JP2007208893A - Superconductive filter device, and filter characteristic adjustment method - Google Patents

Superconductive filter device, and filter characteristic adjustment method Download PDF

Info

Publication number
JP2007208893A
JP2007208893A JP2006028262A JP2006028262A JP2007208893A JP 2007208893 A JP2007208893 A JP 2007208893A JP 2006028262 A JP2006028262 A JP 2006028262A JP 2006028262 A JP2006028262 A JP 2006028262A JP 2007208893 A JP2007208893 A JP 2007208893A
Authority
JP
Japan
Prior art keywords
resonator
microstrip
filter device
superconducting
adjusting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006028262A
Other languages
Japanese (ja)
Other versions
JP4504932B2 (en
Inventor
Teru Nakanishi
輝 中西
Akihiko Akasegawa
章彦 赤瀬川
Manabu Kai
学 甲斐
Kazunori Yamanaka
一典 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006028262A priority Critical patent/JP4504932B2/en
Publication of JP2007208893A publication Critical patent/JP2007208893A/en
Application granted granted Critical
Publication of JP4504932B2 publication Critical patent/JP4504932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely perform fine adjustment of the characteristics of a microstrip type resonator constituting a superconductive filter by simple constitution. <P>SOLUTION: A superconductive filter device comprises two or more microstrip type resonators 11 formed of superconductive material on a dielectric substrate, and characteristic adjustment members 12 provided at each of the microstrip type resonators and movable in parallel to the microstrip type resonators at a position of a fixed height from the microstrip type resonators. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、移動通信基地局のRFフロントエンドに適用される受信用超伝導フィルタデバイスと、フィルタ特性の調整方法に関する。   The present invention relates to a reception superconducting filter device applied to an RF front end of a mobile communication base station, and a filter characteristic adjusting method.

携帯電話の普及に伴い、高速・大容量の伝送技術が不可欠となってきている。移動通信用の基地局では、鉄塔の塔頂部付近に設置されるアンテナのすぐ近傍にフィルタ受信装置を取り付けることで、引き回しのケーブルによるロスなどを小さくして、品質のよい通信を行なえるようにしている。アンテナの直近ということで、フィルタ装置の小型化が重要になってくる。フィルタ自体が大きなものになると、装置の運搬、設置が困難になるからである。   With the spread of mobile phones, high-speed and large-capacity transmission technology has become indispensable. In base stations for mobile communications, a filter receiver is installed in the immediate vicinity of the antenna installed near the top of the tower, so that loss due to routing cables can be reduced and high-quality communication can be performed. ing. Since it is close to the antenna, downsizing of the filter device becomes important. This is because if the filter itself becomes large, it becomes difficult to transport and install the device.

超伝導体は、高周波領域においても、通常の電気的良導体に比べて表面抵抗が非常に小さいため、マイクロストリップライン型のフィルタにとっては、有望な配線材料である。   A superconductor is a promising wiring material for a microstrip line type filter because it has a surface resistance much lower than that of a normal electrical conductor even in a high frequency region.

図1(a)は、マイクロストリップライン型フィルタとして、ヘアピン型の超伝導受信フィルタのパターン例を示す。誘電体基板106上で、信号入出力線103の間に超伝導体膜で形成される複数のヘアピン型共振器101a〜101gを配置し、隣接する共振を結合させてフィルタ特性を得る。誘電体基板106の裏側にも、グランド電極(不図示)として全面に超伝導膜が形成されている。   FIG. 1A shows a pattern example of a hairpin type superconducting reception filter as a microstripline type filter. On the dielectric substrate 106, a plurality of hairpin resonators 101a to 101g formed of a superconductor film are disposed between the signal input / output lines 103, and adjacent resonances are coupled to obtain filter characteristics. A superconducting film is also formed on the entire back surface of the dielectric substrate 106 as a ground electrode (not shown).

常温で使用する一般的な半同軸フィルタや誘電体フィルタでは、共振器数(段数)が多いほど、信号通過帯域とそれ以外の領域を分ける周波数遮断特性が急峻になるが、フィルタ自体も大きくなる。また、マイクロストリップライン型の共振器の配線材料に、銅(Cu)や銀(Ag)のような電気的良導体を使用しても、電気抵抗が信号の通過を妨げ、ロスになってしまう。これに対し、超伝導フィルタを用いると、多段にしても伝送ロスが小さく、小型のフィルタが可能になる。   In general semi-coaxial filters and dielectric filters used at room temperature, the greater the number of resonators (stages), the steeper the frequency cutoff characteristic that separates the signal passband from other regions, but the filter itself also increases. . Even if a good electrical conductor such as copper (Cu) or silver (Ag) is used as the wiring material of the microstrip line type resonator, the electrical resistance hinders the passage of signals and causes a loss. On the other hand, when a superconducting filter is used, transmission loss is small even if it is multi-staged, and a small filter is possible.

今後、音声や画像など大容量の信号の送受信が増大することが予想され、周波数資源の不足に対処すべく相互干渉の抑制のためにチャネル間に設定されるガードバンドや、広帯域での通信を、超伝導フィルタを用いることで改善できる可能性が広がる。   In the future, transmission and reception of large-capacity signals such as voice and images are expected to increase, and in order to cope with the shortage of frequency resources, guard bands set between channels to prevent mutual interference and broadband communication The possibility of improvement can be expanded by using a superconducting filter.

実際に使用する際には、図1(b)に示すように、共振器パターン101を形成した誘電体基板106を、高周波シールドできる金属パッケージ130に収め、接続電極105と電気接続される同軸コネクタ131を介して、信号の入出力を行う。   In actual use, as shown in FIG. 1B, the dielectric substrate 106 on which the resonator pattern 101 is formed is housed in a metal package 130 capable of high-frequency shielding, and is a coaxial connector that is electrically connected to the connection electrode 105. Signals are input and output via 131.

