JP2007212797A - Radiation-sensitive resin composition for liquid immersion exposure - Google Patents

Radiation-sensitive resin composition for liquid immersion exposure Download PDF

Info

Publication number
JP2007212797A
JP2007212797A JP2006033102A JP2006033102A JP2007212797A JP 2007212797 A JP2007212797 A JP 2007212797A JP 2006033102 A JP2006033102 A JP 2006033102A JP 2006033102 A JP2006033102 A JP 2006033102A JP 2007212797 A JP2007212797 A JP 2007212797A
Authority
JP
Japan
Prior art keywords
group
meth
acid
carbon atoms
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006033102A
Other languages
Japanese (ja)
Inventor
Atsushi Nakamura
敦 中村
Hiromitsu Nakajima
浩光 中島
Daiki Nakagawa
大樹 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2006033102A priority Critical patent/JP2007212797A/en
Publication of JP2007212797A publication Critical patent/JP2007212797A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation-sensitive resin composition for liquid immersion exposure which gives a good pattern profile, excels also in focal depth and ensures a small amount of materials eluting into water with which the composition contacts in liquid immersion exposure. <P>SOLUTION: The radiation-sensitive resin composition for liquid immersion exposure is used in liquid immersion exposure by which a resist film is exposed through water, and contains an alkali-insoluble or slightly alkali-soluble resin which contains a methacrylate unit of norborneol having a lactone ring and becomes alkali-soluble under the action of an acid and a radiation-sensitive acid generator. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水を介してレジスト被膜を露光する液浸露光に用いられる液浸露光用感放射線性樹脂組成物に関する。更に詳しくは、得られるパターン形状が良好であり、焦点深度に優れ、且つ液浸露光時に接触した水への溶出物の量が少ない液浸露光用感放射線性樹脂組成物に関する。   The present invention relates to a radiation-sensitive resin composition for immersion exposure used for immersion exposure in which a resist film is exposed through water. More specifically, the present invention relates to a radiation-sensitive resin composition for immersion exposure that has a good pattern shape, excellent depth of focus, and a small amount of eluate in contact with water during immersion exposure.

集積回路素子の製造に代表される微細加工の分野においては、より高い集積度を得るために、最近では0.10μm以下のレベルでの微細加工が可能なリソグラフィー技術が必要とされている。しかし、従来のリソグラフィープロセスでは、一般に放射線としてi線等の近紫外線が用いられているが、この近紫外線では、サブクオーターミクロンレベルの微細加工が極めて困難であると言われている。そこで、0.20μm以下のレベルでの微細加工を可能とするために、より波長の短い放射線の利用が検討されている。このような短波長の放射線としては、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、X線、電子線等を挙げることができるが、これらのうち、特にKrFエキシマレーザー(波長248nm)或いはArFエキシマレーザー(波長193nm)が注目されている。
このようなエキシマレーザーによる照射に適したレジストとして、酸解離性官能基を有する成分と、放射線の照射(以下、「露光」という。)により酸を発生する成分(以下、「酸発生剤」という。)と、による化学増幅効果を利用したレジスト(以下、「化学増幅型レジスト」という。)が数多く提案されている。化学増幅型レジストとしては、例えば、カルボン酸のt−ブチルエステル基又はフェノールのt−ブチルカーボナート基を有する樹脂と酸発生剤とを含有するレジストが提案されている。このレジストは、露光により発生した酸の作用により、樹脂中に存在するt−ブチルエステル基或いはt−ブチルカーボナート基が解離して、該樹脂がカルボキシル基或いはフェノール性水酸基からなる酸性基を有するようになり、その結果、レジスト被膜の露光領域がアルカリ現像液に易溶性となる現象を利用したものである。
In the field of microfabrication represented by the manufacture of integrated circuit elements, in order to obtain a higher degree of integration, recently, a lithography technique capable of microfabrication at a level of 0.10 μm or less is required. However, in the conventional lithography process, near ultraviolet rays such as i rays are generally used as radiation, and it is said that fine processing at the subquarter micron level is extremely difficult with this near ultraviolet rays. Therefore, in order to enable fine processing at a level of 0.20 μm or less, use of radiation having a shorter wavelength is being studied. Examples of such short-wavelength radiation include an emission line spectrum of a mercury lamp, far-ultraviolet rays typified by an excimer laser, an X-ray, an electron beam, and the like. Among these, a KrF excimer laser (wavelength 248 nm) is particularly preferable. ) Or ArF excimer laser (wavelength 193 nm) has been attracting attention.
As a resist suitable for irradiation with such an excimer laser, a component having an acid-dissociable functional group and a component that generates acid upon irradiation with radiation (hereinafter referred to as “exposure”) (hereinafter referred to as “acid generator”). )) And a resist utilizing the chemical amplification effect (hereinafter referred to as “chemically amplified resist”) have been proposed. As the chemically amplified resist, for example, a resist containing a resin having a t-butyl ester group of carboxylic acid or a t-butyl carbonate group of phenol and an acid generator has been proposed. In this resist, the t-butyl ester group or t-butyl carbonate group present in the resin is dissociated by the action of an acid generated by exposure, and the resin has an acidic group composed of a carboxyl group or a phenolic hydroxyl group. As a result, the phenomenon that the exposed region of the resist film becomes readily soluble in an alkali developer is utilized.

このようなリソグラフィープロセスにおいては、今後は更に微細なパターン形成(例えば、線幅が90nm程度の微細なレジストパターン)が要求される。このような90nmより微細なパターン形成を達成させるためには、前記のように露光装置の光源波長の短波長化や、レンズの開口数(NA)を増大させることが考えられる。しかしながら、光源波長の短波長化には新たな高額の露光装置が必要となる。また、レンズの高NA化では、解像度と焦点深度がトレードオフの関係にあるため、解像度を上げても焦点深度が低下するという問題がある。   In such a lithography process, further fine pattern formation (for example, a fine resist pattern having a line width of about 90 nm) will be required in the future. In order to achieve such a pattern formation finer than 90 nm, it is conceivable to shorten the light source wavelength of the exposure apparatus and increase the numerical aperture (NA) of the lens as described above. However, a new expensive exposure apparatus is required to shorten the light source wavelength. Further, when the lens has a high NA, the resolution and the depth of focus are in a trade-off relationship. Therefore, there is a problem that the depth of focus decreases even if the resolution is increased.

最近、このような問題を解決可能とするリソグラフィー技術として、液浸露光(リキッドイマージョンリソグラフィー)法という方法が報告されている。この方法は、露光時に、レンズと基板上のレジスト被膜との間の少なくとも前記レジスト被膜上に所定厚さの純水又はフッ素系不活性液体等の液状屈折率媒体(浸漬液)を介在させるというものである。この方法では、従来は空気や窒素等の不活性ガスであった露光光路空間を屈折率(n)のより大きい液体、例えば純水等で置換することにより、同じ露光波長の光源を用いてもより短波長の光源を用いた場合や高NAレンズを用いた場合と同様に、高解像性が達成されると同時に焦点深度の低下もない。このような液浸露光を用いれば、現存の装置に実装されているレンズを用いて、低コストで、より高解像性に優れ、且つ焦点深度にも優れるレジストパターンの形成を実現できるため、大変注目されている。   Recently, a liquid immersion lithography (liquid immersion lithography) method has been reported as a lithography technique that can solve such problems. In this method, at the time of exposure, a liquid refractive index medium (immersion liquid) such as pure water or fluorine-based inert liquid having a predetermined thickness is interposed between at least the resist film between the lens and the resist film on the substrate. Is. In this method, a light source having the same exposure wavelength can be used by replacing the exposure optical path space, which has conventionally been an inert gas such as air or nitrogen, with a liquid having a higher refractive index (n), such as pure water. Similar to the case of using a light source with a shorter wavelength or the case of using a high NA lens, high resolution is achieved and there is no reduction in the depth of focus. If such immersion exposure is used, it is possible to realize the formation of a resist pattern that is low in cost, excellent in high resolution, and excellent in depth of focus, using a lens mounted on an existing apparatus. It is attracting a lot of attention.

ところが、前記の液浸露光プロセスにおいては、露光時にレジスト被膜が直接、水等の屈折率液体(浸漬液)に接触するため、レジスト被膜から酸発生剤等が溶出してしまう。この溶出物の量が多いと、レンズにダメージを与えたり、所定のパターン形状が得られなかったり、十分な解像度が得られないという問題点がある。
そこで、液浸露光装置に使用するレジスト用の樹脂として、例えば、特許文献1や特許文献2に記載の樹脂が提案されている。
しかしながら、これらの樹脂を用いたレジストでも、焦点深度は必ずしも十分ではなかった。
また、液浸露光装置に使用するレジストにおいて、酸発生剤等の水への溶出物量を更に低減することが切望されていた。
However, in the liquid immersion exposure process, the resist film directly contacts with a refractive index liquid (immersion liquid) such as water during exposure, so that the acid generator and the like are eluted from the resist film. When the amount of the eluted material is large, there are problems that the lens is damaged, a predetermined pattern shape cannot be obtained, and sufficient resolution cannot be obtained.
Therefore, as a resist resin used in the immersion exposure apparatus, for example, resins described in Patent Document 1 and Patent Document 2 have been proposed.
However, even with resists using these resins, the depth of focus is not always sufficient.
In addition, in resists used in immersion exposure apparatuses, it has been eagerly desired to further reduce the amount of eluate in water such as acid generators.

国際公開WO2004/068242号公報International Publication WO 2004/062422 特開2005−173474号公報JP 2005-173474 A

本発明の目的は、得られるパターン形状が良好であり、焦点深度に優れ且つ液浸露光時に接触した水への溶出物の量が少ない液浸露光用感放射線性樹脂組成物を提供することにある。   An object of the present invention is to provide a radiation-sensitive resin composition for immersion exposure that has a good pattern shape, excellent depth of focus, and a small amount of eluate in contact with water during immersion exposure. is there.

上記の目的を達成するための手段として、請求項1の発明は、水を介してレジスト被膜を露光する液浸露光に用いられる液浸露光用感放射線性樹脂組成物であって、下記式(1)で表される繰り返し単位を必須単位として含有し、酸の作用によりアルカリ可溶性となるアルカリ不溶性又はアルカリ難溶性の樹脂と、感放射線性酸発生剤と、を含有することを特徴とする液浸露光用感放射線性樹脂組成物である。

Figure 2007212797
As a means for achieving the above object, the invention of claim 1 is a radiation-sensitive resin composition for immersion exposure used for immersion exposure in which a resist film is exposed through water, wherein the following formula ( 1) A liquid comprising the repeating unit represented by 1) as an essential unit and containing an alkali-insoluble or hardly-alkali-soluble resin that becomes alkali-soluble by the action of an acid, and a radiation-sensitive acid generator. A radiation-sensitive resin composition for immersion exposure.
Figure 2007212797

請求項2の発明は、前記樹脂が、下記一般式(2)で表される繰り返し単位を更に含有する請求項1に記載の液浸露光用感放射線性樹脂組成物である。

Figure 2007212797

〔一般式(2)において、Rは水素原子又はメチル基を示す。各々のRは相互に独立に炭素数4〜20の1価の脂環式炭化水素基若しくはその誘導体、又は炭素数1〜4の直鎖状若しくは分岐状のアルキル基を示し、且つ、Rは以下の(1)又は(2)の条件を満たす。
(1)Rのうちの少なくとも1つは炭素数4〜20の1価の脂環式炭化水素基若しくはその誘導体である。
(2)いずれか2つのRが相互に結合して、それぞれが結合している炭素原子と共に炭素数4〜20の2価の脂環式炭化水素基若しくはその誘導体を形成し、残りのRが炭素数4〜20の1価の脂環式炭化水素基若しくはその誘導体、又は炭素数1〜4の直鎖状若しくは分岐状のアルキル基である。〕 The invention of claim 2 is the radiation-sensitive resin composition for immersion exposure according to claim 1, wherein the resin further contains a repeating unit represented by the following general formula (2).
Figure 2007212797

[In General formula (2), R shows a hydrogen atom or a methyl group. Each R 1 independently represents a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms or a derivative thereof, or a linear or branched alkyl group having 1 to 4 carbon atoms, and R 1 1 satisfies the following condition (1) or (2).
(1) At least one of R 1 is a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms or a derivative thereof.
(2) Any two R 1 's are bonded to each other to form a divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms or a derivative thereof together with the carbon atoms to which each R 1 is bonded, and the remaining R 1 1 is a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms or a derivative thereof, or a linear or branched alkyl group having 1 to 4 carbon atoms. ]

請求項3の発明は、前記樹脂を調製する際に用いられる単量体由来の低分子量成分の含有量が固形分換算にて、該樹脂100質量%に対して0.1質量%以下である請求項1又は2に記載の液浸露光用感放射線性樹脂組成物である。   In the invention of claim 3, the content of the low molecular weight component derived from the monomer used in preparing the resin is 0.1% by mass or less with respect to 100% by mass of the resin in terms of solid content. The radiation-sensitive resin composition for immersion exposure according to claim 1.

本発明の特定の繰り返し単位を含有する樹脂を含む液浸露光用感放射線性樹脂組成物を用いれば、得られるパターン形状が良好で解像度及び焦点深度にも優れ且つ液浸露光時に接触する水への溶出物の量を低減することができる。   If the radiation-sensitive resin composition for immersion exposure containing a resin containing the specific repeating unit of the present invention is used, the pattern shape obtained is good, the resolution and the depth of focus are excellent, and the water that contacts during immersion exposure The amount of the eluate can be reduced.

以下、本発明を詳細に説明する。
<樹脂>
本発明における樹脂は、前記式(1)で表される繰り返し単位(以下、「繰り返し単位(1)」という。)を必須単位として含有し、酸の作用によりアルカリ可溶性となるアルカリ不溶性又はアルカリ難溶性の樹脂〔以下、「樹脂(A)」ともいう。〕である。ここでいう「アルカリ不溶性又はアルカリ難溶性」とは、樹脂(A)を含有する感放射線性樹脂組成物から形成されたレジスト被膜からレジストパターンを形成する際に採用されるアルカリ現像条件下で、当該レジスト被膜の代わりに樹脂(A)のみを用いた被膜を現像した場合に、当該被膜の初期膜厚の50%以上が現像後に残存する性質を意味する。
Hereinafter, the present invention will be described in detail.
<Resin>
The resin in the present invention contains the repeating unit represented by the above formula (1) (hereinafter referred to as “repeating unit (1)”) as an essential unit, and becomes insoluble or difficult to be alkaline which becomes alkali-soluble by the action of an acid. Soluble resin [hereinafter also referred to as “resin (A)”. ]. The term “alkali insoluble or alkali insoluble” as used herein refers to an alkali development condition employed when a resist pattern is formed from a resist film formed from a radiation-sensitive resin composition containing the resin (A). When a film using only the resin (A) is developed in place of the resist film, it means that 50% or more of the initial film thickness of the film remains after development.

なお、前記繰り返し単位(1)が、アクリル酸エステル構造ではなく、メタクリル酸エステル構造を有するため(−CHを有するため)、本発明における樹脂(A)の剛直性が大きくなり、その結果、液浸露光時における酸発生剤や酸拡散制御剤等の水への溶出が低減されると推測される。更に、この剛直性により、酸の拡散性が抑制され、露光後の加熱処理(以下、「PEB」という。)の温度範囲に余裕ができると推測される(尚、このPEBの温度範囲に余裕ができると、歩留まりが向上し、工業的に有利となる)。 In addition, since the repeating unit (1) has not a acrylate structure but a methacrylic ester structure (because it has —CH 3 ), the rigidity of the resin (A) in the present invention is increased, and as a result, It is presumed that elution into the water of an acid generator or an acid diffusion controller during immersion exposure is reduced. Further, it is presumed that due to this rigidity, acid diffusibility is suppressed, and there is an allowance in the temperature range of the heat treatment after exposure (hereinafter referred to as “PEB”). Can improve the yield, which is industrially advantageous).

また、本発明における樹脂(A)は、前記繰り返し単位(1)以外の繰り返し単位を含んでいてもよく、前記一般式(2)で表される繰り返し単位(以下、「繰り返し単位(2)」という。)を含有していることが好ましい。
一般式(2)において、Rの炭素数4〜20の1価の脂環式炭化水素基、及び何れか2つのRが相互に結合して形成した炭素数4〜20の2価の脂環式炭化水素基としては、例えば、ノルボルナン、トリシクロデカン、テトラシクロドデカン、アダマンタンや、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等のシクロアルカン類等に由来する脂環族環からなる基;これらの脂環族環からなる基を、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基等の炭素数1〜4の直鎖状、分岐状又は環状のアルキル基の1種以上或いは1個以上で置換した基等を挙げることができる。これらの脂環式炭化水素基のうち、ノルボルナン、トリシクロデカン、テトラシクロドデカン、アダマンタン、シクロペンタン又はシクロヘキサンに由来する脂環族環からなる基や、これらの脂環族環からなる基を前記アルキル基で置換した基等が好ましい。
Further, the resin (A) in the present invention may contain a repeating unit other than the repeating unit (1), and the repeating unit represented by the general formula (2) (hereinafter referred to as “repeating unit (2)”). It is preferable to contain.
In the general formula (2), a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms of R 1 and any two R 1 bonded to each other to form a divalent hydrocarbon having 4 to 20 carbon atoms. Examples of the alicyclic hydrocarbon group include alicyclic rings derived from norbornane, tricyclodecane, tetracyclododecane, adamantane, cycloalkanes such as cyclobutane, cyclopentane, cyclohexane, cycloheptane, and cyclooctane. A group consisting of these alicyclic rings is, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t -The group etc. which substituted by 1 or more types or 1 or more of C1-C4 linear, branched or cyclic alkyl groups, such as a butyl group, can be mentioned. Among these alicyclic hydrocarbon groups, a group consisting of an alicyclic ring derived from norbornane, tricyclodecane, tetracyclododecane, adamantane, cyclopentane or cyclohexane, or a group consisting of these alicyclic rings is described above. A group substituted with an alkyl group is preferred.

また、前記脂環式炭化水素基の誘導体としては、例えば、ヒドロキシル基;カルボキシル基;オキソ基(即ち、=O基);ヒドロキシメチル基、1−ヒドロキシエチル基、2−ヒドロキシエチル基、1−ヒドロキシプロピル基、2−ヒドロキシプロピル基、3−ヒドロキシプロピル基、1−ヒドロキシブチル基、2−ヒドロキシブチル基、3−ヒドロキシブチル基、4−ヒドロキシブチル基等の炭素数1〜4のヒドロキシアルキル基;メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、2−メチルプロポキシ基、1−メチルプロポキシ基、t−ブトキシ基等の炭素数1〜4のアルコキシル基;シアノ基;シアノメチル基、2−シアノエチル基、3−シアノプロピル基、4−シアノブチル基等の炭素数2〜5のシアノアルキル基等の置換基を1種以上或いは1個以上有する基を挙げることができる。これらの置換基のうち、ヒドロキシル基、カルボキシル基、ヒドロキシメチル基、シアノ基、シアノメチル基等が好ましい。   Examples of the alicyclic hydrocarbon group derivative include hydroxyl group; carboxyl group; oxo group (that is, ═O group); hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1- Hydroxypropyl groups having 1 to 4 carbon atoms such as hydroxypropyl group, 2-hydroxypropyl group, 3-hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group An alkoxyl group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, a 2-methylpropoxy group, a 1-methylpropoxy group and a t-butoxy group; Group: C2-C5 such as cyanomethyl group, 2-cyanoethyl group, 3-cyanopropyl group, 4-cyanobutyl group, etc. A substituent such as Anoarukiru group can include one or more or one or more having groups. Of these substituents, a hydroxyl group, a carboxyl group, a hydroxymethyl group, a cyano group, a cyanomethyl group and the like are preferable.

また、Rの炭素数1〜4の直鎖状若しくは分岐状のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基等を挙げることができる。これらのアルキル基のうち、メチル基、エチル基、n−プロピル基、i−プロピル基が好ましい。 Examples of the linear or branched alkyl group having 1 to 4 carbon atoms of R 1 include, for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and 2-methylpropyl. Group, 1-methylpropyl group, t-butyl group and the like. Of these alkyl groups, a methyl group, an ethyl group, an n-propyl group, and an i-propyl group are preferable.

また、一般式(2)における基−COOC(Rは、酸の作用により解離してカルボキシル基を形成する酸解離性基をなしている。以下、基−COOC(Rを「酸解離性基(i)」という。 In addition, the group —COOC (R 1 ) 3 in the general formula (2) forms an acid dissociable group that is dissociated by the action of an acid to form a carboxyl group. Hereinafter, the group —COOC (R 1 ) 3 is referred to as “acid-dissociable group (i)”.

好ましい酸解離性基(i)としては、例えば、下記式(a)、式(b)、式(c)又は式(d)で表される基が好ましい。   As a preferable acid dissociable group (i), for example, a group represented by the following formula (a), formula (b), formula (c) or formula (d) is preferable.

Figure 2007212797

〔式(a)、式(b)、式(c)及び式(d)において、各Rは相互に独立に炭素数1〜4の直鎖状若しくは分岐状のアルキル基を示し、mは0又は1である。〕
Figure 2007212797

[In Formula (a), Formula (b), Formula (c) and Formula (d), each R 2 independently represents a linear or branched alkyl group having 1 to 4 carbon atoms, and m is 0 or 1. ]

式(a)、式(b)、式(c)及び式(d)において、Rの炭素数1〜4の直鎖状若しくは分岐状のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基等を挙げることができる。これらのアルキル基のうち、メチル基、エチル基、n−プロピル基、i−プロピル基が好ましい。 In the formula (a), formula (b), formula (c) and formula (d), examples of the linear or branched alkyl group having 1 to 4 carbon atoms of R 2 include a methyl group, an ethyl group, Examples include n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group and the like. Of these alkyl groups, a methyl group, an ethyl group, an n-propyl group, and an i-propyl group are preferable.

式(a)で表される基としては、特に、2つのRがともにメチル基である基が好ましい。また、式(b)で表される基としては、特に、Rがメチル基である基、Rがエチル基、n−プロピル基、i−プロピル基である基が好ましい。また、式(c)で表される基としては、特に、mが0でRがメチル基である基、mが0でRがエチル基である基、mが1でRがメチル基である基、mが1でRがエチル基である基が好ましい。また、式(d)で表される基としては、特に、2つのRがともにメチル基である基が好ましい。 As the group represented by the formula (a), a group in which two R 2 s are both methyl groups is particularly preferable. The group represented by the formula (b) is particularly preferably a group in which R 2 is a methyl group and a group in which R 2 is an ethyl group, an n-propyl group, or an i-propyl group. The group represented by the formula (c) is particularly a group in which m is 0 and R 2 is a methyl group, a group in which m is 0 and R 2 is an ethyl group, m is 1 and R 2 is methyl. A group which is a group, m is 1 and R 2 is an ethyl group is preferable. Further, as the group represented by the formula (d), a group in which two R 2 are both methyl groups is particularly preferable.

また、前記以外の酸解離性基(i)としては、例えば、t−ブトキシカルボニル基や、下記式(d−1)〜(d−42)の基等を挙げることができる。   Examples of the acid dissociable group (i) other than the above include t-butoxycarbonyl group and groups of the following formulas (d-1) to (d-42).

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

また、本発明における樹脂(A)は、繰り返し単位(2)の2種以上を含有してもよい。尚、前記繰り返し単位(1)及び繰り返し単位(2)は、それぞれ対応する(メタ)アクリル酸誘導体に由来する繰り返し単位である(尚、明細書中、「(メタ)アクリル酸エステル」とはアクリル酸エステル及びメタクリル酸エステルの双方を意味するものとする)。   Moreover, the resin (A) in the present invention may contain two or more of the repeating units (2). The repeating unit (1) and the repeating unit (2) are each a repeating unit derived from a corresponding (meth) acrylic acid derivative (in the specification, “(meth) acrylic acid ester” is acrylic). Both acid ester and methacrylic acid ester).

樹脂(A)は、更に、繰り返し単位(1)及び繰り返し単位(2)以外の繰り返し単位(以下、「他の繰り返し単位」という。)を1種以上含有することができる。
この他の繰り返し単位としては、下記一般式(3)〜(6)で表される繰り返し単位(以下、一般式(3)の繰り返し単位を「他の繰り返し単位(3)」、一般式(4)の繰り返し単位を「他の繰り返し単位(4)」、一般式(5)の繰り返し単位を「他の繰り返し単位(5)」、一般式(6)の繰り返し単位を「他の繰り返し単位(6)」という。)及び、芳香族化合物に由来する繰り返し単位から選ばれる少なくとも1種の繰り返し単位を含有することが好ましい。
The resin (A) can further contain one or more repeating units other than the repeating unit (1) and the repeating unit (2) (hereinafter referred to as “other repeating units”).
As other repeating units, repeating units represented by the following general formulas (3) to (6) (hereinafter, the repeating unit of the general formula (3) is referred to as “other repeating unit (3)”, the general formula (4) ) Is the “other repeating unit (4)”, the repeating unit of the general formula (5) is “other repeating unit (5)”, and the repeating unit of the general formula (6) is “other repeating unit (6). And at least one repeating unit selected from repeating units derived from aromatic compounds.

Figure 2007212797

〔一般式(3)において、Rは水素原子、メチル基、トリフルオロメチル基、又はヒドロキシメチル基を示し、Rは炭素数1〜4の直鎖状又は分岐状のアルキル基を示し、qは1〜2の整数である。〕
Figure 2007212797

[In General Formula (3), R represents a hydrogen atom, a methyl group, a trifluoromethyl group, or a hydroxymethyl group, R 3 represents a linear or branched alkyl group having 1 to 4 carbon atoms, q Is an integer of 1-2. ]

Figure 2007212797

〔一般式(4)において、Rは水素原子、メチル基、又はトリフルオロメチル基を示し、Xは炭素数7〜20の多環型脂環式炭化水素基であり、この炭素数7〜20の多環型脂環式炭化水素基は、炭素数1〜4のアルキル基、ヒドロキシル基、シアノ基、炭素数1〜10のヒドロキシアルキル基で置換されていても、置換されていなくてもよい。〕
Figure 2007212797

[In General formula (4), R shows a hydrogen atom, a methyl group, or a trifluoromethyl group, X is a C7-C20 polycyclic alicyclic hydrocarbon group, and this C7-20 The polycyclic alicyclic hydrocarbon group may be substituted or unsubstituted with an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, a cyano group, or a hydroxyalkyl group having 1 to 10 carbon atoms. . ]

Figure 2007212797

〔一般式(5)において、Rは水素原子、炭素数1〜4のアルキル基、トリフルオロメチル基、又はヒドロキシメチル基を示し、Rは、2価の有機基を示す。〕
Figure 2007212797

In [Formula (5), R represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a trifluoromethyl group, or a hydroxymethyl group, R 4 represents a divalent organic group. ]

Figure 2007212797

〔一般式(6)において、Rは水素又はメチル基を表し、Xは単結合又は炭素数1〜3の2価の有機基を表し、Yは相互に独立に単結合又は炭素数1〜3の2価の有機基を表し、Rは相互に独立に水素原子、水酸基、シアノ基、又はCOOR基を表す(但し、Rは水素原子或いは炭素数1〜4の直鎖状若しくは分岐状のアルキル基、又は炭素数3〜20の脂環式のアルキル基を表す。)。尚、3つのRのうち少なくとも一つは水素原子でなく、かつXが単結合のときは、3つのYのうち少なくとも一つは炭素数1〜3の2価の有機基であることが好ましい。〕
Figure 2007212797

[In General Formula (6), R represents hydrogen or a methyl group, X represents a single bond or a divalent organic group having 1 to 3 carbon atoms, and Y represents a single bond or 1 to 3 carbon atoms independently of each other. R 5 represents a hydrogen atom, a hydroxyl group, a cyano group, or a COOR 6 group independently of each other (wherein R 6 is a hydrogen atom or a linear or branched group having 1 to 4 carbon atoms) Represents an alkyl group in the form of a ring or an alicyclic alkyl group having 3 to 20 carbon atoms.). When at least one of the three R 5 is not a hydrogen atom and X is a single bond, at least one of the three Ys is a divalent organic group having 1 to 3 carbon atoms. preferable. ]

他の繰り返し単位(3)としては、特に、下記式で表される単位(3−1)が好ましい。   As the other repeating unit (3), a unit (3-1) represented by the following formula is particularly preferable.

Figure 2007212797

〔一般式(3−1)において、Rは水素原子、メチル基、トリフルオロメチル基、又はヒドロキシメチル基を示す。〕
Figure 2007212797

[In General Formula (3-1), R represents a hydrogen atom, a methyl group, a trifluoromethyl group, or a hydroxymethyl group. ]

一般式(4)で表される他の繰り返し単位(4)のXとしては、好ましくは、炭素数7〜20の多環型脂環式炭化水素基である。このような多環型脂環式炭化水素基としては、例えば、下記式に示すように、ビシクロ[2.2.1]ヘプタン(4a)、ビシクロ[2.2.2]オクタン(4b)、トリシクロ[5.2.1.02,6]デカン(4c)、テトラシクロ[6.2.1.13,6.02,7]ドデカン(4d)、トリシクロ[3.3.1.13,7]デカン(4e)等のシクロアルカン類に由来する脂環族環からなる炭化水素基が挙げられる。 X in the other repeating unit (4) represented by the general formula (4) is preferably a polycyclic alicyclic hydrocarbon group having 7 to 20 carbon atoms. Examples of such polycyclic alicyclic hydrocarbon groups include bicyclo [2.2.1] heptane (4a), bicyclo [2.2.2] octane (4b), Tricyclo [5.2.1.0 2,6 ] decane (4c), tetracyclo [6.2.1.1 3,6 . And hydrocarbon groups composed of alicyclic rings derived from cycloalkanes such as 0 2,7 ] dodecane (4d) and tricyclo [3.3.1.1 3,7 ] decane (4e).

Figure 2007212797
Figure 2007212797

これらのシクロアルカン由来の脂環族環は、置換基を有していてもよく、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基等の炭素数1〜4の直鎖状、分岐状又は環状のアルキル基の1種以上或いは1個以上で置換してもよい。これらは例えば、以下の様な具体例で表されるが、これらのアルキル基によって置換されたものに限定されるものではなく、ヒドロキシル基、シアノ基、炭素数1〜10のヒドロキシアルキル基、カルボキシル基、酸素で置換されたものであってもよい。また、これらの他の繰り返し単位(4)は1種又は2種以上を含有することができる。   These cycloalkane-derived alicyclic rings may have a substituent, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group. , 1-methylpropyl group, t-butyl group, etc. may be substituted with one or more of linear, branched or cyclic alkyl groups having 1 to 4 carbon atoms. These are represented by the following specific examples, but are not limited to those substituted by these alkyl groups, but are hydroxyl groups, cyano groups, C1-C10 hydroxyalkyl groups, carboxyls. The group may be substituted with oxygen. Moreover, these other repeating units (4) can contain 1 type (s) or 2 or more types.

Figure 2007212797
Figure 2007212797

一般式(5)で表される他の繰り返し単位(5)のRは水素原子、炭素数1〜4のアルキル基、トリフルオロメチル基、又はヒドロキシメチル基を示す。炭素数1〜4のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基等のアルキル基が挙げられる。
一般式(5)で表される他の繰り返し単位(5)のRとしての2価の有機基は、好ましくは2価の炭化水素基であり、2価の炭化水素基の中でも好ましくは鎖状又は環状の炭化水素基が好ましく、アルキレングリコール基、アルキレンエステル基であってもよい。
好ましいRとしては、メチレン基、エチレン基、1,3−プロピレン基若しくは1,2−プロピレン基などのプロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、トリデカメチレン基、テトラデカメチレン基、ペンタデカメチレン基、ヘキサデカメチレン基、ヘプタデカメチレン基、オクタデカメチレン基、ノナデカメチレン基、インサレン基、1−メチル−1,3−プロピレン基、2−メチル1,3−プロピレン基、2−メチル−1,2−プロピレン基、1−メチル−1,4−ブチレン基、2−メチル−1,4−ブチレン基、メチリデン基、エチリデン基、プロピリデン基、又は、2−プロピリデン基等の飽和鎖状炭化水素基、1,3−シクロブチレン基などのシクロブチレン基、1,3−シクロペンチレン基などのシクロペンチレン基、1,4−シクロヘキシレン基などのシクロヘキシレン基、1,5−シクロオクチレン基などのシクロオクチレン基等の炭素数3〜10のシクロアルキレン基などの単環式炭化水素環基、1,4−ノルボルニレン基若しくは2,5−ノルボルニレン基などのノルボルニレン基、1,5−アダマンチレン基、2,6−アダマンチレン基などのアダマンチレン基等の2〜4環式炭素数4〜30の炭化水素環基などの架橋環式炭化水素環基等が挙げられる。
R in the other repeating unit (5) represented by the general formula (5) represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a trifluoromethyl group, or a hydroxymethyl group. Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, and t-butyl group. And the like.
The divalent organic group as R 4 of the other repeating unit (5) represented by the general formula (5) is preferably a divalent hydrocarbon group, and preferably a chain among the divalent hydrocarbon groups. A cyclic or cyclic hydrocarbon group is preferable, and may be an alkylene glycol group or an alkylene ester group.
Preferred R 4 includes a methylene group, an ethylene group, a propylene group such as a 1,3-propylene group or a 1,2-propylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, Nonamethylene group, Decamemethylene group, Undecamethylene group, Dodecamethylene group, Tridecamethylene group, Tetradecamethylene group, Pentacamethylene group, Hexadecamethylene group, Heptadecamethylene group, Octadecamethylene group, Nonadecamethylene group, Insalen group, 1-methyl-1,3-propylene group, 2-methyl-1,3-propylene group, 2-methyl-1,2-propylene group, 1-methyl-1,4-butylene group, 2-methyl- 1,4-butylene group, methylidene group, ethylidene group, propylidene group, or 2-propylidene group Saturated chain hydrocarbon groups such as ethylene groups, cyclobutylene groups such as 1,3-cyclobutylene groups, cyclopentylene groups such as 1,3-cyclopentylene groups, and cyclohexylenes such as 1,4-cyclohexylene groups Group, monocyclic hydrocarbon ring group such as cycloalkylene group having 3 to 10 carbon atoms such as cyclooctylene group such as 1,5-cyclooctylene group, 1,4-norbornylene group or 2,5-norbornylene group Such as norbornylene group, 1,5-adamantylene group, adamantylene group such as 2,6-adamantylene group, etc., bridged cyclic hydrocarbon ring such as 2-4 cyclic hydrocarbon ring group having 4-30 carbon atoms Groups and the like.

特にRとして2価の脂肪族環状炭化水素基を含むときは、ビストリフルオロメチル−ヒドロキシ−メチル基と該脂肪族環状炭化水素基との間にスペーサーとして炭素数1〜4のアルキレン基を挿入することが好ましい。
また、Rとしては、2,5−ノルボルニレン基を含む炭化水素基、1,2−エチレン基、プロピレン基が好ましい。
特に好ましい他の繰り返し単位(5)は、以下に示す式(5−1)〜(5−4)である。
In particular, when R 4 contains a divalent aliphatic cyclic hydrocarbon group, an alkylene group having 1 to 4 carbon atoms is inserted as a spacer between the bistrifluoromethyl-hydroxy-methyl group and the aliphatic cyclic hydrocarbon group. It is preferable to do.
R 4 is preferably a hydrocarbon group containing a 2,5-norbornylene group, a 1,2-ethylene group, or a propylene group.
Particularly preferred other repeating units (5) are the following formulas (5-1) to (5-4).

Figure 2007212797
Figure 2007212797

一般式(6)で表される繰り返し単位(6)において、Xは単結合又は炭素数1〜3の2価の有機基を表し、Yは相互に独立に単結合又は炭素数1〜3の2価の有機基を表すが、X及びYで表される炭素数1〜3の2価の有機基としては、メチレン基、エチレン基、プロピレン基が挙げられる。
一般式(6)で表される繰り返し単位(6)におけるRで表される−COOR基のRは、水素原子或いは炭素数1〜4の直鎖状若しくは分岐状のアルキル基、又は炭素数3〜20の脂環式のアルキル基を表す。
における、上記炭素数1〜4の直鎖状若しくは分岐状のアルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基を例示できる。また、上記炭素数3〜20の脂環式のアルキル基としては、−C2n−1(nは3〜20の整数)で表されるシクロアルキル基、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が、また、多環型脂環式アルキル基、例えばビシクロ[2.2.1]ヘプチル基、トリシクロ[5.2.1.02,6]デシル基、テトラシクロ[6.2.13,6.02,7]ドデカニル基、アダマンチル基等、又は、直鎖状、分岐状又は環状のアルキル基の1種以上或いは1個以上でシクロアルキル基又は多環型脂環式アルキル基の一部を置換した基等が挙げられる。
In the repeating unit (6) represented by the general formula (6), X represents a single bond or a divalent organic group having 1 to 3 carbon atoms, and Y is independently a single bond or 1 to 3 carbon atoms. Although a divalent organic group is represented, a methylene group, an ethylene group, and a propylene group are mentioned as a C1-C3 bivalent organic group represented by X and Y.
R 6 of the —COOR 6 group represented by R 5 in the repeating unit (6) represented by the general formula (6) is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, or An alicyclic alkyl group having 3 to 20 carbon atoms is represented.
Examples of the linear or branched alkyl group having 1 to 4 carbon atoms in R 6 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a 2-methylpropyl group, Examples thereof include a 1-methylpropyl group and a t-butyl group. Examples of the alicyclic alkyl groups of said 3 to 20 carbon atoms, -C n H 2n-1 cycloalkyl group (n is an integer of 3 to 20) represented by, for example, cyclopropyl group, cyclobutyl group , Cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and the like, and also polycyclic alicyclic alkyl groups such as bicyclo [2.2.1] heptyl group, tricyclo [5.2.1.0 2]. , 6 ] decyl group, tetracyclo [6.2.1 3,6 . 0 2,7 ] dodecanyl group, adamantyl group or the like, or one or more of linear, branched or cyclic alkyl groups, and a part of cycloalkyl group or polycyclic alicyclic alkyl group. Examples include substituted groups.

一般式(6)で表される繰り返し単位(6)を生じさせる単量体の中で好ましい単量体を以下に挙げる。
(メタ)アクリル酸3−ヒドロキシアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3,5−ジヒドロキシアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−シアノアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−カルボキシルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−メトキシカルボニルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3,5−ジヒドロキシメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−ヒドロキシメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−ヒドロキシメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−カルボキシルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−メトキシカルボニルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3,5−ジシアノアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−カルボキシルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−メトキシカルボニルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−カルボキシルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3,5−ジカルボキシルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−カルボキシル−5−メトキシカルボニルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−メトキシカルボニルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3,5−ジメトキシカルボニルアダマンタン−1−イルメチルエステル、
Preferred monomers among the monomers that generate the repeating unit (6) represented by the general formula (6) are listed below.
(Meth) acrylic acid 3-hydroxyadamantan-1-ylmethyl ester, (meth) acrylic acid 3,5-dihydroxyadamantan-1-ylmethyl ester, (meth) acrylic acid 3-hydroxy-5-cyanoadamantane-1- Ylmethyl ester, (meth) acrylic acid 3-hydroxy-5-carboxyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-hydroxy-5-methoxycarbonyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-hydroxymethyladamantan-1-ylmethyl ester, (meth) acrylic acid 3,5-dihydroxymethyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-hydroxy-5-hydroxymethyladamantan-1-ylmethyl Ester, (meta Acrylic acid 3-cyano-5-hydroxymethyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-hydroxymethyl-5-carboxyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-hydroxymethyl-5 -Methoxycarbonyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-cyanoadamantan-1-ylmethyl ester, (meth) acrylic acid 3,5-dicyanoadamantan-1-ylmethyl ester, (meth) acrylic acid 3-cyano-5-carboxyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-cyano-5-methoxycarbonyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-carboxyladamantan-1-ylmethyl Ester, (meta Acrylic acid 3,5-dicarboxyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-carboxyl-5-methoxycarbonyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-methoxycarbonyladamantane-1- Ylmethyl ester, (meth) acrylic acid 3,5-dimethoxycarbonyladamantan-1-ylmethyl ester,

(メタ)アクリル酸3−ヒドロキシ−5−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3,5−ジヒドロキシ−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシ−5−シアノ−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシ−5−カルボキシル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシ−5−メトキシカルボニル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3,5−ジヒドロキシメチル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシ−5−ヒドロキシメチル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−シアノ−5−ヒドロキシメチル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−カルボキシル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−メトキシカルボニル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−シアノ−5−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3,5−ジシアノ−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−シアノ−5−カルボキシル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−シアノ−5−メトキシカルボニル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−カルボキシル−5−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3,5−ジカルボキシル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−カルボキシル−5−メトキシカルボニル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−メトキシカルボニル−5−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3,5−ジメトキシカルボニル−7−メチルアダマンタン−1−イルエステル、   (Meth) acrylic acid 3-hydroxy-5-methyladamantan-1-yl ester, (meth) acrylic acid 3,5-dihydroxy-7-methyladamantan-1-yl ester, (meth) acrylic acid 3-hydroxy-5 -Cyano-7-methyladamantan-1-yl ester, (meth) acrylic acid 3-hydroxy-5-carboxyl-7-methyladamantan-1-yl ester, (meth) acrylic acid 3-hydroxy-5-methoxycarbonyl- 7-methyladamantan-1-yl ester, (meth) acrylic acid 3-hydroxymethyl-5-methyladamantan-1-yl ester, (meth) acrylic acid 3,5-dihydroxymethyl-7-methyladamantan-1-yl Ester, (meth) acrylic acid 3-hydroxy-5-hydroxymethyl- -Methyladamantan-1-yl ester, (meth) acrylic acid 3-cyano-5-hydroxymethyl-7-methyladamantan-1-yl ester, (meth) acrylic acid 3-hydroxymethyl-5-carboxyl-7-methyl Adamantan-1-yl ester, (meth) acrylic acid 3-hydroxymethyl-5-methoxycarbonyl-7-methyladamantan-1-yl ester, (meth) acrylic acid 3-cyano-5-methyladamantan-1-yl ester (Meth) acrylic acid 3,5-dicyano-7-methyladamantan-1-yl ester, (meth) acrylic acid 3-cyano-5-carboxyl-7-methyladamantan-1-yl ester, (meth) acrylic acid 3-cyano-5-methoxycarbonyl-7-methyladamantan-1-y Ester, (meth) acrylic acid 3-carboxyl-5-methyladamantan-1-yl ester, (meth) acrylic acid 3,5-dicarboxyl-7-methyladamantan-1-yl ester, (meth) acrylic acid 3- Carboxyl-5-methoxycarbonyl-7-methyladamantan-1-yl ester, (meth) acrylic acid 3-methoxycarbonyl-5-methyladamantan-1-yl ester, (meth) acrylic acid 3,5-dimethoxycarbonyl-7 -Methyladamantan-1-yl ester,

(メタ)アクリル酸3−ヒドロキシ−5−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3,5−ジヒドロキシ−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−シアノ−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−カルボキシル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−メトキシカルボニル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3,5−ジヒドロキシメチル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−ヒドロキシメチル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−ヒドロキシメチル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−カルボキシル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−メトキシカルボニル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3,5−ジシアノ−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−カルボキシル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−メトキシカルボニル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−カルボキシル−5−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3,5−ジカルボキシル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−カルボキシル−5−メトキシカルボニル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−メトキシカルボニル−5−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3,5−ジメトキシカルボニル−7−メチルアダマンタン−1−イルメチルエステル、   (Meth) acrylic acid 3-hydroxy-5-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3,5-dihydroxy-7-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-hydroxy -5-cyano-7-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-hydroxy-5-carboxyl-7-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-hydroxy-5 -Methoxycarbonyl-7-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-hydroxymethyl-5-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3,5-dihydroxymethyl-7- Methyl adamantane-1-ylmethyl ester, (meth) acrylic Acid 3-hydroxy-5-hydroxymethyl-7-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-cyano-5-hydroxymethyl-7-methyladamantan-1-ylmethyl ester, (meth) acrylic Acid 3-hydroxymethyl-5-carboxyl-7-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-hydroxymethyl-5-methoxycarbonyl-7-methyladamantan-1-ylmethyl ester, (meth) Acrylic acid 3-cyano-5-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3,5-dicyano-7-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-cyano-5- Carboxyl-7-methyladamantan-1-ylmethyl ester, (Meth) acrylic acid 3-cyano-5-methoxycarbonyl-7-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-carboxyl-5-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3 , 5-Dicarboxyl-7-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-carboxyl-5-methoxycarbonyl-7-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-methoxy Carbonyl-5-methyladamantan-1-ylmethyl ester, (meth) acrylic acid 3,5-dimethoxycarbonyl-7-methyladamantan-1-ylmethyl ester,

(メタ)アクリル酸3−ヒドロキシ−5,7−ジメチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5,7−ジメチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−シアノ−5,7−ジメチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−カルボキシル−5,7−ジメチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−メトキシカルボニル−5,7−ジメチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシ−5,7−ジメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5,7−ジメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5,7−ジメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−カルボキシル−5,7−ジメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−メトキシカルボニル−5,7−ジメチルアダマンタン−1−イルメチルエステル等が挙げられる。   (Meth) acrylic acid 3-hydroxy-5,7-dimethyladamantan-1-yl ester, (meth) acrylic acid 3-hydroxymethyl-5,7-dimethyladamantan-1-yl ester, (meth) acrylic acid 3- Cyano-5,7-dimethyladamantan-1-yl ester, (meth) acrylic acid 3-carboxyl-5,7-dimethyladamantan-1-yl ester, (meth) acrylic acid 3-methoxycarbonyl-5,7-dimethyl Adamantane-1-yl ester, (meth) acrylic acid 3-hydroxy-5,7-dimethyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-hydroxymethyl-5,7-dimethyladamantan-1-ylmethyl Ester, (meth) acrylic acid 3-cyano-5,7-dimethyladamantane-1 Ylmethyl ester, (meth) acrylic acid 3-carboxyl-5,7-dimethyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-methoxycarbonyl-5,7-dimethyladamantan-1-ylmethyl ester, etc. Can be mentioned.

これらの中で特に好ましい単量体としては、(メタ)アクリル酸3−ヒドロキシアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3,5−ジヒドロキシアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−カルボキシルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3,5−ジヒドロキシ−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシ−5,7−ジメチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−カルボキシル−5,7−ジメチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシ−5,7−ジメチルアダマンタン−1−イルメチルエステル、等が挙げられる。   Among these, particularly preferable monomers include (meth) acrylic acid 3-hydroxyadamantan-1-ylmethyl ester, (meth) acrylic acid 3,5-dihydroxyadamantan-1-ylmethyl ester, and (meth) acrylic. Acid 3-cyanoadamantan-1-ylmethyl ester, (meth) acrylic acid 3-carboxyladamantan-1-ylmethyl ester, (meth) acrylic acid 3-hydroxy-5-methyladamantan-1-yl ester, (meth) Acrylic acid 3,5-dihydroxy-7-methyladamantan-1-yl ester, (meth) acrylic acid 3-hydroxy-5,7-dimethyladamantan-1-yl ester, (meth) acrylic acid 3-carboxyl-5 7-dimethyladamantan-1-yl ester, (meth) acrylic acid - hydroxy-5,7-dimethyl-adamantan-1-yl methyl ester, and the like.

芳香族化合物に由来する繰り返し単位を生じさせる単量体の中で好ましい単量体を以下に挙げる。
スチレン、α−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2−メトキシスチレン、3−メトキシスチレン、4−メトキシスチレン、4−(2−t−ブトキシカルボニルエチルオキシ)スチレン2−ヒドロキシスチレン、3−ヒドロキシスチレン、4−ヒドロキシスチレン、2−ヒドロキシ−α−メチルスチレン、3−ヒドロキシ−α−メチルスチレン、4−ヒドロキシ−α−メチルスチレン、2−メチル−3−ヒドロキシスチレン、4−メチル−3−ヒドロキシスチレン、5−メチル−3−ヒドロキシスチレン、2−メチル−4−ヒドロキシスチレン、3−メチル−4−ヒドロキシスチレン、3,4−ジヒドロキシスチレン、2,4,6−トリヒドロキシスチレン、4−t−ブトキシスチレン、4−t−ブトキシ−α−メチルスチレン、4−(2−エチル−2−プロポキシ)スチレン、4−(2−エチル−2−プロポキシ)−α−メチルスチレン、4−(1−エトキシエトキシ)スチレン、4−(1−エトキシエトキシ)−α−メチルスチレン、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、アセナフチレン、5−ヒドロキシアセナフチレン、1−ビニルナフタレン、2−ビニルナフタレン、2−ヒドロキシ−6−ビニルナフタレン、1−ナフチル(メタ)アクリレート、2−ナフチル(メタ)アクリレート、1−ナフチルメチル(メタ)アクリレート、1−アントリル(メタ)アクリレート、2−アントリル(メタ)アクリレート、9−アントリル(メタ)アクリレート、9−アントリルメチル(メタ)アクリレート、1−ビニルピレン等が挙げられる。
Preferred monomers among the monomers that generate repeating units derived from aromatic compounds are listed below.
Styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-methoxystyrene, 3-methoxystyrene, 4-methoxystyrene, 4- (2-t-butoxycarbonylethyloxy) styrene 2-hydroxystyrene, 3-hydroxystyrene, 4-hydroxystyrene, 2-hydroxy-α-methylstyrene, 3-hydroxy-α-methylstyrene, 4-hydroxy-α-methylstyrene, 2-methyl-3-hydroxystyrene 4-methyl-3-hydroxystyrene, 5-methyl-3-hydroxystyrene, 2-methyl-4-hydroxystyrene, 3-methyl-4-hydroxystyrene, 3,4-dihydroxystyrene, 2,4,6- Trihydroxystyrene, 4-t-butoxystyrene, 4-t Butoxy-α-methylstyrene, 4- (2-ethyl-2-propoxy) styrene, 4- (2-ethyl-2-propoxy) -α-methylstyrene, 4- (1-ethoxyethoxy) styrene, 4- ( 1-ethoxyethoxy) -α-methylstyrene, phenyl (meth) acrylate, benzyl (meth) acrylate, acenaphthylene, 5-hydroxyacenaphthylene, 1-vinylnaphthalene, 2-vinylnaphthalene, 2-hydroxy-6 Vinylnaphthalene, 1-naphthyl (meth) acrylate, 2-naphthyl (meth) acrylate, 1-naphthylmethyl (meth) acrylate, 1-anthryl (meth) acrylate, 2-anthryl (meth) acrylate, 9-anthryl (meth) Acrylate, 9-anthrylmethyl (meth) acrylate, 1-vinyl Lupyrene and the like can be mentioned.

上記式(1)〜(6)及び芳香族に由来する繰り返し単位以外の繰り返し単位として、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸2−メチルプロピル、(メタ)アクリル酸1−メチルプロピル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸シクロプロピル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸4−メトキシシクロヘキシル、(メタ)アクリル酸2−シクロペンチルオキシカルボニルエチル、(メタ)アクリル酸2−シクロヘキシルオキシカルボニルエチル、(メタ)アクリル酸2−(4−メトキシシクロヘキシル)オキシカルボニルエチル等の有橋式炭化水素骨格をもたない(メタ)アクリル酸エステル類;   Examples of the repeating unit other than the repeating units derived from the above formulas (1) to (6) and aromatic include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, (meth ) N-butyl acrylate, 2-methylpropyl (meth) acrylate, 1-methylpropyl (meth) acrylate, t-butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) acrylic 2-hydroxypropyl acid, 3-hydroxypropyl (meth) acrylate, cyclopropyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, 4-methoxycyclohexyl (meth) acrylate, (meth ) 2-cyclopentyloxycarbonylethyl acrylate, 2-cyclo (meth) acrylate Hexyl oxycarbonyl ethyl, (meth) no bridged hydrocarbon skeleton such as acrylic acid 2- (4-methoxy-cyclohexyl) oxycarbonyl ethyl (meth) acrylate;

α−ヒドロキシメチルアクリル酸メチル、α−ヒドロキシメチルアクリル酸エチル、α−ヒドロキシメチルアクリル酸n−プロピル、α−ヒドロキシメチルアクリル酸n−ブチル等のα−ヒドロキシメチルアクリル酸エステル類;(メタ)アクリロニトリル、α−クロロアクリロニトリル、クロトンニトリル、マレインニトリル、フマロニトリル、メサコンニトリル、シトラコンニトリル、イタコンニトリル等の不飽和ニトリル化合物;(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、クロトンアミド、マレインアミド、フマルアミド、メサコンアミド、シトラコンアミド、イタコンアミド等の不飽和アミド化合物;N−(メタ)アクリロイルモルホリン、N−ビニル−ε−カプロラクタム、N−ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の他の含窒素ビニル化合物;(メタ)アクリル酸、クロトン酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、メサコン酸等の不飽和カルボン酸(無水物)類;(メタ)アクリル酸2−カルボキシエチル、(メタ)アクリル酸2−カルボキシプロピル、(メタ)アクリル酸3−カルボキシプロピル、(メタ)アクリル酸4−カルボキシブチル、(メタ)アクリル酸4−カルボキシシクロヘキシル等の不飽和カルボン酸の有橋式炭化水素骨格をもたないカルボキシル基含有エステル類;   α-hydroxymethyl acrylate esters such as methyl α-hydroxymethyl acrylate, ethyl α-hydroxymethyl acrylate, n-propyl α-hydroxymethyl acrylate, n-butyl α-hydroxymethyl acrylate; (meth) acrylonitrile , Α-chloroacrylonitrile, crotonnitrile, maleinonitrile, fumaronitrile, mesaconitrile, citraconitrile, itaconnitrile, and other unsaturated nitrile compounds; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, crotonamide, maleinamide , Fumaramide, mesaconamide, citraconic amide, itaconic amide, etc .; N- (meth) acryloylmorpholine, N-vinyl-ε-caprolactam, N-vinylpyrrolidone, vinyl Other nitrogen-containing vinyl compounds such as lysine and vinylimidazole; (meth) acrylic acid, crotonic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid, etc. Unsaturated carboxylic acids (anhydrides); 2-carboxyethyl (meth) acrylate, 2-carboxypropyl (meth) acrylate, 3-carboxypropyl (meth) acrylate, 4-carboxybutyl (meth) acrylate, Carboxyl group-containing esters having no bridged hydrocarbon skeleton of unsaturated carboxylic acid such as (meth) acrylic acid 4-carboxycyclohexyl;

α−(メタ)アクリロイルオキシ−β−メトキシカルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−エトキシカルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−n−プロポキシカルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−i−プロポキシカルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−n−ブトキシカルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−(2−メチルプロポキシ)カルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−(1−メチルプロポキシ)カルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−t−ブトキシカルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−シクロヘキシルオキシカルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−(4−t−ブチルシクロヘキシルオキシ)カルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−フェノキシカルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−(1−エトキシエトキシ)カルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−(1−シクロヘキシルオキシエトキシ)カルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−t−ブトキシカルボニルメトキシカルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−テトラヒドロフラニルオキシカルボニル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−テトラヒドロピラニルオキシカルボニル−γ−ブチロラクトン、   α- (meth) acryloyloxy-β-methoxycarbonyl-γ-butyrolactone, α- (meth) acryloyloxy-β-ethoxycarbonyl-γ-butyrolactone, α- (meth) acryloyloxy-β-n-propoxycarbonyl-γ -Butyrolactone, α- (meth) acryloyloxy-β-i-propoxycarbonyl-γ-butyrolactone, α- (meth) acryloyloxy-β-n-butoxycarbonyl-γ-butyrolactone, α- (meth) acryloyloxy-β -(2-methylpropoxy) carbonyl-γ-butyrolactone, α- (meth) acryloyloxy-β- (1-methylpropoxy) carbonyl-γ-butyrolactone, α- (meth) acryloyloxy-β-t-butoxycarbonyl- γ-butyrolactone, α- (meth) acryloyl Oxy-β-cyclohexyloxycarbonyl-γ-butyrolactone, α- (meth) acryloyloxy-β- (4-t-butylcyclohexyloxy) carbonyl-γ-butyrolactone, α- (meth) acryloyloxy-β-phenoxycarbonyl- γ-butyrolactone, α- (meth) acryloyloxy-β- (1-ethoxyethoxy) carbonyl-γ-butyrolactone, α- (meth) acryloyloxy-β- (1-cyclohexyloxyethoxy) carbonyl-γ-butyrolactone, α -(Meth) acryloyloxy-β-t-butoxycarbonylmethoxycarbonyl-γ-butyrolactone, α- (meth) acryloyloxy-β-tetrahydrofuranyloxycarbonyl-γ-butyrolactone, α- (meth) acryloyloxy-β-tetrahi B pyranyl butyloxycarbonyl -γ- butyrolactone,

α−メトキシカルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−エトキシカルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−n−プロポキシカルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−i−プロポキシカルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−n−ブトキシカルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−(2−メチルプロポキシ)カルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−(1−メチルプロポキシ)カルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−t−ブトキシカルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−シクロヘキシルオキシカルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−(4−t−ブチルシクロヘキシルオキシ)カルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−フェノキシカルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−(1−エトキシエトキシ)カルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−(1−シクロヘキシルオキシエトキシ)カルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−t−ブトキシカルボニルメトキシカルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−テトラヒドロフラニルオキシカルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−テトラヒドロピラニルオキシカルボニル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン等の酸解離性基を有する(メタ)アクリロイルオキシラクトン化合物;   α-methoxycarbonyl-β- (meth) acryloyloxy-γ-butyrolactone, α-ethoxycarbonyl-β- (meth) acryloyloxy-γ-butyrolactone, α-n-propoxycarbonyl-β- (meth) acryloyloxy-γ -Butyrolactone, α-i-propoxycarbonyl-β- (meth) acryloyloxy-γ-butyrolactone, α-n-butoxycarbonyl-β- (meth) acryloyloxy-γ-butyrolactone, α- (2-methylpropoxy) carbonyl -Β- (meth) acryloyloxy-γ-butyrolactone, α- (1-methylpropoxy) carbonyl-β- (meth) acryloyloxy-γ-butyrolactone, α-t-butoxycarbonyl-β- (meth) acryloyloxy- γ-butyrolactone, α-cyclohexyloxy Carbonyl-β- (meth) acryloyloxy-γ-butyrolactone, α- (4-t-butylcyclohexyloxy) carbonyl-β- (meth) acryloyloxy-γ-butyrolactone, α-phenoxycarbonyl-β- (meth) acryloyl Oxy-γ-butyrolactone, α- (1-ethoxyethoxy) carbonyl-β- (meth) acryloyloxy-γ-butyrolactone, α- (1-cyclohexyloxyethoxy) carbonyl-β- (meth) acryloyloxy-γ-butyrolactone , Α-t-butoxycarbonylmethoxycarbonyl-β- (meth) acryloyloxy-γ-butyrolactone, α-tetrahydrofuranyloxycarbonyl-β- (meth) acryloyloxy-γ-butyrolactone, α-tetrahydropyranyloxycarbonyl-β (Meth) acrylate having an acid dissociable group such as acryloyloxy -γ- butyrolactone (meth) acryloyloxy lactone compounds;

α−(メタ)アクリロイルオキシ−β−フルオロ−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−ヒドロキシ−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−メチル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−エチル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β,β−ジメチル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−β−メトキシ−γ−ブチロラクトン、α−フルオロ−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−ヒドロキシ−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−メチル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−エチル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α,α−ジメチル−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−メトキシ−β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−δ−メバロノラクトン等の酸解離性基をもたない(メタ)アクリロイルオキシラクトン化合物等の単官能性単量体や、   α- (meth) acryloyloxy-β-fluoro-γ-butyrolactone, α- (meth) acryloyloxy-β-hydroxy-γ-butyrolactone, α- (meth) acryloyloxy-β-methyl-γ-butyrolactone, α- (Meth) acryloyloxy-β-ethyl-γ-butyrolactone, α- (meth) acryloyloxy-β, β-dimethyl-γ-butyrolactone, α- (meth) acryloyloxy-β-methoxy-γ-butyrolactone, α- Fluoro-β- (meth) acryloyloxy-γ-butyrolactone, α-hydroxy-β- (meth) acryloyloxy-γ-butyrolactone, α-methyl-β- (meth) acryloyloxy-γ-butyrolactone, α-ethyl- β- (meth) acryloyloxy-γ-butyrolactone, α, α-dimethyl-β- (meta (Meth) acryloyloxylactone having no acid-dissociable groups such as acryloyloxy-γ-butyrolactone, α-methoxy-β- (meth) acryloyloxy-γ-butyrolactone, α- (meth) acryloyloxy-δ-mevalonolactone Monofunctional monomers such as compounds,

1,2−アダマンタンジオールジ(メタ)アクリレート、1,3−アダマンタンジオールジ(メタ)アクリレート、1,4−アダマンタンジオールジ(メタ)アクリレート、トリシクロデカニルジメチロールジ(メタ)アクリレート等の有橋式炭化水素骨格を有する多官能性単量体;   1,2-adamantanediol di (meth) acrylate, 1,3-adamantanediol di (meth) acrylate, 1,4-adamantanediol di (meth) acrylate, tricyclodecanyl dimethylol di (meth) acrylate, etc. A polyfunctional monomer having a bridged hydrocarbon skeleton;

メチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、2,5−ジメチル−2,5−ヘキサンジオールジ(メタ)アクリレート、1,8−オクタンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,4−ビス(2−ヒドロキシプロピル)ベンゼンジ(メタ)アクリレート、1,3−ビス(2−ヒドロキシプロピル)ベンゼンジ(メタ)アクリレート等の有橋式炭化水素骨格をもたない多官能性単量体等の多官能性単量体の重合性不飽和結合が開裂した単位を挙げることができる。   Methylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 2,5-dimethyl-2,5-hexanediol di ( (Meth) acrylate, 1,8-octanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,4-bis (2-hydroxypropyl) benzenedi (meth) acrylate, 1,3-bis List units in which a polymerizable unsaturated bond of a polyfunctional monomer such as a polyfunctional monomer having no bridged hydrocarbon skeleton such as (2-hydroxypropyl) benzenedi (meth) acrylate is cleaved Can do.

これらの上記式(1)〜(6)及び芳香族に由来する繰り返し単位以外の他の繰り返し単位のうち、有橋式炭化水素骨格を有する(メタ)アクリル酸エステル類の重合性不飽和結合が開裂した単位等が好ましい。   Among these repeating units other than the repeating units derived from the above formulas (1) to (6) and aromatics, polymerizable unsaturated bonds of (meth) acrylates having a bridged hydrocarbon skeleton are present. Cleaved units are preferred.

樹脂(A)において、繰り返し単位(1)の含有率は、全繰り返し単位に対して、通常10〜70モル%、好ましくは15〜65モル%、更に好ましくは20〜60モル%である。この場合、繰り返し単位(1)の含有率が10モル%未満では、レジストとして、アルカリ現像液に対する溶解性が低下して、現像欠陥の一因となったり、露光余裕が悪化するおそれがある(尚、露光余裕とは、露光量の変化に対する線幅の変動を示す。)。一方70モル%を超えると、レジストの溶剤への溶解性が低くなり、解像度が低下したりするおそれがある。
また、繰り返し単位(2)の含有率は、全繰り返し単位に対して、通常、10〜70モル%、好ましくは15〜60モル%、更に好ましくは20〜50モル%である。この場合、繰り返し単位(2)の含有率が10モル%未満では、レジストとしての解像度が低下するおそれがあり、一方70モル%を超えると、露光余裕が悪化するおそれがある。
また、繰り返し単位(3)の含有率は、全繰り返し単位に対して、通常、30モル%以下、好ましくは25モル%以下である。この場合、繰り返し単位(3)の含有率が30モル%を超えると、レジストパターンのトップロスが生じパターン形状が悪化するおそれがある。
また、繰り返し単位(4)の含有率は、全繰り返し単位に対して、通常、30モル%以下、好ましくは25モル%以下である。この場合、繰り返し単位(4)の含有率が30モル%を超えると、得られるレジスト被膜がアルカリ現像液により膨潤しやすくなったり、アルカリ現像液に対する溶解性が低下したりするおそれがある。
また、繰り返し単位(5)の含有率は、全繰り返し単位に対して、通常、30モル%以下、好ましくは25モル%以下である。この場合、繰り返し単位(5)の含有率が30モル%を超えると、レジストパターンのトップロスが生じパターン形状が悪化するおそれがある。
また、繰り返し単位(6)の含有率は、全繰り返し単位に対して、通常、30モル%以下、好ましくは25モル%以下である。この場合、繰り返し単位(6)の含有率が30モル%を超えると、得られるレジスト被膜がアルカリ現像液により膨潤しやすくなったり、アルカリ現像液に対する溶解性が低下したりするおそれある。
また、芳香族に由来する繰り返し単位の含有率は、全繰り返し単位に対して、通常、40モル%以下、好ましくは30モル%以下である。この場合、芳香族に由来する繰り返し単位の含有率が40モル%を超えると、放射線透過率が低くなりパターンプロファイルが悪化するおそれがある。
更に、他の繰り返し単位の含有率は、全繰り返し単位に対して、通常、50モル%以下、好ましくは40モル%以下である。
In the resin (A), the content of the repeating unit (1) is usually 10 to 70 mol%, preferably 15 to 65 mol%, more preferably 20 to 60 mol%, based on all repeating units. In this case, if the content of the repeating unit (1) is less than 10 mol%, the resist has poor solubility in an alkaline developer, which may contribute to development defects or deteriorate the exposure margin ( Note that the exposure margin indicates a change in line width with respect to a change in exposure amount. On the other hand, when it exceeds 70 mol%, the solubility of the resist in the solvent is lowered, and the resolution may be lowered.
Moreover, the content rate of a repeating unit (2) is 10-70 mol% normally with respect to all the repeating units, Preferably it is 15-60 mol%, More preferably, it is 20-50 mol%. In this case, if the content of the repeating unit (2) is less than 10 mol%, the resolution as a resist may be lowered. On the other hand, if it exceeds 70 mol%, the exposure margin may be deteriorated.
Moreover, the content rate of a repeating unit (3) is 30 mol% or less normally with respect to all the repeating units, Preferably it is 25 mol% or less. In this case, if the content of the repeating unit (3) exceeds 30 mol%, the top loss of the resist pattern may occur and the pattern shape may be deteriorated.
Moreover, the content rate of a repeating unit (4) is 30 mol% or less normally with respect to all the repeating units, Preferably it is 25 mol% or less. In this case, if the content of the repeating unit (4) exceeds 30 mol%, the resulting resist film may be easily swollen by the alkali developer, or the solubility in the alkali developer may be reduced.
Moreover, the content rate of a repeating unit (5) is 30 mol% or less normally with respect to all the repeating units, Preferably it is 25 mol% or less. In this case, if the content of the repeating unit (5) exceeds 30 mol%, the top loss of the resist pattern may occur and the pattern shape may be deteriorated.
Moreover, the content rate of a repeating unit (6) is 30 mol% or less normally with respect to all the repeating units, Preferably it is 25 mol% or less. In this case, when the content of the repeating unit (6) exceeds 30 mol%, the resulting resist film may be easily swollen by the alkali developer or the solubility in the alkali developer may be reduced.
Moreover, the content rate of the repeating unit derived from an aromatic is 40 mol% or less normally with respect to all the repeating units, Preferably it is 30 mol% or less. In this case, when the content rate of the repeating unit derived from the aromatic exceeds 40 mol%, the radiation transmittance is lowered, and the pattern profile may be deteriorated.
Furthermore, the content of other repeating units is usually 50 mol% or less, preferably 40 mol% or less, based on all repeating units.

樹脂(A)は、例えば、その各繰り返し単位に対応する重合性不飽和単量体を、ヒドロパーオキシド類、ジアルキルパーオキシド類、ジアシルパーオキシド類、アゾ化合物等のラジカル重合開始剤を使用し、必要に応じて連鎖移動剤の存在下、適当な溶媒中で重合することにより製造することができる。前記重合に使用される溶媒としては、例えば、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、n−ノナン、n−デカン等のアルカン類;シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;酢酸エチル、酢酸n−ブチル、酢酸i−ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;アセトン、2−ブタノン、4−メチル−2−ペンタノン、2−ヘプタノン等のケトン類;テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類等を挙げることができる。これらの溶媒は、単独で又は2種以上を混合して使用することができる。また、前記重合における反応温度は、通常、40〜150℃、好ましくは50〜120℃であり、反応時間は、通常、1〜48時間、好ましくは1〜24時間である。   Resin (A) uses, for example, a polymerizable unsaturated monomer corresponding to each repeating unit using a radical polymerization initiator such as hydroperoxides, dialkyl peroxides, diacyl peroxides, and azo compounds. If necessary, it can be produced by polymerization in an appropriate solvent in the presence of a chain transfer agent. Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; cyclohexane, cycloheptane, cyclooctane, decalin, Cycloalkanes such as norbornane; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene; ethyl acetate Saturated carboxylic acid esters such as n-butyl acetate, i-butyl acetate and methyl propionate; ketones such as acetone, 2-butanone, 4-methyl-2-pentanone and 2-heptanone; tetrahydrofuran, dimethoxyethanes, Ethers such as diethoxyethanes It can be mentioned. These solvents can be used alone or in admixture of two or more. Moreover, the reaction temperature in the said polymerization is 40-150 degreeC normally, Preferably it is 50-120 degreeC, and reaction time is 1-48 hours normally, Preferably it is 1-24 hours.

樹脂(A)のゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量(以下、「Mw」という。)は、特に限定されないが、好ましくは1000〜100000、更に好ましくは1000〜30000、更に好ましくは1000〜20000である。この場合、樹脂(A)のMwが1000未満では、レジストとしたときの耐熱性が低下する傾向があり、一方100000を超えると、レジストとしたときの現像性が低下する傾向がある。また、樹脂(A)のMwとゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算数平均分子量(以下、「Mn」という。)との比(Mw/Mn)は、通常、1〜5、好ましくは1〜3である。   The polystyrene-reduced weight average molecular weight (hereinafter referred to as “Mw”) by gel permeation chromatography (GPC) of the resin (A) is not particularly limited, but is preferably 1000 to 100,000, more preferably 1000 to 30000, and still more preferably. 1000-20000. In this case, if the Mw of the resin (A) is less than 1000, the heat resistance when used as a resist tends to decrease, while if it exceeds 100,000, the developability when used as a resist tends to decrease. The ratio (Mw / Mn) of Mw of the resin (A) to polystyrene-reduced number average molecular weight (hereinafter referred to as “Mn”) by gel permeation chromatography (GPC) is usually 1 to 5, preferably 1. ~ 3.

また、本発明における樹脂(A)においては、この樹脂(A)を調製する際に用いられる単量体由来の低分子量成分の含有量が固形分換算にて、この樹脂100質量%に対して0.1質量%以下であることが好ましく、より好ましくは0.07質量%以下、更に好ましくは0.05質量%以下である。この含有量が0.1質量%以下である場合には、液浸露光時に接触した水への溶出物の量を少なくすることができる。更に、レジスト保管時にレジスト中に異物が発生することがなく、レジスト塗布時においても塗布ムラが発生することなく、レジストパターン形成時における欠陥の発生を十分に抑制することができる。
上記単量体由来の低分子量成分としては、モノマー、ダイマー、トリマー、オリゴマーが挙げられ、Mw500以下の成分とすることができる。このMw500以下の成分は、例えば、水洗、液々抽出等の化学的精製法や、これらの化学的精製法と限外ろ過、遠心分離等の物理的精製法との組み合わせ等により除去することができる。また、樹脂の高速液体クロマトグラフィー(HPLC)により分析することができる。
尚、樹脂(A)は、ハロゲン、金属等の不純物が少ないほど好ましく、それにより、レジストとしたときの感度、解像度、プロセス安定性、パターン形状等を更に改善することができる。また、樹脂(A)の精製法としては、例えば、水洗、液々抽出等の化学的精製法や、これらの化学的精製法と限外ろ過、遠心分離等の物理的精製法との組み合わせ等を挙げることができる。本発明において、樹脂(A)は、単独で又は2種以上を混合して使用することができる。
Moreover, in resin (A) in this invention, content of the low molecular weight component derived from the monomer used when preparing this resin (A) is solid content conversion with respect to 100 mass% of this resin. It is preferable that it is 0.1 mass% or less, More preferably, it is 0.07 mass% or less, More preferably, it is 0.05 mass% or less. When this content is 0.1% by mass or less, it is possible to reduce the amount of the eluate in water that is in contact with the immersion exposure. Furthermore, foreign matters are not generated in the resist during resist storage, and coating unevenness does not occur during resist application, and the occurrence of defects during resist pattern formation can be sufficiently suppressed.
Examples of the low molecular weight component derived from the monomer include a monomer, a dimer, a trimer, and an oligomer, and can be a component having an Mw of 500 or less. The components having an Mw of 500 or less can be removed by, for example, chemical purification methods such as washing with water and liquid-liquid extraction, or a combination of these chemical purification methods and physical purification methods such as ultrafiltration and centrifugation. it can. Moreover, it can analyze by the high performance liquid chromatography (HPLC) of resin.
In addition, resin (A) is so preferable that there are few impurities, such as a halogen and a metal, and, thereby, the sensitivity, resolution, process stability, pattern shape, etc. when it is set as a resist can be improved further. Examples of the purification method of the resin (A) include chemical purification methods such as washing with water and liquid-liquid extraction, and combinations of these chemical purification methods with physical purification methods such as ultrafiltration and centrifugation, etc. Can be mentioned. In this invention, resin (A) can be used individually or in mixture of 2 or more types.

<感放射線性酸発生剤>
本発明における感放射線性酸発生剤(以下、単に「酸発生剤(B)」ともいう。)は、露光により発生する酸の作用によって、樹脂(A)中に存在する繰り返し単位中の酸解離性基を解離させ(保護基を脱離させ)、その結果レジスト被膜の露光部がアルカリ現像液に易溶性となり、ポジ型のレジストパターンを形成する作用を有するものである。
本発明における酸発生剤(B)としては、下記一般式(7)で表される化合物(以下、「酸発生剤1」という。)を含むものが好ましい。
<Radiosensitive acid generator>
The radiation-sensitive acid generator in the present invention (hereinafter also simply referred to as “acid generator (B)”) is an acid dissociation in a repeating unit present in the resin (A) by the action of an acid generated by exposure. The functional group is dissociated (the protective group is eliminated). As a result, the exposed portion of the resist film becomes readily soluble in an alkali developer, and has a function of forming a positive resist pattern.
The acid generator (B) in the present invention preferably contains a compound represented by the following general formula (7) (hereinafter referred to as “acid generator 1”).

Figure 2007212797
Figure 2007212797

一般式(7)において、Rは水素原子、フッ素原子、水酸基、炭素原子数1〜10の直鎖状若しくは分岐状のアルキル基、炭素原子数1〜10の直鎖状若しくは分岐状のアルコキシル基、炭素原子数2〜11の直鎖状若しくは分岐状のアルコキシカルボニル基を示し、Rは炭素原子数1〜10の直鎖状若しくは分岐状のアルキル基、アルコキシル基若しくは炭素原子数1〜10の直鎖状、分岐状、環状のアルカンスルホニル基を示し、Rは独立に炭素原子数1〜10の直鎖状若しくは分岐状のアルキル基、置換されていてもよいフェニル基又は置換基されていてもよいナフチル基を示すか、或いは2個のRが互いに結合して炭素原子数2〜10の2価の基を形成しており、該2価の基は置換されていてもよく、kは0〜2の整数であり、Xは式:R2nSO (式中、Rは、フッ素原子又は置換されていてもよい炭素原子数1〜12の炭化水素基を示し、nは1〜10の整数である)で表されるアニオンを示し、jは0〜10の整数である。 In the general formula (7), R 6 is a hydrogen atom, a fluorine atom, a hydroxyl group, a linear or branched alkyl group having 1 to 10 carbon atoms, or a linear or branched alkoxyl having 1 to 10 carbon atoms. A linear or branched alkoxycarbonyl group having 2 to 11 carbon atoms, R 7 is a linear or branched alkyl group having 1 to 10 carbon atoms, an alkoxyl group, or 1 to 1 carbon atom; 10 represents a linear, branched, or cyclic alkanesulfonyl group, and R 8 is independently a linear or branched alkyl group having 1 to 10 carbon atoms, an optionally substituted phenyl group, or a substituent. A naphthyl group which may be substituted, or two R 8 's bonded to each other to form a divalent group having 2 to 10 carbon atoms, and the divalent group may be substituted Well, k is an integer from 0 to 2 Yes, X represents a formula: R 9 C n F 2n SO 3 (wherein R 9 represents a fluorine atom or an optionally substituted hydrocarbon group having 1 to 12 carbon atoms, and n represents 1 to Is an integer of 10), and j is an integer of 0 to 10.

一般式(7)において、R、R及びRの炭素原子数1〜10の直鎖状若しくは分岐状のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルヘキシル基、n−ノニル基、n−デシル基等を挙げることができる。これらのアルキル基のうち、メチル基、エチル基、n−ブチル基、t−ブチル基等が好ましい。 In the general formula (7), examples of the linear or branched alkyl group having 1 to 10 carbon atoms of R 6 , R 7 and R 8 include a methyl group, an ethyl group, an n-propyl group, i- Propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group, n-pentyl group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2- Examples thereof include an ethylhexyl group, an n-nonyl group, and an n-decyl group. Of these alkyl groups, a methyl group, an ethyl group, an n-butyl group, a t-butyl group, and the like are preferable.

また、R及びRの炭素原子数1〜10の直鎖状若しくは分岐状のアルコキシル基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、2−メチルプロポキシ基、1−メチルプロポキシ基、t−ブトキシ基、n−ペンチルオキシ基、ネオペンチルオキシ基、n−ヘキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、2−エチルヘキシルオキシ基、n−ノニルオキシ基、n−デシルオキシ基等を挙げることができる。これらのアルコキシル基のうち、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基等が好ましい。 Examples of the linear or branched alkoxyl group having 1 to 10 carbon atoms of R 6 and R 7 include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, 2-methylpropoxy group, 1-methylpropoxy group, t-butoxy group, n-pentyloxy group, neopentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy Group, n-nonyloxy group, n-decyloxy group and the like. Of these alkoxyl groups, a methoxy group, an ethoxy group, an n-propoxy group, an n-butoxy group, and the like are preferable.

また、Rの炭素原子数2〜11の直鎖状若しくは分岐状のアルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、i−プロポキシカルボニル基、n−ブトキシカルボニル基、2−メチルプロポキシカルボニル基、1−メチルプロポキシカルボニル基、t−ブトキシカルボニル基、n−ペンチルオキシカルボニル基、ネオペンチルオキシカルボニル基、n−ヘキシルオキシカルボニル基、n−ヘプチルオキシカルボニル基、n−オクチルオキシカルボニル基、2−エチルヘキシルオキシカルボニル基、n−ノニルオキシカルボニル基、n−デシルオキシカルボニル基等を挙げることができる。これらのアルコキシカルボニル基のうち、メトキシカルボニル基、エトキシカルボニル基、n−ブトキシカルボニル基等が好ましい。 Examples of the linear or branched alkoxycarbonyl group having 2 to 11 carbon atoms of R 6 include a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an i-propoxycarbonyl group, and n-butoxy. Carbonyl group, 2-methylpropoxycarbonyl group, 1-methylpropoxycarbonyl group, t-butoxycarbonyl group, n-pentyloxycarbonyl group, neopentyloxycarbonyl group, n-hexyloxycarbonyl group, n-heptyloxycarbonyl group, An n-octyloxycarbonyl group, a 2-ethylhexyloxycarbonyl group, an n-nonyloxycarbonyl group, an n-decyloxycarbonyl group, and the like can be given. Of these alkoxycarbonyl groups, a methoxycarbonyl group, an ethoxycarbonyl group, an n-butoxycarbonyl group, and the like are preferable.

また、Rの炭素原子数1〜10の直鎖状、分岐状、環状のアルカンスルホニル基としては、例えば、メタンスルホニル基、エタンスルホニル基、n−プロパンスルホニル基、n−ブタンスルホニル基、tert−ブタンスルホニル基、n−ペンタンスルホニル基、ネオペンタンスルホニル基、n−ヘキサンスルホニル基、n−ヘプタンスルホニル基、n−オクタンスルホニル基、2−エチルヘキサンスルホニル基n−ノナンスルホニル基、n−デカンスルホニル基、シクロペンタンスルホニル基、シクロヘキサンスルホニル基等を挙げることができる。これらのアルカンスルホニル基のうちメタンスルホニル基、エタンスルホニル基、n−プロパンスルホニル基、n−ブタンスルホニル基、シクロペンタンスルホニル基、シクロヘキサンスルホニル基等が好ましい。 Examples of the linear, branched, and cyclic alkanesulfonyl group having 1 to 10 carbon atoms of R 7 include a methanesulfonyl group, an ethanesulfonyl group, an n-propanesulfonyl group, an n-butanesulfonyl group, a tert. -Butanesulfonyl group, n-pentanesulfonyl group, neopentanesulfonyl group, n-hexanesulfonyl group, n-heptanesulfonyl group, n-octanesulfonyl group, 2-ethylhexanesulfonyl group n-nonanesulfonyl group, n-decanesulfonyl Group, cyclopentanesulfonyl group, cyclohexanesulfonyl group and the like. Of these alkanesulfonyl groups, a methanesulfonyl group, an ethanesulfonyl group, an n-propanesulfonyl group, an n-butanesulfonyl group, a cyclopentanesulfonyl group, a cyclohexanesulfonyl group, and the like are preferable.

また、jとしては、0〜2が好ましい。   Moreover, as j, 0-2 are preferable.

一般式(7)において、Rの置換されていてもよいフェニル基としては、例えば、フェニル基、o−トリル基、m−トリル基、p−トリル基、2,3−ジメチルフェニル基、2,4−ジメチルフェニル基、2,5−ジメチルフェニル基、2,6−ジメチルフェニル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、2,4,6−トリメチルフェニル基、4−エチルフェニル基、4−t−ブチルフェニル基、4−シクロヘキシルフェニル基、4−フルオロフェニル基等のフェニル基又は炭素原子数1〜10の直鎖状、分岐状若しくは環状のアルキル基で置換されたフェニル基;これらのフェニル基又はアルキル置換フェニル基を、ヒドロキシル基、カルボキシル基、シアノ基、ニトロ基、アルコキシル基、アルコキシアルキル基、アルコキシカルボニル基、アルコキシカルボニルオキシ基等の少なくとも一種の基1個以上で置換した基等を挙げることができる。 In the general formula (7), examples of the optionally substituted phenyl group represented by R 8 include a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-dimethylphenyl group, 2 , 4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,6-dimethylphenyl group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, 2,4,6-trimethylphenyl group, 4 -Substituted with phenyl groups such as ethylphenyl group, 4-t-butylphenyl group, 4-cyclohexylphenyl group, 4-fluorophenyl group or linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms. A phenyl group; these phenyl groups or alkyl-substituted phenyl groups can be converted into hydroxyl groups, carboxyl groups, cyano groups, nitro groups, alkoxyl groups, alkoxyalkyl groups. And a group substituted with at least one group such as a group, an alkoxycarbonyl group, and an alkoxycarbonyloxy group.

フェニル基及びアルキル置換フェニル基に対する置換基のうち、前記アルコキシル基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、2−メチルプロポキシ基、1−メチルプロポキシ基、t−ブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素原子数1〜20の直鎖状、分岐状若しくは環状のアルコキシル基等を挙げることができる。   Among the substituents for the phenyl group and the alkyl-substituted phenyl group, examples of the alkoxyl group include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, 2-methylpropoxy group, 1- Examples thereof include a linear, branched or cyclic alkoxyl group having 1 to 20 carbon atoms such as a methylpropoxy group, a t-butoxy group, a cyclopentyloxy group and a cyclohexyloxy group.

また、前記アルコキシアルキル基としては、例えば、メトキシメチル基、エトキシメチル基、1−メトキシエチル基、2−メトキシエチル基、1−エトキシエチル基、2−エトキシエチル基等の炭素原子数2〜21の直鎖状、分岐状若しくは環状のアルコキシアルキル基等を挙げることができる。また、前記アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、i−プロポキシカルボニル基、n−ブトキシカルボニル基、2−メチルプロポキシカルボニル基、1−メチルプロポキシカルボニル基、t−ブトキシカルボニル基、シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル等の炭素原子数2〜21の直鎖状、分岐状若しくは環状のアルコキシカルボニル基等を挙げることができる。   Examples of the alkoxyalkyl group include 2 to 21 carbon atoms such as a methoxymethyl group, an ethoxymethyl group, a 1-methoxyethyl group, a 2-methoxyethyl group, a 1-ethoxyethyl group, and a 2-ethoxyethyl group. And linear, branched or cyclic alkoxyalkyl groups. Examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an i-propoxycarbonyl group, an n-butoxycarbonyl group, a 2-methylpropoxycarbonyl group, and a 1-methylpropoxycarbonyl group. , T-butoxycarbonyl group, cyclopentyloxycarbonyl group, cyclohexyloxycarbonyl and the like, and straight chain, branched or cyclic alkoxycarbonyl groups having 2 to 21 carbon atoms.

また、前記アルコキシカルボニルオキシ基としては、例えば、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、n−プロポキシカルボニルオキシ基、i−プロポキシカルボニルオキシ基、n−ブトキシカルボニルオキシ基、t−ブトキシカルボニルオキシ基、シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル等の炭素原子数2〜21の直鎖状、分岐状若しくは環状のアルコキシカルボニルオキシ基等を挙げることができる。一般式(7)におけるRの置換されていてもよいフェニル基としては、フェニル基、4−シクロヘキシルフェニル基、4−t−ブチルフェニル基、4−メトキシフェニル基、4−t−ブトキシフェニル基等が好ましい。 Examples of the alkoxycarbonyloxy group include methoxycarbonyloxy group, ethoxycarbonyloxy group, n-propoxycarbonyloxy group, i-propoxycarbonyloxy group, n-butoxycarbonyloxy group, t-butoxycarbonyloxy group, Examples thereof include linear, branched or cyclic alkoxycarbonyloxy groups having 2 to 21 carbon atoms such as cyclopentyloxycarbonyl group and cyclohexyloxycarbonyl. Examples of the optionally substituted phenyl group represented by R 8 in the general formula (7) include a phenyl group, a 4-cyclohexylphenyl group, a 4-t-butylphenyl group, a 4-methoxyphenyl group, and a 4-t-butoxyphenyl group. Etc. are preferred.

また、Rの置換されていてもよいナフチル基としては、例えば、1−ナフチル基、2−メチル−1−ナフチル基、3−メチル−1−ナフチル基、4−メチル−1−ナフチル基、4−メチル−1−ナフチル基、5−メチル−1−ナフチル基、6−メチル−1−ナフチル基、7−メチル−1−ナフチル基、8−メチル−1−ナフチル基、2,3−ジメチル−1−ナフチル基、2,4−ジメチル−1−ナフチル基、2,5−ジメチル−1−ナフチル基、2,6−ジメチル−1−ナフチル基、2,7−ジメチル−1−ナフチル基、2,8−ジメチル−1−ナフチル基、3,4−ジメチル−1−ナフチル基、3,5−ジメチル−1−ナフチル基、3,6−ジメチル−1−ナフチル基、3,7−ジメチル−1−ナフチル基、3,8−ジメチル−1−ナフチル基、4,5−ジメチル−1−ナフチル基、5,8−ジメチル−1−ナフチル基、4−エチル−1−ナフチル基2−ナフチル基、1−メチル−2−ナフチル基、3−メチル−2−ナフチル基、4−メチル−2−ナフチル基等のナフチル基又は炭素原子数1〜10の直鎖状、分岐状若しくは環状のアルキル基で置換されたナフチル基;これらのナフチル基又はアルキル置換ナフチル基を、ヒドロキシル基、カルボキシル基、シアノ基、ニトロ基、アルコキシル基、アルコキシアルキル基、アルコキシカルボニル基、アルコキシカルボニルオキシ基等の少なくとも1種の基1個以上で置換した基等を挙げることができる。 Examples of the optionally substituted naphthyl group for R 8 include 1-naphthyl group, 2-methyl-1-naphthyl group, 3-methyl-1-naphthyl group, 4-methyl-1-naphthyl group, 4-methyl-1-naphthyl group, 5-methyl-1-naphthyl group, 6-methyl-1-naphthyl group, 7-methyl-1-naphthyl group, 8-methyl-1-naphthyl group, 2,3-dimethyl -1-naphthyl group, 2,4-dimethyl-1-naphthyl group, 2,5-dimethyl-1-naphthyl group, 2,6-dimethyl-1-naphthyl group, 2,7-dimethyl-1-naphthyl group, 2,8-dimethyl-1-naphthyl group, 3,4-dimethyl-1-naphthyl group, 3,5-dimethyl-1-naphthyl group, 3,6-dimethyl-1-naphthyl group, 3,7-dimethyl- 1-naphthyl group, 3,8-dimethyl-1-naphth Tyl group, 4,5-dimethyl-1-naphthyl group, 5,8-dimethyl-1-naphthyl group, 4-ethyl-1-naphthyl group, 2-naphthyl group, 1-methyl-2-naphthyl group, 3-methyl A naphthyl group substituted with a naphthyl group such as a 2-naphthyl group or 4-methyl-2-naphthyl group or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms; these naphthyl group or alkyl Examples include a group in which a substituted naphthyl group is substituted with at least one group such as a hydroxyl group, a carboxyl group, a cyano group, a nitro group, an alkoxyl group, an alkoxyalkyl group, an alkoxycarbonyl group, and an alkoxycarbonyloxy group. Can do.

上記置換基であるアルコキシル基、アルコキシアルキル基、アルコキシカルボニル基及びアルコキシカルボニルオキシ基としては、例えば、前記フェニル基及びアルキル置換フェニル基について例示した基を挙げることができる。一般式(7)におけるRの置換されていてもよいナフチル基としては、1−ナフチル基、1−(4−メトキシナフチル)基、1−(4−エトキシナフチル)基、1−(4−n−プロポキシナフチル)基、1−(4−n−ブトキシナフチル)基、2−(7−メトキシナフチル)基、2−(7−エトキシナフチル)基、2−(7−n−プロポキシナフチル)基、2−(7−n−ブトキシナフチル)基等が好ましい。 Examples of the alkoxyl group, alkoxyalkyl group, alkoxycarbonyl group, and alkoxycarbonyloxy group that are the above substituents include the groups exemplified for the phenyl group and the alkyl-substituted phenyl group. As the naphthyl group which may be substituted for R 8 in the general formula (7), 1-naphthyl group, 1- (4-methoxynaphthyl) group, 1- (4-ethoxynaphthyl) group, 1- (4- n-propoxynaphthyl) group, 1- (4-n-butoxynaphthyl) group, 2- (7-methoxynaphthyl) group, 2- (7-ethoxynaphthyl) group, 2- (7-n-propoxynaphthyl) group , 2- (7-n-butoxynaphthyl) group and the like are preferable.

また、2個のRが互いに結合して形成した炭素原子数2〜10の2価の基としては、式(7)中の硫黄原子と共に5員又は6員の環、特に好ましくは5員の環(即ち、テトラヒドロチオフェン環)を形成する基が望ましい。また、前記2価の基に対する置換基としては、例えば、前記フェニル基及びアルキル置換フェニル基に対する置換基として例示したヒドロキシル基、カルボキシル基、シアノ基、ニトロ基、アルコキシル基、アルコキアルキル基、アルコキシカルボニル基、アルコキシカルボニルオキシ基等を挙げることができる。一般式(7)におけるRとしては、メチル基、エチル基、フェニル基、4−メトキシフェニル基、1−ナフチル基、2個のRが互いに結合して硫黄原子と共にテトラヒドロチオフェン環構造を形成する2価の基等が好ましい。 In addition, the divalent group having 2 to 10 carbon atoms formed by bonding two R 8 to each other is preferably a 5- or 6-membered ring, particularly preferably a 5-membered ring, together with the sulfur atom in the formula (7). A group that forms a ring (that is, a tetrahydrothiophene ring) is desirable. Examples of the substituent for the divalent group include a hydroxyl group, a carboxyl group, a cyano group, a nitro group, an alkoxyl group, an alkoxyalkyl group, an alkoxy group exemplified as the substituent for the phenyl group and the alkyl-substituted phenyl group. Examples thereof include a carbonyl group and an alkoxycarbonyloxy group. The R 8 in the general formula (7), a methyl group, an ethyl group, a phenyl group, a 4-methoxyphenyl group, a 1-naphthyl group, form a tetrahydrothiophene ring structure two R 8 are bonded to each other with the sulfur atom A divalent group is preferred.

一般式(7)の好ましいカチオン部位としては、トリフェニルスルホニウムカチオン、トリ−1−ナフチルスルホニウムカチオン、トリ−tert−ブチルフェニルスルホニウムカチオン、4−フルオロフェニル−ジフェニルスルホニウムカチオン、ジ−4−フルオロフェニル−フェニルスルホニウムカチオン、トリ−4−フルオロフェニルスルホニウムカチオン、4−シクロヘキシルフェニル−ジフェニルスルホニウムカチオン、4−メタンスルホニルフェニル−ジフェニルスルホニウムカチオン、4−シクロヘキサンスルホニル−ジフェニルスルホニウムカチオン、1−ナフチルジメチルスルホニウムカチオン、1−ナフチルジエチルスルホニウムカチオン、1−(4−ヒドロキシナフチル)ジメチルスルホニウムカチオン、1−(4−メチルナフチル)ジメチルスルホニウムカチオン、1−(4−メチルナフチル)ジエチルスルホニウムカチオン、1−(4−シアノナフチル)ジメチルスルホニウムカチオン、1−(4−シアノナフチル)ジエチルスルホニウムカチオン、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムカチオン、1−(4−メトキシナフチル)テトラヒドロチオフェニウムカチオン、1−(4−エトキシナフチル)テトラヒドロチオフェニウムカチオン、1−(4−n−プロポキシナフチル)テトラヒドロチオフェニウムカチオン、1−(4−n−ブトキシナフチル)テトラヒドロチオフェニウムカチオン、2−(7−メトキシナフチル)テトラヒドロチオフェニウムカチオン、2−(7−エトキシナフチル)テトラヒドロチオフェニウムカチオン、2−(7−n−プロポキシナフチル)テトラヒドロチオフェニウムカチオン、2−(7−n−ブトキシナフチル)テトラヒドロチオフェニウムカチオン等が挙げられる。   Preferred cation sites of the general formula (7) include triphenylsulfonium cation, tri-1-naphthylsulfonium cation, tri-tert-butylphenylsulfonium cation, 4-fluorophenyl-diphenylsulfonium cation, di-4-fluorophenyl- Phenylsulfonium cation, tri-4-fluorophenylsulfonium cation, 4-cyclohexylphenyl-diphenylsulfonium cation, 4-methanesulfonylphenyl-diphenylsulfonium cation, 4-cyclohexanesulfonyl-diphenylsulfonium cation, 1-naphthyldimethylsulfonium cation, 1- Naphthyldiethylsulfonium cation, 1- (4-hydroxynaphthyl) dimethylsulfonium cation, 1- (4- Tylnaphthyl) dimethylsulfonium cation, 1- (4-methylnaphthyl) diethylsulfonium cation, 1- (4-cyanonaphthyl) dimethylsulfonium cation, 1- (4-cyanonaphthyl) diethylsulfonium cation, 1- (3,5-dimethyl -4-hydroxyphenyl) tetrahydrothiophenium cation, 1- (4-methoxynaphthyl) tetrahydrothiophenium cation, 1- (4-ethoxynaphthyl) tetrahydrothiophenium cation, 1- (4-n-propoxynaphthyl) Tetrahydrothiophenium cation, 1- (4-n-butoxynaphthyl) tetrahydrothiophenium cation, 2- (7-methoxynaphthyl) tetrahydrothiophenium cation, 2- (7-ethoxynaphthyl) tetrahydride Thiophenium cation, 2- (7-n- propoxy-naphthyl) tetrahydrothiophenium cation, 2- (7-n- butoxynaphthyl) tetrahydrothiophenium cation, and the like.

一般式(7)のXで表されるR2nSO アニオン中のC2n−基は、炭素原子数nのパーフルオロアルキレン基であるが、該基は直鎖状若しくは分岐状であることができる。ここで、nは1、2、4又は8であることが好ましい。Rにおける置換されていてもよい炭素原子数1〜12の炭化水素基としては、炭素数1〜12のアルキル基、シクロアルキル基、有橋脂環式炭化水素基が好ましい。具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルヘキシル基、n−ノニル基、n−デシル基、ノルボルニル基、ノルボニルメチル基、ヒドロキシノルボルニル基、アダマンチル基等を挙げることができる。 Represented by R 9 C n F with 2n SO 3 - - C n F 2n in the anion - X of the general formula (7) group is a perfluoroalkylene group having a carbon number n, said group linear Or branched. Here, n is preferably 1, 2, 4 or 8. The optionally substituted hydrocarbon group having 1 to 12 carbon atoms for R 9 is preferably an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, or a bridged alicyclic hydrocarbon group. Specifically, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group, n-pentyl group, neopentyl group N-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, norbornyl group, norbornylmethyl group, hydroxynorbornyl group, adamantyl group Etc.

一般式(7)の好ましいアニオン部位としては、トリフルオロメタンスルホネートアニオン、パーフルオロ−n−ブタンスルホネートアニオン、パーフルオロ−n−オクタンスルホネートアニオン、2−ビシクロ[2.2.1]ヘプタ−2−イル−1,1,2,2−テトラフルオロエタンスルホネートアニオン、2−ビシクロ[2.2.1]ヘプタ−2−イル−1,1−ジフルオロエタンスルホネートアニオン等が挙げられる。   Preferred anion sites of the general formula (7) include trifluoromethanesulfonate anion, perfluoro-n-butanesulfonate anion, perfluoro-n-octanesulfonate anion, 2-bicyclo [2.2.1] hept-2-yl -1,1,2,2-tetrafluoroethanesulfonate anion, 2-bicyclo [2.2.1] hept-2-yl-1,1-difluoroethanesulfonate anion, and the like.

本発明において、酸発生剤1は単独で又は2種以上を混合して使用することができる。   In this invention, the acid generator 1 can be used individually or in mixture of 2 or more types.

また、本発明における感放射線性酸発生剤として使用することのできる、前記酸発生剤(B)以外の感放射線性酸発生剤(以下、「他の酸発生剤」という。)としては、例えば、オニウム塩化合物、ハロゲン含有化合物、ジアゾケトン化合物、スルホン化合物、スルホン酸化合物等を挙げることができる。これらの他の酸発生剤としては、例えば、下記のものを挙げることができる。   Moreover, as a radiation sensitive acid generator (henceforth "other acid generator") other than the said acid generator (B) which can be used as a radiation sensitive acid generator in this invention, it is, for example. Onium salt compounds, halogen-containing compounds, diazoketone compounds, sulfone compounds, sulfonic acid compounds, and the like. Examples of these other acid generators include the following.

オニウム塩化合物:
オニウム塩化合物としては、例えば、ヨードニウム塩、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等を挙げることができる。
オニウム塩化合物の具体例としては、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ−n−ブタンスルホネート、ジフェニルヨードニウムパーフルオロ−n−オクタンスルホネート、ジフェニルヨードニウム2−ビシクロ[2.2.1]ヘプタ−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムノナフルオロ−n−ブタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムパーフルオロ−n−オクタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウム2−ビシクロ[2.2.1]ヘプタ−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、シクロヘキシル・2−オキソシクロヘキシル・メチルスルホニウムトリフルオロメタンスルホネート、ジシクロヘキシル・2−オキソシクロヘキシルスルホニウムトリフルオロメタンスルホネート、2−オキソシクロヘキシルジメチルスルホニウムトリフルオロメタンスルホネート等を挙げることができる。
Onium salt compounds:
Examples of the onium salt compound include iodonium salts, sulfonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
Specific examples of the onium salt compound include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, diphenyliodonium 2-bicyclo [2.2.1] hepta-2. -Yl-1,1,2,2-tetrafluoroethanesulfonate, bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis ( 4-t-butylphenyl) iodonium perfluoro-n-octanesulfonate, bis (4-t-butylphenyl) iodonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2- Te La tetrafluoroethane sulfonate, cyclohexyl 2-oxo-cyclohexyl methyl trifluoromethanesulfonate, dicyclohexyl-2-oxo-cyclohexyl trifluoromethane sulfonate, and 2-oxo-cyclohexyl dimethyl sulfonium trifluoromethanesulfonate, and the like.

ハロゲン含有化合物:
ハロゲン含有化合物としては、例えば、ハロアルキル基含有炭化水素化合物、ハロアルキル基含有複素環式化合物等を挙げることができる。
ハロゲン含有化合物の具体例としては、フェニルビス(トリクロロメチル)−s−トリアジン、4−メトキシフェニルビス(トリクロロメチル)−s−トリアジン、1−ナフチルビス(トリクロロメチル)−s−トリアジン等の(トリクロロメチル)−s−トリアジン誘導体や、1,1−ビス(4−クロロフェニル)−2,2,2−トリクロロエタン等を挙げることができる。
Halogen-containing compounds:
Examples of the halogen-containing compound include a haloalkyl group-containing hydrocarbon compound and a haloalkyl group-containing heterocyclic compound.
Specific examples of halogen-containing compounds include (trichloromethyl such as phenylbis (trichloromethyl) -s-triazine, 4-methoxyphenylbis (trichloromethyl) -s-triazine, 1-naphthylbis (trichloromethyl) -s-triazine. ) -S-triazine derivatives and 1,1-bis (4-chlorophenyl) -2,2,2-trichloroethane.

ジアゾケトン化合物:
ジアゾケトン化合物としては、例えば、1,3−ジケト−2−ジアゾ化合物、ジアゾベンゾキノン化合物、ジアゾナフトキノン化合物等を挙げることができる。
ジアゾケトンの具体例としては、1,2−ナフトキノンジアジド−4−スルホニルクロリド、1,2−ナフトキノンジアジド−5−スルホニルクロリド、2,3,4,4’−テトラヒドロキシベンゾフェノンの1,2−ナフトキノンジアジド−4−スルホン酸エステル又は1,2−ナフトキノンジアジド−5−スルホン酸エステル、1,1,1−トリス(4−ヒドロキシフェニル)エタンの1,2−ナフトキノンジアジド−4−スルホン酸エステル又は1,2−ナフトキノンジアジド−5−スルホン酸エステル等を挙げることができる。
Diazo ketone compounds:
Examples of the diazo ketone compound include a 1,3-diketo-2-diazo compound, a diazobenzoquinone compound, a diazonaphthoquinone compound, and the like.
Specific examples of the diazo ketone include 1,2-naphthoquinonediazide-4-sulfonyl chloride, 1,2-naphthoquinonediazide-5-sulfonyl chloride, 1,2, naphthoquinonediazide of 2,3,4,4′-tetrahydroxybenzophenone. -4-sulfonic acid ester or 1,2-naphthoquinonediazide-5-sulfonic acid ester, 1,1,1-naphthoquinonediazide-4-sulfonic acid ester of 1,1,1-tris (4-hydroxyphenyl) ethane Examples include 2-naphthoquinonediazide-5-sulfonic acid ester.

スルホン化合物:
スルホン化合物としては、例えば、β−ケトスルホン、β−スルホニルスルホンや、これらの化合物のα−ジアゾ化合物等を挙げることができる。
スルホン化合物の具体例としては、4−トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェニルスルホニル)メタン等を挙げることができる。
Sulfone compounds:
Examples of the sulfone compound include β-ketosulfone, β-sulfonylsulfone, and α-diazo compounds of these compounds.
Specific examples of the sulfone compound include 4-trisphenacylsulfone, mesitylphenacylsulfone, bis (phenylsulfonyl) methane, and the like.

スルホン酸化合物:
スルホン酸化合物としては、例えば、アルキルスルホン酸エステル、アルキルスルホン酸イミド、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネート等を挙げることができる。
スルホン酸化合物の具体例としては、ベンゾイントシレート、ピロガロールのトリス(トリフルオロメタンスルホネート)、ニトロベンジル−9,10−ジエトキシアントラセン−2−スルホネート、トリフルオロメタンスルホニルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボジイミド、ノナフルオロ−n−ブタンスルホニルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボジイミド、パーフルオロ−n−オクタンスルホニルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボジイミド、2−ビシクロ[2.2.1]ヘプタ−2−イル−1,1,2,2−テトラフルオロエタンスルホニルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボジイミド、N−(トリフルオロメタンスルホニルオキシ)スクシンイミド、N−(ノナフルオロ−n−ブタンスルホニルオキシ)スクシンイミド、N−(パーフルオロ−n−オクタンスルホニルオキシ)スクシンイミド、N−(2−ビシクロ[2.2.1]ヘプタ−2−イル−1,1,2,2−テトラフルオロエタンスルホニルオキシ)スクシンイミド、1,8−ナフタレンジカルボン酸イミドトリフルオロメタンスルホネート、1,8−ナフタレンジカルボン酸イミドノナフルオロ−n−ブタンスルホネート、1,8−ナフタレンジカルボン酸イミドパーフルオロ−n−オクタンスルホネート等を挙げることができる。
Sulfonic acid compounds:
Examples of the sulfonic acid compounds include alkyl sulfonic acid esters, alkyl sulfonic acid imides, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, and imino sulfonates.
Specific examples of the sulfonic acid compounds include benzoin tosylate, pyrogallol tris (trifluoromethanesulfonate), nitrobenzyl-9,10-diethoxyanthracene-2-sulfonate, trifluoromethanesulfonylbicyclo [2.2.1] hept- 5-ene-2,3-dicarbodiimide, nonafluoro-n-butanesulfonylbicyclo [2.2.1] hept-5-ene-2,3-dicarbodiimide, perfluoro-n-octanesulfonylbicyclo [2.2 .1] Hept-5-ene-2,3-dicarbodiimide, 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethanesulfonylbicyclo [2.2. 1] Hept-5-ene-2,3-dicarbodiimide, N- (trifluoromethanesulfonyl Xyl) succinimide, N- (nonafluoro-n-butanesulfonyloxy) succinimide, N- (perfluoro-n-octanesulfonyloxy) succinimide, N- (2-bicyclo [2.2.1] hept-2-yl- 1,1,2,2-tetrafluoroethanesulfonyloxy) succinimide, 1,8-naphthalenedicarboxylic imide trifluoromethanesulfonate, 1,8-naphthalenedicarboxylic imidononafluoro-n-butanesulfonate, 1,8-naphthalenedicarboxylic Examples include acid imido perfluoro-n-octane sulfonate.

これらの他の酸発生剤のうち、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ−n−ブタンスルホネート、ジフェニルヨードニウムパーフルオロ−n−オクタンスルホネート、ジフェニルヨードニウム2−ビシクロ[2.2.1]ヘプタ−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムノナフルオロ−n−ブタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムパーフルオロ−n−オクタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウム2−ビシクロ[2.2.1]ヘプタ−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、
シクロヘキシル・2−オキソシクロヘキシル・メチルスルホニウムトリフルオロメタンスルホネート、ジシクロヘキシル・2−オキソシクロヘキシルスルホニウムトリフルオロメタンスルホネート、2−オキソシクロヘキシルジメチルスルホニウムトリフルオロメタンスルホネート、
Among these other acid generators, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, diphenyliodonium 2-bicyclo [2.2.1] hepta- 2-yl-1,1,2,2-tetrafluoroethanesulfonate, bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis (4-t-Butylphenyl) iodonium perfluoro-n-octanesulfonate, bis (4-t-butylphenyl) iodonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2 -Tetraph Oro ethanesulfonate,
Cyclohexyl, 2-oxocyclohexyl, methylsulfonium trifluoromethanesulfonate, dicyclohexyl, 2-oxocyclohexylsulfonium trifluoromethanesulfonate, 2-oxocyclohexyldimethylsulfonium trifluoromethanesulfonate,

トリフルオロメタンスルホニルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボジイミド、ノナフルオロ−n−ブタンスルホニルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボジイミド、パーフルオロ−n−オクタンスルホニルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボジイミド、2−ビシクロ[2.2.1]ヘプタ−2−イル−1,1,2,2−テトラフルオロエタンスルホニルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボジイミド、N−(トリフルオロメタンスルホニルオキシ)スクシンイミド、N−(ノナフルオロ−n−ブタンスルホニルオキシ)スクシンイミド、N−(パーフルオロ−n−オクタンスルホニルオキシ)スクシンイミド、N−(2−ビシクロ[2.2.1]ヘプタ−2−イル−1,1,2,2−テトラフルオロエタンスルホニルオキシ)スクシンイミド、1,8−ナフタレンジカルボン酸イミドトリフルオロメタンスルホネート等が好ましい。前記他の酸発生剤は、単独で又は2種以上を混合して使用することができる。   Trifluoromethanesulfonylbicyclo [2.2.1] hept-5-ene-2,3-dicarbodiimide, nonafluoro-n-butanesulfonylbicyclo [2.2.1] hept-5-ene-2,3-dicarbodiimide Perfluoro-n-octanesulfonylbicyclo [2.2.1] hept-5-ene-2,3-dicarbodiimide, 2-bicyclo [2.2.1] hept-2-yl-1,1,2 , 2-tetrafluoroethanesulfonylbicyclo [2.2.1] hept-5-ene-2,3-dicarbodiimide, N- (trifluoromethanesulfonyloxy) succinimide, N- (nonafluoro-n-butanesulfonyloxy) succinimide N- (perfluoro-n-octanesulfonyloxy) succinimide, N- (2-bicyclo [2.2 1] hept-2-yl-1,1,2,2-tetrafluoroethane sulfonyloxy) succinimide, 1,8-naphthalenedicarboxylic acid imide trifluoromethanesulfonate and the like are preferable. The other acid generators can be used alone or in admixture of two or more.

本発明において、酸発生剤(B)と他の酸発生剤の合計使用量は、レジストとしての感度及び現像性を確保する観点から、樹脂100質量部に対して、通常、0.1〜20質量部、好ましくは0.5〜10質量部である。この場合、前記合計使用量が0.1質量部未満では、感度及び現像性が低下する傾向があり、一方20質量部を超えると、放射線に対する透明性が低下して、矩形のレジストパターンを得られ難くなる傾向がある。また、他の酸発生剤の使用割合は、酸発生剤(B)と他の酸発生剤との合計に対して、通常、80質量%以下、好ましくは60質量%以下である。   In the present invention, the total amount of the acid generator (B) and the other acid generator used is usually 0.1 to 20 with respect to 100 parts by mass of the resin from the viewpoint of ensuring the sensitivity and developability as a resist. Part by mass, preferably 0.5 to 10 parts by mass. In this case, if the total amount used is less than 0.1 parts by mass, the sensitivity and developability tend to decrease. On the other hand, if it exceeds 20 parts by mass, the transparency to radiation decreases and a rectangular resist pattern is obtained. There is a tendency to become difficult to get. Moreover, the usage-amount of another acid generator is 80 mass% or less normally with respect to the sum total of an acid generator (B) and another acid generator, Preferably it is 60 mass% or less.

<添加剤>
本発明の感放射線性樹脂組成物には、必要に応じて、酸拡散制御剤、脂環族添加剤、界面活性剤、増感剤等の各種の添加剤を配合することができる。
前記酸拡散制御剤は、露光により酸発生剤から生じる酸のレジスト被膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する作用を有する成分である。このような酸拡散制御剤を配合することにより、得られる感放射線性樹脂組成物の貯蔵安定性が向上し、またレジストとしての解像度が更に向上するとともに、露光から露光後の加熱処理までの引き置き時間(PED)の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れた組成物が得られる。
酸拡散制御剤としては、レジストパターンの形成工程中の露光や加熱処理により塩基性が変化しない含窒素有機化合物が好ましい。このような含窒素有機化合物としては、例えば、下記一般式(8)で表される化合物(以下、「含窒素化合物(イ)」という。)、同一分子内に窒素原子を2個有する化合物(以下、「含窒素化合物(ロ)」という。)、窒素原子を3個以上有するポリアミノ化合物や重合体(以下、これらをまとめて「含窒素化合物(ハ)」という。)、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等を挙げることができる。
<Additives>
In the radiation sensitive resin composition of the present invention, various additives such as an acid diffusion controller, an alicyclic additive, a surfactant, and a sensitizer can be blended as necessary.
The acid diffusion control agent is a component having an action of controlling a diffusion phenomenon of an acid generated from an acid generator upon exposure in a resist film and suppressing an undesirable chemical reaction in a non-exposed region. By blending such an acid diffusion controller, the storage stability of the resulting radiation-sensitive resin composition is improved, the resolution as a resist is further improved, and the process from exposure to heat treatment after exposure is improved. A change in the line width of the resist pattern due to fluctuations in the placement time (PED) can be suppressed, and a composition having extremely excellent process stability can be obtained.
As the acid diffusion controller, a nitrogen-containing organic compound whose basicity is not changed by exposure or heat treatment in the resist pattern forming step is preferable. As such a nitrogen-containing organic compound, for example, a compound represented by the following general formula (8) (hereinafter referred to as “nitrogen-containing compound (i)”), a compound having two nitrogen atoms in the same molecule ( Hereinafter referred to as “nitrogen-containing compound (b)”), polyamino compounds and polymers having 3 or more nitrogen atoms (hereinafter collectively referred to as “nitrogen-containing compound (c)”), amide group-containing compounds, Examples include urea compounds and nitrogen-containing heterocyclic compounds.

Figure 2007212797

〔一般式(8)において、各R10は相互に独立に水素原子、置換若しくは非置換の直鎖状、分岐状若しくは環状のアルキル基、置換若しくは非置換のアリール基又は置換若しくは非置換のアラルキル基を示す。〕
Figure 2007212797

[In the general formula (8), each R 10 independently represents a hydrogen atom, a substituted or unsubstituted linear, branched or cyclic alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl. Indicates a group. ]

含窒素化合物(イ)としては、例えば、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン、シクロヘキシルアミン等のモノ(シクロ)アルキルアミン類;ジ−n−ブチルアミン、ジ−n−ペンチルアミン、ジ−n−ヘキシルアミン、ジ−n−ヘプチルアミン、ジ−n−オクチルアミン、ジ−n−ノニルアミン、ジ−n−デシルアミン、シクロヘキシルメチルアミン、ジシクロヘキシルアミン等のジ(シクロ)アルキルアミン類;トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ペンチルアミン、トリ−n−ヘキシルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デシルアミン、シクロヘキシルジメチルアミン、メチルジシクロヘキシルアミン、トリシクロヘキシルアミン等のトリ(シクロ)アルキルアミン類;2,2’,2"−ニトロトリエタノール等の置換アルキルアミン;アニリン、N−メチルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、4−ニトロアニリン、ジフェニルアミン、トリフェニルアミン、ナフチルアミン、2,4,6−トリ−tert−ブチル−N−メチルアニリン、N−フェニルジエタノールアミン、2,6−ジイソプロピルアニリン等の芳香族アミン類が好ましい。   Examples of the nitrogen-containing compound (i) include mono (cyclo) alkylamines such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, cyclohexylamine; di-n- Butylamine, di-n-pentylamine, di-n-hexylamine, di-n-heptylamine, di-n-octylamine, di-n-nonylamine, di-n-decylamine, cyclohexylmethylamine, dicyclohexylamine, etc. Di (cyclo) alkylamines; triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, tri-n-octylamine , Tri-n-nonylamine, tri-n-decylamine, cyclohexyl Tri (cyclo) alkylamines such as dimethylamine, methyldicyclohexylamine, tricyclohexylamine; substituted alkylamines such as 2,2 ′, 2 ″ -nitrotriethanol; aniline, N-methylaniline, N, N-dimethylaniline 2-methylaniline, 3-methylaniline, 4-methylaniline, 4-nitroaniline, diphenylamine, triphenylamine, naphthylamine, 2,4,6-tri-tert-butyl-N-methylaniline, N-phenyldiethanolamine Aromatic amines such as 2,6-diisopropylaniline are preferred.

含窒素化合物(ロ)としては、例えば、エチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルアミン、2,2−ビス(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2−(4−アミノフェニル)−2−(3−ヒドロキシフェニル)プロパン、2−(4−アミノフェニル)−2−(4−ヒドロキシフェニル)プロパン、1,4−ビス〔1−(4−アミノフェニル)−1−メチルエチル〕ベンゼン、1,3−ビス〔1−(4−アミノフェニル)−1−メチルエチル〕ベンゼン、ビス(2−ジメチルアミノエチル)エーテル、ビス(2−ジエチルアミノエチル)エーテル、1−(2−ヒドロキシエチル)−2−イミダゾリジノン、2−キノキサリノール、N,N,N’,N’−テトラキス(2−ヒドロキシプロピル)エチレンジアミン、N,N,N’,N",N"−ペンタメチルジエチレントリアミン等が好ましい。
含窒素化合物(ハ)としては、例えば、ポリエチレンイミン、ポリアリルアミン、2−ジメチルアミノエチルアクリルアミドの重合体等が好ましい。
Examples of the nitrogen-containing compound (b) include ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, tetramethylenediamine, hexamethylenediamine, 4,4′-diaminodiphenylmethane, and 4,4′-diaminodiphenylether. 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylamine, 2,2-bis (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2, -(4-aminophenyl) -2- (3-hydroxyphenyl) propane, 2- (4-aminophenyl) -2- (4-hydroxyphenyl) propane, 1,4-bis [1- (4-aminophenyl) ) -1-methylethyl] benzene, 1,3-bis [1- (4-aminophenyl) -1-methylethyl] ben , Bis (2-dimethylaminoethyl) ether, bis (2-diethylaminoethyl) ether, 1- (2-hydroxyethyl) -2-imidazolidinone, 2-quinoxalinol, N, N, N ′, N '-Tetrakis (2-hydroxypropyl) ethylenediamine, N, N, N', N ", N" -pentamethyldiethylenetriamine and the like are preferable.
As the nitrogen-containing compound (c), for example, polyethyleneimine, polyallylamine, 2-dimethylaminoethylacrylamide polymer and the like are preferable.

前記アミド基含有化合物としては、例えば、N−t−ブトキシカルボニルジ−n−オクチルアミン、N−t−ブトキシカルボニルジ−n−ノニルアミン、N−t−ブトキシカルボニルジ−n−デシルアミン、N−t−ブトキシカルボニルジシクロヘキシルアミン、N−t−ブトキシカルボニル−1−アダマンチルアミン、N−t−ブトキシカルボニル−2−アダマンチルアミン、N−t−ブトキシカルボニル−N−メチル−1−アダマンチルアミン、(S)−(−)−1−(t−ブトキシカルボニル)−2−ピロリジンメタノール、(R)−(+)−1−(t−ブトキシカルボニル)−2−ピロリジンメタノール、N−t−ブトキシカルボニル−4−ヒドロキシピペリジン、N−t−ブトキシカルボニルピロリジン、N−t−ブトキシカルボニルピペラジン、N,N−ジ−t−ブトキシカルボニル−1−アダマンチルアミン、N,N−ジ−t−ブトキシカルボニル−N−メチル−1−アダマンチルアミン、N−t−ブトキシカルボニル−4,4’−ジアミノジフェニルメタン、N,N’−ジ−t−ブトキシカルボニルヘキサメチレンジアミン、N,N,N’N’−テトラ−t−ブトキシカルボニルヘキサメチレンジアミン、N,N’−ジ−t−ブトキシカルボニル−1,7−ジアミノヘプタン、N,N’−ジ−t−ブトキシカルボニル−1,8−ジアミノオクタン、N,N’−ジ−t−ブトキシカルボニル−1,9−ジアミノノナン、N,N’−ジ−t−ブトキシカルボニル−1,10−ジアミノデカン、N,N’−ジ−t−ブトキシカルボニル−1,12−ジアミノドデカン、N,N’−ジ−t−ブトキシカルボニル−4,4’−ジアミノジフェニルメタン、N−t−ブトキシカルボニルベンズイミダゾール、N−t−ブトキシカルボニル−2−メチルベンズイミダゾール、N−t−ブトキシカルボニル−2−フェニルベンズイミダゾール等のN−t−ブトキシカルボニル基含有アミノ化合物のほか、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N−メチルピロリドン、N−アセチル−1−アダマンチルアミン、イソシアヌル酸トリス(2−ヒドロキシエチル)等が好ましい。   Examples of the amide group-containing compound include Nt-butoxycarbonyldi-n-octylamine, Nt-butoxycarbonyldi-n-nonylamine, Nt-butoxycarbonyldi-n-decylamine, Nt -Butoxycarbonyldicyclohexylamine, Nt-butoxycarbonyl-1-adamantylamine, Nt-butoxycarbonyl-2-adamantylamine, Nt-butoxycarbonyl-N-methyl-1-adamantylamine, (S)- (-)-1- (t-butoxycarbonyl) -2-pyrrolidinemethanol, (R)-(+)-1- (t-butoxycarbonyl) -2-pyrrolidinemethanol, Nt-butoxycarbonyl-4-hydroxy Piperidine, Nt-butoxycarbonylpyrrolidine, Nt-butoxycarbo Rupiperazine, N, N-di-t-butoxycarbonyl-1-adamantylamine, N, N-di-t-butoxycarbonyl-N-methyl-1-adamantylamine, Nt-butoxycarbonyl-4,4′- Diaminodiphenylmethane, N, N′-di-t-butoxycarbonylhexamethylenediamine, N, N, N′N′-tetra-t-butoxycarbonylhexamethylenediamine, N, N′-di-t-butoxycarbonyl-1 , 7-diaminoheptane, N, N′-di-t-butoxycarbonyl-1,8-diaminooctane, N, N′-di-t-butoxycarbonyl-1,9-diaminononane, N, N′-di- t-butoxycarbonyl-1,10-diaminodecane, N, N′-di-t-butoxycarbonyl-1,12-diaminododecane, N N'-di-t-butoxycarbonyl-4,4'-diaminodiphenylmethane, Nt-butoxycarbonylbenzimidazole, Nt-butoxycarbonyl-2-methylbenzimidazole, Nt-butoxycarbonyl-2-phenyl In addition to Nt-butoxycarbonyl group-containing amino compounds such as benzimidazole, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, Pyrrolidone, N-methylpyrrolidone, N-acetyl-1-adamantylamine, isocyanuric acid tris (2-hydroxyethyl) and the like are preferable.

前記ウレア化合物としては、例えば、尿素、メチルウレア、1,1−ジメチルウレア、1,3−ジメチルウレア、1,1,3,3−テトラメチルウレア、1,3−ジフェニルウレア、トリ−n−ブチルチオウレア等が好ましい。前記含窒素複素環化合物としては、例えば、イミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール、ベンズイミダゾール、2−フェニルベンズイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−メチル−1H−イミダゾール等のイミダゾール類;ピリジン、2−メチルピリジン、4−メチルピリジン、2−エチルピリジン、4−エチルピリジン、2−フェニルピリジン、4−フェニルピリジン、2−メチル−4−フェニルピリジン、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、4−ヒドロキシキノリン、8−オキシキノリン、アクリジン、2,2’:6’,2"−ターピリジン等のピリジン類;ピペラジン、1−(2−ヒドロキシエチル)ピペラジン等のピペラジン類のほか、ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、ピペリジンエタノール、3−ピペリジノ−1,2−プロパンジオール、モルホリン、4−メチルモルホリン、1−(4−モルホリニル)エタノール、4−アセチルモルホリン、3−(N−モルホリノ)−1,2−プロパンジオール、1,4−ジメチルピペラジン、1,4−ジアザビシクロ[2.2.2]オクタン等が好ましい。   Examples of the urea compound include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tri-n-butyl. Thiourea and the like are preferable. Examples of the nitrogen-containing heterocyclic compound include imidazole, 4-methylimidazole, 4-methyl-2-phenylimidazole, benzimidazole, 2-phenylbenzimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2. -Imidazoles such as methyl-1H-imidazole; pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, 2-methyl-4-phenyl Pyridines such as pyridine, nicotine, nicotinic acid, nicotinamide, quinoline, 4-hydroxyquinoline, 8-oxyquinoline, acridine, 2,2 ': 6', 2 "-terpyridine; piperazine, 1- (2-hydroxy In addition to piperazines such as ethyl) piperazine, Pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, piperidine ethanol, 3-piperidino-1,2-propanediol, morpholine, 4-methylmorpholine, 1- (4-morpholinyl) ethanol, 4-acetylmorpholine, 3 -(N-morpholino) -1,2-propanediol, 1,4-dimethylpiperazine, 1,4-diazabicyclo [2.2.2] octane and the like are preferable.

前記酸拡散制御剤は、単独で又は2種以上を混合して使用することができる。酸拡散制御剤の配合量は、共重合体100質量部に対して、通常、15質量部以下、好ましくは10質量部以下、さらに好ましくは5質量部以下である。この場合、酸拡散制御剤の配合量が15質量部を超えると、レジストとしての感度が低下する傾向がある。なお、酸拡散制御剤の配合量が0.001質量部未満であると、プロセス条件によっては、レジストとしてのパターン形状や寸法忠実度が低下するおそれがある。   The acid diffusion controller can be used alone or in admixture of two or more. The compounding amount of the acid diffusion controller is usually 15 parts by mass or less, preferably 10 parts by mass or less, and more preferably 5 parts by mass or less with respect to 100 parts by mass of the copolymer. In this case, when the compounding amount of the acid diffusion controller exceeds 15 parts by mass, the sensitivity as a resist tends to decrease. If the amount of the acid diffusion controller is less than 0.001 part by mass, the pattern shape and dimensional fidelity as a resist may be lowered depending on the process conditions.

また、前記脂環族添加剤は、ドライエッチング耐性、パターン形状、基板との接着性等を更に改善する作用を示す成分である。
このような脂環族添加剤としては、例えば、1−アダマンタンカルボン酸、2−アダマンタノン、1−アダマンタンカルボン酸t−ブチル、1−アダマンタンカルボン酸t−ブトキシカルボニルメチル、1−アダマンタンカルボン酸α−ブチロラクトンエステル、1,3−アダマンタンジカルボン酸ジ−t−ブチル、1−アダマンタン酢酸t−ブチル、1−アダマンタン酢酸t−ブトキシカルボニルメチル、1,3−アダマンタンジ酢酸ジ−t−ブチル、2,5−ジメチル−2,5−ジ(アダマンチルカルボニルオキシ)ヘキサン等のアダマンタン誘導体類;デオキシコール酸t−ブチル、デオキシコール酸t−ブトキシカルボニルメチル、デオキシコール酸2−エトキシエチル、デオキシコール酸2−シクロヘキシルオキシエチル、デオキシコール酸3−オキソシクロヘキシル、デオキシコール酸テトラヒドロピラニル、デオキシコール酸メバロノラクトンエステル等のデオキシコール酸エステル類;リトコール酸t−ブチル、リトコール酸t−ブトキシカルボニルメチル、リトコール酸2−エトキシエチル、リトコール酸2−シクロヘキシルオキシエチル、リトコール酸3−オキソシクロヘキシル、リトコール酸テトラヒドロピラニル、リトコール酸メバロノラクトンエステル等のリトコール酸エステル類;アジピン酸ジメチル、アジピン酸ジエチル、アジピン酸ジプロピル、アジピン酸ジn−ブチル、アジピン酸ジt−ブチル等のアルキルカルボン酸エステル類や、3−〔2−ヒドロキシ−2,2−ビス(トリフルオロメチル)エチル〕テトラシクロ[4.4.0.12,5.17,10]ドデカン等を挙げることができる。これらの脂環族添加剤は、単独で又は2種以上を混合して使用することができる。
Moreover, the said alicyclic additive is a component which shows the effect | action which further improves dry etching tolerance, a pattern shape, adhesiveness with a board | substrate, etc.
Examples of such alicyclic additives include 1-adamantanecarboxylic acid, 2-adamantanone, 1-adamantanecarboxylic acid t-butyl, 1-adamantanecarboxylic acid t-butoxycarbonylmethyl, 1-adamantanecarboxylic acid α. -Butyrolactone ester, 1,3-adamantane dicarboxylic acid di-t-butyl, 1-adamantane acetate t-butyl, 1-adamantane acetate t-butoxycarbonylmethyl, 1,3-adamantane diacetate di-t-butyl, 2, Adamantane derivatives such as 5-dimethyl-2,5-di (adamantylcarbonyloxy) hexane; t-butyl deoxycholic acid, t-butoxycarbonylmethyl deoxycholic acid, 2-ethoxyethyl deoxycholic acid, 2-deoxycholic acid 2- Cyclohexyloxyethyl, deoxy Deoxycholic acid esters such as 3-oxocyclohexyl cholic acid, tetrahydropyranyl deoxycholic acid, mevalonolactone ester of deoxycholic acid; t-butyl lithocholic acid, t-butoxycarbonylmethyl lithocholic acid, 2-ethoxyethyl lithocholic acid, Lithocholic acid esters such as lithocholic acid 2-cyclohexyloxyethyl, lithocholic acid 3-oxocyclohexyl, lithocholic acid tetrahydropyranyl, lithocholic acid mevalonolactone ester; dimethyl adipate, diethyl adipate, dipropyl adipate, din adipate - butyl, alkyl carboxylic acid esters such as adipate t- butyl or 3- [2-hydroxy-2,2-bis (trifluoromethyl) ethyl] tetracyclo [4.4.0.1 2, 5 1 7,10 ] dodecane and the like. These alicyclic additives can be used alone or in admixture of two or more.

また、前記界面活性剤は、塗布性、ストリエーション、現像性等を改良する作用を示す成分である。
このような界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn−オクチルフェニルエーテル、ポリオキシエチレンn−ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤のほか、以下商品名で、KP341(信越化学工業株式会社製)、ポリフローNo.75、同No.95(共栄社化学株式会社製)、エフトップEF301、同EF303、同EF352(トーケムプロダクツ株式会社製)、メガファックスF171、同F173(大日本インキ化学工業株式会社製)、フロラードFC430、同FC431(住友スリーエム株式会社製)、アサヒガードAG710、サーフロンS−382、同SC−101、同SC−102、同SC−103、同SC−104、同SC−105、同SC−106(旭硝子株式会社製)等を挙げることができる。これらの界面活性剤は、単独で又は2種以上を混合して使用することができる。
The surfactant is a component having an action of improving coating properties, striation, developability and the like.
Examples of such surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, and polyethylene glycol dilaurate. In addition to nonionic surfactants such as polyethylene glycol distearate, KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no. 95 (manufactured by Kyoeisha Chemical Co., Ltd.), Ftop EF301, EF303, EF352 (manufactured by Tochem Products Co., Ltd.), Megafax F171, F173 (manufactured by Dainippon Ink & Chemicals, Inc.), Florard FC430, FC431 ( Sumitomo 3M Limited), Asahi Guard AG710, Surflon S-382, SC-101, SC-102, SC-103, SC-104, SC-105, SC-105, SC-106 (Asahi Glass Co., Ltd.) And the like. These surfactants can be used alone or in admixture of two or more.

また、前記増感剤は、放射線のエネルギーを吸収して、そのエネルギーを酸発生剤(B)に伝達し、それにより酸の生成量を増加する作用を示すもので、感放射線性樹脂組成物のみかけの感度を向上させる効果を有する。
このような増感剤としては、カルバゾール類、アセトフェノン類、ベンゾフェノン類、ナフタレン類、フェノール類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等を挙げることができる。これらの増感剤は、単独で又は2種以上を混合して使用することができる。
また、染料或いは顔料を配合することにより、露光部の潜像を可視化させて、露光時のハレーションの影響を緩和でき、接着助剤を配合することにより、基板との接着性を改善することができる。更に、前記以外の添加剤としては、アルカリ可溶性樹脂、酸解離性の保護基を有する低分子のアルカリ溶解性制御剤、ハレーション防止剤、保存安定化剤、消泡剤等を挙げることができる。
The sensitizer absorbs radiation energy and transmits the energy to the acid generator (B), thereby increasing the amount of acid produced. The radiation-sensitive resin composition It has the effect of improving the apparent sensitivity.
Examples of such sensitizers include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyl, eosin, rose bengal, pyrenes, anthracenes, phenothiazines, and the like. These sensitizers can be used alone or in admixture of two or more.
In addition, by blending a dye or pigment, the latent image of the exposed area can be visualized, and the influence of halation during exposure can be alleviated, and by blending an adhesion aid, adhesion to the substrate can be improved. it can. Furthermore, examples of additives other than the above include alkali-soluble resins, low-molecular alkali-solubility control agents having acid-dissociable protecting groups, antihalation agents, storage stabilizers, antifoaming agents, and the like.

<組成物溶液の調製>
本発明の感放射線性樹脂組成物は、普通、その使用に際して、全固形分濃度が、通常、1〜50質量%、好ましくは1〜25質量%となるように、溶剤に溶解したのち、例えば孔径0.2μm程度のフィルターでろ過することによって、組成物溶液として調製される。
前記組成物溶液の調製に使用される溶剤としては、例えば、2−ブタノン、2−ペンタノン、3−メチル−2−ブタノン、2−ヘキサノン、4−メチル−2−ペンタノン、3−メチル−2−ペンタノン、3,3−ジメチル−2−ブタノン、2−ヘプタノン、2−オクタノン等の直鎖状若しくは分岐状のケトン類;シクロペンタノン、3−メチルシクロペンタノン、シクロヘキサノン、2−メチルシクロヘキサノン、2,6−ジメチルシクロヘキサノン、イソホロン等の環状のケトン類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ−n−プロピルエーテルアセテート、プロピレングリコールモノ−i−プロピルエーテルアセテート、プロピレングリコールモノ−n−ブチルエーテルアセテート、プロピレングリコールモノ−i−ブチルエーテルアセテート、プロピレングリコールモノ−sec−ブチルエーテルアセテート、プロピレングリコールモノ−t−ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;2−ヒドロキシプロピオン酸メチル、2−ヒドロキシプロピオン酸エチル、2−ヒドロキシプロピオン酸n−プロピル、2−ヒドロキシプロピオン酸i−プロピル、2−ヒドロキシプロピオン酸n−ブチル、2−ヒドロキシプロピオン酸i−ブチル、2−ヒドロキシプロピオン酸sec−ブチル、2−ヒドロキシプロピオン酸t−ブチル等の2−ヒドロキシプロピオン酸アルキル類;3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル等の3−アルコキシプロピオン酸アルキル類のほか、
<Preparation of composition solution>
The radiation-sensitive resin composition of the present invention is usually dissolved in a solvent so that the total solid content concentration is usually 1 to 50% by mass, preferably 1 to 25% by mass. A composition solution is prepared by filtering with a filter having a pore size of about 0.2 μm.
Examples of the solvent used for the preparation of the composition solution include 2-butanone, 2-pentanone, 3-methyl-2-butanone, 2-hexanone, 4-methyl-2-pentanone, and 3-methyl-2- Linear or branched ketones such as pentanone, 3,3-dimethyl-2-butanone, 2-heptanone, 2-octanone; cyclopentanone, 3-methylcyclopentanone, cyclohexanone, 2-methylcyclohexanone, 2 Cyclic ketones such as 1,6-dimethylcyclohexanone and isophorone; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol mono-n-propyl ether acetate, propylene glycol mono-i-propyl ether acetate, propylene glycol Propylene glycol monoalkyl ether acetates such as propylene glycol mono-i-butyl ether acetate, propylene glycol mono-sec-butyl ether acetate, propylene glycol mono-t-butyl ether acetate; methyl 2-hydroxypropionate; 2-hydroxypropionic acid ethyl, 2-hydroxypropionic acid n-propyl, 2-hydroxypropionic acid i-propyl, 2-hydroxypropionic acid n-butyl, 2-hydroxypropionic acid i-butyl, 2-hydroxypropionic acid sec- Alkyl 2-hydroxypropionates such as butyl and t-butyl 2-hydroxypropionate; methyl 3-methoxypropionate, 3-methoxypropioate Ethyl, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate and the like of 3-alkoxy propionic acid alkyl ethers other,

n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、t−ブチルアルコール、シクロヘキサノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ−n−プロピルエーテル、エチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジ−n−プロピルエーテル、ジエチレングリコールジ−n−ブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ−n−プロピルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル、トルエン、キシレン、2−ヒドロキシ−2−メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2−ヒドロキシ−3−メチル酪酸メチル、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、3−メチル−3−メトキシブチルプロピオネート、3−メチル−3−メトキシブチルブチレート、酢酸エチル、酢酸n−プロピル、酢酸n−ブチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸メチル、ピルビン酸エチル、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ベンジルエチルエーテル、ジ−n−ヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、カプロン酸、カプリル酸、1−オクタノール、1−ノナノール、ベンジルアルコール、酢酸ベンジル、安息香酸エチル、しゅう酸ジエチル、マレイン酸ジエチル、γ−ブチロラクトン、炭酸エチレン、炭酸プロピレン等を挙げることができる。   n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, t-butyl alcohol, cyclohexanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether , Diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, propylene glycol monomethyl ether , Propylene glycol monoethyl Ether, propylene glycol mono-n-propyl ether, toluene, xylene, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutyrate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, 3-methyl-3-methoxybutyl propionate, 3-methyl-3-methoxybutyl butyrate, ethyl acetate, n-propyl acetate, n-butyl acetate, methyl acetoacetate, Ethyl acetoacetate, methyl pyruvate, ethyl pyruvate, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, benzyl ethyl ether, di-n-hexyl ether, diethylene glycol monomethyl ether, diethylene glycol Cole monoethyl ether, caproic acid, caprylic acid, 1-octanol, 1-nonanol, benzyl alcohol, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, γ-butyrolactone, ethylene carbonate, propylene carbonate, etc. Can do.

これらのなかでも、直鎖状若しくは分岐状のケトン類、環状のケトン類、プロピレングリコールモノアルキルエーテルアセテート類、2−ヒドロキシプロピオン酸アルキル類、3−アルコキシプロピオン酸アルキル類、γ−ブチロラクトン等が好ましい。
これらの溶剤は、単独で又は2種以上を混合して使用することができる。
Among these, linear or branched ketones, cyclic ketones, propylene glycol monoalkyl ether acetates, alkyl 2-hydroxypropionate, alkyl 3-alkoxypropionate, γ-butyrolactone and the like are preferable. .
These solvents can be used alone or in admixture of two or more.

<レジストパターンの形成方法>
本発明の感放射線性樹脂組成物は、特に化学増幅型レジストとして有用である。前記化学増幅型レジストにおいては、露光により酸発生剤から発生した酸の作用によって、樹脂(A)中の酸解離性基が解離して、カルボキシル基を生じ、その結果、レジストの露光部のアルカリ現像液に対する溶解性が高くなり、該露光部がアルカリ現像液によって溶解、除去され、ポジ型のレジストパターンが得られる。本発明の感放射線性樹脂組成物からレジストパターンを形成する際には、組成物溶液を、回転塗布、流延塗布、ロール塗布等の適宜の塗布手段によって、例えば、シリコンウエハ、アルミニウムで被覆されたウエハ等の基板上に塗布することにより、レジスト被膜を形成し、場合により予め加熱処理(以下、「PB」という。)を行ったのち、所定のレジストパターンを形成するように該レジスト被膜に露光する。その際に使用される放射線としては、使用される酸発生剤の種類に応じて、可視光線、紫外線、遠紫外線、X線、荷電粒子線等を適宜選定して使用されるが、ArFエキシマレーザー(波長193nm)或いはKrFエキシマレーザー(波長248nm)で代表される遠紫外線が好ましく、特にArFエキシマレーザー(波長193nm)が好ましい。また、露光量等の露光条件は、感放射線性樹脂組成物の配合組成や添加剤の種類等に応じて適宜選定される。本発明においては、露光後に加熱処理(PEB)を行うことが好ましい。このPEBにより、樹脂(A)中の酸解離性基の解離反応が円滑に進行する。PEBの加熱条件は、感放射線性樹脂組成物の配合組成によって変わるが、通常、30〜200℃、好ましくは50〜170℃である。
<Method for forming resist pattern>
The radiation sensitive resin composition of the present invention is particularly useful as a chemically amplified resist. In the chemically amplified resist, an acid-dissociable group in the resin (A) is dissociated by the action of an acid generated from an acid generator by exposure to generate a carboxyl group, and as a result, an alkali in an exposed portion of the resist is obtained. The solubility in the developer is increased, and the exposed portion is dissolved and removed by the alkali developer, and a positive resist pattern is obtained. When forming a resist pattern from the radiation-sensitive resin composition of the present invention, the composition solution is coated with, for example, a silicon wafer or aluminum by an appropriate application means such as spin coating, cast coating or roll coating. A resist film is formed by coating on a substrate such as a wafer, and in some cases, a heat treatment (hereinafter referred to as “PB”) is performed in advance, and then a predetermined resist pattern is formed on the resist film. Exposure. The radiation used at this time is appropriately selected from visible rays, ultraviolet rays, far ultraviolet rays, X-rays, charged particle beams, etc., depending on the type of acid generator used. ArF excimer laser Far ultraviolet rays represented by (wavelength 193 nm) or KrF excimer laser (wavelength 248 nm) are preferable, and ArF excimer laser (wavelength 193 nm) is particularly preferable. Moreover, exposure conditions, such as exposure amount, are suitably selected according to the compounding composition of a radiation sensitive resin composition, the kind of additive, etc. In the present invention, it is preferable to perform heat treatment (PEB) after exposure. By this PEB, the dissociation reaction of the acid dissociable group in the resin (A) proceeds smoothly. The heating condition of PEB varies depending on the composition of the radiation sensitive resin composition, but is usually 30 to 200 ° C, preferably 50 to 170 ° C.

本発明においては、感放射線性樹脂組成物の潜在能力を最大限に引き出すため、例えば特公平6−12452号公報等に開示されているように、使用される基板上に有機系或いは無機系の反射防止膜を形成しておくこともでき、また環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば特開平5−188598号公報等に開示されているように、レジスト被膜上に保護膜を設けることもでき、或いはこれらの技術を併用することもできる。
次いで、露光されたレジスト被膜を現像することにより、所定のレジストパターンを形成する。現像に使用される現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n−プロピルアミン、ジエチルアミン、ジ−n−プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ−[4.3.0]−5−ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ性水溶液が好ましい。前記アルカリ性水溶液の濃度は、通常、10質量%以下である。この場合、アルカリ性水溶液の濃度が10質量%を超えると、非露光部も現像液に溶解するおそれがあり好ましくない。
In the present invention, in order to maximize the potential of the radiation-sensitive resin composition, as disclosed in, for example, Japanese Patent Publication No. 6-12458, an organic or inorganic substrate is used. An antireflection film can also be formed, and in order to prevent the influence of basic impurities contained in the environmental atmosphere, as disclosed in, for example, JP-A-5-188598, A protective film can be provided on the substrate, or these techniques can be used in combination.
Next, the exposed resist film is developed to form a predetermined resist pattern. Examples of the developer used for development include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, and di-n-propylamine. , Triethylamine, methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- An alkaline aqueous solution in which at least one of alkaline compounds such as [4.3.0] -5-nonene is dissolved is preferable. The concentration of the alkaline aqueous solution is usually 10% by mass or less. In this case, if the concentration of the alkaline aqueous solution exceeds 10% by mass, the unexposed area may be dissolved in the developer, which is not preferable.

また、前記アルカリ性水溶液からなる現像液には、例えば有機溶媒を添加することもできる。前記有機溶媒としては、例えば、アセトン、メチルエチルケトン、メチルi−ブチルケトン、シクロペンタノン、シクロヘキサノン、3−メチルシクロペンタノン、2,6−ジメチルシクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、t−ブチルアルコール、シクロペンタノール、シクロヘキサノール、1,4−ヘキサンジオール、1,4−ヘキサンジメチロール等のアルコール類;テトラヒドロフラン、ジオキサン等のエーテル類;酢酸エチル、酢酸n−ブチル、酢酸i−アミル等のエステル類;トルエン、キシレン等の芳香族炭化水素類や、フェノール、アセトニルアセトン、ジメチルホルムアミド等を挙げることができる。これらの有機溶媒は、単独で又は2種以上を混合して使用することができる。有機溶媒の使用量は、アルカリ性水溶液に対して、100容量%以下が好ましい。この場合、有機溶媒の使用量が100容量%を超えると、現像性が低下して、露光部の現像残りが多くなるおそれがある。また、アルカリ性水溶液からなる現像液には、界面活性剤等を適量添加することもできる。尚、アルカリ性水溶液からなる現像液で現像したのちは、一般に、水で洗浄して乾燥する。   In addition, for example, an organic solvent can be added to the developer composed of the alkaline aqueous solution. Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone, methyl i-butyl ketone, cyclopentanone, cyclohexanone, 3-methylcyclopentanone, and 2,6-dimethylcyclohexanone; methyl alcohol, ethyl alcohol, and n-propyl. Alcohols such as alcohol, i-propyl alcohol, n-butyl alcohol, t-butyl alcohol, cyclopentanol, cyclohexanol, 1,4-hexanediol, 1,4-hexanedimethylol; ethers such as tetrahydrofuran and dioxane Esters such as ethyl acetate, n-butyl acetate and i-amyl acetate; aromatic hydrocarbons such as toluene and xylene; phenol, acetonylacetone and dimethylformamide. These organic solvents can be used alone or in admixture of two or more. The amount of the organic solvent used is preferably 100% by volume or less with respect to the alkaline aqueous solution. In this case, if the amount of the organic solvent used exceeds 100% by volume, the developability is lowered, and there is a possibility that the remaining development in the exposed area increases. In addition, an appropriate amount of a surfactant or the like can be added to the developer composed of an alkaline aqueous solution. In addition, after developing with the developing solution which consists of alkaline aqueous solution, generally it wash | cleans with water and dries.

以下、実施例を挙げて、本発明の実施の形態を更に具体的に説明する。但し、本発明は、これらの実施例に何ら制約されるものではない。ここで、部は、特記しない限り質量基準である。   Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. Here, the part is based on mass unless otherwise specified.

下記の各合成例における各測定・評価は、下記の要領で行った。
(1)Mw及びMn
東ソー(株)製GPCカラム(G2000HXL2本、G3000HXL1本、G4000HXL1本)を用い、流量1.0ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した。また、分散度Mw/Mnは測定結果より算出した。
(2)単量体由来の低分子量成分の量
ジーエルサイエンス製Intersil ODS-25μmカラム(4.6mmφ×250mm)を用い、流量1.0ミリリットル/分、溶出溶媒アクリロニトリル/0.1%リン酸水溶液の分析条件で、高速液体クロマトグラフィー(HPLC)により測定した。
(3)13C-NMR分析
各重合体の13C−NMR分析は、日本電子(株)製「JNM−EX270」を用い、測定溶媒としてCDCLを使用して実施した。
Each measurement and evaluation in each of the following synthesis examples was performed in the following manner.
(1) Mw and Mn
Gel permeation based on monodisperse polystyrene using GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL) manufactured by Tosoh Corporation under the analysis conditions of flow rate 1.0 ml / min, elution solvent tetrahydrofuran, column temperature 40 ° C. It was measured by an association chromatography (GPC). Further, the degree of dispersion Mw / Mn was calculated from the measurement results.
(2) Amount of low molecular weight component derived from monomer Using an Intersil ODS-25 μm column (4.6 mmφ × 250 mm) manufactured by GL Sciences, a flow rate of 1.0 ml / min, elution solvent acrylonitrile / 0.1% phosphoric acid aqueous solution Measurement was performed by high performance liquid chromatography (HPLC) under the analysis conditions described above.
(3) 13 C-NMR analysis of 13 C-NMR analysis the polymer, using a Nippon Denshi Co. "JNM-EX270", was performed using CDCL 3 as measurement solvent.

以下、各合成例について説明する。
<合成例1−1>
下記化合物(M−1)53.93g(50モル%)、化合物(M−2)10.69g(10モル%)、化合物(M−3)35.38g(40モル%)を2−ブタノン200gに溶解し、更にジメチル2,2'−アゾビス(2−メチルプロピオネート)5.58gを投入した単量体溶液を準備し、100gの2−ブタノンを投入した1000mlの三口フラスコを30分窒素パージした。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、事前に準備した上記単量体溶液を滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、重合溶液は水冷することにより30℃以下に冷却し、2000gのメタノールへ投入し、析出した白色粉末をろ別した。ろ別された白色粉末を2度400gのメタノールにてスラリー上で洗浄した後、ろ別し、50℃にて17時間乾燥し、白色粉末の重合体を得た(74g、収率74%)。この重合体はMwが6900、Mw/Mnが1.70、13C-NMR分析の結果、化合物(M−1)、化合物(M−2)、化合物(M−3)に由来する各繰り返し単位の含有率が53.0:9.8:37.2(モル%)の共重合体であった。この重合体をアクリル系重合体(A−1)とする。尚、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.03質量%であった。
Hereinafter, each synthesis example will be described.
<Synthesis Example 1-1>
The following compound (M-1) 53.93 g (50 mol%), compound (M-2) 10.69 g (10 mol%), compound (M-3) 35.38 g (40 mol%) was added to 2-butanone 200 g. And a monomer solution charged with 5.58 g of dimethyl 2,2′-azobis (2-methylpropionate) was prepared, and a 1000 ml three-necked flask charged with 100 g of 2-butanone was charged with nitrogen for 30 minutes. Purged. After purging with nitrogen, the reaction kettle was heated to 80 ° C. with stirring, and the monomer solution prepared in advance was added dropwise using a dropping funnel over 3 hours. The polymerization start was carried out for 6 hours with the start of dropping as the polymerization start time. After completion of the polymerization, the polymerization solution was cooled with water to 30 ° C. or lower, poured into 2000 g of methanol, and the precipitated white powder was separated by filtration. The filtered white powder was washed twice with 400 g of methanol on the slurry, filtered, and dried at 50 ° C. for 17 hours to obtain a white powder polymer (74 g, yield 74%). . This polymer has Mw of 6900, Mw / Mn of 1.70, and as a result of 13 C-NMR analysis, each repeating unit derived from compound (M-1), compound (M-2), and compound (M-3) Was a copolymer having a content of 53.0: 9.8: 37.2 (mol%). This polymer is referred to as “acrylic polymer (A-1)”. In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.03 mass% with respect to 100 mass% of this polymer.

Figure 2007212797
Figure 2007212797

<合成例1−2>
単量体溶液を下記化合物(M−1)48.22g(48モル%)、化合物(M−4)40.25g(38モル%)、化合物(M−3)11.53g(14モル%)、を2−ブタノン200gに溶解し、更に2,2’−アゾビス(イソブチロニトリル)3.71gを投入した溶液とした以外は、合成例1−1と同様にして樹脂を合成した。この樹脂は分子量が5200、Mw/Mnが1.62であり、13C−NMR分析の結果、化合物(M−1)、化合物(M−4)、化合物(M−3)に由来する各繰り返し単位の含有率が50.0:37.0:13.0(モル%)の共重合体であった。この重合体を樹脂(A−2)とする。尚、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.03質量%であった。
<Synthesis Example 1-2>
The monomer solution was mixed with 48.22 g (48 mol%) of the following compound (M-1), 40.25 g (38 mol%) of the compound (M-4), 11.53 g (14 mol%) of the compound (M-3). Is dissolved in 200 g of 2-butanone, and a resin is synthesized in the same manner as in Synthesis Example 1-1 except that 3.71 g of 2,2′-azobis (isobutyronitrile) is added. This resin has a molecular weight of 5200 and Mw / Mn of 1.62, and as a result of 13 C-NMR analysis, each resin is derived from compound (M-1), compound (M-4) and compound (M-3). The copolymer had a unit content of 50.0: 37.0: 13.0 (mol%). This polymer is referred to as “resin (A-2)”. In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.03 mass% with respect to 100 mass% of this polymer.

Figure 2007212797
Figure 2007212797

<合成例1−3>
単量体溶液を下記化合物(M−1)43.64g(45モル%)、化合物(M−5)15.47g(15モル%)、化合物(M−4)40.90g(40モル%)、を2−ブタノン200gに溶解し、更にジメチル2,2’−アゾビス(2−メチルプロピオネート)5.02gを投入した溶液とした以外は、合成例1−1と同様にして樹脂を合成した。この樹脂は分子量が5000、Mw/Mnが1.60であり、13C−NMR分析の結果、化合物(M−1)、化合物(M−5)、化合物(M−4)に由来する各繰り返し単位の含有率が47.3:15.8:36.9(モル%)の共重合体であった。この重合体を樹脂(A−3)とする。尚、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.05質量%であった。
<Synthesis Example 1-3>
The monomer solution was prepared by the following compound (M-1) 43.64 g (45 mol%), compound (M-5) 15.47 g (15 mol%), compound (M-4) 40.90 g (40 mol%). Is dissolved in 200 g of 2-butanone, and a resin is synthesized in the same manner as in Synthesis Example 1-1 except that 5.02 g of dimethyl 2,2′-azobis (2-methylpropionate) is added. did. This resin has a molecular weight of 5000 and Mw / Mn of 1.60. As a result of 13 C-NMR analysis, each resin is derived from compound (M-1), compound (M-5), and compound (M-4). The copolymer had a unit content of 47.3: 15.8: 36.9 (mol%). This polymer is referred to as “resin (A-3)”. In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.05 mass% with respect to 100 mass% of this polymer.

Figure 2007212797
Figure 2007212797

<合成例1−4>
単量体溶液を下記化合物(M−1)54.51g(50モル%)、化合物(M−6)9.72g(10モル%)、化合物(M−3)35.76g(40モル%)、を2−ブタノン200gに溶解し、更にジメチル2,2’−アゾビス(2−メチルプロピオネート)5.65gを投入した溶液とした以外は、合成例1−1と同様にして樹脂を合成した。この樹脂は分子量が8100、Mw/Mnが1.69であり、13C−NMR分析の結果、化合物(M−1)、化合物(M−6)、化合物(M−3)に由来する各繰り返し単位の含有率が53.6:9.8:36.6(モル%)の共重合体であった。この重合体を樹脂(A−4)とする。尚、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.04質量%であった。
<Synthesis Example 1-4>
The monomer solution was 54.51 g (50 mol%) of the following compound (M-1), 9.72 g (10 mol%) of the compound (M-6), 35.76 g (40 mol%) of the compound (M-3). Was dissolved in 200 g of 2-butanone, and a resin was synthesized in the same manner as in Synthesis Example 1-1 except that 5.65 g of dimethyl 2,2′-azobis (2-methylpropionate) was added. did. This resin has a molecular weight of 8100 and Mw / Mn of 1.69, and as a result of 13 C-NMR analysis, each resin is derived from compound (M-1), compound (M-6), and compound (M-3). The copolymer had a unit content of 53.6: 9.8: 36.6 (mol%). This polymer is referred to as “resin (A-4)”. In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.04 mass% with respect to 100 mass% of this polymer.

Figure 2007212797
Figure 2007212797

<合成例1−5>
下記化合物(M−1)55.77g(50モル%)、下記化合物(M−3)36.59g(40モル%)を2−ブタノン200gに溶解し、更にジメチル2,2'−アゾビス(2−メチルプロピオネート)5.78gを投入した単量体溶液を調製した。1000mlの三口フラスコに下記化合物(M−7)7.64g(10モル%)と2−ブタノン100gを入れ攪拌し均一溶液とした後、フラスコ内を30分間窒素でパージした後、フラスコ内を攪拌しながら80℃に加熱し、前記単量体溶液を滴下漏斗から3時間かけて滴下した。滴下終了後、反応液を3時間80℃にて加熱しながら攪拌した。重合終了後、重合溶液は水冷することにより30℃以下に冷却し、2000gのメタノールへ投入し、析出した白色粉末をろ別した。ろ別された白色粉末を2度400gのメタノールにてスラリー上で洗浄した後、ろ別し、50℃にて17時間乾燥し、白色粉末の重合体を得た(79g、収率79%)。この樹脂は分子量が6100、Mw/Mnが1.62であり、13C−NMR分析の結果、化合物(M−1)、化合物(M−7)、化合物(M−3)に由来する各繰り返し単位の含有率が53.6:9.8:36.6(モル%)の共重合体であった。この重合体を樹脂(A−5)とする。尚、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.03質量%であった。
<Synthesis Example 1-5>
The following compound (M-1) 55.77 g (50 mol%) and the following compound (M-3) 36.59 g (40 mol%) were dissolved in 200 g of 2-butanone, and dimethyl 2,2′-azobis (2 -Methylpropionate) A monomer solution charged with 5.78 g was prepared. The following compound (M-7) 7.64 g (10 mol%) and 2-butanone 100 g were put into a 1000 ml three-necked flask and stirred to obtain a homogeneous solution. The flask was purged with nitrogen for 30 minutes, and then the flask was stirred. While heating to 80 ° C., the monomer solution was dropped from the dropping funnel over 3 hours. After completion of dropping, the reaction solution was stirred for 3 hours while heating at 80 ° C. After completion of the polymerization, the polymerization solution was cooled with water to 30 ° C. or lower, poured into 2000 g of methanol, and the precipitated white powder was separated by filtration. The filtered white powder was washed twice with 400 g of methanol on the slurry, filtered, and dried at 50 ° C. for 17 hours to obtain a white powder polymer (79 g, yield 79%). . This resin has a molecular weight of 6100 and Mw / Mn of 1.62, and as a result of 13 C-NMR analysis, each repeat derived from the compound (M-1), the compound (M-7) and the compound (M-3) The copolymer had a unit content of 53.6: 9.8: 36.6 (mol%). This polymer is referred to as “resin (A-5)”. In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.03 mass% with respect to 100 mass% of this polymer.

Figure 2007212797
Figure 2007212797

<合成例1−6>
下記化合物(M−1)40.27g(42モル%)、下記化合物(M−4)40.44g(40モル%)を2−ブタノン200gに溶解し、更にジメチル2,2'−アゾビス(2−メチルプロピオネート)4.97gを投入した単量体溶液を調製した。1000mlの三口フラスコに下記化合物(M−8)19.29g(18モル%)と2−ブタノン100gを入れ攪拌し均一溶液とした後、フラスコ内を30分間窒素でパージした後、フラスコ内を攪拌しながら80℃に加熱し、前記単量体溶液を滴下漏斗から3時間かけて滴下した。滴下終了後、反応液を3時間80℃にて加熱しながら攪拌した。重合終了後、重合溶液は水冷することにより30℃以下に冷却し、2000gのメタノールへ投入し、析出した白色粉末をろ別した。ろ別された白色粉末を2度400gのメタノールにてスラリー上で洗浄した後、ろ別し、50℃にて17時間乾燥し、白色粉末の重合体を得た(70g、収率70%)。この樹脂は分子量が8200、Mw/Mnが1.78であり、13C−NMR分析の結果、化合物(M−1)、化合物(M−4)、化合物(M−8)に由来する各繰り返し単位の含有率が50.0:36.9:13.1(モル%)の共重合体であった。この重合体を樹脂(A−6)とする。尚、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.03質量%であった。
<Synthesis Example 1-6>
40.27 g (42 mol%) of the following compound (M-1) and 40.44 g (40 mol%) of the following compound (M-4) are dissolved in 200 g of 2-butanone, and further dimethyl 2,2′-azobis (2 -Methylpropionate) A monomer solution charged with 4.97 g was prepared. In a 1000 ml three-necked flask, 19.29 g (18 mol%) of the following compound (18 mol%) and 100 g of 2-butanone were added and stirred to obtain a homogeneous solution. After purging the flask with nitrogen for 30 minutes, the flask was stirred. While heating to 80 ° C., the monomer solution was dropped from the dropping funnel over 3 hours. After completion of dropping, the reaction solution was stirred for 3 hours while heating at 80 ° C. After completion of the polymerization, the polymerization solution was cooled with water to 30 ° C. or lower, poured into 2000 g of methanol, and the precipitated white powder was separated by filtration. The filtered white powder was washed twice with 400 g of methanol on the slurry, filtered, and dried at 50 ° C. for 17 hours to obtain a white powder polymer (70 g, yield 70%). . This resin has a molecular weight of 8200 and Mw / Mn of 1.78. As a result of 13 C-NMR analysis, each resin is derived from compound (M-1), compound (M-4), and compound (M-8). The copolymer had a unit content of 50.0: 36.9: 13.1 (mol%). This polymer is referred to as “resin (A-6)”. In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.03 mass% with respect to 100 mass% of this polymer.

Figure 2007212797
Figure 2007212797

<合成例2−1>
下記化合物(M−1)55.44g(50モル%)、化合物(M−2)10.99g(10モル%)、化合物(M−9)33.57g(40モル%)を2−ブタノン200gに溶解し、更にジメチルジメチル2,2'−アゾビス(2−メチルプロピオネート)5.74gを投入した単量体溶液を準備し、100gの2−ブタノンを投入した1000mlの三口フラスコを30分窒素パージした。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、事前に準備した上記単量体溶液を滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、重合溶液は水冷することにより30℃以下に冷却し、2000gのメタノールへ投入し、析出した白色粉末をろ別した。ろ別された白色粉末を2度400gのメタノールにてスラリー上で洗浄した後、ろ別し、50℃にて17時間乾燥し、白色粉末の重合体を得た(72g、収率72%)。この重合体はMwが6300、Mw/Mnが1.58であり、13C-NMR分析の結果、化合物(M−1)、化合物(M−2)、化合物(M−9)に由来する各繰り返し単位の含有率が51.0:10.8:38.2(モル%)の共重合体であった。この重合体をアクリル系重合体(A’−1)とする。尚、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.03質量%であった。
<Synthesis Example 2-1>
The following compound (M-1) 55.44 g (50 mol%), compound (M-2) 11.99 g (10 mol%), compound (M-9) 33.57 g (40 mol%) were added to 2-butanone 200 g A monomer solution containing 5.74 g of dimethyldimethyl 2,2′-azobis (2-methylpropionate) was prepared, and a 1000 ml three-necked flask charged with 100 g of 2-butanone was added for 30 minutes. Nitrogen purged. After purging with nitrogen, the reaction kettle was heated to 80 ° C. with stirring, and the monomer solution prepared in advance was added dropwise using a dropping funnel over 3 hours. The polymerization start was carried out for 6 hours with the start of dropping as the polymerization start time. After completion of the polymerization, the polymerization solution was cooled with water to 30 ° C. or lower, poured into 2000 g of methanol, and the precipitated white powder was separated by filtration. The filtered white powder was washed twice with 400 g of methanol on the slurry, filtered, and dried at 50 ° C. for 17 hours to obtain a white powder polymer (72 g, yield 72%). . This polymer has Mw of 6300 and Mw / Mn of 1.58. As a result of 13 C-NMR analysis, each polymer derived from compound (M-1), compound (M-2), and compound (M-9) It was a copolymer having a content of repeating units of 51.0: 10.8: 38.2 (mol%). This polymer is referred to as “acrylic polymer (A′-1)”. In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.03 mass% with respect to 100 mass% of this polymer.

Figure 2007212797
Figure 2007212797

<合成例2−2>
単量体溶液を下記化合物(M−1)48.65g(48モル%)、化合物(M−4)40.61g(38モル%)、化合物(M−9)10.74g(14モル%)、を2−ブタノン200gに溶解し、更にジメチル2,2’−アゾビス(2−メチルプロピオニトリル)5.25gを投入した溶液とした以外は、合成例2−1と同様にして樹脂を合成した。この樹脂は分子量が5800、Mw/Mnが1.63であり、13C−NMR分析の結果、化合物(M−1)、化合物(M−4)、化合物(M−9)に由来する各繰り返し単位の含有率が50.0:36.0:14.0(モル%)の共重合体であった。この重合体を樹脂(A’−2)とする。尚、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.04質量%であった。
<Synthesis Example 2-2>
The monomer solution was prepared by the following compound (M-1) 48.65 g (48 mol%), compound (M-4) 40.61 g (38 mol%), compound (M-9) 10.74 g (14 mol%). Was dissolved in 200 g of 2-butanone, and a resin was synthesized in the same manner as in Synthesis Example 2-1, except that 5.25 g of dimethyl 2,2′-azobis (2-methylpropionitrile) was added. did. This resin has a molecular weight of 5800 and Mw / Mn of 1.63, and as a result of 13 C-NMR analysis, each resin is derived from compound (M-1), compound (M-4) and compound (M-9). The copolymer had a unit content of 50.0: 36.0: 14.0 (mol%). This polymer is referred to as “resin (A′-2)”. In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.04 mass% with respect to 100 mass% of this polymer.

Figure 2007212797
Figure 2007212797

<合成例2−3>
下記化合物(M−1)57.39g(50モル%)、下記化合物(M−9)34.75g(40モル%)を2−ブタノン200gに溶解し、更にジメチル2,2'−アゾビス(2−メチルプロピオネート)5.95gを投入した単量体溶液を調製した。1000mlの三口フラスコに下記化合物(M−7)7.86g(10モル%)と2−ブタノン100gを入れ攪拌し均一溶液とした後、フラスコ内を30分間窒素でパージした後、フラスコ内を攪拌しながら80℃に加熱し、前記単量体溶液を滴下漏斗から3時間かけて滴下した。滴下終了後、反応液を3時間80℃にて加熱しながら攪拌した。重合終了後、重合溶液は水冷することにより30℃以下に冷却し、2000gのメタノールへ投入し、析出した白色粉末をろ別した。ろ別された白色粉末を2度400gのメタノールにてスラリー上で洗浄した後、ろ別し、50℃にて17時間乾燥し、白色粉末の重合体を得た(78g、収率78%)。この樹脂は分子量が7100、Mw/Mnが1.70であり、13C−NMR分析の結果、化合物(M−1)、化合物(M−7)、化合物(M−9)に由来する各繰り返し単位の含有率が50.5:10.3:39.2(モル%)の共重合体であった。この重合体を樹脂(A’−3)とする。尚、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.03質量%であった。
<Synthesis Example 2-3>
57.39 g (50 mol%) of the following compound (M-1) and 34.75 g (40 mol%) of the following compound (M-9) were dissolved in 200 g of 2-butanone, and further dimethyl 2,2′-azobis (2 -Methylpropionate) A monomer solution charged with 5.95 g was prepared. In a 1000 ml three-necked flask, 7.86 g (10 mol%) of the following compound (100 mol%) and 100 g of 2-butanone were stirred to obtain a homogeneous solution, and the flask was purged with nitrogen for 30 minutes, and then the flask was stirred. While heating to 80 ° C., the monomer solution was dropped from the dropping funnel over 3 hours. After completion of dropping, the reaction solution was stirred for 3 hours while heating at 80 ° C. After completion of the polymerization, the polymerization solution was cooled with water to 30 ° C. or lower, poured into 2000 g of methanol, and the precipitated white powder was separated by filtration. The filtered white powder was washed twice with 400 g of methanol on the slurry, filtered, and dried at 50 ° C. for 17 hours to obtain a white powder polymer (78 g, yield 78%). . This resin has a molecular weight of 7100 and Mw / Mn of 1.70. As a result of 13 C-NMR analysis, each resin is derived from compound (M-1), compound (M-7), and compound (M-9). The copolymer had a unit content of 50.5: 10.3: 39.2 (mol%). This polymer is referred to as “resin (A′-3)”. In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.03 mass% with respect to 100 mass% of this polymer.

Figure 2007212797
Figure 2007212797

<合成例3−1>
単量体溶液を下記化合物(M−6)36.55g(40モル%)、化合物(M−5)23.70g(20モル%)、化合物(M−3)39.75g(40モル%)、を2−ブタノン200gに溶解し、更にジメチル2,2’−アゾビス(2−メチルプロピオネート)5.77gを投入した溶液とした以外は、合成例1−1と同様にして樹脂を合成した。この樹脂は分子量が5400、Mw/Mnが1.84であり、13C−NMR分析の結果、化合物(M−6)、化合物(M−5)、化合物(M−3)に由来する各繰り返し単位の含有率が38.6:23.1:38.3(モル%)の共重合体であった。この重合体を樹脂(a−1)とする。尚、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.05質量%であった。
<Synthesis Example 3-1>
The monomer solution was composed of 36.55 g (40 mol%) of the following compound (M-6), 23.70 g (20 mol%) of compound (M-5), and 39.75 g (40 mol%) of compound (M-3). Was dissolved in 200 g of 2-butanone, and a resin was synthesized in the same manner as in Synthesis Example 1-1 except that 5.77 g of dimethyl 2,2′-azobis (2-methylpropionate) was added. did. This resin has a molecular weight of 5400 and Mw / Mn of 1.84, and as a result of 13 C-NMR analysis, each resin is derived from compound (M-6), compound (M-5), and compound (M-3). The copolymer had a unit content of 38.6: 23.1: 38.3 (mol%). This polymer is referred to as “resin (a-1)”. In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.05 mass% with respect to 100 mass% of this polymer.

Figure 2007212797
Figure 2007212797

<合成例3−2>
単量体溶液を下記化合物(M−10)21.77g(25モル%)、化合物(M−5)36.27g(30モル%)、化合物(M−3)41.96g(45モル%)、を2−ブタノン200gに溶解し、更にジメチル2,2’−アゾビス(2−メチルプロピオネート)5.89gを投入した溶液とした以外は、合成例1−1と同様にして樹脂を合成した。この樹脂は分子量が6900、Mw/Mnが1.93であり、13C−NMR分析の結果、化合物(M−10)、化合物(M−5)、化合物(M−3)に由来する各繰り返し単位の含有率が31.4:28.5:40.1(モル%)の共重合体であった。この重合体を樹脂(a−2)とする。尚、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.08質量%であった。
<Synthesis Example 3-2>
The monomer solution was the following compound (M-10) 21.77 g (25 mol%), compound (M-5) 36.27 g (30 mol%), compound (M-3) 41.96 g (45 mol%). Is dissolved in 200 g of 2-butanone, and a resin is synthesized in the same manner as in Synthesis Example 1-1 except that 5.89 g of dimethyl 2,2′-azobis (2-methylpropionate) is added. did. This resin has a molecular weight of 6900 and Mw / Mn of 1.93. As a result of 13 C-NMR analysis, each resin is derived from the compound (M-10), the compound (M-5) and the compound (M-3). The unit content was 31.4: 28.5: 40.1 (mol%). This polymer is referred to as “resin (a-2)”. In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.08 mass% with respect to 100 mass% of this polymer.

Figure 2007212797
Figure 2007212797

<合成例3−3>
単量体溶液を下記化合物(M−11)52.30g(50モル%)、化合物(M−2)11.07g(10モル%)、化合物(M−3)36.63g(40モル%)、を2−ブタノン200gに溶解し、更にジメチル2,2’−アゾビス(2−メチルプロピオネート)5.78gを投入した溶液とした以外は、合成例1−1と同様にして樹脂を合成した。この樹脂は分子量が8000、Mw/Mnが1.78であり、13C−NMR分析の結果、化合物(M−11)、化合物(M−2)、化合物(M−3)に由来する各繰り返し単位の含有率が49.8:10.3:39.9(モル%)の共重合体であった。この重合体を樹脂(a−3)とする。尚、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.05質量%であった。
<Synthesis Example 3-3>
The monomer solution was prepared by the following compound (M-11) 52.30 g (50 mol%), compound (M-2) 11.07 g (10 mol%), compound (M-3) 36.63 g (40 mol%). Was dissolved in 200 g of 2-butanone, and a resin was synthesized in the same manner as in Synthesis Example 1-1 except that 5.78 g of dimethyl 2,2′-azobis (2-methylpropionate) was added. did. This resin has a molecular weight of 8000 and Mw / Mn of 1.78. As a result of 13 C-NMR analysis, each resin is derived from compound (M-11), compound (M-2), and compound (M-3). The copolymer had a unit content of 49.8: 10.3: 39.9 (mol%). This polymer is referred to as “resin (a-3)”. In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.05 mass% with respect to 100 mass% of this polymer.

Figure 2007212797
Figure 2007212797

<合成例3−4>
単量体溶液を下記化合物(M−11)53.82g(50モル%)、化合物(M−2)11.39g(10モル%)、化合物(M−9)34.79g(40モル%)、を2−ブタノン200gに溶解し、更にジメチル2,2’−アゾビス(2−メチルプロピオネート)5.95gを投入した溶液とした以外は、合成例1−1と同様にして樹脂を合成した。この樹脂は分子量が7500、Mw/Mnが1.65であり、13C−NMR分析の結果、化合物(M−11)、化合物(M−2)、化合物(M−9)に由来する各繰り返し単位の含有率が49.4:10.5:40.1(モル%)の共重合体であった。この重合体を樹脂(a−4)とする。尚、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.05質量%であった。
<Synthesis Example 3-4>
The monomer solution was 53.82 g (50 mol%) of the following compound (M-11), 11.39 g (10 mol%) of the compound (M-2), 34.79 g (40 mol%) of the compound (M-9). Was dissolved in 200 g of 2-butanone, and a resin was synthesized in the same manner as in Synthesis Example 1-1 except that 5.95 g of dimethyl 2,2′-azobis (2-methylpropionate) was added. did. This resin has a molecular weight of 7500 and Mw / Mn of 1.65, and as a result of 13 C-NMR analysis, each resin is derived from compound (M-11), compound (M-2), and compound (M-9). The copolymer had a unit content of 49.4: 10.5: 40.1 (mol%). This polymer is referred to as “resin (a-4)”. In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.05 mass% with respect to 100 mass% of this polymer.

Figure 2007212797
Figure 2007212797

<<感放射線性樹脂組成物の評価>>
表1に示す成分からなる各組成物について各種評価を行った。溶出に関する評価結果を表2に示し、露光条件及び他の評価結果を表3に示す。尚、表1に示す樹脂以外の成分は以下の通りであり、表中、「部」は、特記しない限り質量基準である。
<酸発生剤(B)>
(B−1):トリフェニルスルホニウムノナフルオロ−n−ブタンスルホネート
<酸拡散抑制剤(C)>
(C−1):トリエタノールアミン
<溶剤(D)>
(D−1):プロピレングリコールモノメチルエーテルアセテート
(D−2):γ−ブチロラクトン
<< Evaluation of radiation sensitive resin composition >>
Various evaluations were performed on each composition composed of the components shown in Table 1. The evaluation results regarding elution are shown in Table 2, and the exposure conditions and other evaluation results are shown in Table 3. The components other than the resin shown in Table 1 are as follows. In the table, “parts” are based on mass unless otherwise specified.
<Acid generator (B)>
(B-1): Triphenylsulfonium nonafluoro-n-butanesulfonate
<Acid diffusion inhibitor (C)>
(C-1): Triethanolamine
<Solvent (D)>
(D-1): Propylene glycol monomethyl ether acetate (D-2): γ-butyrolactone

また、評価方法は以下の通りである。
評価方法
(1)溶出量(酸発生剤溶出量及び酸拡散制御剤溶出量):
図2に示すように、予めCLEAN TRACK ACT8(東京エレクトロン株式会社製)にてHMDS(ヘキサメチルジシラザン)31処理(100℃、60秒)を行った8インチシリコンウエハ3上の中心部に、中央部が直径11.3cmの円形状にくり抜かれたシリコンゴムシート4(クレハエラストマー社製、厚み;1.0mm、形状;1辺30cmの正方形)を載せた。次いで、シリコンゴム中央部のくり抜き部に10mLホールピペットを用いて10mlの超純水5を満たした。
その後、予めCLEAN TRACK ACT8により、膜厚77nmの下層反射防止膜(「ARC29A」、ブルワー・サイエンス社製)61を形成し、次いで、表1のレジスト組成物を上記CLEAN TRACK ACT8にて、上記下層反射防止膜61上にスピンコートし、ベーク(115℃、60秒)することにより膜厚205nmのレジスト被膜62を形成したシリコンウエハ6を、レジスト塗膜面が上記超純水5と接触するようあわせ、且つ超純水5がシリコンゴム4から漏れないように、上記シリコンゴムシート4上に載せた。
そして、その状態のまま10秒間保った。その後、前記8インチシリコンウエハ6を取り除き、超純水5をガラス注射器にて回収し、これを分析用サンプルとした。尚、実験終了後の超純水の回収率は95%以上であった。
次いで、上記で得られた超純水中の光酸発生剤のアニオン部のピーク強度を、LC−MS(液体クロマトグラフ質量分析計、LC部:AGILENT社製 SERIES1100、MS部:Perseptive Biosystems,Inc.社製 Mariner)を用いて下記の測定条件により測定した。その際、トリフェニルスルホニウムノナフルオロ−n−ブタンスルホネートの1ppb、10ppb、100ppb水溶液の各ピーク強度を前記測定条件で測定して検量線を作成し、この検量線を用いて前記ピーク強度から溶出量を算出した。また、同様にして、酸拡散制御剤の1ppb、10ppb、100ppb水溶液の各ピーク強度を前記測定条件で測定して検量線を作成し、この検量線を用いて前記ピーク強度から酸拡散制御剤の溶出量を算出した。
The evaluation method is as follows.
Evaluation method (1) Elution amount (acid generator elution amount and acid diffusion control agent elution amount):
As shown in FIG. 2, in the center on the 8-inch silicon wafer 3 that has been subjected to HMDS (hexamethyldisilazane) 31 treatment (100 ° C., 60 seconds) in advance in CLEAN TRACK ACT8 (manufactured by Tokyo Electron Ltd.) A silicon rubber sheet 4 (manufactured by Kureha Elastomer Co., Ltd., thickness: 1.0 mm, shape: square with a side of 30 cm) was placed on the center of which was cut into a circular shape having a diameter of 11.3 cm. Next, 10 ml of ultrapure water 5 was filled in the hollowed-out portion at the center of the silicon rubber using a 10 mL hole pipette.
Thereafter, a lower antireflection film (“ARC29A”, manufactured by Brewer Science) 61 having a film thickness of 77 nm is formed in advance by CLEAN TRACK ACT8, and the resist composition shown in Table 1 is then applied to the lower layer by CLEAN TRACK ACT8. The silicon wafer 6 on which the resist film 62 having a film thickness of 205 nm is formed by spin coating on the antireflection film 61 and baking (115 ° C., 60 seconds) so that the resist coating surface comes into contact with the ultrapure water 5 is formed. In addition, the ultrapure water 5 was placed on the silicon rubber sheet 4 so as not to leak from the silicon rubber 4.
And it kept for 10 seconds with the state. Thereafter, the 8-inch silicon wafer 6 was removed, and ultrapure water 5 was collected with a glass syringe, which was used as a sample for analysis. The recovery rate of ultrapure water after the experiment was 95% or more.
Next, the peak intensity of the anion part of the photoacid generator in the ultrapure water obtained above was calculated using LC-MS (liquid chromatograph mass spectrometer, LC part: SERIES1100 manufactured by AGILENT, MS part: Perseptive Biosystems, Inc. (Manufactured by Mariner) was measured under the following measurement conditions. At that time, each peak intensity of 1 ppb, 10 ppb, and 100 ppb aqueous solutions of triphenylsulfonium nonafluoro-n-butanesulfonate was measured under the above measurement conditions to prepare a calibration curve, and the amount eluted from the peak intensity using this calibration curve. Was calculated. Similarly, each peak intensity of the 1 ppb, 10 ppb, and 100 ppb aqueous solutions of the acid diffusion control agent is measured under the measurement conditions to prepare a calibration curve, and the calibration curve is used to calculate the acid diffusion control agent from the peak intensity. The amount of elution was calculated.

(カラム条件)
使用カラム;「CAPCELL PAK MG」、資生堂株式会社製、1本
流量;0.2ml/分
流出溶剤:水/メタノール(3/7)に0.1質量%のギ酸を添加したもの
測定温度;35℃
(Column condition)
Column used: “CAPCELL PAK MG”, manufactured by Shiseido Co., Ltd., 1 flow rate: 0.2 ml / min Outflow solvent: water / methanol (3/7) with 0.1% by mass of formic acid Measurement temperature: 35 ℃

(2)感度:
基板として、表面に膜厚77nmの下層反射防止膜(「ARC29A」、ブルワー・サイエンス社製)を形成した12インチシリコンウエハを用いた。尚、この反射防止膜の形成には、「CLEAN TRACK ACT12」(東京エレクトロン株式会社製)を用いた。
次いで、表1のレジスト組成物を上記基板上に、上記CLEAN TRACK ACT12にて、スピンコートし、表2の条件でPBを行うことにより、膜厚150nmのレジスト被膜を形成した。このレジスト被膜に、ArFエキシマレーザー露光装置(「TWIN SCAN XT1250i」、ASML製、証明条件;NA0.85シグマ0.93/0.69)により、マスクパターンを介して露光した。その後、表3に示す条件でPEBを行ったのち、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により、23℃で30秒間現像し、水洗し、乾燥して、ポジ型のレジストパターンを形成した。このとき、線幅90nmのライン・アンド・スペースパターン(1L1S)を1対1の線幅に形成する露光量を最適露光量とし、この最適露光量を感度とした。尚、この測長には走査型電子顕微鏡(「S−9380」、株式会社日立ハイテクノロジーズ社製)を用いた。
(3)パターンの断面形状:
90nmライン・アンド・スペースパターンの断面形状を株式会社日立ハイテクノロジーズ社製「S−4800」にて観察し、図1に示すように、レジストパターンの中間での線幅Lbと、膜の上部での線幅Laを測り、0.9≦(La−Lb)/Lb≦1.1の範囲を「○」とし、それ以外を「×」として評価した。
(4)焦点深度:
焦点深度を−1.0μmから+1.0μmまでの範囲で0.1μm刻みに変えて、最適露光量で露光して、レジストパターンを形成したとき、形成されるライン・アンド・スペースパターンのラインの線幅が81nm以上99nm以下である焦点深度の範囲を、走査型電子顕微鏡(「S−9380」、株式会社日立ハイテクノロジーズ社製)を用いて測定した。
(2) Sensitivity:
As the substrate, a 12-inch silicon wafer having a 77 nm-thick lower layer antireflection film (“ARC29A”, manufactured by Brewer Science) on the surface was used. For the formation of this antireflection film, “CLEAN TRACK ACT12” (manufactured by Tokyo Electron Limited) was used.
Subsequently, the resist composition of Table 1 was spin-coated on the said board | substrate in the said CLEAN TRACK ACT12, and PB was performed on the conditions of Table 2, and the resist film with a film thickness of 150 nm was formed. This resist film was exposed through a mask pattern by an ArF excimer laser exposure apparatus (“TWIN SCAN XT1250i”, manufactured by ASML, certification condition: NA 0.85 sigma 0.93 / 0.69). Thereafter, PEB was performed under the conditions shown in Table 3, and then developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 30 seconds, washed with water, and dried to form a positive resist pattern. did. At this time, an exposure amount for forming a line-and-space pattern (1L1S) having a line width of 90 nm in a one-to-one line width was defined as an optimum exposure amount, and this optimum exposure amount was defined as sensitivity. A scanning electron microscope (“S-9380”, manufactured by Hitachi High-Technologies Corporation) was used for this length measurement.
(3) Cross-sectional shape of pattern:
The cross-sectional shape of the 90 nm line and space pattern was observed with “S-4800” manufactured by Hitachi High-Technologies Corporation. As shown in FIG. 1, the line width Lb in the middle of the resist pattern and the upper part of the film The line width La was measured, and the range of 0.9 ≦ (La−Lb) /Lb≦1.1 was evaluated as “◯”, and the others were evaluated as “×”.
(4) Depth of focus:
When the depth of focus is changed in increments of 0.1 μm in the range from −1.0 μm to +1.0 μm, exposure is performed with an optimum exposure amount, and a resist pattern is formed, the lines of the line-and-space pattern to be formed The range of the depth of focus where the line width is 81 nm or more and 99 nm or less was measured using a scanning electron microscope (“S-9380”, manufactured by Hitachi High-Technologies Corporation).

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

Figure 2007212797
Figure 2007212797

表2及び表3から明らかなように、本発明の液浸露光用感放射線性樹脂組成物を用いた場合には、得られるパターン形状が良好であり、焦点深度に優れ且つ液浸露光時に接触した水への溶出物の量が少ないことが分かった。
更に、本発明における、メタクリル酸エステル構造を有する繰り返し単位(1)を含有する実施例1、7と、上記メタクリル酸エステル構造がアクリル酸エステル構造となっている以外は同様の繰り返し単位を含有する比較例3、4との結果から、メタクリル酸エステル構造を有する繰り返し単位(1)の存在により、得られるパターン形状が良好であり、焦点深度に優れ、且つ液浸露光時に接触した水への溶出物の量が少ない液浸露光用感放射線性樹脂組成物が得られることが分かった。
As is apparent from Tables 2 and 3, when the radiation-sensitive resin composition for immersion exposure of the present invention is used, the pattern shape obtained is good, the focal depth is excellent, and the contact during immersion exposure is achieved. The amount of eluate in the water was found to be small.
Further, in the present invention, Examples 1 and 7 containing the repeating unit (1) having a methacrylic ester structure and the same repeating unit except that the methacrylic ester structure is an acrylate structure. From the results of Comparative Examples 3 and 4, due to the presence of the repeating unit (1) having a methacrylic ester structure, the pattern shape obtained is good, the depth of focus is excellent, and elution into water that is in contact during immersion exposure It was found that a radiation-sensitive resin composition for immersion exposure with a small amount of product was obtained.

レジストパターンの断面形状を説明する模式図である。It is a schematic diagram explaining the cross-sectional shape of a resist pattern. 溶出量の測定用サンプルを作成する方法を説明する模式図である。It is a schematic diagram explaining the method of producing the sample for a measurement of the elution amount.

符号の説明Explanation of symbols

1;下層反射防止膜、2;レジストパターン、3;シリコンウエハ、31;HMDS、4;シリコンゴムシート、5;超純水、6;シリコンウエハ、61;反射防止膜、62;レジスト被膜。   DESCRIPTION OF SYMBOLS 1; Underlayer antireflection film, 2; Resist pattern, 3; Silicon wafer, 31; HMDS, 4; Silicon rubber sheet, 5; Ultrapure water, 6; Silicon wafer, 61;

Claims (3)

水を介してレジスト被膜を露光する液浸露光に用いられる液浸露光用感放射線性樹脂組成物であって、
下記式(1)で表される繰り返し単位を必須単位として含有し、酸の作用によりアルカリ可溶性となるアルカリ不溶性又はアルカリ難溶性の樹脂と、感放射線性酸発生剤と、を含有することを特徴とする液浸露光用感放射線性樹脂組成物。

Figure 2007212797
A radiation-sensitive resin composition for immersion exposure used for immersion exposure for exposing a resist film through water,
It contains a repeating unit represented by the following formula (1) as an essential unit, and contains an alkali-insoluble or alkali-insoluble resin that becomes alkali-soluble by the action of an acid, and a radiation-sensitive acid generator. A radiation-sensitive resin composition for immersion exposure.

Figure 2007212797
前記樹脂は、下記一般式(2)で表される繰り返し単位を更に含有する請求項1に記載の液浸露光用感放射線性樹脂組成物。

Figure 2007212797

〔一般式(2)において、Rは水素原子又はメチル基を示す。各々のRは相互に独立に炭素数4〜20の1価の脂環式炭化水素基若しくはその誘導体、又は炭素数1〜4の直鎖状若しくは分岐状のアルキル基を示し、且つ、Rは以下の(1)又は(2)の条件を満たす。
(1)Rのうちの少なくとも1つは炭素数4〜20の1価の脂環式炭化水素基若しくはその誘導体である。
(2)いずれか2つのRが相互に結合して、それぞれが結合している炭素原子と共に炭素数4〜20の2価の脂環式炭化水素基若しくはその誘導体を形成し、残りのRが炭素数4〜20の1価の脂環式炭化水素基若しくはその誘導体、又は炭素数1〜4の直鎖状若しくは分岐状のアルキル基である。〕
The radiation sensitive resin composition for immersion exposure according to claim 1, wherein the resin further contains a repeating unit represented by the following general formula (2).

Figure 2007212797

[In General formula (2), R shows a hydrogen atom or a methyl group. Each R 1 independently represents a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms or a derivative thereof, or a linear or branched alkyl group having 1 to 4 carbon atoms, and R 1 1 satisfies the following condition (1) or (2).
(1) At least one of R 1 is a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms or a derivative thereof.
(2) Any two R 1 's are bonded to each other to form a divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms or a derivative thereof together with the carbon atoms to which each R 1 is bonded, and the remaining R 1 1 is a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms or a derivative thereof, or a linear or branched alkyl group having 1 to 4 carbon atoms. ]
前記樹脂を調製する際に用いられる単量体由来の低分子量成分の含有量が固形分換算にて、該樹脂100質量%に対して0.1質量%以下である請求項1又は2に記載の液浸露光用感放射線性樹脂組成物。   The content of a low molecular weight component derived from a monomer used when preparing the resin is 0.1% by mass or less with respect to 100% by mass of the resin in terms of solid content. A radiation-sensitive resin composition for immersion exposure.
JP2006033102A 2006-02-09 2006-02-09 Radiation-sensitive resin composition for liquid immersion exposure Pending JP2007212797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033102A JP2007212797A (en) 2006-02-09 2006-02-09 Radiation-sensitive resin composition for liquid immersion exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033102A JP2007212797A (en) 2006-02-09 2006-02-09 Radiation-sensitive resin composition for liquid immersion exposure

Publications (1)

Publication Number Publication Date
JP2007212797A true JP2007212797A (en) 2007-08-23

Family

ID=38491287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033102A Pending JP2007212797A (en) 2006-02-09 2006-02-09 Radiation-sensitive resin composition for liquid immersion exposure

Country Status (1)

Country Link
JP (1) JP2007212797A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091395A (en) * 2007-10-04 2009-04-30 Daicel Chem Ind Ltd Polymer compound for photoresist, and photoresist composition
JP2009244426A (en) * 2008-03-28 2009-10-22 Fujifilm Corp Positive type resist composition and pattern forming method
JP2011028231A (en) * 2009-06-24 2011-02-10 Sumitomo Chemical Co Ltd Chemically amplified photoresist composition and method of manufacturing resist pattern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210910A (en) * 2002-12-27 2004-07-29 Jsr Corp (meth)acrylic polymer and radiation-sensitive resin composition
JP2005227646A (en) * 2004-02-16 2005-08-25 Fuji Photo Film Co Ltd Chemically amplified resist composition for immersion process and pattern forming method using the same
JP2007065353A (en) * 2005-08-31 2007-03-15 Fujifilm Corp Photosensitive composition and pattern forming method using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210910A (en) * 2002-12-27 2004-07-29 Jsr Corp (meth)acrylic polymer and radiation-sensitive resin composition
JP2005227646A (en) * 2004-02-16 2005-08-25 Fuji Photo Film Co Ltd Chemically amplified resist composition for immersion process and pattern forming method using the same
JP2007065353A (en) * 2005-08-31 2007-03-15 Fujifilm Corp Photosensitive composition and pattern forming method using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091395A (en) * 2007-10-04 2009-04-30 Daicel Chem Ind Ltd Polymer compound for photoresist, and photoresist composition
JP2009244426A (en) * 2008-03-28 2009-10-22 Fujifilm Corp Positive type resist composition and pattern forming method
JP2011028231A (en) * 2009-06-24 2011-02-10 Sumitomo Chemical Co Ltd Chemically amplified photoresist composition and method of manufacturing resist pattern
US8916330B2 (en) 2009-06-24 2014-12-23 Sumitomo Chemical Company, Limited Chemically amplified photoresist composition and method for forming resist pattern

Similar Documents

Publication Publication Date Title
JP5054929B2 (en) Resist pattern forming method
JP5716774B2 (en) Fluorine-containing polymer, purification method and radiation-sensitive resin composition
JP5141459B2 (en) Radiation sensitive resin composition
WO2009142181A1 (en) Radiation-sensitive resin composition for liquid immersion exposure, polymer and method for forming resist pattern
JP2009134088A (en) Radiation-sensitive resin composition
JP5481768B2 (en) Radiation sensitive resin composition and resist pattern forming method using the same
JP4821776B2 (en) Radiation sensitive resin composition
JP5716397B2 (en) Radiation sensitive resin composition, resist pattern forming method and photoresist film
JP4985944B2 (en) Positive radiation sensitive resin composition
JP2008138073A (en) Polymer for radiosensitive resin composition, radiosensitive resin composition and method for forming resist pattern
JP2007112898A (en) Copolymer and radiation-sensitive resin composition
JP5343535B2 (en) Radiation-sensitive resin composition, resist film forming method and resist pattern forming method using the same
JP2010276624A (en) Radiation-sensitive resin composition
KR20100058601A (en) Radiation-sensitive composition
JPWO2008087840A1 (en) Radiation-sensitive resin composition for immersion exposure and method for forming photoresist pattern
JP5299031B2 (en) Radiation sensitive resin composition
JP2007212797A (en) Radiation-sensitive resin composition for liquid immersion exposure
JP2008225412A (en) Radiation-sensitive resin composition for liquid immersion exposure
JP5077353B2 (en) Radiation sensitive composition
JP4706562B2 (en) Method for forming resist pattern
JP4848910B2 (en) Radiation-sensitive resin composition polymer and radiation-sensitive resin composition
JP2007212796A (en) Radiation-sensitive resin composition for liquid immersion exposure
JP4848843B2 (en) Polymer, radiation-sensitive resin composition, and resist pattern forming method
JP4752794B2 (en) Radiation-sensitive resin composition and polymer for radiation-sensitive resin composition
JP5077354B2 (en) Radiation sensitive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426