、実施例2のように、この厚さを薄くすることにより比較例3より発電性能を高くすることができる。これは膜抵抗が低減されたことに加え、膜の保水/排水性が良い方向へバランスされた効果であると考えられる。図6、7の耐久試験によれば、実施例1、2は比較例3に比べて耐久性が各段に優れている。開回路時耐久試験では実施例1が実施例2よりセル電圧が高いが、実際の運転に近い負荷時耐久試験では逆に実施例2の方が実施例1よりセル電圧が高い。いずれの耐久試験でも実施例1も実施例2も同程度の優れた耐久性を示している。なお、実施例1に比較して実施例2の開回路時耐久試験での電圧が低いのは高分子電解質膜や電子伝導性高分子電解質膜の厚さが薄いため、内部電極までのガス透過量増加に伴い、内部電極間での反応(分極による酸化電流)が増加しているためである。また耐久試験のグラフにおいて不連続になっている部分はリーク量測定等のため燃料電池の運転を一時的に停止したため生じたものである。   According to the current density-voltage performance evaluation results in FIG. 5, in the case of Example 1, the power generation performance is lower than that of Comparative Example 3. This is because the portion of the polymer electrolyte membrane / internal electrode layer / electron conductive polymer electrolyte membrane constituting the membrane electrode assembly is thick. However, as in Example 2, the power generation performance can be made higher than that of Comparative Example 3 by reducing this thickness. This is considered to be a balanced effect in the direction of good water retention / drainage of the membrane in addition to the reduction of the membrane resistance. According to the durability test of FIGS. 6 and 7, Examples 1 and 2 are superior to Comparative Example 3 in durability at each stage. In the open circuit endurance test, the cell voltage of Example 1 is higher than that of Example 2. However, in the endurance test under load close to actual operation, the cell voltage of Example 2 is higher than that of Example 1. In any of the durability tests, Example 1 and Example 2 show the same excellent durability. Note that the voltage in the open circuit endurance test of Example 2 is lower than that of Example 1 because the polymer electrolyte membrane and the electron conductive polymer electrolyte membrane are thin. This is because the reaction between the internal electrodes (oxidation current due to polarization) increases as the amount increases. Further, the discontinuous portion in the endurance test graph is caused by temporarily stopping the operation of the fuel cell for the leak amount measurement or the like.

これらの耐久試験後に膜電極接合体から高分子電解質膜を取り出し、水酸化カリウム溶液でカチオン置換してからFT−IR分析を行った。その結果、電圧が大きく低下した比較例3の高分子電解質膜では電極接合部分にスチレンに関するC−H結合の吸収スペクトルの大きな低下が認められたが、実施例2の場合には同部分の吸収ピークの変化はほとんど認められなかった。これは、ガス透過防止機能が有効に働き、薄膜化によって増加した双方向の透過ガスの透過を抑制し、ガス混合による膜の劣化を防ぎ、膜電極接合体の耐久性が向上した効果を示すものである。   After these durability tests, the polymer electrolyte membrane was taken out from the membrane electrode assembly, and cation-substituted with a potassium hydroxide solution, followed by FT-IR analysis. As a result, in the polymer electrolyte membrane of Comparative Example 3 in which the voltage was greatly decreased, a large decrease in the absorption spectrum of the C—H bond related to styrene was observed at the electrode joint portion. Little change in peak was observed. This is because the gas permeation prevention function works effectively, suppresses the permeation of the bidirectional permeated gas that has increased due to the thinning of the film, prevents the deterioration of the film due to gas mixing, and shows the effect of improving the durability of the membrane electrode assembly Is.

次にガス透過試験を行った。図8はガス透過試験の方法を説明する説明図である。この試験は、実施例1、2および比較例1、2の膜電極接合体10のアノード1がない透過試験用接合体10aで行った。これはカソード5側からアノード側に透過してくる微量な酸素を検出できるようにするためである。カソード5側と高分子電解質膜2側のガスが互いに混合しないように透過試験用接合体10aの周囲をシールしている。カソード5側に圧力1ata、流量0.012m/hの空気を供給し、高分子電解質膜2側に圧力1ata、流量0.012m/hの水素を供給した。空気および水素はいずれも飽和水蒸気状態としている。カソード5側のガス中に含まれる水素をガスクロ分析装置81により水素透過量を測定した。高分子電解質膜2側のガス中に含まれる酸素をガスクロ分析装置82により酸素透過量を測定した。なお、ガスクロ分析装置81やガスクロ分析装置82に供給するガスは凝縮器により除湿されている。その結果を表1に示す。

