JP2007198744A - Piezoelectric acceleration sensor - Google Patents

Piezoelectric acceleration sensor Download PDF

Info

Publication number
JP2007198744A
JP2007198744A JP2006014120A JP2006014120A JP2007198744A JP 2007198744 A JP2007198744 A JP 2007198744A JP 2006014120 A JP2006014120 A JP 2006014120A JP 2006014120 A JP2006014120 A JP 2006014120A JP 2007198744 A JP2007198744 A JP 2007198744A
Authority
JP
Japan
Prior art keywords
piezoelectric
acceleration sensor
signal
calibration
piezoelectric acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006014120A
Other languages
Japanese (ja)
Other versions
JP5110796B2 (en
Inventor
Takashi Sakai
孝 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2006014120A priority Critical patent/JP5110796B2/en
Publication of JP2007198744A publication Critical patent/JP2007198744A/en
Application granted granted Critical
Publication of JP5110796B2 publication Critical patent/JP5110796B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric acceleration sensor used for measuring minute vibration, resisting impact, and moreover self-diagnosing. <P>SOLUTION: A piezoelectric plate 41 is provided on a part of an inner wall of a case 104 for therein housing a piezoelectric element 102 and a weight 103 provided on the piezoelectric element 102, with the piezoelectric plate 41 having piezoelectric ceramics mounted on a metallic plate for converting an electric signal into mechanical vibration. This makes it possible to perform failure diagnosis and calibration on sensor itself while making it possible to materialize the piezoelectric acceleration sensor capable of measuring minute vibration, resisting impact, and moreover capable of self-diagnosis. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、橋脚や建物の常時微振動を計測するヘルスモニタリングシステムに用いて好適な圧電型加速度センサに関する。   The present invention relates to a piezoelectric acceleration sensor suitable for use in a health monitoring system that measures micro vibrations of a bridge pier or a building at all times.

近年、橋脚や建物の常時微振動を計測してヘルスモニタリングを行う手法が実用化されてきている。
図3は、従来の地盤の強度劣化を測定するためのヘルスモニタリングシステムの概略構成を示すブロック図である。橋脚1の先端部分には、せん断型の圧電型加速度センサ10が設置されている。圧電型加速度センサ10の出力信号がアンプ11で増幅された後、FFT(Fast Fourier Transform)アナライザ12で出力信号中の周波数成分が抽出され、その結果が固有値解析部13で解析される。
図4は、圧電型加速度センサ10の概略構成図である。中央部分に支持部101aを有するベース部101と、ベース部101の支持部101a上に固定された圧電素子102と、圧電素子102の上面に取り付けられた錘103と、ベース部101上に配置されて圧電素子102及び錘103を覆うケース104とから構成されている。
図5は、圧電型加速度センサ10により固有振動数を測定した結果の一例を示す波形図である。この場合、横軸は周波数(Hz)、縦軸は加速度(m/s)である。
In recent years, methods for monitoring health by measuring microvibrations at bridge piers and buildings have been put into practical use.
FIG. 3 is a block diagram showing a schematic configuration of a health monitoring system for measuring the strength deterioration of the conventional ground. A shear type piezoelectric acceleration sensor 10 is installed at the tip of the pier 1. After the output signal of the piezoelectric acceleration sensor 10 is amplified by the amplifier 11, a frequency component in the output signal is extracted by an FFT (Fast Fourier Transform) analyzer 12, and the result is analyzed by the eigenvalue analysis unit 13.
FIG. 4 is a schematic configuration diagram of the piezoelectric acceleration sensor 10. A base portion 101 having a support portion 101a at the center portion, a piezoelectric element 102 fixed on the support portion 101a of the base portion 101, a weight 103 attached to the upper surface of the piezoelectric element 102, and a base portion 101 are disposed. And a case 104 that covers the piezoelectric element 102 and the weight 103.
FIG. 5 is a waveform diagram showing an example of the result of measuring the natural frequency by the piezoelectric acceleration sensor 10. In this case, the horizontal axis represents frequency (Hz) and the vertical axis represents acceleration (m / s 2 ).