受信用の超伝導フィルタでは、図1のように、ヘアピン型の共振器101を複数並べてフィルタとして使用することが多い。このとき、誘電体基板106の厚さや材料特性のばらつき、や、共振器101のパターニング寸法のずれなどにより、各々の共振器の共振周波数が所定の値からずれてしまい、理想的なフィルタ特性が得られない場合がある。   In a superconducting filter for reception, as shown in FIG. 1, a plurality of hairpin resonators 101 are often arranged and used as a filter. At this time, the resonance frequency of each resonator is deviated from a predetermined value due to variations in the thickness and material characteristics of the dielectric substrate 106 and the patterning dimension deviation of the resonator 101, and ideal filter characteristics are obtained. It may not be obtained.

また、フィルタを小型化するために、誘電体基板106の誘電率を大きくすると、所定の配線インピーダンスを実現するには、さらに配線パターンがファインになり、基板厚さやパターニング寸法のずれが特性に大きく影響してくる。   In addition, if the dielectric constant of the dielectric substrate 106 is increased in order to reduce the size of the filter, the wiring pattern becomes finer in order to achieve a predetermined wiring impedance, and the deviation of the substrate thickness and patterning dimension is greatly characteristic. Will be affected.

特性のずれを調整するために、図1(b)に示すように、誘電体や導体の特性調整ロッド102を金属パッケージ130の天板(不図示)から共振器101に近づけ、共振器101との間の距離によって、ずれた共振周波数の調整を行っていた(たとえば、特許文献1および非特許文献1参照)。
特開2002−57506号公報 「誘電体ロッドトリミングによる超伝導フィルタの特性改善」、三上宏他、信学技報SCE2003−6、MW2003−6(2003−4)、p29〜35
In order to adjust the characteristic deviation, as shown in FIG. 1B, the dielectric or conductor characteristic adjusting rod 102 is moved closer to the resonator 101 from the top plate (not shown) of the metal package 130, and the resonator 101 and The adjusted resonance frequency is adjusted depending on the distance between the two (see, for example, Patent Document 1 and Non-Patent Document 1).
JP 2002-57506 A "Characteristic improvement of superconducting filter by dielectric rod trimming", Hiroshi Mikami et al., IEICE Technical Report SCE2003-6, MW2003-6 (2003-4), p29-35

しかし、図1(b)のように、共振器101の上方から垂直方向に調整ロッド102を近づけて調整する場合、共振周波数のシフト量の範囲が限定されることや、共振器フィルタの平面回路を破損してしまうおそれがあった。   However, as shown in FIG. 1B, when adjusting the adjustment rod 102 in the vertical direction from above the resonator 101, the range of the resonance frequency shift amount is limited, or the planar circuit of the resonator filter is used. Could be damaged.

そこで、作製済みの共振器パターンを破損することなく、かつ比較的広範囲で安定して共振周波数のずれ量を調整することができる超伝導フィルタデバイスと、フィルタ特性の調整方法を提供することを課題とする。   Therefore, it is an object to provide a superconducting filter device capable of adjusting the amount of deviation of the resonance frequency stably and over a relatively wide range without damaging the manufactured resonator pattern, and a method for adjusting the filter characteristics. And

上記課題を解決するために、本発明では、パッケージの側面から誘電体または導体の特性調整ロッドを挿入し、マイクロストリップ型の共振器パターンの上方の一定の高さ位置で、特性調整ロッドを共振器に対して並行移動させる。共振器と特性調整ロッドとの重なる量によって、共振周波数を調整する。   In order to solve the above problems, in the present invention, a dielectric or conductor characteristic adjustment rod is inserted from the side of the package, and the characteristic adjustment rod is resonated at a certain height above the microstrip resonator pattern. Move parallel to the vessel. The resonance frequency is adjusted by the amount of overlap between the resonator and the characteristic adjustment rod.

具体的には、第1の側面では、超伝導フィルタデバイスは、
(a)誘電体基板上に超伝導材料で形成される複数のマイクロストリップ型共振器と、
(b)前記マイクロストリップ型共振器の各々に対して設けられ、前記マイクロストリップ型共振器から一定の高さの位置で、前記マイクロストリップ型共振器に対して並行移動可能な特性調整部材と
を含む。
Specifically, in the first aspect, the superconducting filter device is:
(A) a plurality of microstrip resonators formed of a superconducting material on a dielectric substrate;
(B) a characteristic adjusting member that is provided for each of the microstrip resonators and is movable in parallel to the microstrip resonator at a certain height from the microstrip resonator. Including.

良好な構成例では、特性調整部材は、マイクロストリップ型共振器の長手方向に沿って移動可能である。   In a favorable configuration example, the characteristic adjusting member is movable along the longitudinal direction of the microstrip resonator.

一構成例として、特性調整部材は、マイクロストリップ型共振器の各々に対して1つ設けられ、当該マイクロストリップ型共振器の長手方向に沿って、並行移動可能に挿入される。   As one configuration example, one characteristic adjusting member is provided for each of the microstrip resonators, and is inserted so as to be movable in the longitudinal direction of the microstrip resonator.

あるいは、特性調整部材は、マイクロストリップ型共振器の各々に対して2つ設けられ、当該マイクロストリップ型共振器の長手方向に沿って、双方向から並行移動可能に挿入される。   Alternatively, two characteristic adjusting members are provided for each of the microstrip resonators, and are inserted so as to be movable in parallel from both directions along the longitudinal direction of the microstrip resonator.

