JP2007198402A - Pulley - Google Patents

Pulley Download PDF

Info

Publication number
JP2007198402A
JP2007198402A JP2006014003A JP2006014003A JP2007198402A JP 2007198402 A JP2007198402 A JP 2007198402A JP 2006014003 A JP2006014003 A JP 2006014003A JP 2006014003 A JP2006014003 A JP 2006014003A JP 2007198402 A JP2007198402 A JP 2007198402A
Authority
JP
Japan
Prior art keywords
pulley
thickness
inner cylinder
maximum
corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006014003A
Other languages
Japanese (ja)
Inventor
Kentaro Matsumoto
健太郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2006014003A priority Critical patent/JP2007198402A/en
Publication of JP2007198402A publication Critical patent/JP2007198402A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pulleys (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce weight and cost of a pulley main body by optimizing its wall thickness. <P>SOLUTION: The pulley has the pulley main body 10 integrally provided with an inner cylinder 1, a belt winding part 2 in a cylinder shape, a flange part 3 in a ring shape and a bearing 20 fit and held by inside of the inner cylinder part 1. Standard wall thickness of the inner cylinder part 1, the belt winding part 2 and the flange part 3 of the pulley main body 10 is determined so that maximum main stress by tension of a belt becomes smaller than a fatigue limit value and then the wall thickness of a position where a maximum value of the maximum main stress is applied is increased. The position where the maximum value of the maximum main stress is applied is regarded as a corner part 4 formed by the inner cylinder part 1 and the flange part 3 of the pulley main body 10 and wall thickness of the corner part 4 is increased. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プーリ、特に、軸受を保持しているプーリ本体に対する疲労破壊対策を講じてあるプーリに関する。   The present invention relates to a pulley, and more particularly to a pulley in which measures against fatigue destruction are taken against a pulley body holding a bearing.

内筒部と筒状のベルト巻掛け部とそれらを一端同士を連設している環状のフランジ部とを一体に備えるプーリ本体と、そのプーリ本体の上記内筒部の内側に嵌合保持された軸受とを有するプーリは、自動車エンジンルーム内で用いられるアイドラプーリに採用されている。また、この構造を備えたプーリに関する様々な提案も従来より行われていて(たとえば、特許文献1、特許文献2参照)、そのうちの特許文献2には、プーリ本体の強度を向上させるために、ベルト巻掛け部に相当するベルト案内部の表面部分に窒化層を形成することが記載されている。   A pulley main body integrally including an inner cylindrical portion, a cylindrical belt winding portion, and an annular flange portion having one end thereof connected to each other, and fitted and held inside the inner cylindrical portion of the pulley main body. A pulley having a bearing is used for an idler pulley used in an automobile engine room. In addition, various proposals related to pulleys having this structure have also been made conventionally (see, for example, Patent Document 1 and Patent Document 2). Among them, Patent Document 2 describes that in order to improve the strength of the pulley body, It describes that a nitride layer is formed on the surface portion of the belt guide portion corresponding to the belt winding portion.

一方、板金をプレス加工することによって製作した上記構成のプーリでは、ベルト張力に耐え得る強度や耐久性を付与して疲労破壊などを防ぐ手段として、プーリ本体の肉厚を適切に定めることが一般的に行われている。   On the other hand, in the above-structured pulley manufactured by pressing a sheet metal, it is common to appropriately determine the thickness of the pulley body as a means of imparting strength and durability that can withstand belt tension and preventing fatigue failure, etc. Has been done.

従来、プーリ本体に要求される強度や耐久性を、その肉厚を適切に定めることによって確保しようとする場合には、プーリ本体に加わる最大主応力、すなわちベルト張力によってプーリ本体に加わる可能性のある応力の最大値の分布状況をプーリ本体の全体に亘って調査又は想定した上で、最大主応力の最大値が加わる箇所に要求される肉厚を持つ板金材料をプレス成形してプーリ本体を製作するという手法、言い換えると、最大主応力の最大値が加わる箇所に要求される肉厚をプーリ本体の全体に亘って適用するという手法が採られていた。   Conventionally, when the strength and durability required for the pulley body are to be secured by appropriately determining the wall thickness, there is a possibility that the maximum main stress applied to the pulley body, that is, the belt tension may be applied to the pulley body. After investigating or assuming the distribution of the maximum value of a certain stress over the entire pulley body, press the sheet metal material with the required thickness at the location where the maximum value of the maximum principal stress is applied to press the pulley body. The method of manufacturing, in other words, the method of applying the wall thickness required for the place where the maximum value of the maximum principal stress is applied over the entire pulley body has been adopted.