ところで、微振動の計測に用いられる加速度センサには、圧電型(特許文献1)やサーボ型(特許文献2)がある。また、感度が低く微振動の計測には向かないが、半導体加速度センサもある(特許文献3、特許文献4参照)。また、加速度センサは衝撃等で過大な加速度が加わると壊れることがあるので、自己診断を可能としたものもある。
特許文献2〜4で開示された半導体加速度センサは、全て自己診断を可能とする手段を有している。すなわち、特許文献2で開示されたサーボ型加速度センサは、サーボ制御系の一部をスイッチによりオフ状態にして、センサのゲージ部の電圧を強制的に変えることでセンサの出力状態を変え、この電圧よりセンサの診断を可能にしている。
特許文献3で開示された半導体加速度センサは、図6の斜視図に示すように、加速度センサ20をベースプレート21上に配置するとともに圧電振動子22を加速度センサ20に近接配置し、圧電振動子22に不図示の発振回路の出力信号(交流電圧)を印加して振動させたときの加速度センサ20から出力信号と発振回路の出力信号とを比較して正常か否かを判定する。
特許文献4で開示された圧電型の加速度センサは、図7の斜視図に示すように、起歪部30の少なくとも一面に薄膜圧電材料31を装着し、この薄膜圧電材料31に電圧を印加することで、重り部32を圧電駆動可能とし、擬似的に重り部32に加速度が加わった状態を作り出すことで、センサが正常に動作しているか否かを判定する。
By the way, there are a piezoelectric type (Patent Document 1) and a servo type (Patent Document 2) as an acceleration sensor used for measuring fine vibrations. In addition, there are semiconductor acceleration sensors (see Patent Document 3 and Patent Document 4), although the sensitivity is low and it is not suitable for measurement of micro vibrations. In addition, some acceleration sensors can be self-diagnosed because they may break if excessive acceleration is applied due to impact or the like.
The semiconductor acceleration sensors disclosed in Patent Documents 2 to 4 all have means for enabling self-diagnosis. That is, the servo-type acceleration sensor disclosed in Patent Document 2 changes the output state of the sensor by forcing a part of the servo control system to be turned off by a switch and forcibly changing the voltage of the gauge part of the sensor. The sensor can be diagnosed from the voltage.
In the semiconductor acceleration sensor disclosed in Patent Document 3, as shown in the perspective view of FIG. 6, the acceleration sensor 20 is disposed on the base plate 21 and the piezoelectric vibrator 22 is disposed close to the acceleration sensor 20. An output signal (AC voltage) from an oscillation circuit (not shown) is applied to the acceleration sensor 20, and the output signal from the acceleration sensor 20 is compared with the output signal from the oscillation circuit to determine whether it is normal.
As shown in the perspective view of FIG. 7, the piezoelectric acceleration sensor disclosed in Patent Document 4 has a thin film piezoelectric material 31 mounted on at least one surface of the strain generating portion 30 and applies a voltage to the thin film piezoelectric material 31. Thus, it is possible to determine whether or not the sensor is operating normally by making the weight portion 32 piezo-electrically driven and creating a state in which acceleration is applied to the weight portion 32 in a pseudo manner.

特開平2−093370号公報JP-A-2-093370 特開平5−172844号公報JP-A-5-172844 特開平6−148234号公報JP-A-6-148234 特開平5−322927号公報JP-A-5-322927

しかしながら、微振動の計測に用いられる加速度センサとしては、加速度レベルが9.8×10−5m/s以下の振動を扱うことが多いため、超高感度のサーボ型の加速度センサが使用される場合が多いが、サーボ型の加速度センサは、カンチレバー等の精密機械構造があるために衝撃には弱く、衝撃等により破損した場合に、特に設置場所が橋脚の先端部分など高所部での交換を頻繁に行うことは困難である。
一方、圧電型の加速度センサは、サーボ型の加速度センサほどではないものの微振動の計測には十分対応でき、しかも衝撃に対しては強いという利点はある。しかし、現状では自己診断を可能とする手段を有しているものはない。
半導体加速度センサは感度が低く微振動の計測には対応できない。また、半導体加速度センサは、特許文献3や4で開示されているように、自己診断を可能とする手段は有しているものの、特許文献3で開示された半導体加速度センサは、センサそのものと圧電振動子22を配置するための新たなベースプレート21を有しているので、その分、全体として形状が大きくなり、またコストも嵩むことになる。また、特許文献4で開示された半導体加速度センサは、セル自体に薄膜圧電材料31を設けるので、設計段階からの変更が必要となる。
However, as an acceleration sensor used for measuring fine vibrations, a vibration sensor with an acceleration level of 9.8 × 10 −5 m / s 2 or less is often handled, and therefore an ultra-sensitive servo type acceleration sensor is used. However, servo-type accelerometers are sensitive to impacts due to the precision mechanical structure such as cantilevers, and when they are damaged by impacts, etc., the installation location is particularly high at the top of the pier. It is difficult to exchange frequently.
On the other hand, the piezoelectric acceleration sensor has an advantage that it can sufficiently cope with the measurement of microvibration and is resistant to impact, although not as much as the servo acceleration sensor. However, there is currently no means that enables self-diagnosis.
The semiconductor acceleration sensor has low sensitivity and cannot cope with the measurement of slight vibration. Further, as disclosed in Patent Documents 3 and 4, the semiconductor acceleration sensor has a means for enabling self-diagnosis, but the semiconductor acceleration sensor disclosed in Patent Document 3 includes the sensor itself and the piezoelectric sensor. Since the new base plate 21 for arranging the vibrator 22 is provided, the overall shape becomes large and the cost increases accordingly. Moreover, since the semiconductor acceleration sensor disclosed in Patent Document 4 is provided with the thin film piezoelectric material 31 in the cell itself, a change from the design stage is required.