第2の側面では、超伝導材料で形成される複数のマイクロストリップ型共振器を有する超伝導フィルタデバイスの調整方法を提供する。この方法は、
(a)前記複数のマイクロストリップ型共振器の各々に対し、誘電体または導体で形成される特性調整部材を、前記マイクロストリップ型共振器から一定の高さの位置に配置し、
(b)前記特性調整部材を、前記マイクロストリップ型共振器と並行に水平移動して、各マイクロストリップ型共振器の共振周波数を調整する
ことを特徴とする。
In a second aspect, a method for adjusting a superconducting filter device having a plurality of microstrip resonators formed of a superconducting material is provided. This method
(A) For each of the plurality of microstrip resonators, a characteristic adjusting member formed of a dielectric or a conductor is disposed at a certain height from the microstrip resonator,
(B) The characteristic adjusting member is horizontally moved in parallel with the microstrip resonator to adjust the resonance frequency of each microstrip resonator.

簡単な構成で、超伝導フィルタを構成する共振器の特性を正確に微調整することができる。   With a simple configuration, the characteristics of the resonator constituting the superconducting filter can be finely adjusted accurately.

以下、図面を参照して、本発明の良好な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図2は、本発明の原理を説明する図である。図2(a)は金属パッケージを省略した状態での斜視図、図2(b)は金属パッケージに収納した状態での垂直断面図である。誘電体基板16上に、超伝導材料で複数のヘアピン型の共振器パターン11と、信号入出力線13が形成されている。信号入出力線13は、接続電極15により金属パッケージ30の同軸コネクタ31に接続されている。誘電体基板16の裏面には、超伝導材料で全面にグランド膜18が形成されている。   FIG. 2 is a diagram for explaining the principle of the present invention. 2A is a perspective view with the metal package omitted, and FIG. 2B is a vertical sectional view with the metal package housed. A plurality of hairpin type resonator patterns 11 and signal input / output lines 13 are formed on a dielectric substrate 16 with a superconductive material. The signal input / output line 13 is connected to the coaxial connector 31 of the metal package 30 by the connection electrode 15. A ground film 18 is formed on the entire back surface of the dielectric substrate 16 with a superconductive material.

共振器11の上方、一定の高さで、特性調整部材12がパッケージ30の側面から共振器11と並行に挿入されている。図2(b)の例では、特性調整部材12はネジ式のロッドである。特性調整部材12は誘電体または導体であり、各共振器11につき、それぞれ対応する特性調整部材12が用いられる。特性調整部材12は、隣接する共振器11と共振器11の間に配置されるのではなく、対応する共振器11の上方に、一定の高さで位置し、図2(a)の双方向矢印で示すように、水平方向の移動量、すなわち共振器11と重なり合う量が調整される。   A characteristic adjusting member 12 is inserted from the side surface of the package 30 in parallel with the resonator 11 at a certain height above the resonator 11. In the example of FIG. 2B, the characteristic adjusting member 12 is a screw-type rod. The characteristic adjusting member 12 is a dielectric or a conductor, and a corresponding characteristic adjusting member 12 is used for each resonator 11. The characteristic adjusting member 12 is not disposed between the adjacent resonators 11 but is located above the corresponding resonators 11 at a certain height, and is bidirectional as shown in FIG. As indicated by the arrows, the amount of horizontal movement, that is, the amount of overlap with the resonator 11 is adjusted.

図3は、特性調整ロッド12を共振器11と並行に挿入し、重なり合う量を変化させる本実施例の方法(図2)での共振周波数の変化と、垂直方向から特性調整ロッド102を挿入して共振器101とロッド先端との間の距離を変化させる従来方法(図1)を比較する実施例を説明する図である。   In FIG. 3, the characteristic adjustment rod 12 is inserted in parallel with the resonator 11, and the change in the resonance frequency in the method of this embodiment (FIG. 2) in which the amount of overlap is changed, and the characteristic adjustment rod 102 is inserted from the vertical direction. It is a figure explaining the Example which compares the conventional method (FIG. 1) which changes the distance between the resonator 101 and the rod front-end | tip.

サンプルとして、両面にYBCO(Y−Ba−Cu−O系)膜を形成した直径2インチのLaAlO3基板16の片面に、図3(a)の共振器11のヘアピンパターンと、信号入出力線13のパターンを、フォトリソグラフィの手法を用いて形成する。ヘアピン型共振器11の幅Aは、約0.7mm、マイクロストリップライン幅は、0.17mmである。この共振器11は、4GHz近辺に共振周波数を持っている。 As a sample, the hairpin pattern of the resonator 11 of FIG. 3A and the signal input / output line are formed on one side of a LaAlO 3 substrate 16 having a diameter of 2 inches in which YBCO (Y—Ba—Cu—O system) films are formed on both sides. Thirteen patterns are formed using a photolithography technique. The width A of the hairpin resonator 11 is about 0.7 mm, and the microstrip line width is 0.17 mm. The resonator 11 has a resonance frequency in the vicinity of 4 GHz.

これを、共振器フィルタデバイスの大きさである約33×11mmにダイシングし、信号入出力線13の端部に接続電極15を形成する。接続電極はAu/Pd/Crの構成で、蒸着法を用いて形成する。裏面はYBCO膜をそのままグランド電極として用いるか、またはAg膜を蒸着する。   This is diced to about 33 × 11 mm, which is the size of the resonator filter device, and the connection electrode 15 is formed at the end of the signal input / output line 13. The connection electrode has a structure of Au / Pd / Cr and is formed by vapor deposition. On the back surface, the YBCO film is used as it is as a ground electrode, or an Ag film is deposited.

