JP2007212469A - Using tool determination system - Google Patents

Using tool determination system Download PDF

Info

Publication number
JP2007212469A
JP2007212469A JP2007078512A JP2007078512A JP2007212469A JP 2007212469 A JP2007212469 A JP 2007212469A JP 2007078512 A JP2007078512 A JP 2007078512A JP 2007078512 A JP2007078512 A JP 2007078512A JP 2007212469 A JP2007212469 A JP 2007212469A
Authority
JP
Japan
Prior art keywords
appliance
flow rate
unit
signal
instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007078512A
Other languages
Japanese (ja)
Other versions
JP4582105B2 (en
Inventor
Motoyuki Nawa
基之 名和
Yukio Nagaoka
行夫 長岡
Kenzo Ochi
謙三 黄地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007078512A priority Critical patent/JP4582105B2/en
Publication of JP2007212469A publication Critical patent/JP2007212469A/en
Application granted granted Critical
Publication of JP4582105B2 publication Critical patent/JP4582105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To specify a using tool, in a fluid piping system for supplying a fluid to a plurality of tools by one supply flow passage. <P>SOLUTION: The fluid piping system for supplying the fluid to the plurality of tools by the one supply flow passage 5 includes a flow measuring part 6 arranged in the supply flow passage 5, a detecting part 7 for the start of tool use, a control part 8 for the flow measuring part 6, and a judging part 9 for specifying the using tool, based on a signal from the flow measuring part 6. The flow measuring part is controlled thereby to enhance determination precision for the tool. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、流体配管系において、使用器具を特定するシステムに関するものである。   The present invention relates to a system for specifying a tool to be used in a fluid piping system.

従来、この種のシステムのひとつとして特許文献1に記載されているようなものがあった。この例はガスメータに接続される複数器具のうち使用器具を判別するものであり、図6に示すようなものであった。   Conventionally, there has been one such a system as described in Patent Document 1. In this example, an appliance to be used is discriminated among a plurality of appliances connected to the gas meter, as shown in FIG.

1はメータであり、2a、2b、はガス器具である。メータ1の内部には流量計測部3と流量演算部4とが備えられている。流量計測部3ではガス器具2a、2bの合計流量を計測し、この合計流量の変化を流量演算部4のアルゴリズムで解析し、使用ガス器具の判別を行なうものであった。
特開平3−331732号公報
1 is a meter, 2a and 2b are gas appliances. Inside the meter 1, a flow rate measuring unit 3 and a flow rate calculating unit 4 are provided. The flow rate measuring unit 3 measures the total flow rate of the gas appliances 2a and 2b, analyzes the change in the total flow rate by the algorithm of the flow rate calculation unit 4, and determines the gas appliance to be used.
JP-A-3-331732

しかしながら上記従来の方式では通常の流量計測信号を用いて器具判定を行なうものであり、受動的な検知方式であるため、必要とする時間間隔で過渡的な流量変化を捉えることができず、判別能力が低いという課題があった。   However, the above conventional method uses a normal flow measurement signal to determine the instrument, and is a passive detection method. There was a problem that ability was low.

前記従来の課題を解決するために、本願の使用器具判別システムは、複数の器具に1つの供給流路より流体を供給する流体配管系において、前記供給流路に配置された流量計測部と、前記器具が使用されるとその信号を検知する器具使用開始検知部と、前記器具使用開始検知部からの信号を入力し前記流量計測部の制御を行う制御部と、前記流量計測部からの信号により使用器具を特定する判断部とを備えたものである。   In order to solve the above-described conventional problem, the use instrument discrimination system of the present application is a fluid piping system that supplies fluid from one supply channel to a plurality of instruments, and a flow rate measurement unit disposed in the supply channel; An instrument use start detection unit that detects a signal when the instrument is used, a control unit that inputs a signal from the instrument use start detection unit and controls the flow measurement unit, and a signal from the flow measurement unit And a determination unit that identifies the appliance to be used.

これによって、器具使用開始信号により過渡的な流量変化を捉え器具使用開始と共に、器具特有の流量立上り状態を検出することができ、高精度の使用器具判定を行なうことができる。   As a result, a transitional flow rate change can be captured by the appliance use start signal, and when the appliance is used, the flow rate rising state peculiar to the appliance can be detected, and the appliance used can be determined with high accuracy.

