JP2007198742A - Positioning device - Google Patents

Positioning device Download PDF

Info

Publication number
JP2007198742A
JP2007198742A JP2006014102A JP2006014102A JP2007198742A JP 2007198742 A JP2007198742 A JP 2007198742A JP 2006014102 A JP2006014102 A JP 2006014102A JP 2006014102 A JP2006014102 A JP 2006014102A JP 2007198742 A JP2007198742 A JP 2007198742A
Authority
JP
Japan
Prior art keywords
positioning
provisional
clock error
target
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006014102A
Other languages
Japanese (ja)
Inventor
Kunihiro Ishikawa
訓弘 石川
Atsushi Okamura
敦 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006014102A priority Critical patent/JP2007198742A/en
Publication of JP2007198742A publication Critical patent/JP2007198742A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To dispense with cable connection used for synchronizing sensors with each other corresponding to the disposition of sensors and to the movement, etc. of the sensor themselves; and to correct clock errors among the sensors by performing processing in a positioning device in order to dispense with a transmission station used for correcting the clock errors. <P>SOLUTION: This positioning device for receiving a radio wave emitted from or reflected by a target by means of a plurality of sensors to calculate the position of the target based on incoming time differences of the received radio wave, is equipped with an incoming time difference calculation part for calculating the incoming time differences of the radio wave received a plurality of times by the respective sensors, and a position measurement part for measuring the clock errors among the sensors and the positions of the target at respective time points when the radio wave is received based on incoming time differences among the respective sensors. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、位置を知りたい目標から放射もしくは反射された電波を受信して目標の位置を算出する測位装置に関するものである。   The present invention relates to a positioning device that receives a radio wave radiated or reflected from a target whose position is to be known and calculates the position of the target.

測位装置では、目標から放射もしくは反射された電波を複数のセンサで受信し、受信した電波の到来時間差に基づいて目標の位置を算出しているが、その場合、目標からの電波を各センサで正確なタイミングで受信する必要がある。そのためには、各センサは高精度な時刻同期が確立されている必要があり、センサ間をケーブルで結び、同一のクロックで互いのセンサの同期を取って動作させている。しかし、複数のセンサ同士が極めて近接設置される場合には配線基板などを用いて一体的に接続できるが、センサ同士が離れた位置に設置されている場合には、センサ間を個々のケーブルで接続しなければならず、そのための多数のケーブルの準備や接続作業が要求され、コストの面で不利である。また、センサ自体が移動するような場合には、センサ同士をケーブルで結ぶことは構造上に困難である。この問題を解決する方法として、各センサで時計誤差を含んだ状態で電波の到来時間を観測し、その後の処理で時計誤差を補正する方式がある(例えば特許文献1参照)。この特許文献1の方法は、位置が既知の位置に送信局を置き、その送信局からの電波を各センサで受信し、その電波の到来時間差を求めることで、センサ間の時計誤差を算出するものである。目標の位置を算出する場合には、目標からの電波の到来時間差を、先に求めた時計誤差で補正して、補正値を基に目標の位置を算出する。   In the positioning device, radio waves radiated or reflected from the target are received by multiple sensors, and the position of the target is calculated based on the arrival time difference between the received radio waves. It is necessary to receive at the correct timing. For this purpose, it is necessary for each sensor to establish highly accurate time synchronization. The sensors are connected by a cable, and the sensors are operated in synchronization with each other with the same clock. However, when multiple sensors are installed in close proximity, they can be connected together using a wiring board, etc., but when the sensors are installed at positions separated from each other, individual cables can be connected between the sensors. It is necessary to prepare a large number of cables for the connection and connection work, which is disadvantageous in terms of cost. In addition, when the sensors themselves move, it is difficult to connect the sensors with cables. As a method for solving this problem, there is a method in which the arrival time of radio waves is observed with each sensor including a clock error, and the clock error is corrected by subsequent processing (see, for example, Patent Document 1). In the method of Patent Document 1, a transmitting station is placed at a known position, radio waves from the transmitting station are received by each sensor, and a time difference between the radio waves is calculated to calculate a clock error between the sensors. Is. When calculating the target position, the arrival time difference of the radio wave from the target is corrected with the previously determined clock error, and the target position is calculated based on the correction value.

特開2001−272448号公報JP 2001-272448 A

従来の測位装置では、目標からの電波の到来時間差を、予め求めた時計誤差を用いて補正して、補正値を基に目標の位置を算出するようにしているが、センサ間の時計誤差を得るために送信局を別途設ける必要がり、その分装置が大掛かりとなる。   In the conventional positioning device, the arrival time difference of the radio wave from the target is corrected using a previously determined clock error, and the target position is calculated based on the correction value. In order to obtain this, it is necessary to provide a separate transmission station, and the apparatus becomes large correspondingly.

この発明は、上記問題点を解決するためになされたもので、自機内の処理でセンサ間の時計誤差の補正を可能にする測位装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a positioning device that enables correction of a clock error between sensors by processing within the own device.

この発明に係る測位装置は、目標から放射もしくは反射された電波を複数のセンサで受信し、受信した電波の到来時間差に基づいて目標の位置を算出する測位装置において、各センサで複数回受信された電波の到来時間差を算出する到来時間差算出部と、算出された各センサ間の電波の到来時間差に基づいて、センサ間の時計誤差と電波を受信した各時刻における目標位置を測位する測位部を備えたものである。   A positioning device according to the present invention is a positioning device that receives a radio wave radiated or reflected from a target by a plurality of sensors and calculates a target position based on a difference in arrival time of the received radio waves, and is received by each sensor a plurality of times. An arrival time difference calculation unit that calculates the arrival time difference of the received radio wave, and a positioning unit that measures the clock error between the sensors and the target position at each time when the radio wave is received based on the calculated arrival time difference between the sensors. It is provided.

この発明によれば、各センサ間で時計誤差を含んだ状態で電波の到来時間を観測し、その後の測位処理で時計誤差を補正するようにしているので、センサの配置やセンサ自体の移動などに対応してセンサ間の同期をとるためのケーブル接続を考慮する必要が無く、また、時計誤差を補正するための送信局を別途設置する必要がない。   According to the present invention, the arrival time of radio waves is observed with a clock error included between the sensors, and the clock error is corrected in the subsequent positioning process. Therefore, there is no need to consider cable connection for synchronization between sensors, and there is no need to separately install a transmitting station for correcting clock errors.

実施の形態1.
図1はこの発明の実施の形態1による測位装置の機能構成を示すブロック図である。
図において、複数のセンサ11 〜1N (N≧5)は、目標から放射された、もしくは目標で反射した電波をそれぞれ複数回受信する手段である。到来時間差算出部2は、各センサで複数回受信した電波の到来時間差を算出する手段である。測位部3は、各センサ間の電波の到来時間差を基に、センサ間の時計誤差と電波を受信した各時刻における目標の位置を算出する手段である。また測位部3は、一括測位部31を備えている。この一括測位部31は、電波の到来時間差からセンサ間の時計誤差を減算した時間に、電波の速度を乗算して得た距離が、電波の伝搬距離の差に等しいとする等式を電波の受信時刻毎に作成し、複数連立させることで、センサ間の時計誤差と電波を受信した各時刻における目標の位置を測位する手段である。
Embodiment 1 FIG.
1 is a block diagram showing a functional configuration of a positioning apparatus according to Embodiment 1 of the present invention.
In the figure, a plurality of sensors 1 1 to 1 N (N ≧ 5) are means for receiving a radio wave emitted from a target or reflected by the target a plurality of times. The arrival time difference calculation unit 2 is a means for calculating the arrival time difference of radio waves received by each sensor a plurality of times. The positioning unit 3 is means for calculating a clock error between the sensors and a target position at each time when the radio wave is received based on the arrival time difference of the radio wave between the sensors. The positioning unit 3 includes a collective positioning unit 31. The collective positioning unit 31 calculates an equation that the distance obtained by multiplying the time difference of the radio waves by the time of subtracting the clock error between the sensors and the speed of the radio waves is equal to the difference in the radio wave propagation distance. It is a means for measuring the position of the target at each time at which the clock error between the sensors and the radio wave are received by creating a plurality of times at the reception time.