このサンプルを図3(b)に示すように、金属パッケージ30に入れ、接続電極15と同軸コネクタ31の中心導体(不図示)を接続する。この際の接合方法は、超音波熱圧着によるワイヤボンディング・テープボンディング、はんだ接合のいずれを用いてもよい。もよい。   As shown in FIG. 3B, this sample is put in a metal package 30, and the connection electrode 15 and the central conductor (not shown) of the coaxial connector 31 are connected. As a joining method at this time, any of wire bonding and tape bonding by ultrasonic thermocompression bonding and solder bonding may be used. Also good.

比較例を実施するために、図4に示すように、共振器11の上部からアルミナネジ19を挿入できる構造の金属パッケージの蓋を被せて、従来構成の超伝導フィルタデバイス40とする。このとき、アルミナネジ19の初期位置を計測しておき、アルミナネジの回転数とネジ山のピッチから、アルミナネジ19から共振器11までの距離を割り出す。   In order to carry out the comparative example, as shown in FIG. 4, a superconducting filter device 40 having a conventional configuration is obtained by covering a lid of a metal package having a structure in which an alumina screw 19 can be inserted from the top of the resonator 11. At this time, the initial position of the alumina screw 19 is measured, and the distance from the alumina screw 19 to the resonator 11 is determined from the rotational speed of the alumina screw and the pitch of the thread.

この超伝導フィルタデバイス40を、図5に示すように、冷却装置の断熱真空容器50内のコールドプレート51上にセットし、10Pa〜3Paまで真空引きした後、70Kまで冷却する。冷却は、冷凍機膨張部55と冷凍機圧縮部56を組み合わせて行なう。このときの温度は、低温になればなるほど超伝導特性の向上が見込めるため、実際のデバイスでは、より低温で使用することが望ましいが、この比較実験では、冷却温度を70Kに設定する。冷凍機55,56は、サンプルの冷却が得られればよいので、その種類(パルスチューブ、スターリング、GMなど)は問わない。   As shown in FIG. 5, this superconducting filter device 40 is set on a cold plate 51 in a heat insulating vacuum container 50 of a cooling device, evacuated to 10 Pa to 3 Pa, and then cooled to 70K. Cooling is performed by combining the refrigerator expansion unit 55 and the refrigerator compression unit 56. Since the superconducting characteristics can be improved as the temperature becomes lower at this time, it is desirable to use the actual device at a lower temperature. However, in this comparative experiment, the cooling temperature is set to 70K. The refrigerators 55 and 56 may be any type (pulse tube, Stirling, GM, etc.) as long as the sample can be cooled.

超伝導フィルタデバイス40の同軸コネクタ31と、断熱真空容器50のハーメチック同軸コネクタ58との間を、同軸ケーブル54で接続し、断熱真空容器50外部と信号の入出力を行う。ハーメチック同軸コネクタ58からさらに同軸ケーブル54で、ネットワークアナライザ57と接続し、共振器11(図4参照)の共振周波数の変化を測定する。   The coaxial connector 31 of the superconducting filter device 40 and the hermetic coaxial connector 58 of the heat insulating vacuum container 50 are connected by a coaxial cable 54 to input / output signals to / from the heat insulating vacuum container 50. The hermetic coaxial connector 58 is further connected to the network analyzer 57 by the coaxial cable 54, and the change in the resonance frequency of the resonator 11 (see FIG. 4) is measured.

すなわち、断熱真空容器50のポートに、真空で回転させることが可能なドライバ53とのぞき窓52が設けてあり、この窓52からアルミナネジ19の位置を確認しながらドライバ53で回転させ、共振器11とアルミナネジ19との距離を変えて、共振周波数の変化を調べる。   That is, a driver 53 that can be rotated in vacuum and a viewing window 52 are provided at the port of the heat insulating vacuum container 50, and the resonator 53 is rotated by the driver 53 while confirming the position of the alumina screw 19 from the window 52. The change in the resonance frequency is examined by changing the distance between 11 and the alumina screw 19.

同様にして、本発明の水平調整の手法を用いた場合の共振周波数の変化を、電磁界シミュレータを用いて調べる。   Similarly, a change in the resonance frequency when the level adjustment method of the present invention is used is examined using an electromagnetic field simulator.

図6は、本発明の実施例のシミュレーションモデルとして作製する共振器モデルの概念図である。図3(a)で作製したLaAlO3基板16上のヘアピン型共振器11の開口側から、特性調整部材12として、アルミナ(誘電体)ロッド12を、共振器11の表面から0.1mmの高に保持し、共振器11と並行にヘアピンの長手方向に沿って、水平移動する。アルミナロッド12の幅は、ヘアピン型共振器の幅に合わせて、0.7mmとしている。アルミナロッド12を両方向矢印のように水平に動かして共振器11と重なり合う量(長さ)を変え、電磁界シミュレーションを行って、共振周波数の変化を調べる。 FIG. 6 is a conceptual diagram of a resonator model produced as a simulation model of the embodiment of the present invention. From the opening side of the hairpin resonator 11 on the LaAlO 3 substrate 16 produced in FIG. 3A, an alumina (dielectric) rod 12 is formed as a characteristic adjusting member 12 with a height of 0.1 mm from the surface of the resonator 11. And move horizontally along the longitudinal direction of the hairpin in parallel with the resonator 11. The width of the alumina rod 12 is set to 0.7 mm in accordance with the width of the hairpin resonator. The alumina rod 12 is moved horizontally as indicated by a double-headed arrow to change the amount (length) of overlap with the resonator 11, and electromagnetic field simulation is performed to examine the change in the resonance frequency.