特開2000−74189号公報JP 2000-74189 A 特開平11−63173号公報JP 11-63173 A

しかしながら、従来の上記手法によってプーリ本体の肉厚を定めると、最大主応力の最大値が加わる箇所の肉厚は最適化されるものの、それ以外の箇所では肉厚が必要以上に厚くなってプーリ本体の軽量化が阻害されたりコスト面で不利な結果を来すという問題が知見された。   However, when the thickness of the pulley body is determined by the above-described conventional method, the thickness of the portion to which the maximum value of the maximum principal stress is applied is optimized, but the thickness is increased more than necessary at the other portions. It was found that the weight of the main body was hindered and the cost was adversely affected.

本発明は以上の問題に鑑みてなされたものであり、最大主応力の最大値が加わる箇所の肉厚だけでなく、それ以外の箇所でも肉厚の最適化が行われて、軽量化やコストダウンを図りやすくなるプーリを提供することを目的とする。   The present invention has been made in view of the above problems, and the thickness is optimized not only at the portion where the maximum value of the maximum principal stress is applied, but also at other portions, thereby reducing weight and cost. An object of the present invention is to provide a pulley that can be easily lowered.

本発明に係るプーリは、内筒部と、その内筒部の外側に同心配備されている筒状のベルト巻掛け部と、内筒部及びベルト巻掛け部の一端同士を連設している環状のフランジ部とを一体に備えるプーリ本体と、そのプーリ本体の上記内筒部の内側に嵌合保持された軸受とを有するプーリにおいて、プーリ本体を形成している上記内筒部、ベルト巻掛け部及びフランジ部の基準肉厚を、ベルト張力に因る最大主応力が疲労限界値よりも小さい値になるように定めた上で、最大主応力の最大値が加わる箇所を増厚すると共に、その増厚箇所の両側へ離れるに従って上記基準肉厚になるまで肉厚を漸減させてある、というものである。   In the pulley according to the present invention, the inner cylinder part, the cylindrical belt winding part arranged concentrically outside the inner cylinder part, and one end of the inner cylinder part and the belt winding part are connected to each other. In a pulley having a pulley body integrally provided with an annular flange portion and a bearing fitted and held inside the inner cylinder portion of the pulley body, the inner cylinder portion and belt winding forming the pulley body The reference wall thickness of the hook and flange is determined so that the maximum principal stress due to belt tension is smaller than the fatigue limit value, and the part where the maximum value of the maximum principal stress is applied is increased. The wall thickness is gradually decreased until the reference wall thickness is reached as the thickness increases away from both sides.

この構成のプーリによると、プーリ本体を形成している内筒部、ベルト巻掛け部及びフランジ部に付与されている基準肉厚によって、そのプーリ本体に加わる最大主応力が疲労限界値よりも小さい値に抑えられるために、使用時のベルト張力が常用張力に保たれている場合は勿論、何らかの原因でベルト張力が最大張力に達したときであっても、プーリ本体の強度が不足するという事態が起こらない。しかも、最大主応力の最大値が加わる箇所を増厚してその増厚箇所の両側へ離れるに従って上記基準肉厚になるまで肉厚を漸減させてある、という構成を採用したことにより、最大主応力の最大値が加わる箇所やその近傍箇所での疲労破壊が起こりにくくなるという作用が奏される。   According to the pulley of this configuration, the maximum principal stress applied to the pulley body is smaller than the fatigue limit value due to the reference thickness applied to the inner cylinder part, the belt winding part and the flange part forming the pulley body. Since the belt tension during use is kept at the normal tension, the pulley body strength is insufficient even when the belt tension reaches the maximum tension for some reason. Does not happen. In addition, by adopting a configuration in which the thickness where the maximum value of the maximum principal stress is applied is increased and the thickness is gradually reduced to the reference thickness as it moves away from both sides of the increased thickness, the maximum main stress is adopted. There is an effect that fatigue failure is less likely to occur at a location where the maximum value of stress is applied or in the vicinity thereof.