この発明は係る事情に鑑みてなされたものであり、微振動の計測が可能でかつ衝撃に強く、しかも自己診断が可能な圧電型加速度センサを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a piezoelectric acceleration sensor that can measure micro vibrations, is strong against impact, and can perform self-diagnosis.

上記目的は下記構成により達成される。
(1) 本発明の圧電型加速度センサは、圧電素子と、前記圧電素子に設けられる錘と、前記圧電素子及び前記錘を収容するケースと、前記ケース内の任意の箇所に設けられ、圧電セラミックスを含む電気信号を機械振動に変換するデバイスとを備える。
The above object is achieved by the following configuration.
(1) A piezoelectric acceleration sensor according to the present invention includes a piezoelectric element, a weight provided on the piezoelectric element, a case housing the piezoelectric element and the weight, and a piezoelectric ceramic provided at an arbitrary position in the case. And a device for converting an electrical signal including mechanical vibration into mechanical vibration.

(2) 本発明の微振動計測装置は、上記(1)に記載の圧電型加速度センサと、前記圧電型加速度センサの前記圧電素子からの電荷信号を電圧信号に変換するチャージアンプと、通常計測時には、前記チャージアンプからの電圧信号に対して信号処理を行って計測データを取得し、前記圧電型加速度センサの故障診断や校正時には、キャリブレーション信号を発生して前記圧電型加速度センサの前記デバイスに印加すると共に、前記チャージアンプからの電圧信号に対して信号処理を行って得られた計測データと前記キャリブレーション信号とを比較して前記圧電型加速度センサの故障診断や校正を行う計測部とを備える。 (2) A micro-vibration measuring device according to the present invention includes the piezoelectric acceleration sensor according to (1), a charge amplifier that converts a charge signal from the piezoelectric element of the piezoelectric acceleration sensor into a voltage signal, and normal measurement. Sometimes, the voltage signal from the charge amplifier is subjected to signal processing to obtain measurement data, and at the time of failure diagnosis or calibration of the piezoelectric acceleration sensor, a calibration signal is generated to generate the device of the piezoelectric acceleration sensor A measurement unit for performing fault diagnosis and calibration of the piezoelectric acceleration sensor by comparing measurement data obtained by performing signal processing on the voltage signal from the charge amplifier and the calibration signal. Is provided.

(3) 本発明のヘルスモニタリングシステムは、橋脚や建物における常時微振動を計測するヘルスモニタリングシステムにおいて、上記(2)に記載の微振動計測装置を備える。 (3) The health monitoring system of the present invention is a health monitoring system that constantly measures micro-vibration on a pier or a building, and includes the micro-vibration measuring device described in (2) above.

上記(1)に記載の圧電型加速度センサでは、圧電型加速度センサ自身を加振するデバイスを備えているので、センサ自体の故障診断や校正が可能となる。すなわち、微振動の計測が可能でかつ衝撃に強く、しかも自己診断が可能な圧電型加速度センサを実現できる。   The piezoelectric acceleration sensor described in (1) above includes a device that vibrates the piezoelectric acceleration sensor itself, so that failure diagnosis and calibration of the sensor itself can be performed. That is, it is possible to realize a piezoelectric acceleration sensor that can measure microvibration, is resistant to impact, and can perform self-diagnosis.

上記(2)に記載の微振動計測装置では、上記(1)に記載の圧電型加速度センサを有しているので、該圧電型加速度センサの故障診断や校正の際に、取り外すことなくそのままの状態でデバイスにキャリブレーション信号を印加するだけで済む。すなわち、圧電型加速度センサの故障診断や校正を容易に行うことができる。   The micro-vibration measuring device described in (2) above has the piezoelectric acceleration sensor described in (1) above, so that it can be left as it is without being removed during failure diagnosis or calibration of the piezoelectric acceleration sensor. All you need to do is apply a calibration signal to the device. That is, failure diagnosis and calibration of the piezoelectric acceleration sensor can be easily performed.

上記(3)に記載のヘルスモニタリングシステムでは、上記(2)に記載の微振動計測装置を有しているので、上記(2)と同様の効果が得られる。   Since the health monitoring system described in (3) includes the micro vibration measuring device described in (2), the same effect as in (2) can be obtained.

以下、本発明を実施するための好適な実施形態について、図面を参照して詳細に説明する。
図1は、本発明の一実施形態に係る圧電型加速度センサの構造を示す断面図である。なお、図1において、前述した図4と共通する部分には同一の符号を付ける。
本実施の態の圧電型加速度センサ40は、せん断型の圧電型加速度センサであり、中央部分に支持部101aを有するベース部101と、支持部101a上に固定された圧電素子102と、圧電素子102の上面に取り付けられた錘103と、ベース部101上に配置されて圧電素子102及び錘103を覆うケース104と、ケース104の内側の上面に取り付けられた圧電プレート41とを備えて構成される。
圧電プレート41は、圧電セラミックスを図示略の金属板上に取り付けてなるものである。この圧電プレート41には、外部より電気信号が供給される。本発明では、圧電プレート41にてセンサ本体を加振して故障診断や校正を行うので、圧電プレート41に供給する電気信号をキャリブレーション信号と呼ぶ。このキャリブレーション信号を圧電プレート41に供給するための配線がセンサ本体から引き出されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view showing the structure of a piezoelectric acceleration sensor according to an embodiment of the present invention. In FIG. 1, parts that are the same as those in FIG.
The piezoelectric acceleration sensor 40 according to the present embodiment is a shear-type piezoelectric acceleration sensor, and includes a base portion 101 having a support portion 101a at a central portion, a piezoelectric element 102 fixed on the support portion 101a, and a piezoelectric element. 102, a weight 103 attached to the upper surface of 102, a case 104 disposed on the base portion 101 and covering the piezoelectric element 102 and the weight 103, and a piezoelectric plate 41 attached to the upper surface inside the case 104. The
The piezoelectric plate 41 is formed by attaching piezoelectric ceramics on a metal plate (not shown). An electrical signal is supplied to the piezoelectric plate 41 from the outside. In the present invention, since the sensor main body is vibrated by the piezoelectric plate 41 to perform fault diagnosis and calibration, an electric signal supplied to the piezoelectric plate 41 is referred to as a calibration signal. Wiring for supplying the calibration signal to the piezoelectric plate 41 is drawn from the sensor body.

本実施形態の圧電型加速度センサ40は、圧電素子102に一定の質量mの錘103を取り付けた構造を採る。圧電素子102は、錘103により慣性力Fを受けると電荷を生ずるものである。発生する電荷量Qは組成によって一定であり、式(1)のように表すことができる。
Q=F・d (d:圧電定数) …(1)
The piezoelectric acceleration sensor 40 of the present embodiment employs a structure in which a weight 103 having a constant mass m is attached to the piezoelectric element 102. The piezoelectric element 102 generates an electric charge when it receives an inertial force F from the weight 103. The amount of charge Q generated is constant depending on the composition, and can be expressed as in equation (1).
Q = F · d (d: piezoelectric constant) (1)

また、センサ本体に与えられた加速度αと圧電素子102に加わる慣性力Fの関係は、ニュートンの第2法則よりF=m・αとなる。したがって、式(1)は式(2)のように表すことができる。
Q=F・d=m・α・d …(2)
このとき、d,mは一定であるので、加速度αに対して発生する電荷量Qは一次比例する。この発生電荷量Qは高インピーダンスの電荷信号であるので、これを電気信号として利用する場合にはチャージアンプを使用して低インピーダンスの電圧信号に変換する。前記電荷信号を外部から取り込めるようにするための配線がセンサ本体から引き出されている。
The relationship between the acceleration α applied to the sensor body and the inertial force F applied to the piezoelectric element 102 is F = m · α according to Newton's second law. Therefore, Expression (1) can be expressed as Expression (2).
Q = F · d = m · α · d (2)
At this time, since d and m are constant, the charge amount Q generated with respect to the acceleration α is linearly proportional. Since this generated charge amount Q is a high impedance charge signal, when it is used as an electrical signal, it is converted into a low impedance voltage signal using a charge amplifier. Wiring for taking in the charge signal from the outside is drawn out from the sensor body.

通常、圧電型加速度センサ40を常時微振動の計測で必要な9.8×10−5m/s以下の加速度レベルで使用する場合、圧電素子102の感度は静電容量が3000pF程度、錘103の質量は200〜300g程度に設定し、感度は400〜500pC/(m/s)程度に設定する。 Normally, when the piezoelectric acceleration sensor 40 is used at an acceleration level of 9.8 × 10 −5 m / s 2 or less, which is always necessary for measurement of slight vibration, the sensitivity of the piezoelectric element 102 is about 3000 pF in capacitance, The mass of 103 is set to about 200 to 300 g, and the sensitivity is set to about 400 to 500 pC / (m / s 2 ).

図2は、圧電型加速度センサ40を使用して微振動計測を行う微振動計測装置の概略構成を示すブロック図である。同図において、通常の微振動計測は、圧電型加速度センサ40の圧電素子102からの電荷信号がチャージアンプ50にて電圧信号に変換された後、フィルタ51にて外乱ノイズが排除されて計測部52に入力される。計測部52は、マイクロコンピュータを備えており、このマイクロコンピュータで信号処理を行って計測データを取得する。   FIG. 2 is a block diagram illustrating a schematic configuration of a microvibration measuring apparatus that performs microvibration measurement using the piezoelectric acceleration sensor 40. In the figure, in the normal microvibration measurement, after the charge signal from the piezoelectric element 102 of the piezoelectric acceleration sensor 40 is converted into a voltage signal by the charge amplifier 50, disturbance noise is eliminated by the filter 51, and the measurement unit 52 is input. The measurement unit 52 includes a microcomputer, and performs signal processing with the microcomputer to acquire measurement data.

一方、圧電型加速度センサ40の故障診断や校正時には、計測部52から定期的にキャリブレーション信号が出力される。計測部52から出力されたキャリブレーション信号はアンプ53にて増幅された後、圧電型加速度センサ40の圧電プレート41に印加される。圧電プレート41は、キャリブレーション信号が印加されることで、キャリブレーション信号に同期して振動し、センサ本体を加振する。その振動に応じた電荷信号が圧電素子102から出力されてチャージアンプ50で電圧信号に変換された後、フィルタ51を通過して計測部52に入力される。そして、計測部52のマイクロコンピュータにて信号処理が行われ、その計測データがキャリブレーション信号と比較されて、圧電型加速度センサ40の故障診断や校正が行われる。   On the other hand, at the time of failure diagnosis or calibration of the piezoelectric acceleration sensor 40, a calibration signal is periodically output from the measurement unit 52. The calibration signal output from the measurement unit 52 is amplified by the amplifier 53 and then applied to the piezoelectric plate 41 of the piezoelectric acceleration sensor 40. When the calibration signal is applied, the piezoelectric plate 41 vibrates in synchronization with the calibration signal and vibrates the sensor body. A charge signal corresponding to the vibration is output from the piezoelectric element 102, converted into a voltage signal by the charge amplifier 50, passes through the filter 51, and is input to the measurement unit 52. Then, signal processing is performed by the microcomputer of the measuring unit 52, the measurement data is compared with the calibration signal, and failure diagnosis and calibration of the piezoelectric acceleration sensor 40 are performed.

橋脚や建物のヘルスモニタリングシステムでは、長期間常時微振動を計測するため、加速度センサの故障診断や校正を定期的に行う必要がある。サーボ型の加速度センサは直流成分の出力が可能なため、取り付けてある現場で上下ひっくり返すことで重力加速度の9.8m/sの校正が可能であるが、前述したようにサーボ型は衝撃に弱く壊れやすいので、メンテナンスが面倒である。これに対して、圧電型加速度センサは、衝撃に強く壊れ難い反面、直流成分の出力が得られないため、取り外して加振器に取り付けて交流成分の信号で加振して校正しなければならない。しかし、本実施の形態の圧電型加速度センサ40は、圧電プレート41でセンサ本体を加振するので、取り外すことなく故障診断や校正を行うことができる。したがって、本実施形態の圧電型加速度センサ40を使用した図2に示す微振動計測装置は、そのまま橋脚や建物のヘルスモニタリングシステムとして使用することが可能である。また、本実施形態の圧電型加速度センサ40は、既存の圧電型加速度センサ10のケース104の空間内に圧電プレート41を取り付けるだけで済むことから、新たなベースプレート21(特許文献3、図6参照)を必要としない。また、既存のものに後付けできるので、設計段階からの変更が必要とならない(特許文献4、図7参照)。 In the pier and building health monitoring system, it is necessary to periodically diagnose and calibrate the acceleration sensor in order to measure micro vibrations for a long period of time. Since the servo type acceleration sensor can output a DC component, it is possible to calibrate the gravitational acceleration of 9.8 m / s 2 by turning it upside down at the installation site. Maintenance is troublesome because it is weak and fragile. On the other hand, the piezoelectric acceleration sensor is strong against impact and hard to break, but it cannot obtain a DC component output, so it must be removed and attached to a shaker to oscillate and calibrate with an AC component signal. . However, since the piezoelectric acceleration sensor 40 of the present embodiment vibrates the sensor main body with the piezoelectric plate 41, failure diagnosis and calibration can be performed without removing the sensor body. Therefore, the micro vibration measuring apparatus shown in FIG. 2 using the piezoelectric acceleration sensor 40 of the present embodiment can be used as it is as a health monitoring system for bridge piers or buildings. In addition, the piezoelectric acceleration sensor 40 according to the present embodiment has only to attach the piezoelectric plate 41 in the space of the case 104 of the existing piezoelectric acceleration sensor 10, so that a new base plate 21 (see Patent Document 3 and FIG. 6). ) Is not required. Moreover, since it can be retrofitted to the existing one, no change from the design stage is required (see Patent Document 4 and FIG. 7).

このように本実施形態の圧電型加速度センサ40によれば、圧電型加速度センサ40自身を加振するデバイスである圧電プレート41を備えているので、センサ自体の故障診断や校正が可能となる。すなわち、微振動の計測が可能でかつ衝撃に強く、しかも自己診断が可能な圧電型加速度センサを実現できる。   Thus, according to the piezoelectric acceleration sensor 40 of the present embodiment, since the piezoelectric plate 41 which is a device for exciting the piezoelectric acceleration sensor 40 itself is provided, failure diagnosis and calibration of the sensor itself can be performed. That is, it is possible to realize a piezoelectric acceleration sensor that can measure microvibration, is resistant to impact, and can perform self-diagnosis.

また、本実施形態の圧電型加速度センサ40を使用した微振動計測装置は、圧電型加速度センサの故障診断や校正の際に、取り外すことなくそのままの状態でデバイスにキャリブレーション信号を印加するだけで済むので、圧電型加速度センサの故障診断や校正を容易に行うことができる。   In addition, the micro vibration measuring apparatus using the piezoelectric acceleration sensor 40 of the present embodiment simply applies a calibration signal to the device as it is without removing it when diagnosing or calibrating the piezoelectric acceleration sensor. Therefore, failure diagnosis and calibration of the piezoelectric acceleration sensor can be easily performed.

本発明は、微振動の計測が可能でかつ衝撃に強く、しかも自己診断が可能であるといった効果を有し、橋脚や建物のヘルスモニタリングシステムへの適用が可能である。   The present invention has the effects of being able to measure micro vibrations, being resistant to impacts, and capable of self-diagnosis, and can be applied to a pier or building health monitoring system.

本発明の一実施形態に係る圧電型加速度センサの構造を示す断面図である。It is sectional drawing which shows the structure of the piezoelectric acceleration sensor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る圧電型加速度センサを用いた微振動計測装置の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a microvibration measurement device using a piezoelectric acceleration sensor according to an embodiment of the present invention. 従来のヘルスモニタリングシステムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the conventional health monitoring system. 従来の圧電型加速度センサの構造を示す断面図である。It is sectional drawing which shows the structure of the conventional piezoelectric acceleration sensor. 従来の圧電型加速度センサにおける固有振動数を測定した結果の一例を示す波形図である。It is a wave form diagram which shows an example of the result of having measured the natural frequency in the conventional piezoelectric acceleration sensor. 従来の自己診断機能を備えた半導体加速度センサの外観を示す斜視図である。It is a perspective view which shows the external appearance of the semiconductor acceleration sensor provided with the conventional self-diagnosis function. 従来の自己診断機能を備えた他の半導体加速度センサの外観を示す斜視図である。It is a perspective view which shows the external appearance of the other semiconductor acceleration sensor provided with the conventional self-diagnosis function.

符号の説明Explanation of symbols

40 圧電型加速度センサ
41 圧電プレート
50 チャージアンプ
51 フィルタ
52 計測部
53 アンプ
101 ベース部
101a 支持部
102 圧電素子
103 錘
DESCRIPTION OF SYMBOLS 40 Piezoelectric acceleration sensor 41 Piezoelectric plate 50 Charge amplifier 51 Filter 52 Measurement part 53 Amplifier 101 Base part 101a Support part 102 Piezoelectric element 103 Weight

Claims (3)