図7(a)は、図6のように、アルミナロッド12を共振器11の直上で水平移動した場合の共振周波数の電磁界シミュレーション結果を示すグラフ、図7(b)は、図4のように、アルミナネジ19を垂直方向に共振器11に近づけた場合の共振周波数の変化を示すグラフである。   FIG. 7A is a graph showing electromagnetic field simulation results of the resonance frequency when the alumina rod 12 is horizontally moved directly above the resonator 11 as shown in FIG. 6, and FIG. 7B is shown in FIG. 7 is a graph showing a change in resonance frequency when the alumina screw 19 is brought close to the resonator 11 in the vertical direction.

図7(a)では、横軸にアルミナロッド12が共振器11と重なる距離(mm)、縦軸に共振周波数をとっている。共振周波数の変化量は約60MHzと広範囲にわたり、調整範囲が広い。また、共振周波数の変化の傾きが比較的なだらかなので、アルミナロッド12の水平方向への挿入量を変えることで、共振周波数の微調整が容易である。さらに、アルミナロッド12の重なり量が3.0mmくらいまでは、共振周波数はほぼリニアに変化するので、所望の共振周波数を得るためのロッド位置調整が容易である。   In FIG. 7A, the horizontal axis represents the distance (mm) where the alumina rod 12 overlaps the resonator 11, and the vertical axis represents the resonance frequency. The amount of change in the resonance frequency is as wide as about 60 MHz, and the adjustment range is wide. In addition, since the gradient of the change in the resonance frequency is relatively gentle, fine adjustment of the resonance frequency is easy by changing the amount of insertion of the alumina rod 12 in the horizontal direction. Furthermore, since the resonance frequency changes almost linearly until the overlapping amount of the alumina rods 12 is about 3.0 mm, the rod position adjustment for obtaining a desired resonance frequency is easy.

図7(b)では、横軸に共振器11との間の垂直距離(mm)をとり、縦軸に、共振周波数をとっている。アルミナネジ19の尖端を、共振器11から0.2mmくらいに近づけるまで、共振器の特性に影響はない。共振器11の上0.2mmからさらに近づけると、共振周波数は変化するが、その変化の傾きが急なため、微調整が困難である。また、共振周波数の変化量は、約20MHz程度であり、調整範囲が狭い。   In FIG. 7B, the horizontal axis represents the vertical distance (mm) between the resonator 11 and the vertical axis represents the resonance frequency. The characteristics of the resonator are not affected until the tip of the alumina screw 19 is brought close to the resonator 11 by about 0.2 mm. When the resonator 11 is further brought closer to 0.2 mm above the resonator 11, the resonance frequency changes. However, since the inclination of the change is steep, fine adjustment is difficult. Further, the amount of change in the resonance frequency is about 20 MHz, and the adjustment range is narrow.

このように、本実施形態の方法では、個々の共振器11に対して、共振器11上で特性調整部材12を水平に移動させることにより、正確かつ容易に共振周波数を微調整することが可能になる。また、共振器11に接触して傷付けるおそれもない。この結果、デバイス全体として共振周波数が統一された信頼性の高い超伝導フィルタデバイスが実現する。   As described above, in the method of this embodiment, the resonance frequency can be finely adjusted accurately and easily by moving the characteristic adjusting member 12 horizontally on the resonator 11 with respect to the individual resonators 11. become. In addition, there is no risk of contact with the resonator 11 and damage. As a result, a highly reliable superconducting filter device in which the resonance frequency is unified as the entire device is realized.

図8は、図2(a)の超伝導フィルタデバイス10の変形例を示す図である。図2(a)の構成では、各共振器11に1つの特性調整部材12が設けられ、それぞれヘアピンの開口側から特性調整部材12を挿入していた。図8の構成では、共振器11ごとに2つの特性調整部材12を設け、ヘアピンの開口側とU字側の双方から特性調整部材12を挿入する。この構成では、各特性調整部材12の移動量を小さくできるという効果がある。   FIG. 8 is a view showing a modification of the superconducting filter device 10 of FIG. In the configuration of FIG. 2A, one characteristic adjusting member 12 is provided in each resonator 11, and the characteristic adjusting member 12 is inserted from the opening side of the hairpin. In the configuration of FIG. 8, two characteristic adjusting members 12 are provided for each resonator 11, and the characteristic adjusting members 12 are inserted from both the opening side and the U-shaped side of the hairpin. With this configuration, there is an effect that the moving amount of each characteristic adjusting member 12 can be reduced.

図9(a)および図9(b)は、本発明が適用される共振器パターンの別の例を示す。本発明は、ヘアピン型のマイクロストリップパターンだけではなく、図9(a)のようなスパイラル型共振器21や、図9(b)のようなS字型共振器31にも適用される。図9の例では、各共振器21、31につき、1つの特性調整部材12が用いられているが、図8に示すように、各共振器21、31につき、双方向から特性調整部材12を挿入して重なり量を調整する構成としてもよい。   9A and 9B show another example of a resonator pattern to which the present invention is applied. The present invention is applied not only to a hairpin type microstrip pattern, but also to a spiral resonator 21 as shown in FIG. 9A and an S-shaped resonator 31 as shown in FIG. 9B. In the example of FIG. 9, one characteristic adjusting member 12 is used for each resonator 21, 31. However, as shown in FIG. 8, the characteristic adjusting member 12 is bidirectionally connected to each resonator 21, 31. It is good also as a structure which inserts and adjusts the amount of overlap.

なお、特性調整部材12は、アルミナなどの誘電体に限らず、金属などの導体であってもよい。また、実施形態では超伝導材料としてYBCO薄膜を用いたが、任意の酸化物超伝導材料を用いることができる。たとえば、RBCO(R−Ba−Cu−O)系薄膜、すなわち、R元素としてY(イットリウム)に代えて、Nd、Sm、Gd、Dy、Hoを用いた超伝導材料を用いてもよい。また、BSCCO(Bi−Sr−Ca−Cu−O)系、PBSCCO(Pb−Bi−Sr−Ca−Cu−O)系、CBCCO(Cu−Bap−Caq−Cur−Ox、1.5<p<2.5、2.5<q<3.5、3.5<r<4.5)を超伝導材料に用いてもよい。   The characteristic adjusting member 12 is not limited to a dielectric such as alumina, but may be a conductor such as metal. In the embodiment, the YBCO thin film is used as the superconducting material, but any oxide superconducting material can be used. For example, an RBCO (R—Ba—Cu—O) -based thin film, that is, a superconducting material using Nd, Sm, Gd, Dy, and Ho instead of Y (yttrium) as the R element may be used. Also, BSCCO (Bi-Sr-Ca-Cu-O) system, PBSCCO (Pb-Bi-Sr-Ca-Cu-O) system, CBCCO (Cu-Bap-Caq-Cur-Ox, 1.5 <p <2.5, 2.5 <q <3.5, 3.5 <r <4.5) may be used for the superconducting material.

最後に、以上の説明に関して、以下の付記を開示する。
(付記1) 誘電体基板上に超伝導材料で形成される複数のマイクロストリップ型共振器と、
前記マイクロストリップ型共振器の各々に対して設けられ、前記マイクロストリップ型共振器から一定の高さの位置で、前記マイクロストリップ型共振器に対して並行移動可能な特性調整部材と
を含む超伝導フィルタデバイス。
(付記2) 前記特性調整部材は、前記マイクロストリップ型共振器の長手方向に沿って移動可能であることを特徴とする付記1に記載の超伝導フィルタデバイス。
(付記3) 前記特性調整部材は、前記マイクロストリップ型共振器の各々に対して1つ設けられ、
当該マイクロストリップ型共振器の長手方向に沿って、並行移動可能に挿入されることを特徴とする請求項付記1に記載の超伝導フィルタデバイス。
(付記4) 前記特性調整部材は、前記マイクロストリップ型共振器の各々に対して2つ設けられ、
当該マイクロストリップ型共振器の長手方向に沿って、双方向から並行移動可能に挿入されることを特徴とする付記1に記載の超伝導フィルタデバイス。
(付記5) 前記マイクロストリップ型共振器はヘアピン型共振器であり、
前記特性調整部材は、前記ヘアピン型共振器の開口側から、長手方向に沿って移動可能に挿入されることを特徴とする付記1に記載の超伝導フィルタデバイス。
(付記6) 前記特性調整部材は、誘電体または導体のロッドであることを特徴とする付記1に記載の超伝導フィルタデバイス。
(付記7) 前記マイクロストリップ型共振器が形成された誘電体基板を収納する金属パッケージをさらに備え、
前記特性調整部材は、前記金属パッケージの側面から、ネジ式またはトリマ式で前記マイクロストリップ型共振器と並行になるように、パッケージ内に挿入されることを特徴とする付記1に記載の超伝導フィルタデバイス。
(付記8) 超伝導材料で形成される複数のマイクロストリップ型共振器を有する超伝導フィルタデバイスの調整方法であって、
前記複数のマイクロストリップ型共振器の各々に対し、誘電体または導体で形成される特性調整部材を、前記マイクロストリップ型共振器から一定の高さの位置に配置し、
前記特性調整部材を、前記マイクロストリップ型共振器と並行に水平移動して、各マイクロストリップ型共振器の共振周波数を調整する
ことを特徴とする超伝導フィルタデバイスの調整方法。
(付記9) 前記特性調整部材を、前記マイクロストリップ型共振器の各々に対して1つ設け、
当該特性調整部材を、前記マイクロストリップ型共振器の長手方向に沿って並行移動することによって、前記マイクロストリップ型共振器の共振周波数を調整する
ことを特徴とする付記8に記載の超伝導フィルタデバイスの調整方法。
(付記10) 前記特性調整部材を、前記マイクロストリップ型共振器の各々に対して2つ設け、
当該特性調整部材を、前記マイクロストリップ型共振器の長手方向に沿って、双方向から並行移動することによって、前記マイクロストリップ型共振器の周波数を調整する
ことを特徴とする付記8に記載の超伝導フィルタデバイスの調整方法。
Finally, the following notes are disclosed regarding the above description.
(Appendix 1) A plurality of microstrip resonators formed of a superconducting material on a dielectric substrate;
A superconducting device provided for each of the microstrip resonators and including a characteristic adjusting member that is movable relative to the microstrip resonator at a certain height from the microstrip resonator. Filter device.
(Supplementary note 2) The superconducting filter device according to supplementary note 1, wherein the characteristic adjusting member is movable along a longitudinal direction of the microstrip resonator.
(Additional remark 3) The said characteristic adjustment member is provided with respect to each of the said microstrip type | mold resonator,
The superconducting filter device according to claim 1, wherein the microstrip resonator is inserted so as to be movable along the longitudinal direction of the microstrip resonator.
(Additional remark 4) Two said characteristic adjustment members are provided with respect to each of the said microstrip type | mold resonator,
The superconducting filter device according to appendix 1, wherein the microstrip resonator is inserted so as to be movable in parallel from both directions along the longitudinal direction of the microstrip resonator.
(Appendix 5) The microstrip resonator is a hairpin resonator,
The superconducting filter device according to appendix 1, wherein the characteristic adjusting member is inserted from the opening side of the hairpin resonator so as to be movable along the longitudinal direction.
(Additional remark 6) The said characteristic adjustment member is a rod of a dielectric material or a conductor, The superconducting filter device of Additional remark 1 characterized by the above-mentioned.
(Additional remark 7) It further has the metal package which accommodates the dielectric substrate in which the said microstrip type resonator was formed,
The superconducting device according to claim 1, wherein the characteristic adjusting member is inserted into the package from a side surface of the metal package so as to be parallel to the microstrip resonator by a screw type or a trimmer type. Filter device.
(Supplementary note 8) A method of adjusting a superconducting filter device having a plurality of microstrip resonators formed of a superconducting material,
For each of the plurality of microstrip resonators, a characteristic adjusting member formed of a dielectric or a conductor is disposed at a certain height from the microstrip resonator,
A method for adjusting a superconducting filter device, wherein the characteristic adjusting member is horizontally moved in parallel with the microstrip resonator to adjust the resonance frequency of each microstrip resonator.
(Supplementary Note 9) One characteristic adjusting member is provided for each of the microstrip resonators,
The superconducting filter device according to claim 8, wherein the resonance frequency of the microstrip resonator is adjusted by moving the characteristic adjusting member in parallel along the longitudinal direction of the microstrip resonator. Adjustment method.
(Supplementary Note 10) Two of the characteristic adjusting members are provided for each of the microstrip resonators,
The super frequency according to appendix 8, wherein the frequency of the microstrip resonator is adjusted by moving the characteristic adjusting member from both directions along the longitudinal direction of the microstrip resonator. Method for adjusting a conductive filter device.