本発明では、最大主応力の最大値が加わる箇所をプーリ本体の内筒部とフランジ部とによって形作られる隅部としてその隅部を増厚してある、という構成を採用することが可能である。   In the present invention, it is possible to adopt a configuration in which the corner portion is thickened as a corner portion formed by the inner cylinder portion and the flange portion of the pulley body where the maximum value of the maximum principal stress is applied. .

また、上記基準肉厚を、上記最大主応力が上記疲労限界値に対して50〜95%になるように定めてあることが望ましい。これによれば、プーリ本体のベルト巻掛け部などが必要以上に肉厚になることが回避されてプーリ本体の強度が過不足なく確保され、その軽量化やコストダウンを図りやすくなる。   Further, it is desirable that the reference thickness is determined so that the maximum principal stress is 50 to 95% with respect to the fatigue limit value. According to this, it is avoided that the belt winding part of the pulley main body becomes thicker than necessary, and the strength of the pulley main body is ensured without excess or deficiency, and it is easy to achieve weight reduction and cost reduction.

本発明では、上記隅部の最大肉厚を上記基準肉厚の1.2〜2.0倍に定めてあることが望ましい。これによれば、疲労破壊を生じにくいプーリ本体が得られる。   In the present invention, it is desirable that the maximum thickness of the corner is set to 1.2 to 2.0 times the reference thickness. According to this, the pulley main body which is hard to produce fatigue failure is obtained.

本発明では、上記プーリ本体の内筒部とフランジ部とによって形作られる入隅部を増肉することによって上記隅部を増厚してあることが望ましい。これによれば、プーリ本体の軸受嵌合スペースの形状を変更する必要がなくなる。   In the present invention, it is desirable that the corner portion is thickened by increasing the thickness of the corner portion formed by the inner cylinder portion and the flange portion of the pulley body. This eliminates the need to change the shape of the bearing fitting space of the pulley body.

以上のように、本発明によれば、最大主応力の最大値が加わる箇所の肉厚だけでなく、それ以外の箇所でも肉厚の最適化が行われて、軽量化やコストダウンを図りやすくなる。したがって、製作コストが低減するにもかかわらず、耐久性が向上するという効果が奏される。   As described above, according to the present invention, the thickness is optimized not only at the portion where the maximum value of the maximum principal stress is applied, but also at other portions, and it is easy to reduce weight and reduce costs. Become. Therefore, although the manufacturing cost is reduced, the effect that the durability is improved is achieved.

図1は本発明の実施形態に係るプーリの断面図である。同図のように、このプーリは、内筒部1と、その内筒部1の外側に同心配備されている筒状のベルト巻掛け部2と、内筒部1及びベルト巻掛け部2の一端同士を連設している環状のフランジ部3とを一体に備えるプーリ本体10と、そのプーリ本体10の上記内筒部1の内側に嵌合保持された軸受20とを有している。また、プーリ本体10の内筒部1とフランジ部3とによって形作られる隅部4のうちその入隅部41を増肉することによってその隅部4を増厚してあると共に、その増厚箇所の両側へ離れるに従って他の箇所と同じ厚さになるまで肉厚を漸減させてある。   FIG. 1 is a sectional view of a pulley according to an embodiment of the present invention. As shown in the figure, this pulley includes an inner cylinder portion 1, a cylindrical belt winding portion 2 concentrically disposed outside the inner cylinder portion 1, and the inner cylinder portion 1 and the belt winding portion 2. It has a pulley body 10 that is integrally provided with an annular flange portion 3 that is connected at one end, and a bearing 20 that is fitted and held inside the inner cylinder portion 1 of the pulley body 10. Further, among the corners 4 formed by the inner cylinder part 1 and the flange part 3 of the pulley body 10, the corners 4 are thickened by increasing the thickness of the corners 41, and the thickened parts are increased. The wall thickness is gradually reduced until it becomes the same thickness as other parts as it moves away from both sides.

図2は比較例としての板金材料をプレス加工することによって製作した従来のプーリの断面図である。図1のプーリを図2のプーリと対比すると、図2のプーリでは厚さtの板金材料をプレス成形して製作されているために、内筒部1、筒状のベルト巻掛け部2及び環状のフランジ部3の肉厚や隅部4などの肉厚がすべて板金材料の厚さtに見合う肉厚になっているのに対し、図1のプーリでは、入隅部41を増肉することによって隅部4を増厚してあるという点と、その隅部4の増厚箇所からその両側へ離れるに従って厚さtになるまで肉厚を漸減させてあるという点だけが相違している。なお、図1には、増厚されていない隅部4の入隅部41の輪郭線を仮想線で示してある。   FIG. 2 is a cross-sectional view of a conventional pulley manufactured by pressing a sheet metal material as a comparative example. When the pulley of FIG. 1 is compared with the pulley of FIG. 2, since the pulley of FIG. 2 is manufactured by press-molding a sheet metal material having a thickness t, the inner cylinder portion 1, the cylindrical belt winding portion 2 and While the thickness of the annular flange portion 3 and the thickness of the corner portion 4 and the like are all equal to the thickness t of the sheet metal material, in the pulley of FIG. The only difference is that the corner 4 is thickened by this, and that the thickness is gradually reduced until it reaches the thickness t as it goes away from the thickened portion of the corner 4 to both sides. . In FIG. 1, the outline of the corner 41 of the corner 4 that is not thickened is indicated by a virtual line.

図1のように構成されているプーリにおいて、プーリ本体10の肉厚tを有する箇所のその肉厚tを、ベルト張力に因る最大主応力が疲労限界値よりも小さい値になるように定めておくと、プーリ本体10にはこの肉厚tよりも肉薄になっている箇所が存在しないために、プーリ本体10に加わる最大主応力が疲労限界値よりも小さい値に抑えられる。そのために、使用時のベルト張力が常用張力に保たれている場合は勿論、何らかの原因でベルト張力が最大張力に達したときであっても、プーリ本体10の強度が不足するという事態は起こらない。一方、隅部4では、その肉厚Tが他の箇所よりも厚いので、その隅部4に最も大きな荷重が加わる場合であっても、その隅部4の最大主応力が他の箇所よりも大きくなっているためにその隅部4やその両側の肉厚漸減域で疲労破壊が起こりにくくなる。ここで、最大主応力とは、ベルト張力が安全率を見込んだ最大値に達したときにプーリ本体10に作用する応力のことである。   In the pulley configured as shown in FIG. 1, the thickness t of the portion having the thickness t of the pulley body 10 is determined so that the maximum principal stress due to the belt tension is smaller than the fatigue limit value. In other words, the pulley body 10 does not have a portion thinner than the wall thickness t, so that the maximum principal stress applied to the pulley body 10 is suppressed to a value smaller than the fatigue limit value. Therefore, not only when the belt tension during use is kept at the normal tension, but also when the belt tension reaches the maximum tension for some reason, the situation where the strength of the pulley body 10 is insufficient does not occur. . On the other hand, since the thickness T of the corner 4 is thicker than other portions, even when the largest load is applied to the corner 4, the maximum principal stress of the corner 4 is larger than that of the other portions. Since it is large, fatigue failure is less likely to occur in the corner 4 and the thickness gradually decreasing regions on both sides thereof. Here, the maximum principal stress is a stress that acts on the pulley body 10 when the belt tension reaches the maximum value that allows for a safety factor.

本願発明者は、図2に示した構成のプーリにつき、肉厚tの適切な範囲、増厚箇所の肉厚Tの適切な範囲、増厚箇所などを鋭意調査した。以下、この調査について説明する。   The inventor of the present application conducted an intensive investigation on an appropriate range of the wall thickness t, an appropriate range of the wall thickness T at the thickened portion, a thickened portion, and the like for the pulley having the configuration shown in FIG. This investigation will be described below.

(1)最大主応力の発生箇所
板厚2.0mm、2.6mm、3.2mmの3種類の板金材料を用いて図2に示した内径d=40mm、外形D=75mmの試供プーリをプレス成形し、その内筒部1に軸受20を嵌合保持させた上で、それぞれのプーリにつき、プーリ本体10の所要部位の歪みの大きさを比較した。歪みは図3に示したA,B,C,Dの4箇所に歪みゲージを貼り付けて測定した。なお、Aは内筒部1とフランジ部3とにより形成される入隅部、Bはフランジ部3とにより形成される出隅部、Cは外筒部2とフランジ部3とにより形成される入隅部、Dは外筒部4の端縁内周部である。
この調査により、最大主応力の発生箇所が図3の入隅部Aと出隅部B、すなわち内筒部1とフランジ部3とにより形成される隅部4であることが判明した。
このことから、肉厚の最適化を図るための1つの条件として、内筒部1とフランジ部3とにより形成される隅部4の肉厚を他の箇所よりも厚肉にすることが有効であることが判った。
(1) Location of generation of maximum principal stress Pressing the sample pulley with inner diameter d = 40mm and outer diameter D = 75mm shown in FIG. After the molding was performed and the bearing 20 was fitted and held in the inner cylinder portion 1, the magnitude of distortion of a required portion of the pulley body 10 was compared for each pulley. The strain was measured by attaching strain gauges at four locations A, B, C, and D shown in FIG. In addition, A is an entrance corner formed by the inner tube portion 1 and the flange portion 3, B is an exit corner portion formed by the flange portion 3, and C is formed by the outer tube portion 2 and the flange portion 3. A corner portion D is an inner peripheral portion of the end edge of the outer cylinder portion 4.
From this investigation, it has been found that the place where the maximum principal stress occurs is the corner portion 4 formed by the inner corner portion 1 and the flange portion 3 in FIG.
Therefore, as one condition for optimizing the wall thickness, it is effective to make the wall thickness of the corner 4 formed by the inner tube portion 1 and the flange portion 3 thicker than other portions. It turned out that.

(2)プーリ板厚による最大主応力の変化
上掲の厚さの異なる3種類の試供プーリに、ベルトを巻き掛け、それぞれの試供プーリの最大主応力と疲労限界値との関係を明らかにし、その結果を図4に示した。なお、ベルト張力は、常用張力、最大張力、安全率を1.3とした場合の張力を採用した。
図4によると、いずれの板厚の試供プーリも、安全率を見越したベルト張力であっても最大主応力が疲労限界値よりも小さくなっているので、この結果から、プーリ本体に要求される強度や耐久性はいずれの板厚であっても満たされていることが判る。しかし、板厚2.6mm及び同3.2mmの試供プーリの最大主応力が疲労限界値に対してそれぞれ44%,24%と顕著に小さくなっていることから、これらの試供プーリは必要以上に大きな強度を有していると見ることができる。したがって、板厚2.6mm及び同3.2mmの試供プーリは、コストや軽量化の面から見て材料無駄が多いということが云える。これに対し、板厚2.0mmの試供プーリの最大主応力は、疲労限界値に対して76%の割合であり、安全率を見越しても、コストや軽量化の面から見て材料無駄が少なくなって有利であるということが云える。そして、コストや軽量化の面から見て疲労限界値に対する最大主応力の割合(%)が50〜95%であれば材料の無駄が少なくなって有利である。
(2) Change in maximum principal stress due to pulley plate thickness Wrap a belt around the above three types of sample pulleys with different thicknesses, and clarify the relationship between the maximum principal stress of each sample pulley and the fatigue limit value. The results are shown in FIG. The belt tension was a normal tension, a maximum tension, and a tension when the safety factor was 1.3.
According to FIG. 4, since the maximum principal stress is smaller than the fatigue limit value for any of the thicknesses of the sample pulley, even if the belt tension allows for a safety factor, the pulley body is required from this result. It can be seen that the strength and durability are satisfied at any thickness. However, the maximum principal stresses of the sample pulleys of 2.6 mm and 3.2 mm are significantly smaller than the fatigue limit values, 44% and 24%, respectively. It can be seen that it has great strength. Therefore, it can be said that the sample pulleys having the plate thicknesses of 2.6 mm and 3.2 mm are wasteful in terms of cost and weight reduction. On the other hand, the maximum principal stress of the sample pulley with a plate thickness of 2.0 mm is 76% of the fatigue limit value, and even if the safety factor is anticipated, material waste is lost in terms of cost and weight reduction It can be said that less is advantageous. From the viewpoint of cost and weight reduction, if the ratio (%) of the maximum principal stress to the fatigue limit value is 50 to 95%, it is advantageous that material waste is reduced.

上記(1)(2)の調査結果を勘案すると、図1を参照して説明したプーリのように、プーリ本体10のの基準肉厚、すなわち内筒部1、ベルト巻掛け部2及びフランジ部3の肉厚tを基準肉厚としてたとえば2mmに定め、内筒部1とフランジ部3とによって形作られる隅部4が最弱部であると規定してその隅部4を肉厚Tに増厚し、その増厚箇所の両側へ離れるに従って他の箇所と同じ厚さになるまで肉厚を漸減させてあるという構成を採用することによって、最大主応力の最大値が加わる箇所の肉厚だけでなく、それ以外の箇所でも肉厚の最適化が行われて材料無駄が抑えられ、プーリの軽量化やコストダウンが図られるにもかかわらず、耐久性が向上して隅部4での疲労破壊を生じにくくなるということが判る。   Considering the investigation results of (1) and (2) above, like the pulley described with reference to FIG. 1, the reference wall thickness of the pulley body 10, that is, the inner cylinder portion 1, the belt winding portion 2 and the flange portion. The thickness t of 3 is set to 2 mm as a reference thickness, for example, the corner 4 formed by the inner tube portion 1 and the flange portion 3 is defined as the weakest portion, and the corner 4 is increased to the thickness T. By adopting a configuration in which the thickness is gradually reduced until it reaches the same thickness as the other locations as it increases away from both sides of the thickened location, only the thickness at the location where the maximum value of the maximum principal stress is applied In addition, the thickness is optimized at other locations to reduce material waste and reduce the weight and cost of the pulley, but the durability is improved and fatigue at the corner 4 is reduced. It turns out that it becomes difficult to cause destruction.

次に、プーリ本体10の全体の肉厚の最適化を図るためには、増厚箇所すなわち隅部4の最大肉厚を、増厚箇所以外の箇所に採用する上記基準肉厚(ベルト張力に因る最大主応力が疲労限界値よりも小さい値になる肉厚)の1.2〜2.0倍に定めることが適切であることが確認された。最大肉厚が基準肉厚の1.2倍よりも薄いと、増厚箇所での最大主応力の増加幅が小さすぎて疲労破壊を生じにくくするための十分な効果を得にくい。また、最大肉厚が基準肉厚の2.0倍よりも厚いと、増厚箇所が不必要に厚くなって重量増やコストアップの原因になる。そして、最大肉厚が基準肉厚の1.2〜2.0倍であると、増厚箇所での最大主応力の十分な増加幅が確保されて疲労破壊が生じにくくなり、しかも、増厚箇所が不必要に厚くなって重量増やコストアップの原因になるということが抑制される。さらに好ましくは最大肉厚が基準肉厚の1.4倍以下であれば重量減やコストダウンの効果が大きい。   Next, in order to optimize the overall wall thickness of the pulley body 10, the above-mentioned reference wall thickness (the belt tension is applied to the thickened portion, that is, the maximum thickness of the corner portion 4, other than the thickened portion is adopted. It has been confirmed that it is appropriate to set the maximum principal stress to 1.2 to 2.0 times the wall thickness at which the maximum principal stress is smaller than the fatigue limit value. When the maximum wall thickness is thinner than 1.2 times the reference wall thickness, it is difficult to obtain a sufficient effect for making it difficult to cause fatigue failure because the increase width of the maximum main stress at the thickened portion is too small. On the other hand, if the maximum wall thickness is larger than 2.0 times the reference wall thickness, the thickened portion becomes unnecessarily thick, resulting in an increase in weight and cost. And when the maximum thickness is 1.2 to 2.0 times the reference thickness, a sufficient increase width of the maximum principal stress at the thickened portion is secured, and fatigue failure is less likely to occur. It is suppressed that the portion becomes unnecessarily thick and causes weight increase and cost increase. More preferably, if the maximum thickness is 1.4 times or less of the reference thickness, the effect of weight reduction and cost reduction is great.

次に、図1に示した隅部4を増厚する手段には肉盛りを用い得る。すなわち、図2に示した形状を有しかつ基準肉厚の付与されたプーリ本体10を板金材料からプレス加工して製作した後、隅部4の入隅部を肉盛りすることによって増厚することが可能になる。肉盛りを行うための手段には、たとえば別の板材を重ね合わせて結合するという手段、転造による手段、溶接肉盛りによる手段などを採用することが可能である。また、隅部4を基準肉厚よりも増厚する他の手段としては、隅部4に要求される肉厚のプーリ本体10をプレス成形した後、増厚箇所以外の箇所を基準肉厚になるまで切削するという手段を採用することも可能である。さらに、プーリ本体10をプレス成形によらずに、板金加工を行うという方法や、板金材料を転造するという方法を採用することも可能である。   Next, as the means for increasing the thickness of the corner 4 shown in FIG. That is, after the pulley body 10 having the shape shown in FIG. 2 and having a reference thickness applied is manufactured by pressing from a sheet metal material, the thickness is increased by building up the corners of the corners 4. It becomes possible. As the means for overlaying, it is possible to employ, for example, a means for stacking and joining different plate materials, a means for rolling, a means for welding overlay, and the like. Further, as another means for increasing the thickness of the corner 4 from the reference thickness, after the pulley body 10 having a thickness required for the corner 4 is press-molded, the portions other than the increased thickness are set to the reference thickness. It is also possible to adopt a means of cutting until it becomes. Furthermore, it is also possible to employ a method of performing sheet metal processing on the pulley body 10 without using press molding or a method of rolling a sheet metal material.

上記した実施形態では、最大主応力の最大値が加わる箇所をプーリ本体10の内筒部1とフランジ部3とによって形作られる隅部4としてその隅部を増厚してあるけれども、この点は、隅部4以外の箇所が最大主応力の最大値が加わる箇所になる場合には、その箇所を増厚することになる。例えば図5のようにプーリ本体10の外筒部2とフランジ部3との間に形成される入隅部を増厚してもよい。   In the above-described embodiment, although the portion where the maximum value of the maximum principal stress is applied is the corner portion 4 formed by the inner cylinder portion 1 and the flange portion 3 of the pulley body 10, the corner portion is thickened. When a location other than the corner 4 is a location where the maximum value of the maximum principal stress is applied, the thickness is increased. For example, as shown in FIG. 5, the corners formed between the outer cylinder portion 2 and the flange portion 3 of the pulley body 10 may be thickened.

本発明の実施形態に係るプーリの断面図である。It is sectional drawing of the pulley which concerns on embodiment of this invention. 比較例としての従来のプーリの断面図である。It is sectional drawing of the conventional pulley as a comparative example. ベルト巻き角による応力変化を調べる際の歪みゲージの貼付け箇所を示した説明図である。It is explanatory drawing which showed the sticking location of the strain gauge at the time of investigating the stress change by a belt winding angle. 試供プーリの板厚と疲労限界値に対する最大主応力の割合を示す図である。It is a figure which shows the ratio of the largest principal stress with respect to the plate | board thickness and fatigue limit value of a sample pulley. 本発明の実施形態の変形例に係るプーリの断面図であって、外筒部とフランジ部との間に形成される入隅部を増厚した状態を示す図である。It is sectional drawing of the pulley which concerns on the modification of embodiment of this invention, Comprising: It is a figure which shows the state which thickened the corner part formed between an outer cylinder part and a flange part.

符号の説明Explanation of symbols

1 内筒部
2 ベルト巻掛け部
3 フランジ部
4 隅部
10 プーリ本体
20 軸受
41 入隅部
DESCRIPTION OF SYMBOLS 1 Inner cylinder part 2 Belt winding part 3 Flange part 4 Corner part 10 Pulley main body 20 Bearing 41 Corner part

Claims (5)

内筒部と、その内筒部の外側に同心配備されている筒状のベルト巻掛け部と、内筒部及びベルト巻掛け部の一端同士を連設している環状のフランジ部とを一体に備えるプーリ本体と、そのプーリ本体の上記内筒部の内側に嵌合保持された軸受とを有するプーリにおいて、
プーリ本体を形成している上記内筒部、ベルト巻掛け部及びフランジ部の基準肉厚を、ベルト張力に因る最大主応力が疲労限界値よりも小さい値になるように定めた上で、最大主応力の最大値が加わる箇所を増厚すると共に、その増厚箇所の両側へ離れるに従って上記基準肉厚になるまで肉厚を漸減させてあることを特徴とするプーリ。
An inner cylinder part, a cylindrical belt winding part concentrically arranged on the outer side of the inner cylinder part, and an annular flange part continuously connecting one end of the inner cylinder part and the belt winding part are integrated. In a pulley having a pulley body and a bearing fitted and held inside the inner cylindrical portion of the pulley body,
After determining the reference wall thickness of the inner cylinder part, belt winding part and flange part forming the pulley body so that the maximum principal stress due to the belt tension is smaller than the fatigue limit value, A pulley characterized in that the portion to which the maximum value of the maximum principal stress is applied is increased in thickness, and the thickness is gradually reduced until the reference thickness is reached as the thickness increases away from both sides.
最大主応力の最大値が加わる箇所をプーリ本体の内筒部とフランジ部とによって形作られる隅部としてその隅部を増厚してある請求項1に記載したプーリ。 2. The pulley according to claim 1, wherein the portion to which the maximum value of the maximum principal stress is applied is a corner portion formed by the inner cylinder portion and the flange portion of the pulley body, and the corner portion is thickened. 上記基準肉厚を、上記最大主応力が上記疲労限界値に対して50〜95%になるように定めてある請求項1又は請求項2に記載したプーリ。 The pulley according to claim 1 or 2, wherein the reference wall thickness is determined so that the maximum principal stress is 50 to 95% with respect to the fatigue limit value. 上記隅部の最大肉厚を上記基準肉厚の1.2〜2.0倍に定めてある請求項2又は請求項3のいずれか1項に記載したプーリ。 The pulley according to any one of claims 2 and 3, wherein the maximum thickness of the corner is set to 1.2 to 2.0 times the reference thickness. 上記プーリ本体の内筒部とフランジ部とによって形作られる入隅部を増肉することによって上記隅部を増厚してある請求項2ないし請求項4のいずれか1項に記載したプーリ。
The pulley according to any one of claims 2 to 4, wherein the corner portion is thickened by increasing the thickness of the corner portion formed by the inner cylinder portion and the flange portion of the pulley body.
JP2006014003A 2006-01-23 2006-01-23 Pulley Pending JP2007198402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014003A JP2007198402A (en) 2006-01-23 2006-01-23 Pulley

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014003A JP2007198402A (en) 2006-01-23 2006-01-23 Pulley

Publications (1)

Publication Number Publication Date
JP2007198402A true JP2007198402A (en) 2007-08-09

Family

ID=38453205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014003A Pending JP2007198402A (en) 2006-01-23 2006-01-23 Pulley

Country Status (1)

Country Link
JP (1) JP2007198402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142172A1 (en) 2013-03-14 2014-09-18 Ntn株式会社 Press pulley

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142172A1 (en) 2013-03-14 2014-09-18 Ntn株式会社 Press pulley
EP2975298A4 (en) * 2013-03-14 2016-04-13 Ntn Toyo Bearing Co Ltd Press pulley
US10088031B2 (en) 2013-03-14 2018-10-02 Ntn Corporation Pressed pulley

Similar Documents

Publication Publication Date Title
WO2014142172A1 (en) Press pulley
AU2013294635B2 (en) Clamp device
US7975819B2 (en) Bushing-type roller overrunning clutch with a solid outer ring
JP2007198402A (en) Pulley
JP2006250234A (en) Lateral link
EP1295836A2 (en) Reel for fine metal wire and method of manufacturing same
JP2006258163A (en) Sealing device
US9273735B2 (en) Clutch disk
JP4249594B2 (en) Transformers and transformer cores
JP2017166704A (en) Press pulley
JP3883196B2 (en) Reel for metal wire
JP2006046628A (en) Annular member
JP5432496B2 (en) Axle case
JP2007039202A (en) Metallic filament body winding reel
KR101697529B1 (en) Sleeve and method for manufacturing the sleeve
JP2009202848A (en) Axle case
JP4594255B2 (en) Metal wire reel
JP2007040484A (en) Soft rubber wound bearing
JP2012237445A (en) Rolling bearing
JP2006125289A (en) Valve spring retainer for internal combustion engine
JP4920261B2 (en) Axle tube
JP2005186114A (en) Caulking die and caulking method for hose fitting
JP2008082524A (en) Resin pipe and reinforcing collar
JP2012240080A (en) Method for manufacturing can body
JP2020066341A (en) Axle case structure