次にこの発明の原理について説明する。
センサ11 〜1N で、目標から放射された、もしくは目標で反射された電波を受信すると、各センサは電波を受信した到来時間を観測する。この方法について、センサn (1≦n≦N)を例に説明する。まずセンサn では、受信信号を低い周波数にダウンコンバートし、A/D変換器でデジタル信号に変換する(サンプリング時間をΔtとする)。デジタル信号のサンプリング番号をiとした場合のセンサ1n のデジタル受信信号をxn (i)と表す。ここで、目標からの電波の信号波形が既知であるとし、その既知の信号波形を以下では基準信号と呼び、xr (i)で表す。ただし、基準信号は、センサで受信した信号と同一の周波数に変換されているものとする。そして相関処理のポイント数(整数)をLとしてサンプルポイントhを変動させ、(1)式の相関関数fn (h)の大きさ|fn (h)|が最大となるhを求める。なおxr (i)* は、xr (i)の複素共役を意味する。

Figure 2007198742
Next, the principle of the present invention will be described.
In the sensor 1 1 to 1 N, emitted from the target, or when receiving the radio wave reflected by a target, the sensor observes the arrival time which has received the radio wave. This method will be described by taking sensor n (1 ≦ n ≦ N) as an example. First, in the sensor n , the received signal is down-converted to a low frequency and converted into a digital signal by an A / D converter (sampling time is set to Δt). The digital received signal of the sensor 1 n when the digital signal sampling number is i is represented as x n (i). Here, it is assumed that the signal waveform of the radio wave from the target is known, and the known signal waveform is hereinafter referred to as a reference signal and represented by x r (i). However, it is assumed that the reference signal has been converted to the same frequency as the signal received by the sensor. Then, the number of points (integer) in the correlation process is set to L, and the sample point h is varied to obtain h that maximizes the magnitude | f n (h) | of the correlation function f n (h) in the equation (1). Note that x r (i) * means a complex conjugate of x r (i).
Figure 2007198742

いま、h=hn の場合に|fn (h)|が最大となったとする。これは、センサ1n で受信した信号と、基準信号が類似したことを示すため、hn ・Δtがセンサ1n で目標からの電波を受信した到来時間τn となる。
τn =hn ・Δt (2)
なお以下では、複数の時刻で観測した到来時間を扱うため、時刻tk においてセンサ1n で観測した到来時間をτn (k)と表す。
各センサでは、上記の様にして複数の異なった時刻tk (1≦k≦K)で電波の到来時間τn (k) (1≦n≦N、1≦k≦K)を観測し、到来時間差算出部2に伝送する。なお以下では、tk を観測時刻と呼ぶ。
Now, suppose that | f n (h) | becomes maximum when h = h n . Since this indicates that the signal received by the sensor 1 n is similar to the reference signal, h n · Δt is the arrival time τ n at which the sensor 1 n received the radio wave from the target.
τ n = h n · Δt (2)
In the following, since the arrival times observed at a plurality of times are handled, the arrival time observed by the sensor 1 n at the time t k is represented as τ n (k) .
Each sensor observes radio wave arrival times τ n (k) (1 ≦ n ≦ N, 1 ≦ k ≦ K) at a plurality of different times t k (1 ≦ k ≦ K) as described above. It transmits to the arrival time difference calculation unit 2. Hereinafter, t k is referred to as observation time.

到来時間差算出部2では、センサ11 〜1N から出力された観測時刻tk (1≦k≦K)において、各センサで受信した目標からの電波の到来時間差を算出する。いま、観測時刻tk においてセンサ1n (1≦n≦N)で受信した電波の到来時間がτn (k)で、センサ1m (1≦m≦N、n≠m)で受信した電波の到来時間がτm (k)であるとする。この場合到来時間差算出部2では、(3)式により観測時刻tk における電波の到来時間差Δτn,m (k)を算出する。
Δτn,m (k)=τn (k) −τm (k) (3)
上記は目標からの電波が既知の場合について説明したが、未知の場合についても到来時間を求めることが可能である。具体的には、センサ1n で受信したデジタル信号xn (i)と、センサ1m で受信したデジタル信号xm (i)を伝送し、(4)式に示すような相関処理を実施する。

Figure 2007198742
そして、f’n,m(h)が最大となるhを求め、これにΔtを乗じたものが、電波の到来時間差Δτn,m となる。
Δτn,m =h・Δt
これまでの説明では、相関処理を用いて到来時間差を求める方法について説明したが、これに限らず、他の方式により求めた到来時間差を求めてもよい。 The arrival time difference calculation unit 2 calculates the arrival time difference of the radio wave from the target received by each sensor at the observation time t k (1 ≦ k ≦ K) output from the sensors 1 1 to 1 N. Now, at the observation time t k , the arrival time of the radio wave received by the sensor 1 n (1 ≦ n ≦ N) is τ n (k) , and the radio wave received by the sensor 1 m (1 ≦ m ≦ N, n ≠ m). Is the arrival time τ m (k) . In this case, the arrival time difference calculation unit 2 calculates the arrival time difference Δτ n, m (k) of the radio wave at the observation time t k according to the equation (3).
Δτ n, m (k) = τ n (k) −τ m (k) (3)
In the above description, the radio wave from the target is known. However, the arrival time can be obtained even when the radio wave is unknown. Specifically, the digital signal x n (i) received by the sensor 1 n and the digital signal x m (i) received by the sensor 1 m are transmitted, and correlation processing as shown in the equation (4) is performed. .
Figure 2007198742
Then, h that maximizes f ′ n, m (h) is obtained, and this is multiplied by Δt to obtain a radio wave arrival time difference Δτ n, m .
Δτ n, m = h · Δt
In the description so far, the method of obtaining the arrival time difference using the correlation processing has been described. However, the present invention is not limited to this, and the arrival time difference obtained by another method may be obtained.

測位部3では一括測位部31において、到来時間差算出部2から出力された電波の到来時間差Δτn,m (k)(n≠m、1≦k≦K)を基に、複数の方程式を生成し、それらを解くことで目標位置を算出する。具体的処理方法を説明する。
センサ1n とセンサ1m の観測時刻tk における電波の到来時間差Δτn,m (k)には、時計誤差が含まれる。この時計誤差をεn,m (未知数)とすれば、(Δτn,m (k)−εn,m )が時計誤差を含まない到来時間差となる。このため(Δτn,m (k)−εn,m )に電波の速度cを乗じた距離は、センサ1n から目標までの距離とセンサ1m から目標までの距離の差に等しくなる。ゆえに、(5)式が成立する。

Figure 2007198742
ここで[Xn ,Yn ,Zn ]はセンサ1n の座標(既知)、[Xm ,Ym ,Zm ]はセンサ1m の座標(既知)とする。観測時刻tk における上記の様な方程式は、センサ数マイナス1成立するため、センサの総数をN個とすれば、(N−1)成立する。また、目標からの電波を受信した時刻の回数をK(観測時刻はtk (1≦k≦K),kは自然数)とすれば、各観測時刻tk で(5)式のような方程式は(N−1)個成り立つため、観測回数がK個の場合には、全部で(N−1)×K個成り立つ。 The positioning unit 3 generates a plurality of equations in the collective positioning unit 31 based on the arrival time difference Δτ n, m (k) (n ≠ m, 1 ≦ k ≦ K) of the radio wave output from the arrival time difference calculation unit 2. The target position is calculated by solving them. A specific processing method will be described.
The time difference Δτ n, m (k) of radio waves at the observation time t k of the sensor 1 n and the sensor 1 m includes a clock error. If this clock error is ε n, m (unknown number), (Δτ n, m (k) −ε n, m ) is the arrival time difference that does not include the clock error. For this reason, the distance obtained by multiplying (Δτ n, m (k) −ε n, m ) by the velocity c of the radio wave is equal to the difference between the distance from the sensor 1 n to the target and the distance from the sensor 1 m to the target. Therefore, equation (5) is established.
Figure 2007198742
Here, [X n , Y n , Z n ] is the coordinate (known) of the sensor 1 n , and [X m , Y m , Z m ] is the coordinate (known) of the sensor 1 m . The above equation at the observation time t k is satisfied by the number of sensors minus 1. Therefore, if the total number of sensors is N, (N−1) is satisfied. Further, if the number of times of reception of radio waves from the target is K (observation time is t k (1 ≦ k ≦ K), k is a natural number), an equation like equation (5) at each observation time t k Since (N−1) holds, if the number of observations is K, (N−1) × K holds in total.

一方、(5)式における未知数は、目標の位置に関するもの[x(k) ,y(k) ,z(k) ]と時計誤差εn,m に関するものがある。このうち目標位置の未知数[x(k) ,y(k) ,z(k) ]は、観測時刻tk (1≦k≦K)毎に異なるため、観測時刻がK個の場合には3×K個になる。またセンサ間の時計誤差εn,m は、急激に変動しないと考えられるため、電波の観測時刻tk (1≦k≦K)によらず一定になり、(N−1)個になる。ゆえに(N−1)×K個の方程式に含まれる未知数の総数は、((N−1)+3K)となる。したがって、(6)式の条件を満たす場合、未知数と方程式が等しくなり、未知数を決定することができる。ただし、到来時間差には観測誤差が含まれる場合があるため、(5)式の方程式が一点で交わるとは限らない。この場合、最小二乗解を求めるようにして、未知数を算出する。
(N−1)×K=(N−1)+3K (6)
例えばセンサ数Nが5の場合、観測回数Kは4で未知数の決定が可能となる。未知数よりも方程式の数が多い場合には、最小二乗解を求めるようにして、未知数を算出する。
一括測位部31では、以上のようにして未知数(目標位置と時計誤差)を算出する。
On the other hand, the unknowns in equation (5) are related to the target position [x (k) , y (k) , z (k) ] and related to the clock error ε n, m . Among these, the unknowns [x (k) , y (k) , z (k) ] of the target positions are different for each observation time t k (1 ≦ k ≦ K), and therefore, when the number of observation times is K, 3 × K. Further, the clock error ε n, m between the sensors is considered not to fluctuate abruptly, and therefore becomes constant regardless of the radio wave observation time t k (1 ≦ k ≦ K) and becomes (N−1). Therefore, the total number of unknowns included in (N−1) × K equations is ((N−1) + 3K). Therefore, when the condition of the expression (6) is satisfied, the unknown number is equal to the equation, and the unknown number can be determined. However, since the arrival time difference may include an observation error, the equation (5) does not always intersect at one point. In this case, the unknown is calculated by obtaining a least square solution.
(N−1) × K = (N−1) + 3K (6)
For example, when the number of sensors N is 5, the number of observations K is 4, and an unknown number can be determined. If there are more equations than unknowns, the least squares solution is obtained to calculate the unknowns.
The collective positioning unit 31 calculates the unknowns (target position and clock error) as described above.

なお、測位部3は、図2に示すように運動モデル設定部32と運動モデル測位部33を備えたものであっても良い。この場合、運動モデル設定部32では、位置を知りたい目標の移動が、等速直線運動であるか、等加速度直線運動であるかなどを設定する。運動モデル測位部33では、運動モデル設定部32で設定された結果に基づいて、方程式を複数作成し、これらを連立させて目標の位置を算出する。
運動モデル設定部32で等速直線運動と設定された場合を例に以下説明する。
等速直線運動の場合、観測時刻tk における目標位置[x(k) ,y(k) ,z(k) ]は(7)〜(9)式のように表すことができる。
(k) =x(1) +vx ・Δtk (7)
(k) =y(1) +vy ・Δtk (8)
(k) =z(1) +vz ・Δtk (9)
Δtk =t1 −tk (10)
これを(5)式に代入したものが運動モデル測位部33で作成する方程式で、(11)式のようになる。

Figure 2007198742
The positioning unit 3 may include a motion model setting unit 32 and a motion model positioning unit 33 as shown in FIG. In this case, the motion model setting unit 32 sets whether the target movement whose position is to be known is constant velocity linear motion, constant acceleration linear motion, or the like. The motion model positioning unit 33 creates a plurality of equations based on the result set by the motion model setting unit 32, and calculates the target position by combining these equations.
An example in which the constant velocity linear motion is set by the motion model setting unit 32 will be described below.
In the case of constant velocity linear motion, the target position [x (k) , y (k) , z (k) ] at the observation time t k can be expressed as in equations (7) to (9).
x (k) = x (1) + v x · Δt k (7)
y (k) = y (1) + v y · Δt k (8)
z (k) = z (1) + v z · Δt k (9)
Δt k = t 1 −t k (10)
An equation created by the motion model positioning unit 33 is obtained by substituting this into equation (5), and is as shown in equation (11).
Figure 2007198742

これらの方程式は、センサ数をN、観測回数をKとすると、上記一括測位部31の場合と同様に、(N−1)×K個得られる。一方未知数は、観測時刻t1 における目標の位置[x(1) ,y(1) ,z(1) ]と目標の速度[vx ,vy ,vz ]、時計誤差εn,mとなる。目標の位置に関する未知数(観測時刻t1 の位置と目標の速度)の数は、観測時刻tk によらず一定な値6であり、時計誤差の数は一括測位部31の場合と同様で(N−1)となる。したがって、未知数の数以上に方程式が得られる条件は、(12)式の様になる。ただし、到来時間差には観測誤差が含まれる場合があるため、(12)式の方程式が一点で交わるとは限らない。この場合、最小二乗解を求めるようにして、未知数を算出する。
(N−1)×K≧(N−1)+6 (12)
例えばセンサ数Nが5の場合、K≧5/2となるため、観測回数K=3の場合においても未知数を推定することが可能である。一括測位部31はN=5の場合、K≧4であるため、運動モデル設定部33は、より少ない観測回数で目標位置を算出することが可能となる。なお、未知数以上に方程式の数がある場合には、最小二乗解を解くようにして未知数を算出する。
運動モデル測位部33では、上記の様にして(11)式のような方程式を多数連立させ、これらを解くことで、目標の位置と時計誤差を算出する。なお、(12)式に示した目標位置の測位可能な条件は、運動モデル設定部32により設定される運動モデルにより、異なる条件となる。
Assuming that the number of sensors is N and the number of observations is K, (N−1) × K of these equations are obtained as in the case of the collective positioning unit 31. On the other hand, the unknowns are the target position [x (1) , y (1) , z (1) ] at the observation time t 1, the target speed [v x , v y , v z ], the clock error ε n, m Become. The number of unknowns (the position of the observation time t 1 and the target speed) regarding the target position is a constant value 6 regardless of the observation time t k , and the number of clock errors is the same as in the case of the collective positioning unit 31 ( N-1). Therefore, the condition for obtaining an equation more than the number of unknowns is as shown in equation (12). However, since the arrival time difference may include an observation error, the equation (12) does not always intersect at one point. In this case, the unknown is calculated by obtaining a least square solution.
(N−1) × K ≧ (N−1) +6 (12)
For example, when the number of sensors N is 5, K ≧ 5/2. Therefore, it is possible to estimate the unknown even when the number of observations K = 3. Since the collective positioning unit 31 has K ≧ 4 when N = 5, the motion model setting unit 33 can calculate the target position with a smaller number of observations. If there are more equations than unknowns, the unknowns are calculated by solving a least squares solution.
The motion model positioning unit 33 calculates a target position and a clock error by solving a large number of equations such as the equation (11) as described above and solving them. It should be noted that the conditions under which the target position can be measured shown in Expression (12) are different depending on the exercise model set by the exercise model setting unit 32.

以上のように、この実施の形態1によれば、到来時間差算出部2により算出した各センサ間の電波の到来時間差に基づいて、センサ間の時計誤差と電波を受信した各時刻における目標位置を測位する測位部3を備えており、特に、測位部3では、一括測位部31において、センサ間の電波到来時間差から各センサ間の時計誤差を減算した時間に電波の速度を乗算して得た距離が、電波の伝搬距離の差に等しいとする等式を電波の受信時刻毎に作成し、これらの式を連立させることでセンサ間の時計誤差と電波を受信した各時刻における目標の位置を算出するようにしている。したがって、測位装置内でセンサ間の時計誤差の補正を可能にする。そのため、センサ間の同期をとる必要がなく、センサの配置やセンサ自体の移動などに対応してセンサ間の同期をとるためのケーブル接続を考慮する必要が無く、また、時計誤差を補正するための送信局を別途設置する必要もない。   As described above, according to the first embodiment, based on the arrival time difference between the sensors calculated by the arrival time difference calculation unit 2, the clock error between the sensors and the target position at each time when the radio waves are received are determined. In particular, the positioning unit 3 is obtained by multiplying the time obtained by subtracting the clock error between the sensors from the difference in radio wave arrival time between the sensors in the collective positioning unit 31 by the radio wave speed. The equation that the distance is equal to the difference in the propagation distance of the radio wave is created for each radio wave reception time, and by combining these equations, the clock error between the sensors and the target position at each time the radio wave is received I am trying to calculate. Therefore, it is possible to correct a clock error between sensors in the positioning device. Therefore, there is no need to synchronize between sensors, there is no need to consider cable connection for synchronizing sensors in accordance with sensor placement, sensor movement, etc., and to correct clock errors There is no need to install a separate transmitter station.

実施の形態2.
図3はこの発明の実施の形態2による測位装置の機能構成を示すブロック図である。図において、図1に相当する部分には同一符号を付し、その説明は原則として省略する。この実施の形態2の測位部3は、暫定測位部34、ミスマッチ時間算出部35、暫定時計誤差算出部36および測位処理制御部37を備えている。
暫定測位部34では、測位処理制御部37から出力される電波の補正到来時間差Δτ’n,m (k)を用いて、(13)式により観測時刻tk における目標の暫定位置[x’(k) ,y’(k) ,z’(k) ]を算出する。

Figure 2007198742
なお、測位処理制御部37から出力された電波の補正到来時間差Δτ’n,m (k)が無い場合は、到来時間差算出部2から出力された到来時間差Δτn,m (k)そのものを電波の補正到来時間差Δτ’n,m (k)の代わりに、(13)式に代入して目標の暫定位置を算出する。 Embodiment 2. FIG.
FIG. 3 is a block diagram showing a functional configuration of a positioning apparatus according to Embodiment 2 of the present invention. In the figure, parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted in principle. The positioning unit 3 according to the second embodiment includes a provisional positioning unit 34, a mismatch time calculation unit 35, a provisional clock error calculation unit 36, and a positioning process control unit 37.
The provisional positioning unit 34, 'with n, m and (k), (13) a target in temporary position at the measurement time t k by equation [x' radio wave correction TDOA Δτ outputted from the positioning process controller 37 ( k) , y ' (k) , z' (k) ].
Figure 2007198742
If there is no corrected arrival time difference Δτ ′ n, m (k) of the radio wave output from the positioning processing control unit 37, the arrival time difference Δτ n, m (k) itself output from the arrival time difference calculation unit 2 is used as the radio wave. Instead of the corrected arrival time difference Δτ ′ n, m (k) , the target provisional position is calculated by substituting into the equation (13).

暫定測位部34では、実施の形態1の一括測位部31の(5)式と異なり、時計誤差を無視した暫定の目標位置を推定する。(13)式における未知数は、目標の暫定位置[x’(k) ,y’(k) ,z’(k) ]のみであるため、(13)式の様な方程式が3以上成り立てば暫定位置を算出することができる。(13)式の測位方程式は、センサ数マイナス1個で成り立つため、センサ数Nが4以上の場合に、目標の暫定位置を算出することができる。ただし、電波の到来時間差Δτn,m (k)には時計誤差が含まれるため、(13)式の測位方程式が1点で交わるとは限らない。その場合には、最小二乗解を求めるようにして目標の暫定位置を算出する。また、未知数以上に方程式が有る場合についても、最小二乗解を求めるようにして目標の暫定位置を算出する。
暫定位置測位部34は、上記の様にして目標の暫定位置を求め、ミスマッチ時間算出部35に出力する。
Unlike the formula (5) of the collective positioning unit 31 of the first embodiment, the temporary positioning unit 34 estimates a temporary target position that ignores the clock error. The unknown in equation (13) is only the target provisional position [x ′ (k) , y ′ (k) , z ′ (k) ], and therefore provisional if an equation such as equation (13) holds 3 or more. The position can be calculated. Since the positioning equation (13) is established with the number of sensors minus one, the target provisional position can be calculated when the number of sensors N is 4 or more. However, since the radio wave arrival time difference Δτ n, m (k) includes a clock error, the positioning equation (13) does not always intersect at one point. In that case, the target provisional position is calculated so as to obtain a least squares solution. Further, even when there are more equations than unknowns, the target provisional position is calculated by obtaining the least squares solution.
The provisional position measurement unit 34 obtains the target provisional position as described above, and outputs the target provisional position to the mismatch time calculation unit 35.

ミスマッチ時間算出部35では、暫定位置測位部34で得られた目標の暫定位置と各センサの距離の差を電波の速度で除算して得た時間を、各センサ間の電波の到来時間差から減算して、各時刻におけるミスマッチ時間として算出する。この処理は(14)式で表される。暫定測位部34から出力された目標の暫定位置とセンサ1n の距離と目標の暫定位置とセンサ1m の距離の差を求める。次に、この目標の暫定位置と各センサの距離の差を電波の速度cで除算して時間(式の第2項)を求める。この求めた時間(式の第2項)を、到来時間差算出部2から出力された電波の到来時間差Δτn,m (k)から減算してミスマッチ時間ε’n,m (k)とする。

Figure 2007198742
ミスマッチ時間算出部35では、上記の様にして算出したミスマッチ時間を暫定時計誤差算出部36に出力する。 The mismatch time calculation unit 35 subtracts the time obtained by dividing the difference between the target temporary position obtained by the temporary position measurement unit 34 and the distance between each sensor by the speed of the radio wave from the arrival time difference of the radio wave between the sensors. Then, it is calculated as a mismatch time at each time. This process is expressed by equation (14). A difference between the target temporary position output from the temporary positioning unit 34 and the distance between the sensor 1 n and the target temporary position and the distance between the sensor 1 m is obtained. Next, the time (the second term of the equation) is obtained by dividing the difference between the target temporary position and the distance of each sensor by the radio wave velocity c. The obtained time (the second term of the equation) is subtracted from the arrival time difference Δτ n, m (k) of the radio wave output from the arrival time difference calculation unit 2 to obtain a mismatch time ε ′ n, m (k) .
Figure 2007198742
The mismatch time calculation unit 35 outputs the mismatch time calculated as described above to the provisional clock error calculation unit 36.

ミスマッチ時間ε’n,m (k)はセンサ間の時計誤差に起因している。そこで、暫定時計誤差算出部36では、各時刻のミスマッチ時間に基づいて暫定時計誤差を算出する。暫定時計誤差算出部36は図4に示すように平均処理部361を備えている。平均処理部361では、(15)式に示すように、センサ1n とセンサ1m のミスマッチ時間ε’n,m (k)(1≦k≦K)について平均値を求め、これをセンサ1n とセンサ1m についての暫定時計誤差ε’’n,m とする。

Figure 2007198742
また、暫定時計誤差算出部36は、図5に示すように重み付け処理部362を備えてもよい。この場合、重み付け処理部362で、ミスマッチ時間算出部35から出力されたミスマッチ時間ε’n,m (k)に後述の重み付け係数ψn,m (k)を乗算することで重み付けを行い、センサ間の暫定時計誤差ε’’n,mとして算出する。 The mismatch time ε ′ n, m (k) is due to the clock error between sensors. Therefore, the provisional clock error calculation unit 36 calculates a provisional clock error based on the mismatch time at each time. The provisional clock error calculation unit 36 includes an average processing unit 361 as shown in FIG. The average processing unit 361 obtains an average value for the mismatch time ε ′ n, m (k) (1 ≦ k ≦ K) of the sensor 1 n and the sensor 1 m as shown in the equation (15), and this is obtained as the sensor 1 Let tentative clock error ε ″ n, m for n and sensor 1 m .
Figure 2007198742
Further, the provisional clock error calculation unit 36 may include a weighting processing unit 362 as shown in FIG. In this case, the weighting processing unit 362 performs weighting by multiplying the mismatch time ε ′ n, m (k) output from the mismatch time calculation unit 35 by a weighting coefficient ψ n, m (k), which will be described later. Calculated as the interim clock error ε ″ n, m .

上記重み付け係数ψn,m (k)としては、例えば「新・GPS測量の基礎」、土屋淳、辻宏道著、社団法人日本測量協会編に記載されている、目標位置とセンサ位置の幾何学的関係から求めえられる目標位置の推定精度の低下率(幾何学低精度低下率:GDOP)などを利用すればよい。ここで、重み付け係数ψn,m (k)の算出方法について説明する。
いま、センサ数Nを4とし、暫定測位部34により算出された目標の暫定位置が[x’(k) ,y’(k) ,z’(k) ]であるとする。そして、この目標の暫定位置は、センサ11 とセンサ12 の方程式と、センサ12 とセンサ13 の方程式と、センサ13 とセンサ14 の方程式を基に算出されたものであるとする。ここで、関数gn,m (x,y,z)を(16)式のように定義する。

Figure 2007198742
次に、関数gn,m (x,y,z)を用いて、(17)式に示す行列An,mを求める。
Figure 2007198742
ここで、行列An,m の各成分は、暫定測位部34から出力された目標の暫定位置[x’(k) ,y’(k) ,z’(k) ]を用いて求める。一例を(18)式に示す。
Figure 2007198742
The weighting coefficient ψ n, m (k) is, for example, the geometry of the target position and the sensor position described in “New GPS Survey Fundamentals”, Takuya Tsuchiya, written by Hiromichi Tsuji, edited by Japan Surveying Association. The target position estimation accuracy reduction rate (geometric low accuracy reduction rate: GDOP) obtained from the physical relationship may be used. Here, a method of calculating the weighting coefficient ψ n, m (k) will be described.
Now, it is assumed that the number of sensors N is 4, and the provisional position of the target calculated by the provisional positioning unit 34 is [x ′ (k) , y ′ (k) , z ′ (k) ]. Then, the provisional position of the goal, and the equation of the sensor 1 1 and the sensor 1 2, and the equation of the sensor 1 2 and the sensor 1 3, and the equation of the sensor 1 3 and the sensor 1 4 in which is calculated based on To do. Here, the function g n, m (x, y, z) is defined as in equation (16).
Figure 2007198742
Next, using the function g n, m (x, y, z), a matrix A n, m shown in equation (17) is obtained.
Figure 2007198742
Here, each component of the matrix A n, m is obtained using the target provisional positions [x ′ (k) , y ′ (k) , z ′ (k) ] output from the provisional positioning unit 34. An example is shown in equation (18).
Figure 2007198742

最後に、(19)式に示す行列Wn,m を求める。
n,m =(An,m H・An,m-1 (19)
ここで、An,m Hは、行列An,m の複素共役転置を表し、(An,m H・An,m-1は行列(An,m H・An,m )の逆行列を表す。
重み付け係数φn,m (k)は、(20)式のようにして、行列Wn,m の対角成分を基に算出する。

Figure 2007198742
重み付け処理部362では、(20)式により求めた重み付け係数φn,m (k)を用いて、ミスマッチ時間算出部35で算出されたミスマッチ時間ε’n,m (k)を重み付けして、(21)式により暫定時計誤差ε’’n,m を算出し出力する。
Figure 2007198742
Finally, a matrix W n, m shown in Equation (19) is obtained.
W n, m = (A n, m H · A n, m ) −1 (19)
Here, A n, m H represents the complex conjugate transpose of the matrix A n, m , and (A n, m H · A n, m ) −1 represents the matrix (A n, m H · A n, m ). Represents the inverse matrix of.
The weighting coefficient φ n, m (k) is calculated based on the diagonal component of the matrix W n, m as shown in equation (20).
Figure 2007198742
The weighting processing unit 362 weights the mismatch time ε ′ n, m (k) calculated by the mismatch time calculating unit 35 using the weighting coefficient φ n, m (k) obtained by the equation (20), The provisional clock error ε ″ n, m is calculated and output by equation (21).
Figure 2007198742

測位処理制御部37では、電波の到来時間差から暫定時計誤差算出部36で算出された暫定時計誤差を減算して補正値を求め、得られた補正値を暫定測位部34で用いる電波の補正到来時間差として出力する。また、測位処理制御部37は、到来時間差の補正値を算出する過程において、判定基準に従って、前記暫定測位部、前記ミスマッチ時間算出部および前記暫定時計誤差算出部による一連の測位処理を完了させ、各処理で得られた目標の暫定位置と暫定時計誤差を最終的な目標の位置と時計誤差として出力するか、または一連の測位処理を再度継続して実施させ測位処理をやり直すように制御する。
測位処理制御部37では、電波の到来時間差Δτn,m (k)を補正するために、(22)式に示すように、電波の到来時間差Δτn,m (k)から暫定時計誤差ε’’n,m を減算し、電波の補正到来時間差Δτ’n,m (k)を求める。この電波の補正到来時間差は、上述したように暫定測位部34で各時刻の目標の暫定位置を算出するために用いられる。
Δτ’n,m (k)=Δτn,m (k)−ε’’n,m (1≦k≦K) (22)
また、測位処理制御部37は、測位処理の継続か、完了を判定するために、図6に示すように処理回数カウント部371を備えている。処理回数カウント部371では、暫定測位部34、ミスマッチ時間算出部35および暫定時計誤差算出部36で一連の処理を実施した回数をカウントし、カウント数が予め設定された値(判定基準)に達した場合、一連の測位処理を完了させると判定する。このとき、測位処理制御部37は、最後の処理で暫定測位部34から出力された目標の暫定位置[x’(k) ,y’(k) z’(k) ]を、求めるべき目標の位置と時計誤差して出力し、最後の処理で暫定時計誤差算出部36から出力された暫定時計誤差ε’’n,m をセンサ1n とセンサ1m の時計誤差として出力する。一方、処理回数カウント部371においてカウント数が予め設定された値に達成していない場合には一連の測位処理を再度継続して実施させると判定し、測位処理制御部37は、(22)式により到来時間差を補正して暫定測位部34に電波の補正到来時間差を出力し、一連の測位処理をやり直す。
The positioning process control unit 37 subtracts the provisional clock error calculated by the provisional clock error calculation unit 36 from the arrival time difference of the radio wave to obtain a correction value, and uses the obtained correction value for correction reception of the radio wave used by the provisional positioning unit 34. Output as time difference. In addition, the positioning process control unit 37 completes a series of positioning processes by the provisional positioning unit, the mismatch time calculation unit, and the provisional clock error calculation unit according to the determination criteria in the process of calculating the correction value of the arrival time difference, The target provisional position and provisional clock error obtained in each process are output as the final target position and clock error, or a series of positioning processes are continuously performed again to perform the positioning process again.
The positioning processing control unit 37, the arrival time difference .DELTA..tau n of radio waves, in order to correct the m (k), (22) as shown in equation TDOA .DELTA..tau n radio waves, m (k) Provisional clock error from epsilon ''n, subtracts the m, radio waves corrected arrival time difference Δτ' n, m (k) is determined. The corrected arrival time difference of the radio wave is used by the temporary positioning unit 34 to calculate the target temporary position at each time as described above.
Δτ ′ n, m (k) = Δτ n, m (k) −ε ″ n, m (1 ≦ k ≦ K) (22)
Further, the positioning processing control unit 37 includes a processing number counting unit 371 as shown in FIG. 6 in order to determine whether or not the positioning processing is continued. The processing count counting unit 371 counts the number of times a series of processing has been performed by the temporary positioning unit 34, the mismatch time calculation unit 35, and the provisional clock error calculation unit 36, and the count number reaches a preset value (determination criterion). In such a case, it is determined that a series of positioning processes is completed. At this time, the positioning process control unit 37 determines the target provisional position [x ′ (k) , y ′ (k) z ′ (k) ] output from the temporary positioning unit 34 in the last process as the target to be obtained. The position and clock error are output, and the temporary clock error ε ″ n, m output from the temporary clock error calculator 36 in the last process is output as the clock error of the sensors 1 n and 1 m . On the other hand, when the processing number counting unit 371 does not reach the preset value, it is determined that the series of positioning processing is to be continued again, and the positioning processing control unit 37 calculates the equation (22). To correct the arrival time difference, output the corrected arrival time difference of the radio wave to the temporary positioning unit 34, and perform a series of positioning processes again.

また、測位処理制御部37は、図7に示すように残差処理部372を備えるようにしてもよい。この場合、残差処理部372では、現在の処理で求めた目標の暫定位置と一つ前の処理で求めた目標の暫定位置の差(残差)を計算して、この残差が予め設定した値(判定基準)よりも小さい場合、一連の測位処理を完了すると判定する。このとき、測位処理制御部37は、現在の処理で求めた目標の暫定位置と暫定時計誤差を、求めるべき目標の位置と時計誤差として出力する。一方、残差処理部372において、残差が予め設定した値より大きい場合には、一連の測位処理を再度継続して実施させると判定し、測位処理制御部37は、(22)式により到来時間差を補正して暫定測位部34に電波の補正到来時間差を出力し、一連の測位処理をやり直す。
また、一連の測位処理の継続か、完了の判定を、暫定時計誤差算出部36で求めた暫定時計誤差の残差に基づいて行っても良いし、あるいは暫定時計誤差の残差と目標の暫定位置の残差の両方を用いて行うようにしても良い。
さらに、測位処理制御部37は、処理回数カウント部371と残差処理部372の両方を備え、一連の測位処理の回数と目標位置の残差、または時計誤差の残差を組み合わせて一連の測位処理の継続もしくは完了の判定を行うようにしても良い。
Further, the positioning processing control unit 37 may include a residual processing unit 372 as shown in FIG. In this case, the residual processing unit 372 calculates a difference (residual) between the target provisional position obtained in the current process and the target provisional position obtained in the previous process, and this residual is set in advance. If it is smaller than the measured value (determination criterion), it is determined that a series of positioning processes are completed. At this time, the positioning process control unit 37 outputs the target temporary position and the temporary clock error obtained in the current process as the target position and the clock error to be obtained. On the other hand, in the residual processing unit 372, when the residual is larger than a preset value, it is determined that the series of positioning processing is to be continued again, and the positioning processing control unit 37 arrives according to the equation (22). The time difference is corrected, the corrected arrival time difference of the radio wave is output to the temporary positioning unit 34, and a series of positioning processes is performed again.
In addition, the continuation or completion of a series of positioning processes may be determined based on the residual of the temporary clock error obtained by the temporary clock error calculation unit 36, or the temporary clock error residual and the target provisional You may make it carry out using both of the residual of a position.
Further, the positioning processing control unit 37 includes both a processing count counting unit 371 and a residual processing unit 372, and combines a series of positioning processing and a residual of a target position or a residual of a clock error by combining a series of positioning processing. It may be determined whether processing is continued or completed.

以上のように、この実施の形態2によれば、測位部3では、暫定測位部34により、入力されるセンサ間の電波の補正到来時間差に電波の速度を乗算して得た距離が、電波の伝搬距離の差に等しいとする等式を、電波の受信時刻毎に作成し、これらの式を連立させることで各時刻の目標の暫定位置を算出し、ミスマッチ時間算出部35において、目標の暫定位置と各センサの距離の差を電波の速度で除算して得た時間を、各センサ間の電波の到来時間差から減算して、各時刻におけるミスマッチ時間として算出し、暫定時計誤差算出部36により、その算出されたミスマッチ時間に基づいて各センサ間の暫定時計誤差を算出し、測位処理制御部37において、電波の到来時間差から暫定時計誤差算出部36で算出された暫定時計誤差を減算して電波の補正到来時間差を求めて暫定測位部34に出力すると共に、判定基準に従って、一連の測位処理を完了させて、各処理で得られた目標の暫定位置と暫定時計誤差を最終的な目標の位置と時計誤差として出力するか、または一連の測位処理を再度継続して実施させるように制御している。したがって、測位装置内でセンサ間の時計誤差の補正を可能にし、実施の形態1と同様な効果を得ることができる。   As described above, according to the second embodiment, the positioning unit 3 uses the provisional positioning unit 34 to calculate the distance obtained by multiplying the corrected arrival time difference of radio waves between sensors by the speed of radio waves. Is created for each reception time of radio waves, and these equations are combined to calculate the provisional position of the target at each time. In the mismatch time calculation unit 35, the target time The time obtained by dividing the difference between the provisional position and the distance of each sensor by the velocity of the radio wave is subtracted from the difference in the arrival time of the radio wave between the sensors to calculate the mismatch time at each time, and the provisional clock error calculation unit 36 Thus, a provisional clock error between the sensors is calculated based on the calculated mismatch time, and the positioning process control unit 37 subtracts the provisional clock error calculated by the provisional clock error calculation unit 36 from the difference in arrival time of radio waves. A corrected arrival time difference of radio waves is obtained and output to the provisional positioning unit 34, and a series of positioning processes are completed according to the determination criteria, and the target provisional position and provisional clock error obtained in each process are determined as the final target The position and clock error are output, or a series of positioning processes are controlled to be continued again. Therefore, it is possible to correct the clock error between the sensors in the positioning device, and the same effect as in the first embodiment can be obtained.

上記実施の形態1および実施の形態2では、センサが固定の場合を例に説明したが、センサが移動する場合でも、その位置が既知であれば、目標の位置とセンサ間の時計誤差を算出することができる。
また実施の形態1および実施の形態2では、位置を知りたい1つの目標が時間の経過と共に移動し、それを複数回観測することで目標の位置を算出する方法について説明した。しかし本発明の特徴は、異なる位置に存在する目標からの電波を観測し、それから得られる到来時間差を基に目標位置とセンサ間の時計誤差を算出するものである。そのため、異なる位置に複数の目標が存在する場合には、各目標からの電波を各センサで一回受信し、それから得られる各目標の到来時間差を基に、各目標の位置とセンサ間の時計誤差を算出することも可能である。
また、電波を用いた場合の方式について説明したが、電波に係わらず、音波や光波などに用いた場合も、本方式を適応することは可能である。さらに、位置を知りたい目標の位置を3次元とする場合で説明してきたが、2次元の場合でも、高度方向は地上の表面に目標が存在するなどの条件を用いて計算すれば可能である。さらにまた、以上述べたこの発明の測位部の機能は、ソフトウェアプログラムに基づいてCPUを動作させることにより実行できるものである。
In the first embodiment and the second embodiment, the case where the sensor is fixed has been described as an example. However, even when the sensor moves, if the position is known, the clock error between the target position and the sensor is calculated. can do.
In the first embodiment and the second embodiment, the method of calculating the target position by moving a single target whose position is desired to be known as time passes and observing the target multiple times has been described. However, a feature of the present invention is that the radio wave from the target at different positions is observed, and the clock error between the target position and the sensor is calculated based on the arrival time difference obtained therefrom. Therefore, when there are multiple targets at different positions, radio waves from each target are received once by each sensor, and based on the arrival time difference of each target obtained therefrom, the clock between each target position and the sensor is It is also possible to calculate the error.
Further, although a method using radio waves has been described, the present method can be applied even when used for sound waves or light waves regardless of the radio waves. Furthermore, although the case where the position of the target whose position is to be known is assumed to be three-dimensional has been described, even in the case of two dimensions, the altitude direction can be calculated by using conditions such as the presence of the target on the surface of the ground. . Furthermore, the functions of the positioning unit of the present invention described above can be executed by operating the CPU based on a software program.

この発明の実施の形態1による測位装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the positioning apparatus by Embodiment 1 of this invention. この発明の実施の形態1に係る測位部の他の機能構成を示すブロック図である。It is a block diagram which shows the other function structure of the positioning part which concerns on Embodiment 1 of this invention. この発明の実施の形態2による測位装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the positioning apparatus by Embodiment 2 of this invention. この発明の実施の形態2に係る暫定時計誤差算出部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the temporary clock error calculation part which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る暫定時計誤差算出部の他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of the temporary clock error calculation part which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る測位処理制御部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the positioning process control part which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る測位処理制御部の他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of the positioning process control part which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 〜1N センサ、2 到来時間差算出部、3 測位部、31 一括測位部、32 運動モデル設定部、33 運動モデル測位部、34 暫定測位部、35 ミスマッチ時間算出部、36 暫定時計誤差算出部、37 測位処理制御部、361 平均処理部、362 重み付け処理部、371 処理回数カウント部、372 残差処理部。 1 1 to 1 N sensor, 2 arrival time difference calculation unit, 3 positioning unit, 31 collective positioning unit, 32 motion model setting unit, 33 motion model positioning unit, 34 provisional positioning unit, 35 mismatch time calculation unit, 36 provisional clock error calculation Unit, 37 positioning processing control unit, 361 average processing unit, 362 weighting processing unit, 371 processing number counting unit, 372 residual processing unit.

Claims (17)

目標から放射もしくは反射された電波を複数のセンサで受信し、受信した電波の到来時間差に基づいて目標の位置を算出する測位装置において、
各センサで複数回受信された電波の到来時間差を算出する到来時間差算出部と、
算出された各センサ間の電波の到来時間差に基づいて、センサ間の時計誤差と電波を受信した各時刻における目標位置を算出する測位部を備えたことを特徴とする測位装置。
In a positioning device that receives radio waves radiated or reflected from a target by a plurality of sensors and calculates the position of the target based on the arrival time difference of the received radio waves,
An arrival time difference calculation unit for calculating an arrival time difference of radio waves received by each sensor multiple times;
A positioning apparatus comprising: a positioning unit that calculates a clock error between sensors and a target position at each time when the radio wave is received based on the calculated arrival time difference of radio waves between the sensors.
測位部は、センサ間の電波の到来時間差から各センサ間の時計誤差を減算した時間に電波の速度を乗算して得た距離が、電波の伝搬距離の差に等しいとする等式を電波の受信時刻毎に作成し、これらの式を連立させることでセンサ間の時計誤差と電波を受信した各時刻における目標の位置を算出する一括測位部を備えたことを特徴とする請求項1記載の測位装置。   The positioning unit calculates the equation that the distance obtained by subtracting the clock error between sensors from the difference in arrival time of radio waves between sensors and the speed of radio waves is equal to the difference in radio wave propagation distance. The system according to claim 1, further comprising: a batch positioning unit that is created for each reception time and calculates a target position at each time at which the clock error between the sensors and the radio wave are received by combining these equations. Positioning device. 測位部は、
目標の運動モデルを事前に設定する運動モデル設定部と、
センサ間の電波の到来時間差から各センサ間の時計誤差を減算した時間に電波の速度を乗算して得た距離が、電波の伝搬距離の差に等しいとする等式を、設定された運動モデルに対応して電波の受信時刻毎に作成し、これらの式を連立させることでセンサ間の時計誤差と目標の位置を算出する運動モデル測位部を備えたことを特徴とする請求項1記載の測位装置。
The positioning unit
An exercise model setting unit for setting a target exercise model in advance;
A set motion model is set to the equation that the distance obtained by multiplying the time difference between each sensor by the time difference between each sensor and the time difference between the sensors is equal to the difference in the propagation distance. A motion model positioning unit is provided for calculating a clock error between sensors and a target position by generating these equations at the reception time of each radio wave corresponding to the above and combining these equations. Positioning device.
測位部は、
入力されるセンサ間の電波の補正到来時間差に電波の速度を乗算して得た距離が、電波の伝搬距離の差に等しいとする等式を、電波の受信時刻毎に作成し、これらの式を連立させることで各時刻の目標の暫定位置を算出する暫定測位部と、
目標の暫定位置と各センサの距離の差を電波の速度で除算して得た時間を、各センサ間の電波の到来時間差から減算して、各時刻におけるミスマッチ時間として算出するミスマッチ時間算出部と、
算出されたミスマッチ時間に基づいて各センサ間の暫定時計誤差を算出する暫定時計誤差算出部と、
電波の到来時間差から前記暫定時計誤差算出部で算出された暫定時計誤差を減算して電波の補正到来時間差を求めて前記暫定測位部に出力すると共に、判定基準に従って、前記暫定測位部、前記ミスマッチ時間算出部および前記暫定時計誤差算出部による一連の測位処理を完了させて、各処理で得られた目標の暫定位置と暫定時計誤差を最終的な目標の位置と時計誤差として出力するか、または前記一連の測位処理を再度継続して実施させるよう制御する測位処理制御部を備えたことを特徴とする請求項1記載の測位装置。
The positioning unit
Create an equation for each radio wave reception time that the distance obtained by multiplying the corrected arrival time difference of the radio wave between the input sensors by the radio wave velocity is equal to the difference in the radio wave propagation distance. A temporary positioning unit that calculates the temporary position of the target at each time by
A time difference obtained by dividing the difference between the target temporary position and the distance of each sensor by the speed of the radio wave, and subtracting the time difference between the arrival times of the radio waves between the sensors to calculate a mismatch time at each time; ,
A provisional clock error calculation unit for calculating a provisional clock error between the sensors based on the calculated mismatch time;
The provisional clock error calculated by the provisional clock error calculation unit is subtracted from the arrival time difference of the radio wave to obtain a corrected arrival time difference of the radio wave and output to the provisional positioning unit, and according to the determination criterion, the provisional positioning unit, the mismatch A series of positioning processes by the time calculation unit and the provisional clock error calculation unit are completed, and the target provisional position and provisional clock error obtained in each process are output as the final target position and clock error, or The positioning apparatus according to claim 1, further comprising a positioning process control unit configured to control the series of positioning processes to be continued again.
暫定測位部は、入力される電波の補正到来時間差がない場合には、センサ間の電波の到来時間差を用いて等式を作成することを特徴とする請求項4記載の測位装置。   5. The positioning device according to claim 4, wherein the provisional positioning unit creates an equation using a difference in arrival times of radio waves between sensors when there is no difference in corrected arrival times of input radio waves. 暫定時計誤差算出部は、ミスマッチ時間算出部で算出されたミスマッチ時間の平均値を、センサ間の暫定時計誤差として算出する平均処理部を備えたことを特徴とする請求項4記載の測位装置。   5. The positioning device according to claim 4, wherein the provisional clock error calculation unit includes an average processing unit that calculates an average value of mismatch times calculated by the mismatch time calculation unit as a provisional clock error between sensors. 暫定時計誤差算出部は、所定の方法で算出した重み付け係数を用いてミスマッチ時間算出部で算出されたミスマッチ時間を重み付けしてセンサ間の暫定時計誤差を算出する重み付け処理部を備えたことを特徴とする請求項4記載の測位装置。   The provisional clock error calculation unit includes a weighting processing unit that calculates a provisional clock error between sensors by weighting the mismatch time calculated by the mismatch time calculation unit using a weighting coefficient calculated by a predetermined method. The positioning device according to claim 4. 測位処理制御部は、一連の測位処理の実施回数をカウントし、そのカウント数が所定のカウント値に達した場合には前記一連の測位処理を完了させると判定し、一方、カウント数が所定のカウント値に達しない場合には前記一連の測位処理を再度継続して実施させると判定する処理回数カウント部を備えたことを特徴とする請求項4から請求項7のうちのいずれか1項記載の測位装置。   The positioning process control unit counts the number of executions of a series of positioning processes, and determines that the series of positioning processes is completed when the count number reaches a predetermined count value. 8. The processing number counting unit according to claim 4, further comprising a processing number counting unit that determines that the series of positioning processes is to be continued again when the count value is not reached. 9. Positioning device. 測位処理制御部は、一つ前の処理で暫定測位部で求めた目標の暫定位置と現在の処理で求めた目標の暫定位置の残差および/もしくは一つ前の処理で求めた暫定時計誤差と現在の処理で求めた暫定時計誤差の残差が所定の値よりも小さい場合には前記一連の測位処理を完了させると判定し、一方、残差が所定の値よりも大きい場合には前記一連の測位処理を再度継続して実施させると判定する残差処理部を備えたことを特徴とする請求項4から請求項7のうちのいずれか1項記載の測位装置。   The positioning processing control unit is configured to obtain a residual between the provisional position of the target obtained by the provisional positioning unit in the previous process and the provisional position of the target obtained in the current process and / or the provisional clock error obtained in the previous process. When the residual of the provisional clock error obtained in the current process is smaller than a predetermined value, it is determined that the series of positioning processes is completed, and when the residual is larger than a predetermined value, The positioning device according to any one of claims 4 to 7, further comprising a residual processing unit that determines that a series of positioning processing is continuously performed again. 目標から放射もしくは反射された電波を複数のセンサで受信し、受信した電波の到来時間差に基づいて目標の位置を算出する測位装置において、
各センサで受信された複数の目標からの電波の到来時間差を算出する到来時間差算出部と、
算出された各センサ間の電波の到来時間差に基づいて、センサ間の時計誤差と各目標位置を算出する測位部を備えたことを特徴とする測位装置。
In a positioning device that receives radio waves radiated or reflected from a target by a plurality of sensors and calculates the position of the target based on the arrival time difference of the received radio waves,
An arrival time difference calculation unit for calculating arrival time difference of radio waves from a plurality of targets received by each sensor;
A positioning apparatus comprising a positioning unit that calculates a clock error between sensors and each target position based on a difference in arrival time of radio waves between the sensors.
測位部は、センサ間の電波の到来時間差から各センサ間の時計誤差を減算した時間に電波の速度を乗算して得た距離が、電波の伝搬距離の差に等しいとする等式を目標毎に作成し、これらの式を連立させることでセンサ間の時計誤差と各目標の位置を算出する一括測位部を備えたことを特徴とする請求項10記載の測位装置。   The positioning unit calculates an equality for each target that the distance obtained by multiplying the time difference of the radio wave between each sensor by the time of subtracting the clock error between each sensor and the speed of the radio wave is equal to the difference in the radio wave propagation distance. The positioning device according to claim 10, further comprising: a collective positioning unit configured to calculate a clock error between sensors and a position of each target by combining these formulas. 測位部は、
入力されるセンサ間の電波の補正到来時間差に電波の速度を乗算して得た距離が、電波の伝搬距離の差に等しいとする等式を、目標毎に作成し、これらの式を連立させることで各目標の暫定位置を算出する暫定測位部と、
各目標の暫定位置と各センサの距離の差を電波の速度で除算して得た時間を、各センサ間の電波の到来時間差から減算して、各目標におけるミスマッチ時間として算出するミスマッチ時間算出部と、
算出されたミスマッチ時間に基づいて各センサ間の暫定時計誤差を算出する暫定時計誤差算出部と、
電波の到来時間差から前記暫定時計誤差算出部で算出された暫定時計誤差を減算して電波の補正到来時間差を求めて前記暫定測位部に出力すると共に、判定基準に従って、前記暫定測位部、前記ミスマッチ時間算出部および前記暫定時計誤差算出部による一連の測位処理を完了させて、各処理で得られた各目標の暫定位置と暫定時計誤差を最終的な各目標の位置と時計誤差として出力するか、または前記一連の測位処理を再度継続して実施させるよう制御する測位処理制御部を備えたことを特徴とする請求項10記載の測位装置。
The positioning unit
Create an equation for each target that the distance obtained by multiplying the corrected arrival time difference of the radio wave between the input sensors by the velocity of the radio wave is equal to the difference in the propagation distance of the radio wave, and make these equations simultaneous A provisional positioning unit that calculates the provisional position of each target,
A mismatch time calculation unit that subtracts the time obtained by dividing the difference between the provisional position of each target and the distance of each sensor by the velocity of the radio wave from the arrival time difference of the radio wave between each sensor and calculates it as the mismatch time for each target When,
A provisional clock error calculation unit for calculating a provisional clock error between the sensors based on the calculated mismatch time;
The provisional clock error calculated by the provisional clock error calculation unit is subtracted from the arrival time difference of the radio wave to obtain a corrected arrival time difference of the radio wave and output to the provisional positioning unit, and according to the determination criterion, the provisional positioning unit, the mismatch Whether a series of positioning processes by the time calculation unit and the provisional clock error calculation unit are completed, and the provisional position and provisional clock error of each target obtained in each processing are output as the final position and clock error of each target The positioning apparatus according to claim 10, further comprising a positioning processing control unit that performs control so that the series of positioning processing is continuously performed again.
暫定測位部は、入力される電波の補正到来時間差がない場合には、センサ間の電波の到来時間差を用いて等式を作成することを特徴とする請求項12記載の測位装置。   The positioning device according to claim 12, wherein the provisional positioning unit creates an equation using a difference in arrival times of radio waves between sensors when there is no difference in corrected arrival times of input radio waves. 暫定時計誤差算出部は、ミスマッチ時間算出部で算出されたミスマッチ時間の平均値を、センサ間の暫定時計誤差として算出する平均処理部を備えたことを特徴とする請求項12記載の測位装置。   13. The positioning device according to claim 12, wherein the provisional clock error calculation unit includes an average processing unit that calculates an average value of the mismatch times calculated by the mismatch time calculation unit as a provisional clock error between sensors. 暫定時計誤差算出部は、所定の方法で算出した重み付け係数を用いてミスマッチ時間算出部で算出されたミスマッチ時間を重み付けしてセンサ間の暫定時計誤差を算出する重み付け処理部を備えたことを特徴とする請求項12記載の測位装置。   The provisional clock error calculation unit includes a weighting processing unit that calculates a provisional clock error between sensors by weighting the mismatch time calculated by the mismatch time calculation unit using a weighting coefficient calculated by a predetermined method. The positioning device according to claim 12. 測位処理制御部は、一連の測位処理の実施回数をカウントし、そのカウント数が所定のカウント値に達した場合には前記一連の測位処理を完了させると判定し、一方、カウント数が所定のカウント値に達しない場合には前記一連の測位処理を再度継続して実施させると判定する処理回数カウント部を備えたことを特徴とする請求項12から請求項15のうちのいずれか1項記載の測位装置。   The positioning process control unit counts the number of executions of a series of positioning processes, and determines that the series of positioning processes is completed when the count number reaches a predetermined count value. 16. The processing number counting unit for determining that the series of positioning processes is to be continued again when the count value is not reached. Positioning device. 測位処理制御部は、一つ前の処理で暫定測位部で求めた各目標の暫定位置と現在の処理で求めた各目標の暫定位置の残差および/もしくは一つ前の処理で求めた暫定時計誤差と現在の処理で求めた暫定時計誤差の残差が所定の値よりも小さい場合には前記一連の測位処理を完了させると判定し、一方、残差が所定の値よりも大きい場合には前記一連の測位処理を再度継続して実施させると判定する残差処理部を備えたことを特徴とする請求項12から請求項15のうちのいずれか1項記載の測位装置。
The positioning processing control unit determines the residual between the provisional position of each target obtained by the provisional positioning unit in the previous processing and the provisional position of each target obtained by the current processing and / or the provisional obtained by the previous processing. When the residual between the clock error and the provisional clock error obtained by the current process is smaller than a predetermined value, it is determined that the series of positioning processes is completed, and when the residual is larger than the predetermined value. The positioning apparatus according to claim 12, further comprising a residual processing unit that determines that the series of positioning processes is continuously performed again.
JP2006014102A 2006-01-23 2006-01-23 Positioning device Abandoned JP2007198742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014102A JP2007198742A (en) 2006-01-23 2006-01-23 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014102A JP2007198742A (en) 2006-01-23 2006-01-23 Positioning device

Publications (1)

Publication Number Publication Date
JP2007198742A true JP2007198742A (en) 2007-08-09

Family

ID=38453500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014102A Abandoned JP2007198742A (en) 2006-01-23 2006-01-23 Positioning device

Country Status (1)

Country Link
JP (1) JP2007198742A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501633A (en) * 1999-06-01 2003-01-14 ケンブリッジ ポジショニング システムズ リミテッド Improvement of wireless positioning system
JP2004242122A (en) * 2003-02-07 2004-08-26 Hitachi Ltd Method and system for positioning terminal location based on propagation time difference of radio signal
JP2006349515A (en) * 2005-06-16 2006-12-28 Mitsubishi Electric Corp System and method for measuring displacement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501633A (en) * 1999-06-01 2003-01-14 ケンブリッジ ポジショニング システムズ リミテッド Improvement of wireless positioning system
JP2004242122A (en) * 2003-02-07 2004-08-26 Hitachi Ltd Method and system for positioning terminal location based on propagation time difference of radio signal
JP2006349515A (en) * 2005-06-16 2006-12-28 Mitsubishi Electric Corp System and method for measuring displacement

Similar Documents

Publication Publication Date Title
JP4645489B2 (en) Positioning device
KR101224512B1 (en) Positioning method of unknown signal generator based on tdoa method
US10182414B2 (en) Accurately tracking a mobile device to effectively enable mobile device to control another device
JP5450081B2 (en) Method, software and system for determining the position of a user device
US9197989B2 (en) Reference signal transmission method and system for location measurement, location measurement method, device, and system using the same, and time synchronization method and device using the same
JP2004212400A (en) Position and direction predicting system for robot
EP2525238B1 (en) Velocity/distance detection system, velocity/distance detection apparatus, and velocity/distance detection method
JP2011013189A (en) Positioning device and program
KR100498480B1 (en) Method and apparatus for estimating position utilizing GPS satellite signal
JP5599371B2 (en) Positioning device
KR100977246B1 (en) Apparatus and method for estmating positon using forward link angle of arrival
JP2010060303A (en) Positioning apparatus
JP2007192575A (en) Target positioning apparatus
JP2005024535A (en) Position estimation system
CN116449374A (en) Underwater positioning method based on sonar
KR20140118242A (en) High resolution distance measuring method by phase shifted value of ultrasonic signal
JP2008203095A (en) Device for estimating motion specification
RU2623831C1 (en) Method of passive determining coordinates of moving radiation source
JP3555758B2 (en) Synchronous tracking method and apparatus by sensor control
JP2009122045A (en) Positioning device
JP2007192573A (en) Target positioning apparatus
JP5277693B2 (en) Radar equipment
JP2006329829A (en) Radar device
JP2007198742A (en) Positioning device
JP2008051681A5 (en)

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20071001

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD04 Notification of resignation of power of attorney

Effective date: 20080626

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Effective date: 20080904

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Effective date: 20110322

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110420

Free format text: JAPANESE INTERMEDIATE CODE: A523

A762 Written abandonment of application

Effective date: 20110530

Free format text: JAPANESE INTERMEDIATE CODE: A762