従来のヘアピン型超伝導フィルタパターン(共振器)の調整方法を説明する図である。It is a figure explaining the adjustment method of the conventional hairpin type | mold superconducting filter pattern (resonator). 本発明の原理を説明する図であり、図2(a)は金属パッケージを省略した状態での斜視図、図2(b)は金属パッケージに収納した状態での断面図である。2A and 2B are views for explaining the principle of the present invention, in which FIG. 2A is a perspective view with a metal package omitted, and FIG. 2B is a cross-sectional view with the metal package housed. 本発明の実施例を説明する図であり、図3(a)は実施例に用いる共振器パターンの例、図3(b)は、共振器の実装状態を示す図である。FIG. 3A is a diagram illustrating an example of the present invention, FIG. 3A is an example of a resonator pattern used in the example, and FIG. 3B is a diagram illustrating a mounted state of the resonator. 比較例を実施するための構造を示す図である。It is a figure which shows the structure for implementing a comparative example. 共振周波数の測定系の概略構成図である。It is a schematic block diagram of the measurement system of a resonant frequency. 実施形態の超伝導フィルタ特性の調整に関し、電磁界シミュレーションに用いる共振器モデルの概略図である。It is the schematic of the resonator model used for electromagnetic field simulation regarding adjustment of the superconducting filter characteristic of embodiment. 図7(a)は、実施形態に係る共振周波数の変化(電磁界シミュレーション結果)を示すグラフ、図7(b)は従来方法の共振周波数の変化を示すグラフである。FIG. 7A is a graph showing a change in resonance frequency (electromagnetic field simulation result) according to the embodiment, and FIG. 7B is a graph showing a change in resonance frequency of the conventional method. 実施形態に係る超伝導フィルタデバイスの特性調整の変形例である。It is a modification of the characteristic adjustment of the superconducting filter device which concerns on embodiment. 本発明の特性調整が適用される共振器パターンの別の例を示す図である。It is a figure which shows another example of the resonator pattern to which the characteristic adjustment of this invention is applied.

符号の説明Explanation of symbols

10 超伝導フィルタデバイス
11 共振器
12 特性調整部材(アルミナロッド)
13 信号入出力線
14 グランド膜
16 誘電体基板
30 金属パッケージ
10 Superconducting filter device 11 Resonator 12 Characteristic adjusting member (alumina rod)
13 Signal I / O Line 14 Ground Film 16 Dielectric Substrate 30 Metal Package

Claims (5)

誘電体基板上に超伝導材料で形成される複数のマイクロストリップ型共振器と、
前記マイクロストリップ型共振器の各々に対して設けられ、前記マイクロストリップ型共振器から一定の高さの位置で、前記マイクロストリップ型共振器に対して並行移動可能な特性調整部材と
を含む超伝導フィルタデバイス。
A plurality of microstrip resonators formed of a superconducting material on a dielectric substrate;
A superconducting device provided for each of the microstrip resonators and including a characteristic adjusting member that is movable relative to the microstrip resonator at a certain height from the microstrip resonator. Filter device.
前記特性調整部材は、前記マイクロストリップ型共振器の長手方向に沿って移動可能であることを特徴とする請求項1に記載の超伝導フィルタデバイス。   The superconducting filter device according to claim 1, wherein the characteristic adjusting member is movable along a longitudinal direction of the microstrip resonator. 前記特性調整部材は、前記マイクロストリップ型共振器の各々に対して1つ設けられ、
当該マイクロストリップ型共振器の長手方向に沿って、並行移動可能に挿入される
ことを特徴とする請求項1に記載の超伝導フィルタデバイス。
One characteristic adjusting member is provided for each of the microstrip resonators,
The superconducting filter device according to claim 1, wherein the microstrip resonator is inserted so as to be movable along the longitudinal direction of the microstrip resonator.
前記特性調整部材は、前記マイクロストリップ型共振器の各々に対して2つ設けられ、
当該マイクロストリップ型共振器の長手方向に沿って、双方向から並行移動可能に挿入される
ことを特徴とする請求項1に記載の超伝導フィルタデバイス。
Two of the characteristic adjusting members are provided for each of the microstrip resonators,
The superconducting filter device according to claim 1, wherein the superconducting filter device is inserted so as to be movable in parallel from both directions along the longitudinal direction of the microstrip resonator.
超伝導材料で形成される複数のマイクロストリップ型共振器を有する超伝導フィルタデバイスの調整方法であって、
前記複数のマイクロストリップ型共振器の各々に対し、誘電体または導体で形成される特性調整部材を、前記マイクロストリップ型共振器から一定の高さの位置に配置し、
前記特性調整部材を、前記マイクロストリップ型共振器と並行に水平移動して、各マイクロストリップ型共振器の共振周波数を調整する
ことを特徴とする超伝導フィルタデバイスの調整方法。
A method for adjusting a superconducting filter device having a plurality of microstrip resonators formed of a superconducting material, comprising:
For each of the plurality of microstrip resonators, a characteristic adjusting member formed of a dielectric or a conductor is disposed at a certain height from the microstrip resonator,
A method for adjusting a superconducting filter device, wherein the characteristic adjusting member is horizontally moved in parallel with the microstrip resonator to adjust the resonance frequency of each microstrip resonator.
JP2006028262A 2006-02-06 2006-02-06 Superconducting filter device and filter characteristic adjusting method Expired - Fee Related JP4504932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028262A JP4504932B2 (en) 2006-02-06 2006-02-06 Superconducting filter device and filter characteristic adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028262A JP4504932B2 (en) 2006-02-06 2006-02-06 Superconducting filter device and filter characteristic adjusting method

Publications (2)

Publication Number Publication Date
JP2007208893A true JP2007208893A (en) 2007-08-16
JP4504932B2 JP4504932B2 (en) 2010-07-14

Family

ID=38487908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028262A Expired - Fee Related JP4504932B2 (en) 2006-02-06 2006-02-06 Superconducting filter device and filter characteristic adjusting method

Country Status (1)

Country Link
JP (1) JP4504932B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090815A1 (en) * 2008-01-17 2009-07-23 Murata Manufacturing Co., Ltd. Strip-line filter
JP2009177349A (en) * 2008-01-22 2009-08-06 Fujitsu Ltd Tunable filter device
EP2575206A1 (en) * 2011-09-29 2013-04-03 Kabushiki Kaisha Toshiba Filter
WO2015076212A1 (en) * 2013-11-20 2015-05-28 Kabushiki Kaisha Toshiba Tunable filter apparatus
JP2016171395A (en) * 2015-03-11 2016-09-23 株式会社東芝 Filter characteristic adjustment device, tunable filter device and method of controlling tunable filter device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381402U (en) * 1986-11-13 1988-05-28
JPH1051204A (en) * 1996-05-24 1998-02-20 Robert Bosch Gmbh Planar filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381402U (en) * 1986-11-13 1988-05-28
JPH1051204A (en) * 1996-05-24 1998-02-20 Robert Bosch Gmbh Planar filter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090815A1 (en) * 2008-01-17 2009-07-23 Murata Manufacturing Co., Ltd. Strip-line filter
JP5287729B2 (en) * 2008-01-17 2013-09-11 株式会社村田製作所 Stripline filter
JP2009177349A (en) * 2008-01-22 2009-08-06 Fujitsu Ltd Tunable filter device
EP2575206A1 (en) * 2011-09-29 2013-04-03 Kabushiki Kaisha Toshiba Filter
CN103035984A (en) * 2011-09-29 2013-04-10 株式会社东芝 Filter
US8938277B2 (en) 2011-09-29 2015-01-20 Kabushiki Kaisha Toshiba Planar microstrip filter disposed in a case and having movable structural components spaced at intervals relative to the filter
WO2015076212A1 (en) * 2013-11-20 2015-05-28 Kabushiki Kaisha Toshiba Tunable filter apparatus
JP2015100082A (en) * 2013-11-20 2015-05-28 株式会社東芝 Tunable filter device
JP2016171395A (en) * 2015-03-11 2016-09-23 株式会社東芝 Filter characteristic adjustment device, tunable filter device and method of controlling tunable filter device

Also Published As

Publication number Publication date
JP4504932B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
US6937117B2 (en) High-frequency device
US7567145B2 (en) Superconducting tunable filter
US8725224B2 (en) Superconducting filter with disk-shaped electrode pattern
JP4504932B2 (en) Superconducting filter device and filter characteristic adjusting method
US8224409B2 (en) Three-dimensional filter with movable superconducting film for tuning the filter
CN108711664A (en) Broadband band hinders resonance filter
US7221238B2 (en) Superconducting filter device
JP4941326B2 (en) Tunable filter device
JP4874281B2 (en) Communication module
JP3866716B2 (en) filter
JP5120278B2 (en) Superconducting tunable filter device, nonlinear strain measuring device, nonlinear strain measuring method
JP4454589B2 (en) Superconducting filter device and filter characteristic adjusting method
JP4789850B2 (en) Band pass filter and method for manufacturing the same
JP2008252340A (en) Tunable filter, and manufacturing method thereof
JP6430115B2 (en) Tunable filter device
JP4587768B2 (en) Superconducting device and method of manufacturing superconducting device
JP2009038567A (en) Superconducting filter device, superconducting filter package, and superconducting filter apparatus
JP5062165B2 (en) Dual mode filter
US20050256008A1 (en) Superconducting filter device
JP4061223B2 (en) Superconducting filter package and superconducting filter device
KR101116784B1 (en) Superconducting disk resonator, method of manufacturing the same and dielectric anisotropy evaluating method
JP4767910B2 (en) Superconducting filter
JP2004259752A (en) Electronic device and method of manufacturing same
JP2009225014A (en) Filter device and tuning method
Akasegawa et al. 4 GHz band HTS receiving-filters for a compact cryogenic receiver front-end

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Ref document number: 4504932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees