JP2007204787A - Electrical steel sheet for permanent magnet motor and permanent magnet motor - Google Patents

Electrical steel sheet for permanent magnet motor and permanent magnet motor Download PDF

Info

Publication number
JP2007204787A
JP2007204787A JP2006022520A JP2006022520A JP2007204787A JP 2007204787 A JP2007204787 A JP 2007204787A JP 2006022520 A JP2006022520 A JP 2006022520A JP 2006022520 A JP2006022520 A JP 2006022520A JP 2007204787 A JP2007204787 A JP 2007204787A
Authority
JP
Japan
Prior art keywords
steel sheet
electrical steel
permanent magnet
magnet motor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006022520A
Other languages
Japanese (ja)
Other versions
JP4844139B2 (en
Inventor
Kunihiro Senda
邦浩 千田
Nobuisa Shiga
信勇 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006022520A priority Critical patent/JP4844139B2/en
Publication of JP2007204787A publication Critical patent/JP2007204787A/en
Application granted granted Critical
Publication of JP4844139B2 publication Critical patent/JP4844139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrical steel sheet for a permanent magnet motor as an iron core material for a magnet motor used from a low output region including a no-load region to a high output region, the steel sheet enabling a no-load loss and a loss when being rotated by external force to be reduced, and to provide a permanent magnet motor obtained by using the electrical steel sheet. <P>SOLUTION: The magnet motor is obtained by using a nonoriented electrical steel sheet and a permanent magnet. The nonoriented electrical steel sheet first contains 0.1 to 4.5 mass% Si. Then, the steel sheet has magnetic characteristics satisfying all of J100≥1.75T-(1)J10/J100≤0.80-(2)W20≤3.0W/kg-(3) (wherein, J100: magnetic polarization in a magnetizing force of 10,000 A/m, J10: magnetic polarization in a magnetizing force of 1,000 A/m, and W20: core loss when being magnetized under 2,000 A/m and 50 Hz). As one embodiment of the nonoriented electrical steel sheet, the nonoriented electrical steel sheet in which the ratio of the X-ray reflecting surface intensity in the ä111} plane orientation to the random aggregated structure intensity is 3.5 to 9.0, and also, the average crystal grain size is ≥45 μm can be cited. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は電気自動車等に用いられる永久磁石モータ用電磁鋼板および永久磁石モータに関する。   The present invention relates to an electromagnetic steel plate for a permanent magnet motor and a permanent magnet motor used in an electric vehicle or the like.

従来、モータ鉄心用の無方向性電磁鋼板における主要な開発課題は主として透磁率の向上と鉄損の低減であった。
鉄心素材の透磁率が向上することにより、モータのトルクが向上する。これは鉄心の磁束密度増加によって電機子と磁極の間の吸引力および反発力が増加するからである。このため、無方向性電磁鋼板の開発においてはB50と称される磁化力5000A/mでの磁束密度をより高めることを目標に開発が行われてきた。B50を高める手法のひとつとして、合金元素の低減がある。しかし、この場合は渦電流損の増加による鉄損の劣化を招くという難点がある。一方で、{100}面方位などの透磁率特性に有利な方位を増加させ、{111}面方位などの透磁率特性に有害な組織を低減する集合組織の改善する方法がB50の有効な改善方法として知られている。そして、従来の電磁鋼板開発における透磁率の改善は主としてこの集合組織の改善によって行われてきた(例えば、特許文献1)。
このような従来の鉄心材料開発により、鉄損W15/50が2.5W/kgでありながら、1.7T程度のB50を達成する無方向性電磁鋼板が現在開発されている。
Conventionally, main development issues in non-oriented electrical steel sheets for motor cores have mainly been improvement of magnetic permeability and reduction of iron loss.
By increasing the magnetic permeability of the iron core material, the torque of the motor is improved. This is because the attractive force and the repulsive force between the armature and the magnetic pole increase with the increase of the magnetic flux density of the iron core. For this reason, in the development of non-oriented electrical steel sheets, development has been carried out with the goal of further increasing the magnetic flux density at a magnetizing force of 5000 A / m called B50. One way to increase B50 is to reduce alloying elements. However, in this case, there is a drawback that the iron loss is deteriorated due to an increase in eddy current loss. On the other hand, an effective improvement of B50 is to improve the texture by increasing the orientation that is advantageous to the permeability characteristics such as {100} plane orientation and reducing the structure harmful to the permeability characteristics such as {111} plane orientation. Known as a method. And the improvement of the magnetic permeability in conventional electromagnetic steel sheet development has been performed mainly by the improvement of this texture (for example, patent document 1).
With the development of such conventional iron core materials, non-oriented electrical steel sheets that achieve a B50 of about 1.7 T while the iron loss W15 / 50 is 2.5 W / kg are currently being developed.

一方で、磁石モータの磁極となる永久磁石は近年、飛躍的な進歩を遂げており、Sm-Co系磁石やNd-Fe-B系の希土類のような非常に強力な磁石が開発され、実用化されている。このような強力な磁石を用いた場合、鉄心は電機子に電流を流さない場合も磁石の起磁力により高い磁束密度まで磁化されることになる。   On the other hand, permanent magnets, which are the magnetic poles of magnet motors, have made great strides in recent years, and very strong magnets such as Sm-Co magnets and Nd-Fe-B rare earths have been developed and put to practical use. It has become. When such a strong magnet is used, the iron core is magnetized to a high magnetic flux density by the magnetomotive force of the magnet even when no current is passed through the armature.

さらに近年では、電磁自動車、ハイブリッド電気自動車の駆動用モータ、EPSモータなど、低出力域ばかりでなく、高出力域の出力特性をも同時に必要とするモータ用途が出現しており、高出力時の特性が重視されるようになりつつある。このようなモータでは、現実の使用条件下で達する最大の磁束密度が従来のモータに比べて高く、鉄心の磁束密度はB50値を超える領域にまで達することになる。
上記高出力域の出力特性をも同時に必要とするモータでは高出力を得ようとして磁石強度を強くすると、無負荷時や軽負荷時の鉄損を増加させることになる。そして、運転モードが多用に変化するような場合には平均的な効率の低下に繋がる。また、磁気飽和領域で運転されるモータでは高磁場域でのインダクタンスの低下によって電流やトルクの制御が困難となるという問題も存在する。
上記に対し、磁石強度の飛躍的進歩に伴う鉄心側で生じる弊害を軽減するため、希土類磁石の体積を小さくするという対応が必要になる場合も生じている。このような場合、低下したトルクを補う方法としては磁石トルクと同時にリラクタンストルクを併用するという方法がある。しかしながら、リラクタンストルクの利用率が高くなるほど、ロータとステータ間のギャップを小さくする必要が生じる点や、磁気飽和のために制御が困難となるといった問題点を有している。
特開平7-188871号公報
Furthermore, in recent years, motor applications that require not only the low output range but also the output characteristics of the high output range, such as drive motors and EPS motors for electromagnetic vehicles and hybrid electric vehicles, have emerged. Characteristics are becoming more important. In such a motor, the maximum magnetic flux density reached under actual use conditions is higher than that of the conventional motor, and the magnetic flux density of the iron core reaches a region exceeding the B50 value.
In a motor that also requires the output characteristics in the high output range, increasing the magnet strength in order to obtain a high output increases the iron loss at no load or light load. And when an operation mode changes frequently, it leads to the fall of average efficiency. In addition, there is a problem that a motor operated in a magnetic saturation region makes it difficult to control current and torque due to a decrease in inductance in a high magnetic field region.
On the other hand, there is a case where it is necessary to take measures to reduce the volume of the rare earth magnet in order to reduce the adverse effect caused on the iron core side due to the dramatic progress of the magnet strength. In such a case, as a method of compensating for the reduced torque, there is a method of using the reluctance torque together with the magnet torque. However, the higher the utilization rate of the reluctance torque, there is a problem that the gap between the rotor and the stator needs to be reduced, and the control becomes more difficult due to magnetic saturation.
JP 7-188871 A

本発明は、かかる事情に鑑み、無負荷域を含んだ低出力域から高出力域までで使用される磁石モータ用の鉄心材料に関し、無負荷損失や外力にて回転させられる場合の損失を軽減することが可能な永久磁石モータ用電磁鋼板およびその電磁鋼板を用いた永久磁石モータを提案しようとするものである。   In view of such circumstances, the present invention relates to a core material for a magnet motor that is used from a low output range including a no load range to a high output range, and reduces the loss when rotating with no load loss or external force. It is an object of the present invention to propose an electromagnetic steel plate for a permanent magnet motor and a permanent magnet motor using the electromagnetic steel plate.

発明者らは、上記課題を解決するために、飽和値付近の磁束密度域で使用されるモータで無負荷損失が増加する問題の解決方法を詳細に調査、検討を行った。その結果、以下の知見を得、本発明を完成するに至った。なお、以下において磁束密度を「B」と称し、磁気分極を「J」と称すこととする。なお、磁束密度は実際のモータのトルクを司る量であり、B=J+μ0Hの関係がある(μ0は真空の透磁率、Hは磁化力)。ここで、Jは材料の磁化に相当する量であり、高磁化力域ではBとJの乖離が大きくなるため、BとJを区別し、材料の因子としてJを用いることとした。 In order to solve the above-mentioned problems, the inventors have investigated and studied in detail a method for solving the problem of increasing no-load loss in a motor used in a magnetic flux density region near a saturation value. As a result, the following knowledge was obtained and the present invention was completed. In the following, the magnetic flux density is referred to as “B”, and the magnetic polarization is referred to as “J”. The magnetic flux density is an amount that governs the actual motor torque, and has a relationship of B = J + μ 0 H (μ 0 is the vacuum permeability, and H is the magnetizing force). Here, J is an amount corresponding to the magnetization of the material. Since the difference between B and J is large in the high magnetization force region, B and J are distinguished from each other and J is used as a material factor.

(1)高出力域(高磁場域)でのトルクを確保しつつ無負荷域での損失を改善するためには、磁石のみで磁化されている場合の磁束密度を下げるのがよい。これは磁束密度の増加によって不可避的に鉄損が増加するからである。一方、高出力を必要とする場合に所望の出力を得るには、モータのコイルに通電した際に十分高い磁束密度にまで達する必要がある。このためには、従来の電磁鋼板での開発指針のように、全ての磁化領域で高い磁束密度とするのではなく、磁石の起磁力程度で生じる磁束密度を低く制限しておき、通電時には高い磁束密度となるのが理想的である。ここで、低磁場域の磁束密度を低下させた場合でも高出力時の最大磁束密度を低下させなければトルクが大幅に低下することはない。ただし、鉄心の内部では位置及び時間的に低磁束密度となる部分・瞬間があり、低磁場域の透磁率低下は若干のトルク低下を生じる可能性がある。このようなトルクの低下に対しては、磁石強度の増加や電流値の増加により補償することが可能である。   (1) In order to improve the loss in the no-load region while ensuring the torque in the high output region (high magnetic field region), it is better to lower the magnetic flux density when magnetized only with the magnet. This is because an increase in magnetic flux density inevitably increases iron loss. On the other hand, in order to obtain a desired output when a high output is required, it is necessary to reach a sufficiently high magnetic flux density when the motor coil is energized. For this purpose, the magnetic flux density generated by the magnetomotive force of the magnet is limited to a low value as in the development guidelines for conventional magnetic steel sheets, and not high in all magnetization regions. Ideally, the magnetic flux density is obtained. Here, even if the magnetic flux density in the low magnetic field region is reduced, the torque will not be significantly reduced unless the maximum magnetic flux density at high output is reduced. However, there are portions / instants where the magnetic flux density is low in position and time inside the iron core, and a decrease in permeability in a low magnetic field region may cause a slight torque decrease. Such a decrease in torque can be compensated by increasing the magnet strength or increasing the current value.

(2)外力による回転時の鉄損は従来のような磁束密度により規定される鉄損(例えば、最大磁束密度1.5T、周波数50Hzの鉄損W15/50)ではなく、磁化力で規定する鉄損を一定値以下とするのがよい。これは、外力によってロータが回転させられる場合は、駆動時のようにトルクや制御電圧で磁束密度が規定されるのとは異なり、磁石強度に応じて磁束密度が変化するためであり、磁化力を一定とした条件での鉄損で評価するのが適している。   (2) Iron loss during rotation due to external force is not iron loss specified by magnetic flux density (for example, iron loss W15 / 50 of maximum magnetic flux density 1.5T, frequency 50Hz), but iron specified by magnetizing force The loss should be less than a certain value. This is because when the rotor is rotated by an external force, the magnetic flux density changes according to the magnet strength, unlike the case where the magnetic flux density is defined by the torque or control voltage as in the case of driving. It is suitable to evaluate by the iron loss under the condition that is constant.

(3)さらに、高磁場域の磁束密度を保ちながら低磁場域の磁束密度を低下させた電磁鋼板を得るには、従来は磁気特性に不利と考えられていた{111}面方位を一定量増加させることが有効であり、同時に、結晶粒径を増加させることにより鉄損を低減しつつ、所望の磁化曲線を得ることが可能であることがわかった。   (3) Furthermore, in order to obtain a magnetic steel sheet with a low magnetic field density reduced while maintaining a high magnetic field density, a certain amount of {111} plane orientation, which was previously considered disadvantageous for magnetic properties, is used. It has been found that it is effective to increase, and at the same time, it is possible to obtain a desired magnetization curve while reducing the iron loss by increasing the crystal grain size.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]Siを0.1〜4.5mass%含有する無方向性電磁鋼板であり、磁気特性が以下の式(1)〜(3)を満たすことを特徴とする永久磁石モータ用電磁鋼板。
J100≧1.75T ―――(1)
J10/J100≦0.80 ―――(2)
W20≦3.0W/kg ―――(3)
ただし、J100:磁化力10000A/mにおける磁気分極、J10:磁化力1000A/mにおける磁気分極、W20:2000A/m、50Hzで磁化した場合の鉄損。
[2]Siを0.1〜4.5mass%含有する無方向性電磁鋼板であり、{111}面方位のX線反射面強度のランダム集合組織強度に対する比が3.5以上9.0以下であり、かつ、平均結晶粒径が45μm以上であることを特徴とする永久磁石モータ用電磁鋼板。
[3]Siを0.1〜4.5mass%含有する無方向性電磁鋼板および永久磁石を用いた磁石モータであって、前記無方向性電磁鋼板の磁気特性は以下の式(1)〜(3)を満たすことを特徴とする永久磁石モータ。
J100≧1.75T ―――(1)
J10/J100≦0.80 ―――(2)
W20≦3.0W/kg ―――(3)
ただし、J100:磁化力10000A/mにおける磁気分極、J10:磁化力1000A/mにおける磁気分極、W20:2000A/m、50Hzで磁化した場合の鉄損。
[4]Siを0.1〜4.5mass%含有する無方向性電磁鋼板および永久磁石を用いた磁石モータであって、前記無方向性電磁鋼板の{111}面方位のX線反射面強度のランダム集合組織強度に対する比が3.5以上9.0以下であり、かつ、平均結晶粒径が45μm以上であることを特徴とする永久磁石モータ。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A non-oriented electrical steel sheet containing Si in an amount of 0.1 to 4.5 mass% and having magnetic properties satisfy the following formulas (1) to (3):
J100 ≧ 1.75T ――― (1)
J10 / J100 ≦ 0.80 ――― (2)
W20 ≦ 3.0W / kg ――― (3)
However, J100: Magnetic polarization at a magnetizing force of 10000 A / m, J10: Magnetic polarization at a magnetizing force of 1000 A / m, W20: Iron loss when magnetized at 2000 A / m, 50 Hz.
[2] Non-oriented electrical steel sheet containing 0.1 to 4.5 mass% of Si, the ratio of the X-ray reflecting surface strength of {111} plane orientation to the random texture strength is 3.5 or more and 9.0 or less, and the average crystal A magnetic steel sheet for a permanent magnet motor, wherein the particle diameter is 45 μm or more.
[3] A magnet motor using a non-oriented electrical steel sheet and permanent magnet containing 0.1 to 4.5 mass% of Si, wherein the magnetic properties of the non-oriented electrical steel sheet are expressed by the following equations (1) to (3). A permanent magnet motor characterized by satisfying.
J100 ≧ 1.75T ――― (1)
J10 / J100 ≦ 0.80 ――― (2)
W20 ≦ 3.0W / kg ――― (3)
However, J100: Magnetic polarization at a magnetizing force of 10000 A / m, J10: Magnetic polarization at a magnetizing force of 1000 A / m, W20: Iron loss when magnetized at 2000 A / m, 50 Hz.
[4] A magnet motor using a non-oriented electrical steel sheet and permanent magnet containing 0.1 to 4.5 mass% of Si, and a random set of X-ray reflecting surface strengths in the {111} plane orientation of the non-oriented electrical steel sheet A permanent magnet motor characterized in that the ratio to the tissue strength is 3.5 or more and 9.0 or less, and the average crystal grain size is 45 μm or more.

なお、本明細書において、鋼の成分を示す%は、すべて質量%である。   In the present specification, “%” indicating the component of steel is “% by mass”.

本発明によれば、無負荷損失や外力にて回転させられる場合の損失を軽減することが可能となる。よって、本発明の電磁鋼板を低出力から高出力域に渡って使用する場合、モータ鉄損が低減し、高効率のモータを得ることが可能となる。 According to the present invention, it is possible to reduce the loss in the case of being rotated by no-load loss or external force. Therefore, when the electromagnetic steel sheet of the present invention is used from a low output to a high output range, the motor iron loss is reduced, and a highly efficient motor can be obtained.

以下本発明の実施形態をその限定理由とともに詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail together with the reasons for limitation.

まず、本発明の永久磁石モータ用電磁鋼板は無方向性電磁鋼板であり、mass%で、Siを0.1〜4.5%含有することとする。
Siを0.1%以上4.5%以下
Siは電気抵抗率を増加させることにより渦電流損を低減し、鉄損低減に寄与する成分元素である。Si含有量が0.1%を下回ると上記の効果が得られない。一方、4.5%を超えて含有させると圧延性などの加工性を著しく劣化させる。よって、以上よりSi含有量は0.1%以上4.5%以下とする。
First, the electromagnetic steel sheet for a permanent magnet motor of the present invention is a non-oriented electrical steel sheet, and is mass% and contains Si in an amount of 0.1 to 4.5%.
Si 0.1% or more and 4.5% or less
Si is a component element that contributes to reducing iron loss by reducing eddy current loss by increasing electrical resistivity. If the Si content is less than 0.1%, the above effect cannot be obtained. On the other hand, if the content exceeds 4.5%, workability such as rollability is remarkably deteriorated. Therefore, the Si content is 0.1% or more and 4.5% or less.

その他の成分については特に限定はしないが、さらなる性能向上等を目的に、以下の条件とすることが好ましい。   Other components are not particularly limited, but for the purpose of further improving performance, the following conditions are preferable.

Cは、磁気時効の問題があるため、0.02%以下とすることが好ましい。   Since C has a problem of magnetic aging, it is preferably 0.02% or less.

Pは、鋼板の高強度化に有効な元素であるが、0.2%を超えて添加すると鋳造時の中央偏析が生じやすく、また鋼板が脆化し冷間圧延性が低下するため、0.2%以下とすることが好ましい。   P is an element effective for increasing the strength of the steel sheet, but if added over 0.2%, central segregation during casting is likely to occur, and the steel sheet becomes brittle and cold rollability is reduced. It is preferable to make it 2% or less.

Mnは、熱間圧延時の赤熱脆性を防止するために有効な元素であり、好ましくは0.05%以上で含有させる。一方で、3%を超えると磁束密度を低下させるため、3%以下とすることが好ましい。   Mn is an element effective for preventing red heat brittleness during hot rolling, and is preferably contained at 0.05% or more. On the other hand, if it exceeds 3%, the magnetic flux density is lowered.

Alは、Siと同様、固有抵抗を上げるために有効な元素であり、好ましくは0.1%以上で含有させる。一方で、3%を超えると飽和磁化が低下するとともに、鋳造性等も低下するため3%以下とすることが好ましい。   Al, like Si, is an element effective for increasing the specific resistance, and is preferably contained at 0.1% or more. On the other hand, if it exceeds 3%, the saturation magnetization is lowered and the castability is also lowered.

さらに、上記成分に加えて、本発明の目的を害さない範囲で、磁気特性の改善を目的として、以下に示す磁気特性改善元素として知られるCu、Sb、Sn、B、Ni、Cr、CoおよびREMを単独または複合で添加することが出来る。
Cu:0.5〜4%、
Sb:0.005〜0.05%、
Sn:0.005〜0.1%、
B:0.0002〜0.002%、
Ni:0.1〜5%、
Co:0.2〜3%および
REM:0.001〜0.01%
また、Crに関しては、電気抵抗率を低下させるため、鉄損低減に有利である。ただし、添加量が過大になると飽和磁化を低下させるため、8%以下とすることが望ましい。
Further, in addition to the above components, Cu, Sb, Sn, B, Ni, Cr, Co and the following known magnetic property improving elements are shown for the purpose of improving the magnetic properties within the range not impairing the object of the present invention. REM can be added alone or in combination.
Cu: 0.5 to 4%,
Sb: 0.005 to 0.05%,
Sn: 0.005 to 0.1%,
B: 0.0002 to 0.002%,
Ni: 0.1 to 5%,
Co: 0.2-3% and REM: 0.001-0.01%
In addition, Cr lowers the electrical resistivity, which is advantageous for reducing iron loss. However, if the added amount is excessive, the saturation magnetization is lowered, so it is desirable to make it 8% or less.

本発明で用いる電磁鋼板は、上記成分からなり、さらに、磁気特性として以下に示す式(1)〜(3)を満たすこととする。これは本発明において最も重要な要件であり、下記式を満たすことにより、永久磁石モータ用として使用した場合に、無負荷損失や外力にて回転させられた場合の損失を軽減することが可能となり、無負荷域を含んだ低出力域から高出力域まで使用することが可能となる。   The electrical steel sheet used in the present invention is composed of the above components and further satisfies the following formulas (1) to (3) as magnetic characteristics. This is the most important requirement in the present invention. By satisfying the following formula, it is possible to reduce the loss when no load loss or external force is applied when used as a permanent magnet motor. It is possible to use from a low output range including a no-load range to a high output range.

J100≧1.75T―――(1) ただし、J100:磁化力10000A/mにおける磁気分極
磁石モータは高出力時に直流磁化曲線での磁化力にして5000〜10000A/m付近の磁束密度に達する。従って、高出力駆動条件でのトルクを確保するためには、磁化力10000A/mでの磁気分極を一定値以上とする必要がある。以上より、J100を1.75T以上に規定する。ここで、J100はエプスタイン試験法により、半量をL方向、半量をC方向とした約500gの試料にて測定するのが適当であり、直流磁気試験もしくは50Hz以下の交流磁気試験での最大値により測定するのがよい。
J100 ≧ 1.75T-(1) However, J100: Magnetic polarized magnet motor with magnetizing force of 10000 A / m reaches a magnetic flux density of around 5000 to 10,000 A / m as the magnetizing force in the DC magnetization curve at high output. Therefore, in order to ensure the torque under the high output driving condition, it is necessary to set the magnetic polarization at a magnetizing force of 10000 A / m to a certain value or more. Based on the above, J100 is specified to be 1.75T or higher. Here, J100 is appropriately measured by the Epstein test method with a sample of about 500 g with half amount L direction and half amount C direction, depending on the maximum value in DC magnetic test or AC magnetic test below 50 Hz. It is better to measure.

J10/J100≦0.80―――(2) ただし、J10:磁化力1000A/mにおける磁気分極
式(2)は本発明の根幹をなす部分である。J100はモータが高出力で運転されているとき鉄心が到達しうる磁気分極の最高値程度の値を想定したものであり、J10は、低磁場域の磁気分極を規定するものである。そして、J10をJ100に対して一致値以下に制限することにより、磁化の飽和位現象が低磁場域から開始するのを緩和し、低磁場域での過剰な磁束密度増加を防止し、同時に高磁場域でのインダクタンス低下を緩和する。J10/J100が0.80を超える場合は、低磁場域の磁束密度が過剰に増加して無負荷・軽負荷での損失を増加させるとともに、低磁場域から高磁場域での透磁率変化を増加させて高磁場域のインダクタンス低下を顕著にする。よって、本発明においては、J10/J100≦0.80とする。上記の効果をさらに有効に得るためには、J10/J100≦0.70とするのが望ましい。
上記では磁化力1000A/mでの磁気分極J10と10000A/mでの磁気分極J100の比J10/J100を規定した。これは、無方向性電磁鋼板の磁化曲線では磁化力1000A/m付近で磁束密度の増加量が減少し、磁気飽和が起こり始めるため、この付近での磁気分極を低磁場域での磁気分極の指標としたものである。
J10 / J100 ≦ 0.80-(2) However, J10: the magnetic polarization formula (2) at a magnetizing force of 1000 A / m is a fundamental part of the present invention. J100 assumes a value about the maximum value of magnetic polarization that the iron core can reach when the motor is operated at high output, and J10 specifies magnetic polarization in a low magnetic field region. By limiting J10 to a value equal to or less than the coincidence value with respect to J100, the saturation phenomenon of magnetization starts from the low magnetic field region, and an excessive increase in magnetic flux density in the low magnetic field region is prevented. Reducing inductance drop in magnetic field. When J10 / J100 exceeds 0.80, the magnetic flux density in the low magnetic field region increases excessively, increasing the loss at no load and light load, and increasing the permeability change from the low magnetic field region to the high magnetic field region. Make the inductance drop in the high magnetic field region remarkable. Therefore, in the present invention, J10 / J100 ≦ 0.80. In order to obtain the above effect more effectively, it is desirable that J10 / J100 ≦ 0.70.
In the above, the ratio J10 / J100 of the magnetic polarization J10 at a magnetizing force of 1000 A / m and the magnetic polarization J100 at 10,000 A / m is defined. This is because, in the magnetization curve of a non-oriented electrical steel sheet, the increase in magnetic flux density decreases near the magnetizing force of 1000 A / m, and magnetic saturation begins to occur. It is an indicator.

なお、J100、J10はエプスタイン試験法により、半量をL方向、半量をC方向とした約500gの試料にて測定するのが適当であり、直流磁気試験もしくは50Hz以下の交流磁気試験での最大値により測定するのがよい。   Note that J100 and J10 are appropriately measured by the Epstein test method with a sample of about 500g with the half amount in the L direction and the half amount in the C direction. The maximum value in a DC magnetic test or an AC magnetic test of 50Hz or less It is better to measure by.

W20≦3.0W/kg―――(3) ただし、W20:2000A/m、50Hzで磁化した場合の鉄損
前記のように、無負荷・軽負荷時およびモータが外力によって回転させられている場合、磁石モータでは磁石が鉄心を磁化させることによる損失が発生する。無負荷時の鉄心の磁化による鉄損の発生を抑制するためには、上記で規定したように、J10を低くするとともに、一定の磁化力で磁化された場合の鉄損を低位に保つのが良い。さらに2000A/m付近での鉄損を3.0W/kg以下とすることで、磁石モータが外力により回転させられている際の鉄損を低減することが可能となる。よって、本発明においては、W20≦3.0W/kgとする。なお、W20≦3.0W/kgは、例えば、結晶粒径などを適正化することにより達成可能となる。
W20 ≦ 3.0W / kg-(3) However, W20: 2000A / m, iron loss when magnetized at 50Hz As mentioned above, when no load or light load and the motor is rotated by external force In the magnet motor, a loss occurs due to the magnet magnetizing the iron core. In order to suppress the occurrence of iron loss due to the magnetization of the iron core when there is no load, as specified above, J10 should be lowered and the iron loss when magnetized with a constant magnetizing force should be kept low. good. Furthermore, by setting the iron loss near 2000 A / m to 3.0 W / kg or less, it is possible to reduce the iron loss when the magnet motor is rotated by an external force. Therefore, in the present invention, W20 ≦ 3.0 W / kg. Note that W20 ≦ 3.0 W / kg can be achieved by optimizing the crystal grain size, for example.

なお、上記無方向性電磁鋼板を得るための本発明の一実施形態としては、{111}面方位のX線反射面強度のランダム集合組織強度に対する比が3.5以上9.0以下であり、かつ、平均結晶粒径が45μm以上である無方向性電磁鋼板が挙げられる。以下、この点について詳細に説明する。   As one embodiment of the present invention for obtaining the non-oriented electrical steel sheet, the ratio of the {111} plane orientation X-ray reflecting surface strength to the random texture strength is 3.5 or more and 9.0 or less, and the average Examples include non-oriented electrical steel sheets having a crystal grain size of 45 μm or more. Hereinafter, this point will be described in detail.

{111}面方位のX線反射面強度のランダム集合組織強度に対する比が3.5以上9.0以下
上記式(2)であるJ10/J100≦0.80を達成するためには、J10〜J50付近の磁束密度を低下させる作用を有する面方位{111}を適度に含むのが良い。従来はこのような磁化に悪影響を及ぼす方位は出来るだけ低減することが望ましいとされたが、本発明はこのような従来知見に反して、このような方位を適度に含むものであり、本発明は、高出力の特性を重視する磁石モータにおいては面方位{111}を適度に含むことが有利であるとの知見を初めて得たものである。このような効果を得るためには、{111}面方位のランダム強度に対する比が3.5以上とする。一方、9.0を越えると上記式(1)であるJ100が低下して1.75Tを下回る。よって、{111}面方位のX線反射面強度のランダム集合組織強度に対する比は3.5以上9.0以下とする。なお、板厚方向で集合組織が変化しているような場合は、全板厚の平均値で上記範囲を規定する。
In order to achieve J10 / J100 ≦ 0.80, which is the above formula (2), the ratio of {111} plane orientation X-ray reflecting surface strength to random texture strength is 3.5 or more and 9.0 or less. It is preferable that the surface orientation {111} having an effect of reducing is appropriately included. Conventionally, it has been desirable to reduce the orientation that adversely affects such magnetization as much as possible. However, the present invention appropriately includes such orientation, contrary to the conventional knowledge. Is the first finding that it is advantageous to appropriately include the surface orientation {111} in a magnet motor that places importance on high output characteristics. In order to obtain such an effect, the ratio of {111} plane orientation to random intensity is set to 3.5 or more. On the other hand, when it exceeds 9.0, J100 which is the above formula (1) decreases and falls below 1.75T. Therefore, the ratio of the {111} plane orientation X-ray reflecting surface strength to the random texture strength is set to 3.5 or more and 9.0 or less. When the texture changes in the plate thickness direction, the above range is defined by the average value of all plate thicknesses.

結晶粒径45μm以上
無負荷・軽負荷時の鉄損を低減するためには、この状態での鉄心の磁束密度(または磁気分極)を低下させることが有効である。しかし、界磁に永久磁石を使用する限りはこれを無くすることは出来ない。そのため、材料そのものの鉄損を低減することに着目した。そして、実際に材料そのものの鉄損を低減したところ、無負荷・軽負荷時の鉄損が低減することを確認した。材料そのものの鉄損低減の手法としては結晶粒径を粗大化させることが有効である。{111}面方位を上述の範囲としながらW20≦3.0W/kgを達成するためには、結晶粒径は、平均結晶粒径として45μm以上とする必要がある。なお、平均結晶粒径は、十分広い断面(面積S)にて観察される結晶粒の数をNとするとき、円相当径として、以下の式にて定義することとする。
In order to reduce the iron loss when the crystal grain size is 45 μm or more and no load is applied, it is effective to reduce the magnetic flux density (or magnetic polarization) of the iron core in this state. However, as long as a permanent magnet is used for the field, this cannot be eliminated. Therefore, we focused on reducing the iron loss of the material itself. And when the iron loss of the material itself was actually reduced, it was confirmed that the iron loss at no load and light load was reduced. As a technique for reducing the iron loss of the material itself, it is effective to increase the crystal grain size. In order to achieve W20 ≦ 3.0 W / kg while keeping the {111} plane orientation within the above range, the crystal grain size needs to be 45 μm or more as the average crystal grain size. The average crystal grain size is defined by the following equation as an equivalent circle diameter, where N is the number of crystal grains observed in a sufficiently wide cross section (area S).

Figure 2007204787
Figure 2007204787

以上からなる本発明の無方向性電磁鋼板を製造するにあたっては、まず、転炉あるいは電気炉などにて、前記した所定成分に溶製された鋼を、連続鋳造あるいは造塊後の分塊圧延により鋼スラブとする。次いで、得られたスラブを熱間圧延し、必要に応じて熱延坂焼鈍を施し、一回あるいは中間焼鈍を挟む二回以上の冷間圧延あるいは温間圧延を施して製品板厚とし、仕上げ焼鈍を施し、その後、時効処理を施す。さらに、仕上げ焼鈍後のいずれかの段階において、必要に応じて絶縁被膜の塗布および焼き付け処理を行う。   In producing the non-oriented electrical steel sheet of the present invention composed of the above, first, in a converter or an electric furnace, the steel melted in the above-described predetermined component is subjected to continuous rolling or split rolling after ingot forming. To make a steel slab. Next, the obtained slab is hot-rolled, subjected to hot rolling hill annealing as necessary, and subjected to cold rolling or warm rolling twice or more sandwiching one or intermediate annealing to obtain a product thickness. Annealing and then aging treatment. Furthermore, at any stage after finish annealing, an insulating coating is applied and baked as necessary.

本発明では、適正な成分の素材について、前記したJ10、J100およびW20の特性を考慮し、その成分に応じて前記の各特性が前記(1)〜(3)の式を満たす、もしくは仕上げ焼鈍後の電磁鋼板が所定の集合組織強度、結晶粒径を満たすように、前記の各工程条件を決定する必要がある。特に、熱延板焼鈍、中間焼鈍、仕上げ焼鈍等の焼鈍温度をそれぞれ変化させ、前記(1)〜(3)の式を満たす、もしくは仕上げ焼鈍後の電磁鋼板が所定の集合組織強度、結晶粒径を満たすか否かを判定し、各焼鈍温度を決定することが好ましい。   In the present invention, regarding the material of the appropriate component, considering the characteristics of the above-mentioned J10, J100 and W20, each of the above characteristics satisfies the formulas (1) to (3) according to the component, or finish annealing It is necessary to determine each of the above process conditions so that the later electrical steel sheet satisfies predetermined texture strength and crystal grain size. In particular, by changing the annealing temperature of hot-rolled sheet annealing, intermediate annealing, finish annealing, etc., satisfying the above formulas (1) to (3), or the electrical steel sheet after finish annealing has a predetermined texture strength, crystal grains It is preferable to determine whether the diameter is satisfied and to determine each annealing temperature.

本発明の電磁鋼板を磁石モータに適用するにあたっては、交番磁束による鉄損の発生量が大きい部分に使用するのが効果的である。すなわち、ブラシタイプのモータでは回転子、ブラシレスDCモータでは固定子用の鋼板とするのがよい。なお、上記以外の鉄心部分への適用も本発明の効果を妨げるものではない。   In applying the electromagnetic steel sheet of the present invention to a magnet motor, it is effective to use it in a portion where the amount of iron loss generated by the alternating magnetic flux is large. That is, it is preferable to use a rotor steel plate for a brush type motor and a stator steel plate for a brushless DC motor. In addition, application to the iron core part other than the above does not disturb the effect of the present invention.

Si:3.0%、Mn:0.5%、Al:0.3%を主成分として含有する珪素鋼スラブを製造し、熱間圧延により2.5mmの熱延板とした後、表1に示す条件にて熱延板焼鈍を行った。次いで、冷間圧延により板厚0.35mmとした後、表1に示す条件にて仕上げ焼鈍を行い、さらに絶縁コーティングを塗布し、供試材を得た。得られた供試材から、約500gのエプスタイン試験片を圧延方向および圧延直角方向から半量づつ切り出し、JIS C2550に基づき磁気測定を行った。また、前記供試材である電磁鋼板からモータ鉄心を製造し、希土類磁石を使用したブラシレスDCモータ(分布巻き希土類磁石IPM、定格出力300W)とした後、無負荷損失を測定した。以上により得られた結果を条件と併せて表1に示す。   A silicon steel slab containing Si: 3.0%, Mn: 0.5%, Al: 0.3% as the main components is manufactured and hot rolled into a 2.5 mm hot rolled sheet, and then hot rolled under the conditions shown in Table 1. Sheet annealing was performed. Subsequently, after cold rolling to a plate thickness of 0.35 mm, finish annealing was performed under the conditions shown in Table 1, and an insulating coating was further applied to obtain a test material. About 500 g of an Epstein test piece was cut out in half from the rolling direction and the direction perpendicular to the rolling from the obtained test material, and magnetic measurement was performed based on JIS C2550. In addition, a motor core was manufactured from the electromagnetic steel sheet as the test material, and after making a brushless DC motor using a rare earth magnet (distributed wound rare earth magnet IPM, rated output 300 W), no-load loss was measured. The results obtained as described above are shown in Table 1 together with the conditions.

Figure 2007204787
Figure 2007204787

表1より、本発明例では無負荷損失の低いモータが得られていることがわかる。特に、J10/J100を0.70以下とした場合に、より一層低い無負荷損失が得られていることがわかる。一方、比較例では、J100≧1.75T、J10/J100≦0.80、W20≦3.0W/kgのいずれか一つ以上が外れており、また、{111}面方位のX線反射面強度のランダム集合組織強度に対する比、平均結晶粒径のいずれか一つ以上も本発明範囲外となっているため、無負荷損失が高くなっている。   From Table 1, it can be seen that a motor with a low no-load loss is obtained in the example of the present invention. In particular, when J10 / J100 is set to 0.70 or less, it can be seen that even lower no-load loss is obtained. On the other hand, in the comparative example, any one or more of J100 ≧ 1.75T, J10 / J100 ≦ 0.80, W20 ≦ 3.0W / kg is off, and a random set of X-ray reflecting surface intensities in {111} plane orientation Since any one or more of the ratio to the tissue strength and the average crystal grain size are also outside the scope of the present invention, the no-load loss is high.

例えば、電気自動車、ハイブリッド電気自動車の駆動用モータ、EPSモータなど、高出力域の出力特性をも同時に必要とするモータ用途に使用可能である。   For example, the present invention can be used for motor applications that also require output characteristics in a high output range, such as electric motors, drive motors for hybrid electric vehicles, and EPS motors.

Claims (4)

Siを0.1〜4.5mass%含有する無方向性電磁鋼板であり、磁気特性が以下の式(1)〜(3)を満たすことを特徴とする永久磁石モータ用電磁鋼板。
J100≧1.75T ―――(1)
J10/J100≦0.80 ―――(2)
W20≦3.0W/kg ―――(3)
ただし、J100:磁化力10000A/mにおける磁気分極、J10:磁化力1000A/mにおける磁気分極、W20:2000A/m、50Hzで磁化した場合の鉄損。
An electromagnetic steel sheet for permanent magnet motors, which is a non-oriented electrical steel sheet containing Si in an amount of 0.1 to 4.5 mass% and whose magnetic properties satisfy the following formulas (1) to (3).
J100 ≧ 1.75T ――― (1)
J10 / J100 ≦ 0.80 ――― (2)
W20 ≦ 3.0W / kg ――― (3)
However, J100: Magnetic polarization at a magnetizing force of 10000 A / m, J10: Magnetic polarization at a magnetizing force of 1000 A / m, W20: Iron loss when magnetized at 2000 A / m, 50 Hz.
Siを0.1〜4.5mass%含有する無方向性電磁鋼板であり、{111}面方位のX線反射面強度のランダム集合組織強度に対する比が3.5以上9.0以下であり、かつ、平均結晶粒径が45μm以上であることを特徴とする永久磁石モータ用電磁鋼板。   It is a non-oriented electrical steel sheet containing 0.1 to 4.5 mass% of Si, the ratio of the X-ray reflecting surface strength of {111} plane orientation to the random texture strength is 3.5 or more and 9.0 or less, and the average grain size is A magnetic steel sheet for a permanent magnet motor, characterized by being 45 μm or more. Siを0.1〜4.5mass%含有する無方向性電磁鋼板および永久磁石を用いた磁石モータであって、前記無方向性電磁鋼板の磁気特性は以下の式(1)〜(3)を満たすことを特徴とする永久磁石モータ。
J100≧1.75T ―――(1)
J10/J100≦0.80 ―――(2)
W20≦3.0W/kg ―――(3)
ただし、J100:磁化力10000A/mにおける磁気分極、J10:磁化力1000A/mにおける磁気分極、W20:2000A/m、50Hzで磁化した場合の鉄損。
It is a magnet motor using a non-oriented electrical steel sheet containing 0.1 to 4.5 mass% Si and a permanent magnet, and the magnetic properties of the non-oriented electrical steel sheet satisfy the following formulas (1) to (3): A feature of permanent magnet motor.
J100 ≧ 1.75T ――― (1)
J10 / J100 ≦ 0.80 ――― (2)
W20 ≦ 3.0W / kg ――― (3)
However, J100: Magnetic polarization at a magnetizing force of 10000 A / m, J10: Magnetic polarization at a magnetizing force of 1000 A / m, W20: Iron loss when magnetized at 2000 A / m, 50 Hz.
Siを0.1〜4.5mass%含有する無方向性電磁鋼板および永久磁石を用いた磁石モータであって、前記無方向性電磁鋼板の{111}面方位のX線反射面強度のランダム集合組織強度に対する比が3.5以上9.0以下であり、かつ、平均結晶粒径が45μm以上であることを特徴とする永久磁石モータ。   It is a magnet motor using a non-oriented electrical steel sheet and permanent magnet containing 0.1 to 4.5 mass% of Si, with respect to the random texture strength of the X-ray reflecting surface strength of {111} plane orientation of the non-oriented electrical steel sheet A permanent magnet motor having a ratio of 3.5 to 9.0 and an average crystal grain size of 45 μm or more.
JP2006022520A 2006-01-31 2006-01-31 Magnetic steel sheet for permanent magnet motor and permanent magnet motor Active JP4844139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022520A JP4844139B2 (en) 2006-01-31 2006-01-31 Magnetic steel sheet for permanent magnet motor and permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022520A JP4844139B2 (en) 2006-01-31 2006-01-31 Magnetic steel sheet for permanent magnet motor and permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2007204787A true JP2007204787A (en) 2007-08-16
JP4844139B2 JP4844139B2 (en) 2011-12-28

Family

ID=38484506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022520A Active JP4844139B2 (en) 2006-01-31 2006-01-31 Magnetic steel sheet for permanent magnet motor and permanent magnet motor

Country Status (1)

Country Link
JP (1) JP4844139B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111751A1 (en) * 2012-01-27 2013-08-01 Jfeスチール株式会社 Electromagnetic steel sheet
JP2015142510A (en) * 2014-01-28 2015-08-03 エルジー イノテック カンパニー リミテッド Wireless power receiver, terminal and wireless power transmitter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200756A (en) * 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd Method for producing non-oriented silicon steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200756A (en) * 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd Method for producing non-oriented silicon steel sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111751A1 (en) * 2012-01-27 2013-08-01 Jfeスチール株式会社 Electromagnetic steel sheet
JP2013155397A (en) * 2012-01-27 2013-08-15 Jfe Steel Corp Electromagnetic steel plate
CN104053804A (en) * 2012-01-27 2014-09-17 杰富意钢铁株式会社 Electromagnetic Steel Sheet
US20150013850A1 (en) * 2012-01-27 2015-01-15 Jfe Steel Corporation Electrical steel sheet
TWI473886B (en) * 2012-01-27 2015-02-21 Jfe Steel Corp Electromagnetic steel plate
RU2571672C1 (en) * 2012-01-27 2015-12-20 ДжФЕ СТИЛ КОРПОРЕЙШН Electric steel sheet
CN104053804B (en) * 2012-01-27 2016-05-11 杰富意钢铁株式会社 Electromagnetic steel plate
KR101620768B1 (en) * 2012-01-27 2016-05-12 제이에프이 스틸 가부시키가이샤 Electrical steel sheet
US10584406B2 (en) 2012-01-27 2020-03-10 Jfe Steel Corporation Electrical steel sheet
JP2015142510A (en) * 2014-01-28 2015-08-03 エルジー イノテック カンパニー リミテッド Wireless power receiver, terminal and wireless power transmitter
US9887030B2 (en) 2014-01-28 2018-02-06 Lg Innotek Co., Ltd Wireless power receiver, terminal and wireless power transmitter

Also Published As

Publication number Publication date
JP4844139B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
WO2015199211A1 (en) Electrical steel sheet
JP5699642B2 (en) Motor core
JP2009153356A (en) Self-initiating permanent-magnet synchronous electric motor
JP2010074084A (en) Permanent magnet and method for manufacturing permanent magnet
JP2010045068A (en) Permanent magnet and method of manufacturing the same
JP2009302262A (en) Permanent magnet and production process of the same
JP5671869B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4844139B2 (en) Magnetic steel sheet for permanent magnet motor and permanent magnet motor
KR102503899B1 (en) motor
JP4259350B2 (en) Non-oriented electrical steel sheet for switched reluctance (SR) motor and manufacturing method thereof
JP2005120403A (en) Non-oriented electrical steel sheet with low core loss in high-frequency region
JP4507316B2 (en) DC brushless motor
JP5515485B2 (en) Split motor core
JP2003243214A (en) Non-grain oriented electrical steel sheet for motor iron core and its manufacturing method
JP2003244873A (en) Stator core for motor of superior noise characteristics
JP2004104929A (en) Magnetic steel plate for rotary equipment having split core form
JP2010185119A (en) Non-oriented electromagnetic steel sheet
JP5338082B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2011184787A (en) High tensile strength non-oriented electromagnetic steel sheet having excellent high frequency iron loss
JP2004100026A (en) Electromagnetic steel sheet for split-type iron core
JP5120019B2 (en) Stator core for electric motor
JP2006271016A (en) Motor
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP4284870B2 (en) Method for producing non-oriented electrical steel sheet for reluctance motor iron core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250