Figure 2007184190
Next, a gas permeation test was performed. FIG. 8 is an explanatory diagram for explaining a method of a gas permeation test. This test was conducted on a transmission test joined body 10a without the anode 1 of the membrane electrode assemblies 10 of Examples 1 and 2 and Comparative Examples 1 and 2. This is to make it possible to detect a trace amount of oxygen permeating from the cathode 5 side to the anode side. The periphery of the permeation test bonded body 10a is sealed so that the gases on the cathode 5 side and the polymer electrolyte membrane 2 side do not mix with each other. The cathode 5 side into the pressure 1Ata, supplying air flow rate 0.012 m 3 / h, hydrogen was fed pressure 1Ata, flow rate 0.012 m 3 / h in the polymer electrolyte membrane 2 side. Both air and hydrogen are in a saturated water vapor state. The hydrogen permeation amount of hydrogen contained in the gas on the cathode 5 side was measured by a gas chromatography analyzer 81. The oxygen permeation amount of oxygen contained in the gas on the polymer electrolyte membrane 2 side was measured by a gas chromatography analyzer 82. Note that the gas supplied to the gas chromatography analyzer 81 and the gas chromatography analyzer 82 is dehumidified by a condenser. The results are shown in Table 1.
Figure 2007184190

実施例1、2では双方向のガス透過が抑制されていることが確認できた。高分子電解質膜の厚さが電子伝導性高分子電解質膜の厚さより薄い場合には双方向のガス透過が抑制できる。これに対して、比較例1、2ではわずかではあるが酸素の透過が観測された。高分子電解質膜の厚さが電子伝導性高分子電解質膜の厚さより厚い場合には酸素の透過が生じ、長時間の耐久には不利である。   In Examples 1 and 2, it was confirmed that bidirectional gas permeation was suppressed. When the thickness of the polymer electrolyte membrane is thinner than the thickness of the electron conductive polymer electrolyte membrane, bidirectional gas permeation can be suppressed. On the other hand, in Comparative Examples 1 and 2, slight oxygen permeation was observed. When the thickness of the polymer electrolyte membrane is thicker than the thickness of the electron conductive polymer electrolyte membrane, oxygen permeation occurs, which is disadvantageous for long-term durability.

以上のように、高分子電解質膜の厚さが電子伝導性高分子電解質膜の厚さより薄い場合には双方向のガス透過が抑制でき、耐久性を向上できる。高分子電解質膜の厚さが30μm以下であれば、優れた発電性能、優れた耐久性を実現できる。高分子電解質膜の厚さが20μm以下であれば、さらに発電性能を向上できる。   As described above, when the thickness of the polymer electrolyte membrane is thinner than the thickness of the electron conductive polymer electrolyte membrane, bidirectional gas permeation can be suppressed and durability can be improved. When the thickness of the polymer electrolyte membrane is 30 μm or less, excellent power generation performance and excellent durability can be realized. If the thickness of the polymer electrolyte membrane is 20 μm or less, the power generation performance can be further improved.

一実施形態の膜電極接合体の構造を説明する説明断面図Explanatory sectional drawing explaining the structure of the membrane electrode assembly of one Embodiment 実施形態の膜電極接合体を使用した燃料電池単セルの説明断面図Cross-sectional view of a single fuel cell using the membrane electrode assembly of the embodiment 実施例1の膜電極接合体の構造を説明する説明断面図Explanatory sectional drawing explaining the structure of the membrane electrode assembly of Example 1 比較例3の膜電極接合体の構造を説明する説明断面図Explanatory sectional drawing explaining the structure of the membrane electrode assembly of the comparative example 3 電流密度−電圧性能の評価結果を示すグラフ図Graph showing the evaluation results of current density vs. voltage performance 耐久試験における開回路モード時のセル電圧変化を示すグラフ図Graph showing cell voltage change in open circuit mode in endurance test 耐久試験における負荷モード時のセル電圧変化を示すグラフ図Graph showing cell voltage change in load mode in endurance test ガス透過試験の方法を説明する説明図Explanatory drawing explaining the method of a gas permeation test

符号の説明Explanation of symbols

1…アノード
2…高分子電解質膜
3…内部電極層(内部電極)
4…電子伝導性高分子電解質膜
5…カソード
10…燃料電池用膜電極接合体
DESCRIPTION OF SYMBOLS 1 ... Anode 2 ... Polymer electrolyte membrane 3 ... Internal electrode layer (internal electrode)
4 ... Electroconductive polymer electrolyte membrane 5 ... Cathode 10 ... Membrane electrode assembly for fuel cell

Claims (4)

アノードと、プロトン伝導性を有する高分子電解質膜と、電子伝導性を有する内部電極と、プロトン伝導性と電子伝導性を有する電子伝導性高分子電解質膜と、カソードとがこの順で前記高分子電解質膜の厚み方向に積層され、前記高分子電解質膜の厚さが前記電子伝導性高分子電解質膜の厚さより薄いことを特徴とする燃料電池用膜電極接合体。 The anode, the polymer electrolyte membrane having proton conductivity, the internal electrode having electron conductivity, the electron conductive polymer electrolyte membrane having proton conductivity and electron conductivity, and the cathode in this order. A fuel cell membrane electrode assembly, wherein the membrane electrode assembly is laminated in the thickness direction of the electrolyte membrane, and the thickness of the polymer electrolyte membrane is thinner than the thickness of the electron conductive polymer electrolyte membrane. 前記高分子電解質膜の厚さが30μm以下であることを特徴とする請求項1記載の燃料電池用膜電極接合体。 The membrane electrode assembly for a fuel cell according to claim 1, wherein the thickness of the polymer electrolyte membrane is 30 µm or less. 前記高分子電解質膜の厚さが20μm以下であることを特徴とする請求項1記載の燃料電池用膜電極接合体。 The membrane electrode assembly for a fuel cell according to claim 1, wherein the thickness of the polymer electrolyte membrane is 20 µm or less. 請求項1〜3のいずれか1項に記載の燃料電池用膜電極接合体が設けられていることを特徴とする燃料電池。 A fuel cell comprising the fuel cell membrane electrode assembly according to any one of claims 1 to 3.
JP2006002467A 2006-01-10 2006-01-10 Membrane-electrode assembly for fuel cell Pending JP2007184190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002467A JP2007184190A (en) 2006-01-10 2006-01-10 Membrane-electrode assembly for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002467A JP2007184190A (en) 2006-01-10 2006-01-10 Membrane-electrode assembly for fuel cell

Publications (1)

Publication Number Publication Date
JP2007184190A true JP2007184190A (en) 2007-07-19

Family

ID=38340095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002467A Pending JP2007184190A (en) 2006-01-10 2006-01-10 Membrane-electrode assembly for fuel cell

Country Status (1)

Country Link
JP (1) JP2007184190A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182546A (en) * 2009-02-06 2010-08-19 Aisin Seiki Co Ltd Membrane electrode assembly for fuel cell and method of manufacturing the same
JP2010182547A (en) * 2009-02-06 2010-08-19 Aisin Seiki Co Ltd Membrane electrode assembly for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182546A (en) * 2009-02-06 2010-08-19 Aisin Seiki Co Ltd Membrane electrode assembly for fuel cell and method of manufacturing the same
JP2010182547A (en) * 2009-02-06 2010-08-19 Aisin Seiki Co Ltd Membrane electrode assembly for fuel cell

Similar Documents

Publication Publication Date Title
JP4839211B2 (en) Fuel cell and fuel cell manufacturing method
US8202664B2 (en) Membrane electrode assembly, fuel cell stack and fuel cell system
JP3778506B2 (en) Electrode for polymer electrolyte fuel cell
JP2004342489A (en) Fuel cell
US20090214918A1 (en) Anode of direct methanol fuel cell and direct methanol fuel cell employing the same
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
JP4493954B2 (en) Polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP4823583B2 (en) Polymer membrane / electrode assembly for fuel cell and fuel cell including the same
JP2005251434A (en) Fuel cell system, and control method of fuel cell
JP5021885B2 (en) Fuel cell
JP3500086B2 (en) Fuel cell and fuel cell using the same
JP2007184190A (en) Membrane-electrode assembly for fuel cell
JP2006049115A (en) Fuel cell
JP2006221970A (en) Operation method of direct methanol fuel cell
JP4725041B2 (en) Fuel cell
JP2004152588A (en) Electrode structure for solid polymer fuel cell
JP2009170175A (en) Membrane electrode structure, and fuel cell
JP2006338941A (en) Electrolyte membrane-electrode assembly
JP2011181374A (en) Membrane-electrode assembly for solid polymer fuel cell and solid polymer fuel cell
JP5339262B2 (en) Fuel cell
US20050260462A1 (en) Fuel cell
JP3946228B2 (en) Fuel cell
JP5535117B2 (en) Membrane electrode assembly and fuel cell
JP2008288068A (en) Fuel cell, anode of fuel cell, and membrane electrode assembly
JP4440088B2 (en) Fuel cell