圧電素子と、
前記圧電素子の上端部に設けられる錘と、
前記圧電素子及び前記錘を収容するケースと、
前記ケース内の任意の箇所に設けられ、圧電セラミックスを含む電気信号を機械振動に変換するデバイスと、
を備えた圧電型加速度センサ。
A piezoelectric element;
A weight provided at the upper end of the piezoelectric element;
A case for housing the piezoelectric element and the weight;
A device for converting an electrical signal including piezoelectric ceramics into mechanical vibration, which is provided at an arbitrary position in the case;
Piezoelectric acceleration sensor with
請求項1に記載の圧電型加速度センサと、
前記圧電型加速度センサの前記圧電素子からの電荷信号を電圧信号に変換するチャージアンプと、
通常計測時には、前記チャージアンプからの電圧信号に対して信号処理を行って計測データを取得し、前記圧電型加速度センサの故障診断や校正時には、キャリブレーション信号を発生して前記圧電型加速度センサの前記デバイスに印加すると共に、前記チャージアンプからの電圧信号に対して信号処理を行って得られた計測データと前記キャリブレーション信号とを比較して前記圧電型加速度センサの故障診断や校正を行う計測部と、
を備えた微振動計測装置。
A piezoelectric acceleration sensor according to claim 1;
A charge amplifier that converts a charge signal from the piezoelectric element of the piezoelectric acceleration sensor into a voltage signal;
During normal measurement, signal processing is performed on the voltage signal from the charge amplifier to obtain measurement data. During failure diagnosis or calibration of the piezoelectric acceleration sensor, a calibration signal is generated to Measurement that is applied to the device and compares the measurement signal obtained by performing signal processing on the voltage signal from the charge amplifier and the calibration signal to perform fault diagnosis and calibration of the piezoelectric acceleration sensor And
Microvibration measuring device with
橋脚や建物における常時微振動を計測するヘルスモニタリングシステムにおいて、
請求項2に記載の微振動計測装置を備えたヘルスモニタリングシステム。
In a health monitoring system that measures micro-vibrations at bridge piers and buildings
A health monitoring system comprising the microvibration measuring device according to claim 2.
JP2006014120A 2006-01-23 2006-01-23 Health monitoring system with calibration function Expired - Fee Related JP5110796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014120A JP5110796B2 (en) 2006-01-23 2006-01-23 Health monitoring system with calibration function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014120A JP5110796B2 (en) 2006-01-23 2006-01-23 Health monitoring system with calibration function

Publications (2)

Publication Number Publication Date
JP2007198744A true JP2007198744A (en) 2007-08-09
JP5110796B2 JP5110796B2 (en) 2012-12-26

Family

ID=38453502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014120A Expired - Fee Related JP5110796B2 (en) 2006-01-23 2006-01-23 Health monitoring system with calibration function

Country Status (1)

Country Link
JP (1) JP5110796B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217552A (en) * 2013-04-28 2013-07-24 厦门乃尔电子有限公司 Piezoelectric type accelerating sensing system with self-excitation diagnosis
JP2013213535A (en) * 2012-04-02 2013-10-17 Sekisui Chem Co Ltd Monitoring device for piping network
CN107045084A (en) * 2017-02-24 2017-08-15 苏州东菱振动试验仪器有限公司 A kind of tangential piezoelectric constant d15Measurement apparatus and method
CN108931292A (en) * 2017-05-24 2018-12-04 赫拉胡克两合公司 method for calibrating at least one sensor
CN109959443A (en) * 2017-12-14 2019-07-02 苏州长风航空电子有限公司 A kind of broadband piezoelectric vibrating sensor assembling structure
CN110045150A (en) * 2019-05-13 2019-07-23 中国工程物理研究院电子工程研究所 A kind of On-line self-diagnosis survey piezoelectric acceleration sensor
CN113695667A (en) * 2021-07-19 2021-11-26 武汉钢铁有限公司 Pendulum shear fault detection system and method
CN113865689A (en) * 2021-09-08 2021-12-31 中国航空工业集团公司西安航空计算技术研究所 Vibration signal charge amplifier fault detection method
WO2022067920A1 (en) * 2020-09-29 2022-04-07 谭伟森 Surface-mounted piezoelectric acceleration sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749398B (en) * 2013-12-27 2018-03-27 安徽容知日新科技股份有限公司 High pressure resistant built-in IC piezoelectric acceleration transducers and its joint
CN104849851B (en) * 2015-05-22 2017-11-03 哈尔滨工业大学 A kind of micro two-dimensional mobile work platform based on shearing Piezoelectric Driving

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100129U (en) * 1978-12-29 1980-07-12
JPH0293370A (en) * 1988-09-30 1990-04-04 Matsushita Electric Ind Co Ltd Acceleration sensor
JPH0658953A (en) * 1992-08-12 1994-03-04 Murata Mfg Co Ltd Accelerometer
JPH06109760A (en) * 1992-09-25 1994-04-22 Kansei Corp Acceleration sensor
JPH1172510A (en) * 1998-06-19 1999-03-16 Honda Motor Co Ltd Controller for occupant restraint system equipped with piezoelectric type acceleration sensor
JP2001033477A (en) * 1999-07-26 2001-02-09 Life Tec Kenkyusho:Kk Dynamic quantity sensor and displacement measuring apparatus using this dynamic quantity sensor, displacement measuring method, apparatus and method for vibration control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100129U (en) * 1978-12-29 1980-07-12
JPH0293370A (en) * 1988-09-30 1990-04-04 Matsushita Electric Ind Co Ltd Acceleration sensor
JPH0658953A (en) * 1992-08-12 1994-03-04 Murata Mfg Co Ltd Accelerometer
JPH06109760A (en) * 1992-09-25 1994-04-22 Kansei Corp Acceleration sensor
JPH1172510A (en) * 1998-06-19 1999-03-16 Honda Motor Co Ltd Controller for occupant restraint system equipped with piezoelectric type acceleration sensor
JP2001033477A (en) * 1999-07-26 2001-02-09 Life Tec Kenkyusho:Kk Dynamic quantity sensor and displacement measuring apparatus using this dynamic quantity sensor, displacement measuring method, apparatus and method for vibration control