本発明は、器具使用開始信号により流量計測の制御を行なうため、器具立上りの状態を的確に捉えることができ、器具の判別精度向上が図れ、また、制御部が計測頻度を増加するようにしているため、器具の判別精度向上が図れるという効果がある。   Since the present invention controls the flow rate measurement based on the instrument use start signal, it is possible to accurately grasp the state of the instrument start-up, improve the instrument discrimination accuracy, and increase the measurement frequency by the control unit. Therefore, there is an effect that it is possible to improve the discrimination accuracy of the instrument.

第1の発明は、複数の器具に1つの供給流路より流体を供給する流体配管系において、前記供給流路に配置された流量計測部と、前記器具使用開始検知部と、前記流量計測部の制御部と、前記流量計測部からの信号により使用器具を特定する判断部とを有する。そして、検知部の信号により流量計測部の制御を行なうため、使用器具の特定をすることができる。   1st invention is the fluid piping system which supplies a fluid from one supply flow path to several instrument, The flow measurement part arrange | positioned at the said supply flow path, The said instrument use start detection part, The said flow measurement part A control unit, and a determination unit that identifies the appliance to be used based on a signal from the flow rate measurement unit. And since the flow measurement part is controlled by the signal of a detection part, the instrument used can be specified.

第2の発明は、複数の器具に1つの供給流路より流体を供給する流体配管系において、前記供給流路に配置された超音波式流量計測部と、前記器具使用開始検知部と、前記流量計測部の制御部と、前記流量計測部からの信号により使用器具を特定する判断部とを有する。そして、検知部の信号により超音波流量計測部の制御を行なうため、使用器具の特定
をすることができる。
According to a second aspect of the present invention, in the fluid piping system for supplying fluid to a plurality of instruments from one supply channel, an ultrasonic flow rate measurement unit disposed in the supply channel, the instrument use start detection unit, It has a control part of a flow measurement part, and a judgment part which specifies a use instrument by a signal from the flow measurement part. Then, since the ultrasonic flow rate measuring unit is controlled by the signal from the detecting unit, it is possible to specify the instrument to be used.

第3の発明は、複数の器具に1つの供給流路より流体を供給する流体配管系において、前記供給流路に配置された流量計測部と、前記器具使用開始の物理量検知部と、前記流量計測部の制御部と、前記流量計測部からの信号により使用器具を特定する判断部とを有する。そして、物理量検知部の信号により流量計測部の制御を行なうため、使用器具の特定をすることができる。   According to a third aspect of the present invention, there is provided a fluid piping system for supplying fluid to a plurality of instruments from one supply channel, a flow rate measuring unit disposed in the supply channel, a physical quantity detection unit for starting use of the instrument, and the flow rate It has a control part of a measurement part, and a judgment part which specifies a use instrument by a signal from the flow measurement part. And since a flow measurement part is controlled by the signal of a physical quantity detection part, the instrument to be used can be specified.

第4の発明は、複数の器具に1つの供給流路より流体を供給する流体配管系において、前記供給流路に配置された流量計測部と、前記器具使用開始の流量検知部と、前記流量計測部の制御部と、前記流量計測部からの信号により使用器具を特定する判断部とを有する。そして、流量検知部の信号により流量計測部の制御を行なうため、使用器具の特定をすることができる。   4th invention is the fluid piping system which supplies a fluid from one supply flow path to several instruments, The flow volume measurement part arrange | positioned at the said supply flow path, The flow volume detection part of the said instrument use start, The said flow volume It has a control part of a measurement part, and a judgment part which specifies a use instrument by a signal from the flow measurement part. And since a flow measurement part is controlled by the signal of a flow volume detection part, the instrument used can be specified.

第5の発明は、複数の器具に1つの供給流路より流体を供給する流体配管系において、前記供給流路に配置された流量計測部と、前記器具使用開始の検知部と、前記流量計測部の計測頻度を増加する制御部と、前記流量計測部からの信号により使用器具を特定する判断部とを有する。そして、前記器具使用開始検知部からの器具使用開始信号を入力し検知部の信号により流量計測部の計測頻度を増加するため、使用器具の特定をすることができる。   According to a fifth aspect of the present invention, there is provided a fluid piping system for supplying fluid from a single supply flow path to a plurality of instruments, a flow rate measurement unit disposed in the supply flow path, a detection unit for starting use of the instrument, and the flow rate measurement. A control unit that increases the measurement frequency of the unit, and a determination unit that identifies the appliance to be used based on a signal from the flow rate measurement unit. And since the instrument use start signal from the said instrument use start detection part is input and the measurement frequency of a flow measurement part is increased with the signal of a detection part, the instrument used can be specified.

第6の発明は、複数の器具に1つの供給流路より流体を供給する流体配管系において、前記供給流路に配置された超音波流量計測部と、前記器具使用開始の検知部と、前記流量計測部のシングアラウンド回数を低下する制御部と、前記流量計測部からの信号により使用器具を特定する判断部とを有する。そして、前記器具使用開始検知部からの器具使用開始信号を入力し検知部の信号により流量計測部のシングアラウンド回数を低下して実質的に計測回数を増加するため、使用器具の特定をすることができる。   6th invention is the fluid piping system which supplies a fluid from one supply flow path to several instruments, The ultrasonic flow measurement part arrange | positioned at the said supply flow path, The detection part of the said instrument use start, It has a control part which reduces the number of times of the sing around of a flow measurement part, and a judgment part which specifies a use instrument by a signal from the flow measurement part. And, in order to substantially increase the number of times of measurement by reducing the number of times of flow around the flow measurement unit by inputting the device use start signal from the device use start detection unit, the identification of the device used Can do.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1における使用器具判別システムの構成を示すブロック図、図2は同システムの流量計測部の構成図、図3は同システムの判断部のフローチャートである。
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of a device used discrimination system according to Embodiment 1 of the present invention, FIG. 2 is a configuration diagram of a flow rate measurement unit of the system, and FIG. 3 is a flowchart of a determination unit of the system.

図1〜図3において、6は流量計測部、7は検知部(器具使用開始信号検知部)、8は制御部、9は判断部、10は器具である。   1 to 3, 6 is a flow rate measurement unit, 7 is a detection unit (appliance use start signal detection unit), 8 is a control unit, 9 is a determination unit, and 10 is an instrument.

11は流路、12は第一の超音波振動子、13は第二の超音波振動子である。   11 is a flow path, 12 is a first ultrasonic transducer, and 13 is a second ultrasonic transducer.

14は送信部、15は受信部、16は切替部である。17は信号処理部であり、計時部18、および流量演算部19より成り立っている。20は切替え制御部である。   Reference numeral 14 denotes a transmission unit, 15 denotes a reception unit, and 16 denotes a switching unit. Reference numeral 17 denotes a signal processing unit, which includes a time measuring unit 18 and a flow rate calculating unit 19. Reference numeral 20 denotes a switching control unit.

21は開始命令、22は流量計測命令、23は流量変化判断命令、24はインターバル設定命令、25は計測頻度増加命令、26は立上り波形作成命令、27は器具パターン比較判断命令、28はインターバル設定命令、29は器具特定命令、30は条件設定命令である。   21 is a start command, 22 is a flow rate measurement command, 23 is a flow rate change determination command, 24 is an interval setting command, 25 is a measurement frequency increase command, 26 is a rising waveform creation command, 27 is an instrument pattern comparison determination command, 28 is an interval setting A command, 29 is an appliance specifying command, and 30 is a condition setting command.

次に動作、作用について説明する。まず、通常の流量測定について示す。この場合切替部16は最初BがCに、また、AがDに接続されている。すなわち送信部14より発せら
れた信号は切替部16を経て、第一の振動子12より送信され、流路11をよぎって、第二の振動子13に到達する。この信号は切替部16を経て、受信部15にて受信される。
Next, the operation and action will be described. First, normal flow measurement will be described. In this case, the switching unit 16 is first connected to C and A to D. That is, the signal emitted from the transmission unit 14 is transmitted from the first vibrator 12 through the switching unit 16 and reaches the second vibrator 13 through the flow path 11. This signal is received by the receiving unit 15 via the switching unit 16.

上記過程において、送信部14より送られる信号は同時に計時部18にも入り、受信部15にて受信された信号も計時部18に入る。これらの信号の時間差が計時部18にて計測され、経過時間(T1)が得られる。   In the above process, the signal sent from the transmitter 14 enters the timer 18 at the same time, and the signal received by the receiver 15 also enters the timer 18. The time difference between these signals is measured by the timer 18 to obtain the elapsed time (T1).

次に切替部16はAがCに、また、BがDに接続される。これにより今度は第二の振動子13より送信され、流路11をよぎって、第一の振動子12に到達するまでの経過時間(T2)が得られる。   Next, the switching unit 16 connects A to C and B to D. As a result, this time is transmitted from the second vibrator 13, and the elapsed time (T 2) until it reaches the first vibrator 12 through the flow path 11 is obtained.

この様にして測定された経過時間T1、およびT2をもとに以下の演算式により流量演算部19にて流量が算出される。   Based on the elapsed times T1 and T2 measured in this way, the flow rate calculation unit 19 calculates the flow rate by the following calculation formula.

いま、測定すべき流れと超音波伝搬経路Pとのなす角をθとし、また第一の振動子12と第二の振動子13との間の距離をLとすると、流速vが以下の式にて算出される。   Now, assuming that the angle between the flow to be measured and the ultrasonic propagation path P is θ, and the distance between the first vibrator 12 and the second vibrator 13 is L, the flow velocity v is expressed by the following equation. Is calculated by

v=(L/2cosθ)((1/T1)−(1/T2)) (1)
これに平均流速を求めるための補正係数と断面積を乗じて流量が算出される。
v = (L / 2 cos θ) ((1 / T1) − (1 / T2)) (1)
The flow rate is calculated by multiplying this by the correction coefficient for obtaining the average flow velocity and the cross-sectional area.

また、この様な方法による計測の精度を上げるため、送受信に際して、何度も繰返して行うシングアラウンドという方法を採用することもある。この場合にはT1、T2はその平均値を採用する。   In order to increase the accuracy of measurement by such a method, a method called sing-around, which is performed repeatedly during transmission and reception, may be employed. In this case, T1 and T2 adopt the average value.

いま、ある器具が使用されると、検知部7によりその信号が捕らえられる。この信号自体は器具の特定ができるような物理量ではなく、単に器具が使用開始されたといったような信号である。それは上記の流量演算部19で流量の増加があったというような類である。この場合には、流量演算部19自体が検知部7となる。   Now, when a certain instrument is used, the signal is captured by the detection unit 7. This signal itself is not a physical quantity with which the device can be specified, but is simply a signal that the device has been used. This is a kind of increase in the flow rate in the flow rate calculation unit 19 described above. In this case, the flow rate calculation unit 19 itself becomes the detection unit 7.

この信号を受けると、制御部8が流量計測部6に指示を送る。制御部8は図2における切替え制御部20が該当する。これらの一連の動きは判断部9のフローにて処理される。   Upon receiving this signal, the control unit 8 sends an instruction to the flow rate measuring unit 6. The control unit 8 corresponds to the switching control unit 20 in FIG. These series of movements are processed by the flow of the determination unit 9.

図3において開始命令21によりプログラムが開始する。流量計測命令22により前述した通常の流量計測が行われる。ここで器具10のいずれかが使用されると、流量変化が生じるが、これは流量変化判断命令23によりYesの側になる。器具10の立上りでない場合にはNoの側になり、インターバル設定命令24にて設定された時間ののち、また同様の動作が繰返される。   In FIG. 3, the program is started by the start instruction 21. The normal flow rate measurement described above is performed by the flow rate measurement command 22. Here, when any of the appliances 10 is used, a flow rate change occurs, which is set to Yes by the flow rate change determination command 23. If the appliance 10 is not started up, the answer is No, and the same operation is repeated after the time set by the interval setting command 24.

流量変化を検知した場合には、計測頻度増加命令25により切替え制御部20が高速のサンプリングを開始する。これにより得られた詳細データに基づき、立上り波形作成命令26により流量の立上り波形が形成される。これは予め登録されている立上りパターンと器具パターン比較判断命令27により比較され、合致するものがあった場合には器具特定命令30により使用器具が特定される。こののち、条件設定命令30により特定された器具に対する安全上の条件が付与される。   When the flow rate change is detected, the switching control unit 20 starts high-speed sampling by the measurement frequency increase command 25. Based on the detailed data obtained in this way, a rising waveform of the flow rate is formed by the rising waveform creation command 26. This is compared with the rising pattern registered in advance by the appliance pattern comparison judgment command 27, and when there is a match, the appliance to be used is specified by the appliance specifying command 30. Thereafter, a safety condition for the appliance specified by the condition setting command 30 is given.

もし、合致しない場合には別の要因によるものゆえ、Noの側を取り、インターバル設定命令28により定められた時間の後、再度上記の内容を繰返す。   If it does not match, it is due to another factor, so the No side is taken, and after the time determined by the interval setting command 28, the above contents are repeated again.

以上に示したように、器具の使用開始に合わせて高速測定を行うことにより、器具の特定が精度良く行われる。   As described above, the instrument is identified with high accuracy by performing high-speed measurement in accordance with the start of use of the instrument.

(実施の形態2)
図4は本発明の実施の形態2における使用器具判別システムの判別フローチャートである。
(Embodiment 2)
FIG. 4 is a determination flowchart of the used appliance determination system according to the second embodiment of the present invention.

本実施の形態2において、実施の形態1と異なる点は検知部の対象を物理量とし、物理量変化判断命令31が入れ替わった点である。この場合、物理量としては、器具の使用開始に伴い生じる音波、超音波、圧力等がある。   The second embodiment is different from the first embodiment in that the physical quantity change determination command 31 is replaced with the target of the detection unit as a physical quantity. In this case, the physical quantity includes a sound wave, an ultrasonic wave, a pressure, and the like generated with the start of use of the instrument.

なお、実施の形態1と同一符号のものは同一構造を有し、説明は省略する。   In addition, the thing of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

次に動作、作用を説明すると、流量計測命令22ののち、器具使用開始に伴う物理量変化がある場合には、物理量変化判断命令31が行われたのち、計測頻度増加命令25が行なわれる。以下の動作は実施の形態1と同じである。   Next, the operation and action will be described. After the flow rate measurement command 22, when there is a physical quantity change accompanying the start of use of the instrument, a physical quantity change determination command 31 is executed, and then a measurement frequency increase command 25 is executed. The following operations are the same as those in the first embodiment.

(実施の形態3)
図5は本発明の実施の形態3における使用器具判別システムの判別フローチャートである。
(Embodiment 3)
FIG. 5 is a determination flowchart of the used appliance determination system according to Embodiment 3 of the present invention.

本実施の形態3において、実施の形態1と異なる点は計測頻度増加命令25をシングアラウンド回数低下命令32とした点である。   The third embodiment is different from the first embodiment in that the measurement frequency increase command 25 is replaced with a single-around number decrease command 32.

なお、実施の形態1と同一符号のものは同一構造を有し、説明は省略する。   In addition, the thing of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

次に動作、作用を説明すると、流量計測命令22ののち、器具使用開始に伴う流量変化がある場合には、流量変化判断31が行われたのち、シングアラウンド低下命令32が行なわれる。以下の動作は実施の形態1と同じである。   Next, the operation and action will be described. After the flow rate measurement command 22, when there is a flow rate change accompanying the start of use of the appliance, a flow rate change determination 31 is performed, and then a sing-around reduction command 32 is performed. The following operations are the same as those in the first embodiment.

以上説明したように本発明の実施の形態における使用器具判別システムは、器具使用開始信号により流量計測の制御を行なうため、器具立上りの状態を的確に捉えることができ、器具の判別精度向上が図れるという効果がある。   As described above, the appliance discrimination system according to the embodiment of the present invention controls the flow rate measurement based on the appliance usage start signal, so that it is possible to accurately grasp the state of the appliance rise and improve the appliance discrimination accuracy. There is an effect.

また、流量計測に超音波流量計を用いるため、流量の瞬時値を得ることができ、器具の判別精度向上が図れるという効果がある。   Moreover, since an ultrasonic flowmeter is used for flow rate measurement, an instantaneous value of the flow rate can be obtained, and there is an effect that the discrimination accuracy of the instrument can be improved.

また、器具使用開始信号として物理量を用いるため、的確に開始信号を捕らえることができ、器具の判別精度向上が図れるという効果がある。   Further, since the physical quantity is used as the instrument use start signal, the start signal can be accurately captured, and the instrument discrimination accuracy can be improved.

また、器具使用開始信号として流量を用いるため、流量計測部の信号を兼用ができ、より効率的なシステムを構築できるという効果がある。   In addition, since the flow rate is used as the instrument use start signal, the signal of the flow rate measurement unit can be shared, and there is an effect that a more efficient system can be constructed.

また、制御部が計測頻度を増加するようにしているため、器具の判別精度向上が図れるという効果がある。   In addition, since the control unit increases the measurement frequency, there is an effect that the accuracy of determining the appliance can be improved.

また、制御部がシングアラウンド回数を低下するようにしているため、短時間に多くの流量データが得られ、器具の判別精度向上が図れるという効果がある。   In addition, since the control unit reduces the number of times of sing-around, a large amount of flow rate data can be obtained in a short time, and the instrument discrimination accuracy can be improved.

本発明の実施の形態1における使用器具判別システムのブロック図The block diagram of the used appliance discrimination | determination system in Embodiment 1 of this invention 同システムの流量計測部分の構成図Configuration diagram of the flow measurement part of the system 同システムの判断部のフローチャートFlow chart of the determination unit of the system 本発明の実施の形態2における使用器具判別システムの判断部のフローチャートThe flowchart of the judgment part of the used appliance discrimination system in Embodiment 2 of this invention 本発明の実施の形態3における使用器具判別システムの判断部のフローチャートThe flowchart of the judgment part of the used appliance discrimination | determination system in Embodiment 3 of this invention 従来の使用器具判別システムのブロック図Block diagram of a conventional appliance discrimination system

符号の説明Explanation of symbols

5 供給流路
6 流量計測部
7 検知部(器具使用開始検知部)
8 制御部
9 判断部
5 Supply channel 6 Flow rate measurement unit 7 Detection unit
8 Control part 9 Judgment part

Claims (6)

複数の器具に1つの供給流路より流体を供給する流体配管系において、前記供給流路に配置された流量計測部と、前記器具が使用されるとその信号を検知する器具使用開始検知部と、前記器具使用開始検知部からの信号を入力し前記流量計測部の制御を行う制御部と、前記流量計測部からの信号により使用器具を特定する判断部とを備えた使用器具判別システム。 In a fluid piping system for supplying fluid to a plurality of instruments from one supply channel, a flow rate measuring unit arranged in the supply channel, and an instrument use start detecting unit for detecting a signal when the instrument is used, A use appliance discriminating system comprising: a control unit that inputs a signal from the appliance use start detection unit and controls the flow rate measurement unit; and a determination unit that identifies a use appliance based on the signal from the flow rate measurement unit. 流量計測部が超音波式流量計により構成された請求項1記載の使用器具判別システム。 The used appliance discrimination system according to claim 1, wherein the flow rate measuring unit is constituted by an ultrasonic flow meter. 器具使用開始検知部が物理量の信号を利用した請求項1または2記載の使用器具判別システム。 The appliance usage determination system according to claim 1 or 2, wherein the appliance usage start detection unit uses a physical quantity signal. 器具使用開始検知部が流量計測部の流量信号を利用した請求項1または2記載の使用器具判別システム。 3. The device used discrimination system according to claim 1, wherein the device use start detection unit uses a flow rate signal of the flow rate measurement unit. 制御部が、器具使用開始検知部からの器具使用開始信号を入力し計測頻度を増加するようにした請求項1、2、3または4記載の使用器具判別システム。 The use appliance discrimination system according to claim 1, 2, 3, or 4, wherein the control unit inputs an appliance use start signal from the appliance use start detection unit to increase the measurement frequency. 制御部が、器具使用開始検知部からの器具使用開始信号を入力しシングアラウンド回数を低下するようにした請求項2または4記載の使用器具判別システム。 The use appliance discriminating system according to claim 2 or 4, wherein the control unit inputs an appliance use start signal from the appliance use start detection unit to reduce the number of times of single-around.
JP2007078512A 2007-03-26 2007-03-26 Equipment discrimination system Expired - Fee Related JP4582105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078512A JP4582105B2 (en) 2007-03-26 2007-03-26 Equipment discrimination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078512A JP4582105B2 (en) 2007-03-26 2007-03-26 Equipment discrimination system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8847798A Division JPH11287684A (en) 1998-04-01 1998-04-01 System for identifying appliance used

Publications (2)

Publication Number Publication Date
JP2007212469A true JP2007212469A (en) 2007-08-23
JP4582105B2 JP4582105B2 (en) 2010-11-17

Family

ID=38491010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078512A Expired - Fee Related JP4582105B2 (en) 2007-03-26 2007-03-26 Equipment discrimination system

Country Status (1)

Country Link
JP (1) JP4582105B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177488A (en) * 2011-02-25 2012-09-13 Yazaki Corp Gas appliance determination system, and gas appliance determination method
US8849590B2 (en) 2006-12-28 2014-09-30 Panasonic Corporation Flow rate measurement apparatus and gas supply system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6366021B2 (en) * 2015-12-24 2018-08-01 パナソニックIpマネジメント株式会社 Flow measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215585A (en) * 1992-01-27 1993-08-24 Matsushita Electric Ind Co Ltd Ignition flow rate detector
JPH07174594A (en) * 1993-12-17 1995-07-14 Tokyo Gas Co Ltd Discrimination apparatus for gas appliance
WO1996012933A1 (en) * 1994-10-19 1996-05-02 Matsushita Electric Industrial Co., Ltd. Flow rate measurement method and ultrasonic flow meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215585A (en) * 1992-01-27 1993-08-24 Matsushita Electric Ind Co Ltd Ignition flow rate detector
JPH07174594A (en) * 1993-12-17 1995-07-14 Tokyo Gas Co Ltd Discrimination apparatus for gas appliance
WO1996012933A1 (en) * 1994-10-19 1996-05-02 Matsushita Electric Industrial Co., Ltd. Flow rate measurement method and ultrasonic flow meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8849590B2 (en) 2006-12-28 2014-09-30 Panasonic Corporation Flow rate measurement apparatus and gas supply system
JP2012177488A (en) * 2011-02-25 2012-09-13 Yazaki Corp Gas appliance determination system, and gas appliance determination method

Also Published As

Publication number Publication date
JP4582105B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
EP2717026A2 (en) Method of and apparatus for determining a flow rate of a fluid and detecting gas bubbles or particles in the fluid
CN104634424B (en) For the condition detection method of ultrasonic flowmeter
JP2010181401A (en) Flow rate measurement device
JP6366021B2 (en) Flow measuring device
JP4582105B2 (en) Equipment discrimination system
JP2006200801A (en) Gas meter having gas appliance-discriminating function, and gas appliance
JP2007187506A (en) Ultrasonic flowmeter
JP4670360B2 (en) Gas appliance, appliance discrimination device and gas meter
KR101764870B1 (en) Signal processing system for ultrasonic floemeter
JP2007017157A (en) Ultrasonic flowmeter
JP2005181268A (en) Ultrasonic flowmeter
JPH11287684A (en) System for identifying appliance used
JP2006343292A (en) Ultrasonic flowmeter
JP2010223855A (en) Ultrasonic flowmeter
JP6346549B2 (en) In-pipe monitoring system
JP2002296085A (en) Ultrasonic flowmeter
JP2008275465A (en) Flow measuring apparatus, program of the same, flow measuring method, and fluid supply system
JP6064160B2 (en) Flow measuring device
JP2001317975A (en) Method and apparatus for ultrasonic flow velocity measurement
JP2005241545A (en) Doppler ultrasonic flowmeter, equipment/method for controlling received voltage level thereof and program
US20230066279A1 (en) Ultrasonic flow sensor
JP6447826B2 (en) Flow measuring device
JP5310001B2 (en) Ultrasonic gas meter
JP3894565B2 (en) Ultrasonic flow meter
JP5287628B2 (en) Fluid flow measuring device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20091127

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A131 Notification of reasons for refusal

Effective date: 20100126

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100325

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100816

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130910

LAPS Cancellation because of no payment of annual fees