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213535A (en) * 2012-04-02 2013-10-17 Sekisui Chem Co Ltd Monitoring device for piping network
WO2014176829A1 (en) * 2013-04-28 2014-11-06 厦门乃尔电子有限公司 Piezoelectric type acceleration sensing system with self-excitation diagnosis
CN103217552A (en) * 2013-04-28 2013-07-24 厦门乃尔电子有限公司 Piezoelectric type accelerating sensing system with self-excitation diagnosis
CN107045084B (en) * 2017-02-24 2023-11-03 苏州东菱振动试验仪器有限公司 Tangential piezoelectric constant d 15 Measuring device and method of (a)
CN107045084A (en) * 2017-02-24 2017-08-15 苏州东菱振动试验仪器有限公司 A kind of tangential piezoelectric constant d15Measurement apparatus and method
CN108931292A (en) * 2017-05-24 2018-12-04 赫拉胡克两合公司 method for calibrating at least one sensor
CN108931292B (en) * 2017-05-24 2023-11-14 赫拉胡克两合公司 Method for calibrating at least one sensor
CN109959443A (en) * 2017-12-14 2019-07-02 苏州长风航空电子有限公司 A kind of broadband piezoelectric vibrating sensor assembling structure
CN109959443B (en) * 2017-12-14 2021-08-24 苏州长风航空电子有限公司 Broadband piezoelectric vibration sensor assembly structure
CN110045150A (en) * 2019-05-13 2019-07-23 中国工程物理研究院电子工程研究所 A kind of On-line self-diagnosis survey piezoelectric acceleration sensor
WO2022067920A1 (en) * 2020-09-29 2022-04-07 谭伟森 Surface-mounted piezoelectric acceleration sensor
CN113695667A (en) * 2021-07-19 2021-11-26 武汉钢铁有限公司 Pendulum shear fault detection system and method
CN113865689A (en) * 2021-09-08 2021-12-31 中国航空工业集团公司西安航空计算技术研究所 Vibration signal charge amplifier fault detection method
CN113865689B (en) * 2021-09-08 2024-05-03 中国航空工业集团公司西安航空计算技术研究所 Vibration signal charge amplifier fault detection method

Also Published As

Publication number Publication date
JP5110796B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5110796B2 (en) Health monitoring system with calibration function
Wang et al. Microelectromechanical systems (MEMS) accelerometers using lead zirconate titanate thick films
JP4510068B2 (en) Displacement measuring apparatus and displacement measuring method for microstructure
JP2008122380A (en) Compensation of gyro vibration straightening error derived from accelerometer
Parisi et al. Time and frequency domain assessment of low-power MEMS accelerometers for structural health monitoring
Dias et al. Design of a time-based micro-g accelerometer
US7332849B2 (en) Method and transducers for dynamic testing of structures and materials
Ozdoganlar et al. Experimental modal analysis for microsystems
KR20020005417A (en) Sensor
KR101458025B1 (en) A dynamic feature measuring apparauts for a static structure and a sensor module used to it
JPH07113721A (en) Vibration testing device, vibration testing method, and vibration testing jig for structure
EP4024054A1 (en) Mems vibrating beam accelerometer with built-in test actuators
US7270008B1 (en) Inertial testing method and apparatus for wafer-scale micromachined devices
KR101842350B1 (en) The measurement apparatus for capacitive membrane sensor using mechanical resonance characteristics of membrane and the method thereof
Esu et al. Condition monitoring of wind turbine blades using MEMS accelerometers
Epp et al. A base excitation test facility for dynamic testing of microsystems
JP4571333B2 (en) Method of measuring the overturning moment in a vibration generator
JP2001264373A (en) Apparatus and method for measurement of piezoelectric constant of piezoelectric thin film
US8618824B2 (en) MEMS based Kelvin probe for material state characterization
JP2003322644A (en) Method and apparatus for detecting flaw in structure
Kumme et al. Dynamic properties and investigations of piezoelectric force measuring devices
Rahim et al. Development of a vibration measuring unit using a microelectromechanical system accelerometer for machine condition monitoring
Shieh et al. A Rapid Fatigue Test Method on Micro Structures for High-Cycle Fatigue
JP5483113B2 (en) Viscometer
JP2002296252A (en) Method and system for diagnosing fatigue of cantilevered or arch-shaped structure, and amplitude-measuring instrument used for diagnosis

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees