JP2007195391A - Embedded magnet type motor - Google Patents

Embedded magnet type motor Download PDF

Info

Publication number
JP2007195391A
JP2007195391A JP2006118298A JP2006118298A JP2007195391A JP 2007195391 A JP2007195391 A JP 2007195391A JP 2006118298 A JP2006118298 A JP 2006118298A JP 2006118298 A JP2006118298 A JP 2006118298A JP 2007195391 A JP2007195391 A JP 2007195391A
Authority
JP
Japan
Prior art keywords
magnet
radial
housing
type motor
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006118298A
Other languages
Japanese (ja)
Other versions
JP4777822B2 (en
Inventor
Takahiro Nakayama
孝博 中山
義之 ▲高▼部
Yoshiyuki Takabe
Keisuke Koide
圭祐 小出
Yoshito Nishikawa
義人 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2006118298A priority Critical patent/JP4777822B2/en
Priority to US11/557,299 priority patent/US7705504B2/en
Publication of JP2007195391A publication Critical patent/JP2007195391A/en
Application granted granted Critical
Publication of JP4777822B2 publication Critical patent/JP4777822B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an embedded magnet type motor in which the number of components can be decreased and leakage flux can be reduced while attaining high torque by using many magnets, and cogging torque and torque ripple can also be reduced. <P>SOLUTION: Containing hole of a rotor core having the number of poles P consists of P/2 of radial containing holes 8a extending in the substantially radial direction, and P/2 of substantially V-shaped containing holes 8b (a pair of magnet containing sections 8f) which becomes convex on the radially outside. One magnetic pole is constituted of a magnet 9 in the radial containing hole and a magnet 10 in the magnet containing section contiguous in one circumferential direction, and one different magnetic pole is constituted of a magnet 9 in the radial containing hole and a magnet 10 in the magnet containing section contiguous in the other circumferential direction. At the radial outside ends of the radial containing hole and the V-shaped containing hole, unequal portions 8c and 8h where the distance from each circumferential center in their other portions is set to differ in one and the other circumferential direction are formed partially in the axial direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、埋込磁石型モータに関するものである。   The present invention relates to an interior magnet type motor.

従来、埋込磁石型モータは、ロータコアに軸方向に貫通する収容孔が周方向に複数形成されその各収容孔にそれぞれ磁石が配設されたロータを備える。
そして、このような埋込磁石型モータとしては、1つの磁極を径方向内側に凸の略V字形状となるように配設された一対の磁石にて構成したものがある(例えば、特許文献1参照)。このような埋込磁石型モータでは、単に周方向に沿って配設される曲線状や直線状の磁石とした場合に比べて、磁石を多く使用でき、高トルク化を図ることができる。
特開2005−51982号公報
2. Description of the Related Art Conventionally, an embedded magnet type motor includes a rotor in which a plurality of housing holes penetrating in the axial direction are formed in the rotor core in the circumferential direction, and a magnet is disposed in each housing hole.
As such an embedded magnet type motor, there is one in which one magnetic pole is constituted by a pair of magnets arranged in a substantially V-shape projecting radially inward (for example, Patent Documents). 1). In such an embedded magnet type motor, more magnets can be used and higher torque can be achieved as compared with a case where the magnet is simply a curved or linear magnet disposed along the circumferential direction.
Japanese Patent Laid-Open No. 2005-51982

しかしながら、上記したような埋込磁石型モータでは、直方体形状の磁石が1つの磁極につき2つ必要となり、磁極数がP極の場合、前記磁石は全体で2P個となるため、単に周方向に沿って配設される曲線状や直線状の磁石(1つの磁極につき1つ)とした場合に比べて、部品点数が増大するという問題がある。尚、このことは、部品管理コストや組み付けコストを増大させる原因となる。   However, in the embedded magnet type motor as described above, two magnets having a rectangular parallelepiped shape are required for one magnetic pole, and when the number of magnetic poles is P, the number of magnets is 2P as a whole. There is a problem that the number of parts is increased as compared with a case where the magnets are curved or linear (one per magnetic pole) disposed along. This causes an increase in parts management cost and assembly cost.

又、上記したような埋込磁石型モータでは、磁石を収容するための各収容孔の径方向外側でそれぞれロータコアの外周面との間に形成される外側ブリッジ部が1つの磁極につき2つ形成されてしまうため、該外側ブリッジ部を通過してしまう漏れ磁束が多いという問題がある。尚、このことは、埋込磁石型モータにおける有効磁束を減少させ高トルク化を阻害してしまう原因となる。又、上記したような埋込磁石型モータでは、高トルク化を図るほどステータとロータとの間での急激な磁束の流れ(変化)が発生するため、そのことに基づくコギングトルク及びトルクリップルの低減も望まれる。   Further, in the embedded magnet type motor as described above, two outer bridge portions formed between the outer peripheral surfaces of the rotor cores on the outer sides in the radial direction of the respective housing holes for housing the magnets are formed for each magnetic pole. Therefore, there is a problem that there is much leakage magnetic flux that passes through the outer bridge portion. This causes the effective magnetic flux in the embedded magnet type motor to be reduced and hinders the increase in torque. In addition, in the embedded magnet type motor as described above, a sudden flow (change) of magnetic flux occurs between the stator and the rotor as the torque is increased. Reduction is also desired.

本発明は、上記問題点を解決するためになされたものであって、その目的は、磁石を多く使用して高トルク化を図りながらも、部品点数を低減することができるとともに漏れ磁束を低減することができ、更にコギングトルク及びトルクリップルをも低減することができる埋込磁石型モータを提供することにある。   The present invention has been made to solve the above-described problems, and its purpose is to reduce the number of parts and reduce the magnetic flux leakage while increasing the torque by using many magnets. Another object of the present invention is to provide an embedded magnet type motor that can reduce cogging torque and torque ripple.

請求項1に記載の発明では、軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備えた埋込磁石型モータであって、前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成され、前記径方向収容孔及び前記V字収容孔の径方向外側端部には、前記径方向収容孔及び前記V字収容孔の他の部分における各周方向中心からの距離が周方向の一方と他方とで異なるように設定された不均等部が、軸方向の他の部分と異なる形状となるように形成された。   According to the first aspect of the present invention, the rotor includes a rotor core in which a plurality of housing holes penetrating in the axial direction are formed in the circumferential direction, and a magnet is disposed in the housing hole so that the number of magnetic poles is P. The housing hole includes a radial housing hole extending in a substantially radial direction and a substantially V-shaped housing hole protruding outward in the radial direction. The two magnets are alternately formed in the circumferential direction, and the magnet is disposed in the radial accommodation hole and is formed on each straight line forming the V-shape of the V-shaped accommodation hole. One magnet is disposed in each corresponding magnet housing portion and disposed in the radial housing hole, and one magnet is disposed in the magnet housing portion adjacent to one of the circumferential directions. A magnetic pole, and the magnet disposed in the radial accommodation hole; One magnetic pole different from the magnet disposed in the magnet housing portion adjacent to the other in the circumferential direction is configured, and the radially outer end portion of the radial housing hole and the V-shaped housing hole has the The non-uniform part set so that the distance from the center in the circumferential direction in the radial accommodation hole and the other part of the V-shaped accommodation hole is different between one and the other in the circumferential direction is different from the other part in the axial direction. It was formed to have a shape.

同構成によれば、径方向収容孔内に配設される磁石は、周方向の一方に形成される磁極の一部を構成するとともに、周方向の他方に形成される磁極の一部をも構成する。即ち、径方向収容孔内に配設される磁石は、2つの磁極に対して共用のものとなる。よって、磁極数がP極の場合、前記磁石は全体で(3/2)P個となるため、従来(全体で2P個)に比べて磁石の数を低減することができる。又、同構成によれば、径方向収容孔が2つの磁極に対して共用のものとなるため、径方向収容孔の径方向外側とロータコアの外周面との間に形成される外側ブリッジ部においても2つの磁極に対して共用のものとなる。よって、ロータコアにおける外側ブリッジ部の数が低減され、該外側ブリッジ部を通過してしまう漏れ磁束を低減することができる。しかも、径方向収容孔及びV字収容孔の径方向外側端部には、径方向収容孔及びV字収容孔の他の部分における各周方向中心からの距離が周方向の一方と他方とで異なるように設定された不均等部が、軸方向の他の部分と異なる形状となるように形成される。よって、例えば、径方向収容孔及びV字収容孔の径方向外側端部が軸方向に同じ形状とされた場合に比べて、ステータとの急激な磁束の流れ(変化)が抑制され、コギングトルク及びトルクリップルを低減することができる。尚、同構成によれば、勿論、単に周方向に沿って配設される曲線状や直線状の磁石とした場合に比べて、磁石を多く使用でき、高トルク化を図ることができる。   According to this configuration, the magnet disposed in the radial accommodation hole constitutes a part of the magnetic pole formed on one side in the circumferential direction and also has a part of the magnetic pole formed on the other side in the circumferential direction. Constitute. That is, the magnet disposed in the radial accommodation hole is shared by the two magnetic poles. Therefore, when the number of magnetic poles is P, the number of magnets is (3/2) P as a whole, and therefore the number of magnets can be reduced as compared with the conventional case (2P as a whole). Further, according to the same configuration, since the radial accommodation hole is shared by the two magnetic poles, in the outer bridge portion formed between the radial outer side of the radial accommodation hole and the outer peripheral surface of the rotor core. Are also common to the two magnetic poles. Therefore, the number of outer bridge portions in the rotor core is reduced, and the leakage magnetic flux that passes through the outer bridge portion can be reduced. In addition, at the radially outer ends of the radial accommodation holes and the V-shaped accommodation holes, the distances from the respective circumferential centers in the other portions of the radial accommodation holes and the V-shaped accommodation holes are different between one and the other in the circumferential direction. The non-uniform portion set differently is formed to have a different shape from other portions in the axial direction. Therefore, for example, compared with a case where the radially outer end portions of the radial accommodation hole and the V-shaped accommodation hole have the same shape in the axial direction, a rapid flow (change) of magnetic flux with the stator is suppressed, and the cogging torque is reduced. And torque ripple can be reduced. In addition, according to the same structure, as a matter of course, more magnets can be used and higher torque can be achieved as compared with a case where the magnets are simply curved or linear arranged along the circumferential direction.

請求項2に記載の発明では、請求項1に記載の埋込磁石型モータにおいて、前記径方向収容孔における前記不均等部を含む径方向外側端部の少なくとも一部は、軸方向から見た周方向の幅が前記径方向収容孔内に配設される前記磁石の幅より大きく設定された。   According to a second aspect of the present invention, in the interior magnet type motor according to the first aspect, at least a part of the radially outer end portion including the non-uniform portion in the radial accommodation hole is viewed from the axial direction. The circumferential width was set larger than the width of the magnet disposed in the radial accommodation hole.

同構成によれば、径方向収容孔における不均等部を含む径方向外側端部の少なくとも一部は、軸方向から見た周方向の幅が径方向収容孔内に配設される磁石の幅より大きく設定されるため、その部分における磁気抵抗が増加し(磁路が遠くなり)、漏れ磁束を更に低減することができる。   According to this configuration, at least a part of the radially outer end portion including the unequal portion in the radial accommodation hole has a width in the circumferential direction viewed from the axial direction in the radial accommodation hole. Since the magnetic resistance is set larger, the magnetic resistance in that portion increases (the magnetic path becomes far), and the leakage magnetic flux can be further reduced.

請求項3に記載の発明では、請求項1又は2に記載の埋込磁石型モータにおいて、前記磁石収容部の径方向内側端部は、前記径方向収容孔内に配設された前記磁石の磁束流出面又は磁束流入面と対向するとともに、前記磁石収容部の径方向内側と前記径方向収容孔との間に形成される内側ブリッジ部の軸方向から見た幅が径方向に沿って一定となるように形成されたことを特徴とする埋込磁石型モータ。   According to a third aspect of the present invention, in the interior magnet type motor according to the first or second aspect, a radially inner end portion of the magnet housing portion of the magnet disposed in the radial housing hole. While facing the magnetic flux outflow surface or the magnetic flux inflow surface, the width viewed from the axial direction of the inner bridge portion formed between the radial inner side of the magnet housing portion and the radial housing hole is constant along the radial direction. An embedded magnet type motor characterized by being formed as follows.

同構成によれば、径方向収容孔内に配設された磁石の磁束流出面又は磁束流入面と、磁石収容部内に配設された磁石における径方向内側を向く磁束流入面又は磁束流出面との距離が短くなり、それら異なる磁石に磁束が向かうこととなり、磁石のN極から直ぐに自身のS極に向かう漏れ磁束が低減されるとともに、有効磁束が増加する。しかも、磁石収容部の径方向内側と径方向収容孔との間に形成される内側ブリッジ部の軸方向から見た幅が径方向に沿って一定とされるため、内側ブリッジ部の軸方向から見た幅を均等に細くすることができ、該部分において磁石のN極から直ぐに自身のS極に向かう漏れ磁束を更に低減することができる。   According to this configuration, the magnetic flux outflow surface or magnetic flux inflow surface of the magnet disposed in the radial accommodation hole, and the magnetic flux inflow surface or magnetic flux outflow surface facing the radially inner side of the magnet disposed in the magnet housing portion, , The magnetic flux is directed to the different magnets, the leakage magnetic flux from the N-pole of the magnet to the S-pole of the magnet is reduced, and the effective magnetic flux is increased. And since the width | variety seen from the axial direction of the inner side bridge part formed between the radial direction inner side and radial direction accommodation hole of a magnet accommodating part is constant along a radial direction, it is from the axial direction of an inner bridge part. The seen width can be made evenly narrow, and the leakage magnetic flux from the N pole of the magnet to the S pole of the magnet can be further reduced in the portion.

請求項4に記載の発明では、請求項1乃至3のいずれか1項に記載の埋込磁石型モータにおいて、前記V字収容孔のV字を形成する各直線に対応した一対の前記磁石収容部がそれぞれ独立して形成されることで、一対の前記磁石収容部間における径方向外側に径方向に延びる収容部間ブリッジ部が形成された。   According to a fourth aspect of the present invention, in the interior magnet type motor according to any one of the first to third aspects, the pair of magnet housings corresponding to each straight line forming the V-shape of the V-shaped housing hole. By forming the portions independently of each other, an inter-accommodating portion bridge portion extending in the radial direction is formed radially outward between the pair of magnet accommodating portions.

同構成によれば、磁石収容部とロータコアの外周面との間に形成される外側ブリッジ部が収容部間ブリッジ部と繋がるため、(磁石収容部同士を連通する頂部を有するものに比べて)ロータコアの強度が高まり、その変形が防止される。   According to this configuration, since the outer bridge portion formed between the magnet housing portion and the outer peripheral surface of the rotor core is connected to the inter-housing portion bridge portion (as compared with the one having a top portion that allows the magnet housing portions to communicate with each other). The strength of the rotor core is increased and its deformation is prevented.

請求項5に記載の発明では、請求項1乃至4のいずれか1項に記載の埋込磁石型モータにおいて、前記ロータコアは、コアシートが軸方向に積層されてなるものであって、前記コアシートにおける各前記径方向収容孔の径方向外側端部と対応した位置には、前記径方向収容孔の他の部分と対応した部分における周方向中心からの距離が周方向の一方と他方とで異なるように設定された積層前不均等部が周方向に部分的に形成され、前記ロータコアは、前記積層前不均等部が周方向に均等に配設されるように前記コアシートが積層されてなる。   According to a fifth aspect of the present invention, in the interior magnet type motor according to any one of the first to fourth aspects, the rotor core is formed by stacking core sheets in the axial direction, and the core At a position corresponding to the radially outer end of each of the radial accommodation holes in the sheet, the distance from the circumferential center in the portion corresponding to the other part of the radial accommodation hole is between one and the other in the circumferential direction. Pre-lamination non-uniform portions set differently are partially formed in the circumferential direction, and the rotor core is formed by laminating the core sheets so that the pre-lamination non-uniform portions are evenly arranged in the circumferential direction. Become.

同構成によれば、請求項1乃至4のいずれか1項に記載の埋込磁石型モータにおけるロータコアを、1種類のコアシートにて容易に且つ周方向にバランス良く形成することができる。   According to this configuration, the rotor core in the interior magnet type motor according to any one of claims 1 to 4 can be easily formed in a balanced manner in the circumferential direction with one type of core sheet.

本発明によれば、磁石を多く使用して高トルク化を図りながらも、部品点数を低減することができるとともに漏れ磁束を低減することができ、更にコギングトルク及びトルクリップルをも低減することができる埋込磁石型モータを提供することができる。   According to the present invention, it is possible to reduce the number of parts, reduce the magnetic flux leakage, and reduce the cogging torque and torque ripple while increasing the torque by using many magnets. An embedded magnet type motor can be provided.

以下、本発明を具体化した一実施の形態を図1に従って説明する。図1に示すように、埋込磁石型モータは、ステータ1とロータ2とを備える。
ステータ1は、全体的に略円筒状に形成され、外形を形成する円筒部3の内周面から周方向等角度間隔で軸中心に向かって延びるように形成された複数のティース4を有したステータコア5と、各ティース4にインシュレータ(図示略)を介して集中巻にて巻回された巻線6(図1中、一部のみ2点鎖線で図示)とを備える。尚、本実施の形態では、ティース4は、12個形成されている。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the embedded magnet type motor includes a stator 1 and a rotor 2.
The stator 1 is formed in a substantially cylindrical shape as a whole, and has a plurality of teeth 4 formed so as to extend from the inner peripheral surface of the cylindrical portion 3 forming the outer shape toward the axial center at equal circumferential intervals. The stator core 5 is provided with a winding 6 (only part of which is shown by a two-dot chain line in FIG. 1) wound around each tooth 4 by concentrated winding via an insulator (not shown). In the present embodiment, twelve teeth 4 are formed.

ロータ2は、回転軸7と、回転軸7に対して固定されるロータコア8と、ロータコア8に形成された収容孔(径方向収容孔8a及びV字収容孔8b)内に配設される磁石9,10とを備える。尚、ロータ2における磁極数はP極であって本実施の形態では8極に設定されている。   The rotor 2 includes a rotating shaft 7, a rotor core 8 fixed to the rotating shaft 7, and magnets disposed in accommodation holes (radial accommodation holes 8 a and V-shaped accommodation holes 8 b) formed in the rotor core 8. 9 and 10. Note that the number of magnetic poles in the rotor 2 is P poles and is set to 8 poles in the present embodiment.

ロータコア8は、図2及び図3に示すように、コアシート11が軸方向に積層されることで略円筒状に形成され、その中心孔に回転軸7が嵌着され、ステータ1の内側に回転可能に支持される。又、ロータコア8において磁石9,10を内部に収容すべく軸方向に貫通する収容孔は、径方向に延びる径方向収容孔8aと、径方向外側に凸となる略V字形状のV字収容孔8bとが、それぞれP/2個であって本実施の形態では(8/2=)4個ずつ形成されてなるとともにそれらが周方向に交互であって等角度間隔に形成されてなる。   As shown in FIGS. 2 and 3, the rotor core 8 is formed in a substantially cylindrical shape by stacking the core sheets 11 in the axial direction, and the rotating shaft 7 is fitted in the center hole thereof, and the rotor core 8 is formed inside the stator 1. It is rotatably supported. In addition, the housing hole that penetrates in the axial direction to accommodate the magnets 9 and 10 in the rotor core 8 includes a radial housing hole 8a that extends in the radial direction and a substantially V-shaped V-shaped housing that protrudes radially outward. The number of the holes 8b is P / 2, and in the present embodiment, four (8/2 =) are formed, and they are alternately formed in the circumferential direction at equal angular intervals.

径方向収容孔8aの径方向外側端部には、該径方向収容孔8aの他の部分における周方向中心からの距離が周方向の一方と他方とで異なるように設定された不均等部8cが、軸方向の他の部分と異なる形状となるように形成されている。   At the radially outer end of the radial accommodation hole 8a, the unequal part 8c is set such that the distance from the circumferential center in the other part of the radial accommodation hole 8a is different between one and the other in the circumferential direction. However, it is formed so as to have a shape different from that of other portions in the axial direction.

詳しくは、径方向収容孔8aにおける径方向外側端部(不均等部8c含む)の全ての部分は、軸方向から見た周方向の幅が径方向収容孔8a内に配設される前記磁石9の幅より大きく設定されている。又、径方向収容孔8aの径方向外側であって不均等部8cより径方向内側には、磁石9の径方向外側への移動を規制すべく軸方向から見た幅が他の部分より小さくなるように突出した突出部8dが形成されている。又、径方向収容孔8aの径方向外側端部(本実施の形態では不均等部8c及び突出部8d含む)を除く部分は、軸方向から見てその幅が径方向に一定とされている。そして、径方向収容孔8aの径方向外側端部は、該径方向収容孔8aの他の部分における周方向中心からの距離が周方向の一方と他方とで異なるように設定された不均等部8cと、径方向収容孔8aの他の部分における周方向中心からの距離が周方向の一方と他方とで同じとなるように設定された均等部8eとが、軸方向に交互に形成されている。又、本実施の形態では、径方向収容孔8aが周方向に4つ形成されるが、軸方向に同一の位置(即ちコアシート11毎)では、周方向に連続する2つの径方向収容孔8aに不均等部8cが形成されるとともに、周方向に連続する他の2つの径方向収容孔8aに均等部8eが形成されている。尚、本実施の形態では、軸方向に同一の位置(即ちコアシート11毎)において周方向に連続する2つの不均等部8cは、周方向に大きく延びる側が互いに向かい合うように設定されている。   Specifically, all the portions of the radially outer end portion (including the non-uniform portion 8c) in the radial accommodation hole 8a have a circumferential width as viewed in the axial direction disposed in the radial accommodation hole 8a. The width is set to be larger than 9. In addition, the width seen from the axial direction is smaller than the other portion in the radial direction outside the radial accommodation hole 8a and inside the non-uniform portion 8c in the radial direction so as to restrict the movement of the magnet 9 outward in the radial direction. A protruding portion 8d protruding so as to be formed is formed. Further, the width of the portion excluding the radially outer end portion (including the non-uniform portion 8c and the protruding portion 8d in the present embodiment) of the radial accommodation hole 8a is constant in the radial direction when viewed from the axial direction. . And the radial direction outer end part of the radial direction accommodation hole 8a is a non-uniform part set so that the distance from the circumferential direction center in the other part of the radial direction accommodation hole 8a is different between one and the other in the circumferential direction. 8c and equal portions 8e set so that the distance from the circumferential center in the other part of the radial accommodation hole 8a is the same in one and the other in the circumferential direction are alternately formed in the axial direction. Yes. Further, in the present embodiment, four radial accommodation holes 8a are formed in the circumferential direction, but at the same position in the axial direction (that is, for each core sheet 11), two radial accommodation holes that are continuous in the circumferential direction. An uneven portion 8c is formed in 8a, and an equal portion 8e is formed in the other two radial accommodation holes 8a that are continuous in the circumferential direction. In the present embodiment, the two non-uniform portions 8c that continue in the circumferential direction at the same position in the axial direction (that is, for each core sheet 11) are set so that the sides that extend greatly in the circumferential direction face each other.

V字収容孔8bは、そのV字を形成する2つの直線に対応した一対の磁石収容部8fと、それら磁石収容部8fの径方向外側同士を連通する頂部8gとからなる。V字収容孔8bの径方向外側端部(頂部8g)には、該V字収容孔8bの他の部分における周方向中心からの距離が周方向の一方と他方とで異なるように設定された不均等部8hが、軸方向の他の部分と異なる形状となるように形成されている。   The V-shaped accommodation hole 8b includes a pair of magnet accommodation portions 8f corresponding to two straight lines forming the V-shape, and a top portion 8g that communicates the radially outer sides of the magnet accommodation portions 8f. At the radially outer end (top 8g) of the V-shaped receiving hole 8b, the distance from the circumferential center in the other part of the V-shaped receiving hole 8b is set to be different between one side and the other in the circumferential direction. The non-uniform portion 8h is formed to have a different shape from other portions in the axial direction.

詳しくは、V字収容孔8b(磁石収容部8f)の径方向外側には、磁石10の径方向外側への移動を規制すべく軸方向から見た幅が他の部分より小さくなるように突出した突出部8iが形成されている。又、磁石収容部8fは、軸方向から見て直線状であってその幅が径方向に一定とされている。尚、本実施の形態のV字収容孔8bの一対の磁石収容部8f(V字)がなす角度は、約50度に設定されている。そして、V字収容孔8bの径方向外側端部(頂部8g)は、該V字収容孔8bの他の部分における周方向中心からの距離が周方向の一方と他方とで異なるように設定された不均等部8hと、V字収容孔8bの他の部分における周方向中心からの距離が周方向の一方と他方とで同じとなるように設定された均等部8jとが、軸方向に交互に形成されている。又、本実施の形態では、V字収容孔8bが周方向に4つ形成されるが、軸方向に同一の位置(即ちコアシート11毎)では、周方向に連続する2つのV字収容孔8bに不均等部8hが形成されるとともに、周方向に連続する他の2つのV字収容孔8bに均等部8jが形成されている。尚、本実施の形態では、軸方向に同一の位置(即ちコアシート11毎)において周方向に連続する2つの不均等部8hは、周方向に大きく延びる側が互いに外側を向くように設定されている。   Specifically, the V-shaped accommodation hole 8b (magnet accommodation portion 8f) protrudes radially outward so that the width seen from the axial direction is smaller than the other part so as to restrict the movement of the magnet 10 outward in the radial direction. The protruding portion 8i is formed. The magnet housing portion 8f is linear when viewed from the axial direction, and its width is constant in the radial direction. In addition, the angle which a pair of magnet accommodating part 8f (V shape) of the V-shaped accommodation hole 8b of this Embodiment makes is set to about 50 degrees. And the radial direction outer side edge part (top part 8g) of the V-shaped accommodation hole 8b is set so that the distance from the circumferential direction center in the other part of this V-shaped accommodation hole 8b may differ in one and the other of the circumferential direction. The uneven portions 8h and the uniform portions 8j set so that the distance from the circumferential center in the other part of the V-shaped receiving hole 8b is the same in one and the other in the circumferential direction are alternately arranged in the axial direction. Is formed. In the present embodiment, four V-shaped receiving holes 8b are formed in the circumferential direction. However, at the same position in the axial direction (that is, for each core sheet 11), two V-shaped receiving holes that are continuous in the circumferential direction. The non-uniform part 8h is formed in 8b, and the uniform part 8j is formed in the other two V-shaped accommodation holes 8b continuous in the circumferential direction. In the present embodiment, the two non-uniform portions 8h that are continuous in the circumferential direction at the same position in the axial direction (that is, for each core sheet 11) are set such that the sides that greatly extend in the circumferential direction face each other. Yes.

又、本実施の形態における磁石収容部8fの径方向内側端部は、軸方向から見て、径方向収容孔8aの側部、詳しくは径方向収容孔8aの径方向内側において径方向の直交方向を向いた辺(内壁面)と対向するように形成されている(図1中、部分拡大図参照)。そして、磁石収容部8fの径方向内側と径方向収容孔8aとの間に形成される内側ブリッジ部8kの軸方向から見た幅は径方向に沿って一定となるように形成されている。尚、これは、磁石収容部8fの径方向内側端部に軸方向から見て略三角形状の延設部8lが延設されることで実現されている。尚、本実施の形態における磁石収容部8fの長手方向は、径方向収容孔8aの長手方向に対して約70度に傾斜している。又、上記形状のロータコア8には、径方向収容孔8aの径方向外側(不均等部8c及び均等部8e)とロータコア8の外周面との間に外側ブリッジ部8mが形成され、磁石収容部8f(詳しくは頂部8g)の径方向外側とロータコア8の外周面との間に外側ブリッジ部8nが形成されることになる。   Further, the radially inner end of the magnet housing portion 8f in the present embodiment is perpendicular to the radial direction on the side portion of the radial housing hole 8a, more specifically on the radially inner side of the radial housing hole 8a, as viewed from the axial direction. It is formed so as to face the side (inner wall surface) facing the direction (see a partially enlarged view in FIG. 1). And the width | variety seen from the axial direction of the inner side bridge | bridging part 8k formed between the radial direction inner side of the magnet accommodating part 8f and the radial direction accommodation hole 8a is formed so that it may become constant along a radial direction. In addition, this is implement | achieved by extending the extending part 8l of substantially triangular shape seeing from an axial direction at the radial direction inner side edge part of the magnet accommodating part 8f. In the present embodiment, the longitudinal direction of the magnet housing portion 8f is inclined at about 70 degrees with respect to the longitudinal direction of the radial housing hole 8a. In addition, the rotor core 8 having the above-described shape is formed with an outer bridge portion 8m between the radially outer side (the non-uniform portion 8c and the equal portion 8e) of the radial accommodation hole 8a and the outer peripheral surface of the rotor core 8, and the magnet housing portion. An outer bridge portion 8 n is formed between the radially outer side of 8 f (specifically, the top portion 8 g) and the outer peripheral surface of the rotor core 8.

ここで、図2に示すように、コアシート11における各径方向収容孔8a(図1参照)の径方向外側端部と対応した位置には、径方向収容孔8aの他の部分と対応した部分における周方向中心からの距離が周方向の一方と他方とで異なるように設定された積層前不均等部11aが周方向に部分的(この例では周方向に連続する2つ)に形成されている。又、コアシート11における各前記径方向収容孔8a(図1参照)の径方向外側端部と対応した位置であって、前記積層前不均等部11aが形成されない部分には、径方向収容孔8aの他の部分と対応した部分における周方向中心からの距離が周方向の一方と他方とで同じとなるように設定された積層前均等部11bが形成されている。   Here, as shown in FIG. 2, at the position corresponding to the radially outer end of each radial accommodation hole 8a (see FIG. 1) in the core sheet 11, it corresponds to the other part of the radial accommodation hole 8a. The pre-stacking unequal portion 11a in which the distance from the circumferential center in the portion is different between one and the other in the circumferential direction is partially formed in the circumferential direction (in this example, two continuous in the circumferential direction). ing. Further, in the portion corresponding to the radially outer end portion of each of the radial accommodation holes 8a (see FIG. 1) in the core sheet 11, a portion where the pre-lamination non-uniform portion 11a is not formed is a radial accommodation hole. A pre-stacking uniform portion 11b is formed in which the distance from the circumferential center in the portion corresponding to the other portion of 8a is set to be the same in one and the other in the circumferential direction.

又、図2に示すように、コアシート11における各V字収容孔8b(図1参照)の径方向外側端部と対応した位置には、V字収容孔8bの他の部分と対応した部分における周方向中心からの距離が周方向の一方と他方とで異なるように設定された積層前不均等部11cが周方向に部分的(この例では周方向に連続する2つ)に形成されている。又、コアシート11における各V字収容孔8b(図1参照)の径方向外側端部と対応した位置であって、前記積層前不均等部11cが形成されない部分には、V字収容孔8bの他の部分と対応した部分における周方向中心からの距離が周方向の一方と他方とで同じとなるように設定された積層前均等部11dが形成されている。   Further, as shown in FIG. 2, at the position corresponding to the radially outer end of each V-shaped receiving hole 8b (see FIG. 1) in the core sheet 11, a portion corresponding to the other part of the V-shaped receiving hole 8b. The pre-stacking unequal portion 11c set so that the distance from the center in the circumferential direction is different between one and the other in the circumferential direction is partially formed in the circumferential direction (in this example, two continuous in the circumferential direction). Yes. Further, at the position corresponding to the radially outer end of each V-shaped receiving hole 8b (see FIG. 1) in the core sheet 11, the V-shaped receiving hole 8b is not formed in the portion where the pre-stacking uneven portion 11c is not formed. A pre-stacking uniform portion 11d is formed such that the distance from the circumferential center in the portion corresponding to the other portion is the same in one and the other in the circumferential direction.

そして、ロータコア8は、不均等部8c,8h(及び均等部8e,8j)となる前記積層前不均等部11a,11c(及び前記積層前均等部11b,11d)が周方向に均等に配設されるようにコアシート11が積層されてなる。本実施の形態では、ロータコア8はコアシート11が軸中心に1枚ずつ(180°)回転されながら積層されてなる(図3参照)。   In the rotor core 8, the pre-stacking non-uniform portions 11a and 11c (and the pre-stacking uniform portions 11b and 11d) that become non-uniform portions 8c and 8h (and uniform portions 8e and 8j) are evenly arranged in the circumferential direction. Thus, the core sheet 11 is laminated. In the present embodiment, the rotor core 8 is laminated while the core sheets 11 are rotated one by one (180 °) about the axis (see FIG. 3).

そして、前記径方向収容孔8a内と前記磁石収容部8f内には、それぞれ磁石9,10が配設される。
磁石9,10は、軸方向から見て短手方向に着磁された略直方体形状に形成されている。そして、径方向収容孔8a内に配設される磁石9と、その周方向の一方に隣り合う磁石収容部8f内に配設される磁石10とで1つの磁極(例えばS極)を構成するとともに、径方向収容孔8a内に配設される磁石9と、その周方向の他方に隣り合う磁石収容部8f内に配設される磁石10とで異なる1つの磁極(例えばN極)を構成している。
Magnets 9 and 10 are disposed in the radial accommodating hole 8a and the magnet accommodating portion 8f, respectively.
The magnets 9 and 10 are formed in a substantially rectangular parallelepiped shape magnetized in the short direction when viewed from the axial direction. And the magnet 9 arrange | positioned in the radial direction accommodation hole 8a and the magnet 10 arrange | positioned in the magnet accommodating part 8f adjacent to the one of the circumferential direction comprise one magnetic pole (for example, S pole). In addition, a different magnetic pole (for example, N pole) is formed by the magnet 9 disposed in the radial accommodation hole 8a and the magnet 10 disposed in the magnet accommodation portion 8f adjacent to the other in the circumferential direction. is doing.

次に、上記実施の形態の特徴的な作用効果を以下に記載する。
(1)径方向収容孔8a内に配設される磁石9は、周方向の一方に形成される磁極(ロータ2における一方の磁極であって例えばS極)の一部を構成するとともに、周方向の他方に形成される磁極(ロータ2における他方の磁極であって例えばN極)の一部をも構成する。即ち、径方向収容孔8a内に配設される磁石9は、2つの磁極に対して共用のものとなる。よって、磁極数がP極の場合、前記磁石9,10は全体で(3/2)P個となるため、従来(全体で2P個)に比べて磁石の数を低減することができる。尚、本実施の形態では、8極で磁石9,10が12個となる。その結果、部品点数を低減することができ、ひいては部品管理コストや組み付けコストを低減することができる。
Next, characteristic effects of the above embodiment will be described below.
(1) The magnet 9 disposed in the radial accommodation hole 8a constitutes a part of a magnetic pole (one magnetic pole in the rotor 2, for example, the S pole) formed on one side in the circumferential direction. It also constitutes a part of a magnetic pole (the other magnetic pole in the rotor 2, for example, N pole) formed on the other side in the direction. That is, the magnet 9 disposed in the radial accommodation hole 8a is shared by the two magnetic poles. Therefore, when the number of magnetic poles is P, the number of the magnets 9 and 10 is (3/2) P as a whole, so that the number of magnets can be reduced compared to the conventional (2P as a whole). In this embodiment, there are 12 magnets 9 and 10 with 8 poles. As a result, the number of parts can be reduced, and as a result, parts management costs and assembly costs can be reduced.

又、同構成によれば、径方向収容孔8aが2つの磁極に対して共用のものとなるため、径方向収容孔8aの径方向外側とロータコア8の外周面との間に形成される外側ブリッジ部8mにおいても2つの磁極に対して共用のものとなる。よって、ロータコア8における外側ブリッジ部の数が低減され、該外側ブリッジ部を通過してしまう漏れ磁束を低減することができる。   In addition, according to the same configuration, the radial accommodation hole 8 a is shared by the two magnetic poles, and therefore, the outer side formed between the radial outer side of the radial accommodation hole 8 a and the outer peripheral surface of the rotor core 8. The bridge portion 8m is also shared for the two magnetic poles. Therefore, the number of outer bridge portions in the rotor core 8 is reduced, and the leakage magnetic flux that passes through the outer bridge portion can be reduced.

しかも、径方向収容孔8a及びV字収容孔8bの径方向外側端部には、径方向収容孔8a及びV字収容孔8bの他の部分における各周方向中心からの距離が周方向の一方と他方とで異なるように設定された不均等部8c,8hが、軸方向の他の部分と異なる形状となるように形成される。よって、例えば、径方向収容孔及びV字収容孔の径方向外側端部が軸方向に同じ形状とされた場合に比べて、ステータ1との急激な磁束の流れ(変化)が抑制され、コギングトルク及びトルクリップルを低減することができる。尚、図4は、実験より得た角度−コギングトルク特性図であって、不均等部8c,8hが形成されず径方向収容孔及びV字収容孔の径方向外側端部が軸方向に同じ形状とされた場合の特性X1と、本実施の形態における特性X2とを示す。又、同構成によれば、勿論、単に周方向に沿って配設される曲線状や直線状の磁石とした場合に比べて、磁石を多く使用でき、高トルク化を図ることができる。   In addition, at the radially outer ends of the radial accommodation hole 8a and the V-shaped accommodation hole 8b, the distances from the respective circumferential centers in other portions of the radial accommodation hole 8a and the V-shaped accommodation hole 8b are in the circumferential direction. The non-uniform portions 8c and 8h set differently on the other side are formed so as to have a different shape from other portions in the axial direction. Therefore, for example, compared with a case where the radially outer end portions of the radial accommodation hole and the V-shaped accommodation hole have the same shape in the axial direction, a rapid flow (change) of magnetic flux with the stator 1 is suppressed, and cogging is performed. Torque and torque ripple can be reduced. FIG. 4 is an angle-cogging torque characteristic diagram obtained from an experiment, in which the unequal portions 8c and 8h are not formed, and the radially outer ends of the radial accommodation holes and the V-shaped accommodation holes are the same in the axial direction. A characteristic X1 in the case of the shape and a characteristic X2 in the present embodiment are shown. In addition, according to the same configuration, of course, more magnets can be used and higher torque can be achieved compared to a case where the magnets are simply curved or linear arranged along the circumferential direction.

(2)径方向収容孔8aにおける径方向外側端部(不均等部8c及び均等部8e)の全ての部分は、軸方向から見た周方向の幅が径方向収容孔8a内に配設される前記磁石9の幅より大きく設定されるため、その部分における磁気抵抗が増加し(磁路が遠くなり)、漏れ磁束を更に低減することができる。   (2) All the portions of the radially outer end portions (the non-uniform portion 8c and the uniform portion 8e) in the radial accommodation hole 8a have a circumferential width as viewed in the axial direction disposed in the radial accommodation hole 8a. Therefore, the magnetic resistance at that portion increases (the magnetic path becomes far), and the leakage magnetic flux can be further reduced.

(3)磁石収容部8fの径方向内側端部は、径方向収容孔8a内に配設された磁石9の短手方向の面、即ち磁束流出面又は磁束流入面と対向することになる(図1中、部分拡大図参照)。よって、径方向収容孔8a内に配設された磁石9の磁束流出面又は磁束流入面と、磁石収容部8f内に配設された磁石10における径方向内側を向く磁束流入面又は磁束流出面との距離が短くなり、それら異なる磁石9,10に磁束(図1中、部分拡大図の2点鎖線で示す矢印A参照)が向かうことになる。その結果、磁石9のN極から直ぐに自身のS極に向かう漏れ磁束(図1中、部分拡大図の破線で示す矢印B参照)が低減されるとともに、有効磁束が増加する。しかも、磁石収容部8fの径方向内側と径方向収容孔8aとの間に形成される内側ブリッジ部8kの軸方向から見た幅が径方向に沿って一定とされるため、内側ブリッジ部8kの軸方向から見た幅を均等に細くすることができ、該部分において磁石9のN極から直ぐに自身のS極に向かう漏れ磁束が更に低減される。   (3) The radially inner end of the magnet housing portion 8f faces the short-side surface of the magnet 9 disposed in the radial housing hole 8a, that is, the magnetic flux outflow surface or the magnetic flux inflow surface ( In FIG. 1, refer to a partially enlarged view). Therefore, the magnetic flux outflow surface or magnetic flux inflow surface of the magnet 9 disposed in the radial accommodation hole 8a and the magnetic flux inflow surface or magnetic flux outflow surface facing the radially inner side of the magnet 10 disposed in the magnet accommodation portion 8f. And the magnetic flux (refer to the arrow A indicated by the two-dot chain line in the partially enlarged view in FIG. 1) is directed to the different magnets 9 and 10. As a result, the leakage magnetic flux (refer to the arrow B indicated by the broken line in the partial enlarged view in FIG. 1) from the N pole of the magnet 9 to the S pole of itself is reduced and the effective magnetic flux increases. Moreover, since the width of the inner bridge portion 8k formed between the radially inner side of the magnet housing portion 8f and the radial housing hole 8a as viewed from the axial direction is constant along the radial direction, the inner bridge portion 8k. The width viewed from the axial direction of the magnet 9 can be made evenly narrow, and the leakage magnetic flux from the N pole of the magnet 9 to the S pole of the magnet 9 at that portion is further reduced.

(4)上記のようにコアシート11を構成して積層することにより、ロータコア8を1種類のコアシート11にて容易に且つ周方向にバランス良く形成することができる。
(5)ロータコア8は、コアシート11が軸中心に1枚ずつ回転されながら積層されてなることから、積層前不均等部11a,11c(不均等部8c,8h)が軸方向に多数並んでしまうといったことが防止されることで、ロータコア8の変形が防止される。即ち、積層前不均等部11a,11c(不均等部8c,8h)における周方向に大きく延びる部分が軸方向に多数並ぶと軸方向に長い空隙が形成されてロータコア8が部分的に撓み易くなるといった虞があるが、これが防止される。
(4) By configuring and laminating the core sheet 11 as described above, the rotor core 8 can be easily formed with a single core sheet 11 in a balanced manner in the circumferential direction.
(5) Since the rotor core 8 is laminated while the core sheets 11 are rotated one by one around the axial center, a large number of pre-lamination non-uniform portions 11a and 11c (non-uniform portions 8c and 8h) are arranged in the axial direction. As a result, the deformation of the rotor core 8 is prevented. In other words, if a large number of circumferentially extending portions in the pre-lamination non-uniform portions 11a and 11c (non-uniform portions 8c and 8h) are arranged in the axial direction, a long gap is formed in the axial direction, and the rotor core 8 is partially bent easily. However, this is prevented.

(6)径方向収容孔8aの径方向外側端部(本実施の形態では不均等部8c及び突出部8d含む)を除く部分は、軸方向から見てその幅が径方向に一定とされ、径方向収容孔8a内に配設される磁石9は、略直方体形状とされる。よって、例えば、軸方向から見て台形形状の磁石に比べて、磁石9が簡単な形状となる。   (6) The width of the portion excluding the radially outer end (including the non-uniform portion 8c and the protruding portion 8d in the present embodiment) of the radial accommodation hole 8a is constant in the radial direction when viewed from the axial direction. The magnet 9 disposed in the radial accommodation hole 8a has a substantially rectangular parallelepiped shape. Therefore, for example, the magnet 9 has a simpler shape as compared with a trapezoidal magnet when viewed from the axial direction.

(7)磁石収容部8fは、軸方向から見て直線状であってその幅が径方向に一定とされ、磁石収容部8f内に配設される磁石10は、略直方体形状とされる。よって、例えば、軸方向から見て湾曲した形状の磁石に比べて、磁石10が簡単な形状となる。   (7) The magnet housing portion 8f is linear when viewed from the axial direction and the width thereof is constant in the radial direction, and the magnet 10 disposed in the magnet housing portion 8f has a substantially rectangular parallelepiped shape. Therefore, for example, the magnet 10 has a simpler shape than a magnet having a curved shape when viewed from the axial direction.

(8)V字収容孔8bにおいて、一対の磁石収容部8fの径方向外側同士は頂部8gにて連通されるため、該部分において、各磁石収容部8f内に配設される磁石10のN極から直ぐに自身のS極に向かう漏れ磁束が防止される。   (8) In the V-shaped accommodation hole 8b, the radially outer sides of the pair of magnet accommodation portions 8f communicate with each other at the top portion 8g. Therefore, in this portion, N of the magnets 10 disposed in each magnet accommodation portion 8f. Leakage magnetic flux from the pole to its own S pole is prevented.

上記実施の形態は、以下のように変更して実施してもよい。
・上記実施の形態では、V字収容孔8bは、磁石収容部8fの径方向外側同士を連通する頂部8gを有するとしたが、これに限定されず、頂部8gを有さないように、即ち一対の磁石収容部8fが連通せず独立して形成されるようにしてもよい。例えば、図5に示すように、上記実施の形態の頂部8g(図1参照)が磁石収容部8f同士を連通しないように分断された形状であって、一対の磁石収容部8fがそれぞれ独立して形成されることで、一対の磁石収容部8f間における径方向外側に径方向に延びる収容部間ブリッジ部21が形成されるようにしてもよい。このようにすると、磁石収容部8fとロータコア8の外周面との間に形成される前記外側ブリッジ部8nが収容部間ブリッジ部21と繋がるため、(磁石収容部8f同士を連通する頂部8gを有するものに比べて)ロータコア8の強度が高まり、その変形が防止される。
The above embodiment may be modified as follows.
In the above embodiment, the V-shaped accommodation hole 8b has the top portion 8g that communicates the radially outer sides of the magnet housing portion 8f. However, the present invention is not limited to this. The pair of magnet housing portions 8f may be formed independently without communicating. For example, as shown in FIG. 5, the top portion 8g (see FIG. 1) of the above embodiment has a shape that is divided so as not to communicate with the magnet housing portions 8f, and the pair of magnet housing portions 8f are independent of each other. Thus, the inter-accommodating portion bridge portion 21 extending in the radial direction may be formed radially outward between the pair of magnet accommodating portions 8f. If it does in this way, since the said outside bridge part 8n formed between the magnet accommodating part 8f and the outer peripheral surface of the rotor core 8 will connect with the bridge part 21 between accommodating parts, (the top part 8g which connects the magnet accommodating parts 8f mutually) The strength of the rotor core 8 is increased and its deformation is prevented.

・上記実施の形態では、径方向収容孔8aにおける径方向外側端部(不均等部8c及び均等部8e)の全ての部分は、軸方向から見た周方向の幅が径方向収容孔8a内に配設される磁石9の幅より大きく設定されるとしたが、径方向外側端部(不均等部8c及び均等部8e)の少なくとも一部が前記磁石9の幅より大きく設定されるようにしてもよい。例えば、不均等部8cのみが前記磁石9の幅より大きく設定されるようにしてもよい。又、径方向外側端部(不均等部8c及び均等部8e)の全ての部分が、前記磁石9の幅以下となるように設定してもよい。   In the above embodiment, all of the radially outer end portions (the non-uniform portion 8c and the uniform portion 8e) in the radial accommodation hole 8a have a circumferential width in the radial accommodation hole 8a as viewed from the axial direction. Is set to be larger than the width of the magnet 9 disposed in the at least one portion, but at least a part of the radially outer end (the non-uniform portion 8c and the uniform portion 8e) is set to be larger than the width of the magnet 9. May be. For example, only the non-uniform portion 8 c may be set larger than the width of the magnet 9. Moreover, you may set so that all the parts of a radial direction outer side edge part (unequal part 8c and uniform part 8e) may become below the width | variety of the said magnet 9. FIG.

・上記実施の形態では、磁石収容部8fの径方向内側と径方向収容孔8aとの間に形成される内側ブリッジ部8kの軸方向から見た幅が径方向に沿って一定とされるとしたが、これに限定されず、内側ブリッジ部8kの軸方向から見た幅が径方向に沿って変化するように変更してもよい。例えば、上記実施の形態の延設部8lを形成しなくてもよい。   In the above embodiment, when the width of the inner bridge portion 8k formed between the radially inner side of the magnet housing portion 8f and the radial housing hole 8a is constant along the radial direction. However, it is not limited to this, You may change so that the width | variety seen from the axial direction of the inner side bridge part 8k may change along a radial direction. For example, it is not necessary to form the extending portion 8l of the above embodiment.

・上記実施の形態では、磁石収容部8fの径方向内側端部が、径方向収容孔8a内に配設された磁石9の磁束流出面又は磁束流入面と対向するようにしたが、これに限定されず、磁石収容部8fの径方向内側端部が、径方向収容孔8a内に配設された磁石9の磁束流出面及び磁束流入面と対向しないようにしてもよい。   In the above embodiment, the radially inner end of the magnet housing portion 8f is opposed to the magnetic flux outflow surface or the magnetic flux inflow surface of the magnet 9 disposed in the radial housing hole 8a. Without being limited, the radially inner end portion of the magnet housing portion 8f may not be opposed to the magnetic flux outflow surface and the magnetic flux inflow surface of the magnet 9 disposed in the radial housing hole 8a.

・上記実施の形態では、ロータコア8は、コアシート11が軸中心に1枚ずつ回転されながら積層されてなるとしたが、これに限定されず、他の方法(構造)で略同様のロータコアを構成してもよい。例えば、コアシート11を、複数枚毎に回転させながら積層してもよい。このようにすると、コアシート11を回転させる回数が減るため、その製造が容易となる。又、積層前不均等部(不均等部)を周方向に均等に配設することができれば、コアシートを表裏に反転させながら積層してロータコアを構成してもよい。この場合も、コアシートを1枚ずつ表裏に反転させて積層してもよいし、コアシートを複数枚毎に表裏に反転させて積層してもよい。又、このような場合、積層していく過程の途中で表裏に反転させる必要はなく、予め表向きにしておいたコアシート群と予め裏向きにしておいたコアシート群とからコアシートを(1枚ずつ又は複数枚毎に)交互に積層するようにしてもよい。このようにすると、コアシートを軸中心に回転させる必要がない(細かい回転角度の制御が必要ない)ため、その製造が容易となる。尚、勿論、コアシート11の数(図3では4枚)は、変更してもよい。   In the above embodiment, the rotor core 8 is laminated while the core sheets 11 are rotated one by one around the axis center. However, the present invention is not limited to this, and a substantially similar rotor core is configured by another method (structure). May be. For example, the core sheets 11 may be stacked while being rotated every plural sheets. If it does in this way, since the frequency | count of rotating the core sheet 11 reduces, the manufacture becomes easy. In addition, if the pre-lamination non-uniform portion (non-uniform portion) can be evenly arranged in the circumferential direction, the rotor core may be configured by laminating the core sheet while reversing the front and back. In this case as well, the core sheets may be reversed and stacked one by one on the front and back, or the core sheets may be reversed and stacked on the front and back for each plurality. Moreover, in such a case, it is not necessary to invert the front and back during the process of laminating, and the core sheet (1) is formed from the core sheet group that has been turned face up and the core sheet group that has been turned face down. Alternatively, the sheets may be stacked alternately (every sheet or every plural sheets). If it does in this way, since it is not necessary to rotate a core sheet | seat centering on an axis | shaft (control of a fine rotation angle is unnecessary), the manufacture becomes easy. Of course, the number of core sheets 11 (four in FIG. 3) may be changed.

・上記実施の形態では、1種類のコアシート11にてロータコア8を構成したが、これに限定されず、複数種類のコアシートにてロータコアを構成してもよい。例えば、コアシートを、前記積層前不均等部11a,11cのみが形成された(前記積層前均等部11b,11dが形成されていない)ものと、前記積層前均等部11b,11dのみが形成された(前記積層前不均等部11a,11cが形成されていない)ものとの2種類とし、それらを積層してロータコアを構成してもよい。又、例えば、図6に示すように、前記収容部間ブリッジ部21(図5参照)が形成されるものにおいて、コアシートを、前記積層前不均等部11a,11cのみが形成された(前記積層前均等部11b,11dが形成されていない)コアシート31と、前記積層前均等部11b,11dのみが形成された(前記積層前不均等部11a,11cが形成されていない)コアシート32との2種類とし、それらを積層してロータコアを構成してもよい。又、この例(図6)では、コアシート31,32の数の比率が3対1(図6では3枚対1枚であるが例えば6枚対2枚でも同じ)とされているが、この比率を他の比率(例えば1対1や3対2や9対1等)に変更してもよい。このようにすると、前記比率を変更することで、前記不均等部8c,8h(均等部8e,8j)の軸方向における割合(断面積)を容易に(自由に)選択することができる。尚、前記割合に応じてトルク−トルクリップル特性が異なるため、例えば、不均等部8c,8hの軸方向における割合、即ち前記コアシート31の割合を増やすことで、低トルク時のトルクリップルを大幅に低減することができる。   In the above embodiment, the rotor core 8 is configured with one type of core sheet 11, but the present invention is not limited to this, and the rotor core may be configured with a plurality of types of core sheets. For example, a core sheet in which only the pre-stacking non-uniform portions 11a and 11c are formed (the pre-stacking uniform portions 11b and 11d are not formed) and only the pre-stacking uniform portions 11b and 11d are formed. Alternatively, the rotor core may be configured by stacking these two types (one not formed with the pre-stacking non-uniform portions 11a and 11c). Also, for example, as shown in FIG. 6, in the case where the inter-accommodating portion bridge portion 21 (see FIG. 5) is formed, only the pre-lamination non-uniform portions 11a and 11c are formed on the core sheet (see above). A core sheet 31 in which the pre-lamination uniform portions 11b and 11d are not formed) and a core sheet 32 in which only the pre-lamination uniform portions 11b and 11d are formed (the pre-lamination non-uniform portions 11a and 11c are not formed). And the rotor core may be configured by stacking them. In this example (FIG. 6), the ratio of the number of core sheets 31 and 32 is 3 to 1 (in FIG. 6, it is 3 to 1 but, for example, 6 to 2 is the same). This ratio may be changed to other ratios (for example, 1 to 1, 3 to 2, 9 to 1, etc.). If it does in this way, the ratio (cross-sectional area) in the axial direction of the said unequal part 8c, 8h (equal part 8e, 8j) can be selected easily (freely) by changing the said ratio. Since the torque-torque ripple characteristic varies depending on the ratio, for example, increasing the ratio of the non-uniform portions 8c and 8h in the axial direction, that is, the ratio of the core sheet 31, greatly increases the torque ripple at low torque. Can be reduced.

・上記実施の形態では、径方向収容孔8aの径方向外側端部(不均等部8c及び突出部8d含む)を除く部分は、軸方向から見てその幅が径方向に一定とされ、径方向収容孔8a内に配設される磁石9は、略直方体形状とされるとしたが、これに限定されず、径方向収容孔及び磁石の軸方向から見た形状や幅等を変更してもよい。   In the above embodiment, the width of the portion excluding the radially outer end (including the non-uniform portion 8c and the protruding portion 8d) of the radial accommodation hole 8a is constant in the radial direction when viewed from the axial direction. The magnet 9 disposed in the direction accommodation hole 8a is assumed to have a substantially rectangular parallelepiped shape. However, the shape is not limited to this, and the shape and width of the radial accommodation hole and the magnet viewed from the axial direction are changed. Also good.

例えば、径方向収容孔の径方向外側端部を除く部分を、軸方向から見てその幅が径方向外側に向かうほど狭い台形形状とし、その径方向収容孔に配設される磁石を、軸方向から見てその幅が径方向外側に向かうほど狭くその径方向外側端部の幅が前記径方向収容孔の台形形状の径方向外側端部の幅より大きい台形形状としてもよい。このようにすると、径方向収容孔に配設される磁石は、ロータの回転時の遠心力によって径方向外側に向かう力であって径方向収容孔の内壁面に押し付けられる力を受ける。よって、磁石とロータコアとのギャップを安定して小さくすることができ、ひいては安定して高トルク化を図ることができる。   For example, the portion excluding the radially outer end of the radial accommodation hole has a trapezoidal shape that becomes narrower as the width increases in the radial direction when viewed from the axial direction, and the magnet disposed in the radial accommodation hole is The width of the outer end portion in the radial direction may be narrower as viewed from the direction toward the outer side in the radial direction, and the trapezoidal shape may be larger than the width of the radial outer end portion of the trapezoidal shape of the radial accommodation hole. If it does in this way, the magnet arrange | positioned in a radial direction accommodation hole will receive the force which is a force which goes to a radial direction outer side by the centrifugal force at the time of rotation of a rotor, and is pressed on the inner wall face of a radial direction accommodation hole. Therefore, the gap between the magnet and the rotor core can be stably reduced, and as a result, the torque can be increased stably.

又、例えば、径方向収容孔の径方向外側端部を除く部分を、軸方向から見てその幅が径方向外側に向かうほど広い台形形状とし、その径方向収容孔に配設される磁石を、軸方向から見てその幅が径方向外側に向かうほど広くその径方向内側端部の幅が前記径方向収容孔の台形形状の径方向内側端部の幅より大きい台形形状としてもよい。このようにすると、径方向外側端部における不均等部の形状に関わらず、磁石のN極から直ぐに自身のS極に向かう磁路を遠くできるので、漏れ磁束を低減することができる。又、これらの例の径方向収容孔には、磁石を軸方向から見た幅が狭い方向に付勢するための非磁性部品を配設してもよい。   In addition, for example, the portion of the radial accommodation hole except for the radially outer end is formed in a trapezoidal shape so that the width thereof increases in the radial direction when viewed from the axial direction, and a magnet disposed in the radial accommodation hole is provided. The trapezoidal shape may be larger as the width of the inner end portion in the radial direction is wider toward the outer side in the axial direction, and the width of the inner end portion in the radial direction is larger than the width of the inner end portion in the radial direction. In this way, the magnetic path from the N-pole of the magnet to the S-pole immediately can be increased regardless of the shape of the non-uniform portion at the radially outer end, so that leakage magnetic flux can be reduced. Moreover, you may arrange | position the nonmagnetic component for urging | biasing a magnet to the direction where the width | variety seen from the axial direction is narrow in the radial direction accommodation hole of these examples.

・上記実施の形態では、磁石収容部8fは、軸方向から見て直線状であってその幅が径方向に一定とされ、磁石収容部8f内に配設される磁石10は、略直方体形状とされるとしたが、これに限定されず、磁石収容部及び磁石の軸方向から見た形状や幅等を変更してもよい。即ち、V字収容孔の略V字形状とは、V字を形成する各直線(一対の直線)がそれぞれ湾曲しているものや、直線の幅が一定ではないもの等を含む形状であって、V字収容孔のV字を形成する各直線に対応した各磁石収容部は、前記直線に対して湾曲しているものや、幅が一定とされていないものを含む。   In the above embodiment, the magnet housing portion 8f is linear when viewed from the axial direction, the width thereof is constant in the radial direction, and the magnet 10 disposed in the magnet housing portion 8f has a substantially rectangular parallelepiped shape. However, the present invention is not limited to this, and the shape and width of the magnet housing portion and the magnet viewed from the axial direction may be changed. That is, the substantially V-shape of the V-shaped accommodation hole is a shape including those in which each straight line (a pair of straight lines) forming the V-shape is curved, or the width of the straight line is not constant. The magnet housing portions corresponding to the straight lines forming the V-shape of the V-shaped housing holes include those that are curved with respect to the straight lines and those that are not constant in width.

例えば、図7に示すように、V字収容孔41における一対の磁石収容部41aを、軸方向から見てそれら中央が互いに近づく方向に湾曲した形状とし、該磁石収容部41aに配設される磁石42を同様に(磁石収容部41aに収容されるように)湾曲した形状としてもよい。これらのようにすると、略直方体形状の磁石に比べて磁石を多く使用でき、更に高トルク化を図ることができる。尚、この例(図7)では、径方向に延びて磁石43を収容する径方向収容孔44の径方向外側端部における不均等部44aのみが磁石43の周方向(短手方向)の幅より大きく設定されている。又、勿論、例えば、V字収容孔における一対の磁石収容部及び磁石収容部に配設される一対の磁石を、軸方向から見てそれら中央が互いに離間する方向に湾曲した形状としてもよい。   For example, as shown in FIG. 7, the pair of magnet accommodating portions 41a in the V-shaped accommodating hole 41 are curved in a direction in which their centers approach each other when viewed from the axial direction, and are disposed in the magnet accommodating portion 41a. The magnet 42 may be similarly curved (so as to be accommodated in the magnet accommodating portion 41a). If it does in this way, many magnets can be used compared with the magnet of a substantially rectangular parallelepiped shape, and also higher torque can be attained. In this example (FIG. 7), only the non-uniform portion 44 a at the radially outer end of the radial accommodation hole 44 that extends in the radial direction and accommodates the magnet 43 is the width in the circumferential direction (short direction) of the magnet 43. It is set larger. Of course, for example, the pair of magnet housing portions in the V-shaped housing hole and the pair of magnets disposed in the magnet housing portion may have a shape curved in a direction in which their centers are separated from each other when viewed from the axial direction.

・上記実施の形態では、径方向収容孔8a及びV字収容孔8bの径方向外側端部は、不均等部8c,8hと均等部8e,8jとが軸方向に交互に形成されるとしたが、少なくとも1種類の不均等部が、軸方向の他の部分と異なる形状となるように形成されれば、他の構成に変更してもよい。例えば、径方向収容孔及びV字収容孔の径方向外側端部を、(周方向の幅の異なる)2種類の不均等部と均等部とから形成してもよい。又、例えば、径方向収容孔及びV字収容孔の径方向外側端部を、(周方向の幅の異なる)2種類の不均等部から形成してもよい。   In the above embodiment, the radially outer ends of the radial accommodation holes 8a and the V-shaped accommodation holes 8b are formed with non-uniform portions 8c and 8h and uniform portions 8e and 8j alternately formed in the axial direction. However, as long as at least one type of non-uniform portion is formed to have a shape different from that of other portions in the axial direction, the configuration may be changed to another configuration. For example, the radially outer ends of the radial accommodation holes and the V-shaped accommodation holes may be formed of two types of non-uniform parts and different parts (different in circumferential width). Further, for example, the radially outer ends of the radial accommodation holes and the V-shaped accommodation holes may be formed from two types of non-uniform portions (different in circumferential width).

・上記実施の形態の磁石9,10及びロータコア8を軸方向に分割し、それらを周方向にずらして配設してもよい。このようにすると、ステータ1とロータ2間での急激な磁束の流れ(変化)を更に低減することができコギングトルク及びトルクリップルを更に低減することができる。   The magnets 9 and 10 and the rotor core 8 according to the above embodiment may be divided in the axial direction and arranged so as to be shifted in the circumferential direction. In this way, the rapid magnetic flux flow (change) between the stator 1 and the rotor 2 can be further reduced, and the cogging torque and torque ripple can be further reduced.

・上記実施の形態では、ロータコア8は、コアシートが軸方向に積層されてなるとしたが、これに限定されず、他の方法にて形成されるもの(例えば磁性粉体を焼結した焼結コア)としてもよい。   In the above embodiment, the rotor core 8 is formed by laminating the core sheets in the axial direction, but is not limited to this, and is formed by other methods (for example, sintered by sintering magnetic powder) Core).

・上記実施の形態のティース4の数や磁極数(磁石9,10)の数等は、他の数に変更してもよい。
上記各実施の形態から把握できる技術的思想について、以下にその効果とともに記載する。
The number of teeth 4 and the number of magnetic poles (magnets 9 and 10) in the above embodiment may be changed to other numbers.
The technical idea that can be grasped from the above embodiments will be described below together with the effects thereof.

(イ)請求項5に記載の埋込磁石型モータにおいて、前記ロータコアは、前記コアシートが軸中心に1枚ずつ回転されながら積層されてなることを特徴とする埋込磁石型モータ。   (A) The embedded magnet type motor according to claim 5, wherein the rotor core is laminated while the core sheets are rotated one by one around the axis.

同構成によれば、積層前不均等部が軸方向に多数並んでしまうといったことが防止されることで、ロータコアの変形が防止される。即ち、積層前不均等部における周方向に大きく延びる部分が軸方向に多数並ぶと軸方向に長い空隙が形成されてロータコアが部分的に撓み易くなるといった虞があるが、これが防止される。   According to this configuration, it is possible to prevent the rotor core from being deformed by preventing a large number of uneven portions before lamination from being arranged in the axial direction. That is, if a large number of portions extending in the circumferential direction in the uneven portion before lamination are arranged in the axial direction, there is a possibility that a long gap is formed in the axial direction and the rotor core is partially bent easily, but this is prevented.

(ロ)請求項5に記載の埋込磁石型モータにおいて、前記ロータコアは、前記コアシートが軸中心に複数枚毎に回転されながら積層されてなることを特徴とする埋込磁石型モータ。   (B) The interior magnet type motor according to claim 5, wherein the rotor core is laminated while the core sheet is rotated about a plurality of sheets about the axis.

同構成によれば、コアシートを回転させる回数が減るため、その製造が容易となる。
(ハ)請求項5に記載の埋込磁石型モータにおいて、前記コアシートが表裏に反転されながら積層されてなることを特徴とする埋込磁石型モータ。
According to this configuration, since the number of times of rotating the core sheet is reduced, its manufacture becomes easy.
(C) The embedded magnet type motor according to claim 5, wherein the core sheet is laminated while being reversed on the front and back sides.

同構成によれば、コアシートを軸中心に回転させる必要がないため、その製造が容易となる。
(ニ)請求項1乃至4のいずれか1項に記載の埋込磁石型モータにおいて、前記ロータコアは、コアシートが軸方向に積層されてなるものであって、前記コアシートは、前記径方向収容孔の前記不均等部と対応した位置に前記径方向収容孔の他の部分と対応した部分における各周方向中心からの距離が周方向の一方と他方とで異なるように設定された積層前不均等部が形成されたものと、前記径方向収容孔の前記不均等部と対応した位置に前記径方向収容孔の他の部分と対応した部分における各周方向中心からの距離が周方向の一方と他方とで同じとなるように設定された積層前均等部が形成されたものとの少なくとも2種類を有することを特徴とする埋込磁石型モータ。
According to this configuration, since it is not necessary to rotate the core sheet about the axis, the manufacture becomes easy.
(D) In the embedded magnet type motor according to any one of claims 1 to 4, the rotor core is formed by stacking core sheets in an axial direction, and the core sheet is formed in the radial direction. Before stacking, the distance from the center in the circumferential direction in the part corresponding to the other part of the radial accommodation hole is set to be different between the one in the circumferential direction and the other in the position corresponding to the uneven part of the accommodation hole The distance from the center in the circumferential direction in the portion corresponding to the other portion of the radial receiving hole at the position corresponding to the non-uniform portion of the radial receiving hole and the position where the uneven portion is formed is the circumferential direction. An embedded magnet type motor characterized by having at least two types, one having a pre-stacking uniform portion set so as to be the same in one and the other.

同構成によれば、請求項1乃至3のいずれか1項に記載の埋込磁石型モータにおけるロータコアを、複数種類のコアシートにて容易に得ることができる。又、同構成によれば、異なるコアシートの数の比率を変更することで、不均等部(均等部)の軸方向における割合(断面積)を容易に(自由に)選択することができる。   According to this configuration, the rotor core in the interior magnet type motor according to any one of claims 1 to 3 can be easily obtained with a plurality of types of core sheets. Moreover, according to the same structure, the ratio (cross-sectional area) in the axial direction of a non-uniform | heterogenous part (equal part) can be selected easily (freely) by changing the ratio of the number of different core sheets.

(ホ)請求項1乃至5及び上記(イ)〜(ニ)のいずれか1つに記載の埋込磁石型モータにおいて、前記径方向収容孔の前記径方向外側端部を除く部分は、軸方向から見てその幅が径方向に一定とされ、前記径方向収容孔内に配設される前記磁石は、略直方体形状とされたことを特徴とする埋込磁石型モータ。   (E) In the interior magnet type motor according to any one of claims 1 to 5 and (a) to (d) above, a portion excluding the radially outer end of the radial accommodation hole is a shaft. An embedded magnet type motor characterized in that the width thereof is constant in the radial direction when viewed from the direction, and the magnet disposed in the radial accommodation hole has a substantially rectangular parallelepiped shape.

同構成によれば、磁石は、略直方体形状とされるため、例えば、軸方向から見て台形形状の磁石に比べて、簡単な形状となる。
(ヘ)請求項1乃至5及び上記(イ)〜(ニ)のいずれか1つに記載の埋込磁石型モータにおいて、前記径方向収容孔の前記径方向外側端部を除く部分は、軸方向から見てその幅が径方向外側に向かうほど狭い台形形状とされ、前記径方向収容孔に配設される前記磁石は、軸方向から見てその幅が径方向外側に向かうほど狭く、その径方向外側端部の幅が前記径方向収容孔の台形形状の径方向外側端部の幅より大きい台形形状とされたことを特徴とする埋込磁石型モータ。
According to this configuration, since the magnet has a substantially rectangular parallelepiped shape, for example, the magnet has a simple shape as compared to a trapezoidal magnet when viewed from the axial direction.
(F) In the interior magnet type motor according to any one of claims 1 to 5 and (a) to (d) above, a portion excluding the radially outer end portion of the radially accommodating hole is a shaft. The trapezoidal shape becomes narrower as the width goes outward in the radial direction when viewed from the direction, and the magnet disposed in the radial accommodation hole is narrower as the width goes outward in the radial direction when viewed from the axial direction. An embedded magnet type motor having a trapezoidal shape in which a width of a radially outer end is larger than a width of a trapezoidal radially outer end of the radial accommodation hole.

同構成によれば、径方向収容孔に配設される磁石は、ロータの回転時の遠心力によって径方向外側に向かう力であって径方向収容孔の内壁面に押し付けられる力を受ける。よって、磁石とロータコアとのギャップを安定して小さくすることができ、ひいては安定して高トルク化を図ることができる。   According to this configuration, the magnet disposed in the radial accommodation hole receives a force that is directed outward in the radial direction by a centrifugal force when the rotor rotates and is pressed against the inner wall surface of the radial accommodation hole. Therefore, the gap between the magnet and the rotor core can be stably reduced, and as a result, the torque can be increased stably.

(ト)請求項1乃至5及び上記(イ)〜(ニ)のいずれか1つに記載の埋込磁石型モータにおいて、前記径方向収容孔の前記径方向外側端部を除く部分は、軸方向から見てその幅が径方向外側に向かうほど広い台形形状とされ、前記径方向収容孔に配設される前記磁石は、軸方向から見てその幅が径方向外側に向かうほど広く、その径方向内側端部の幅が前記径方向収容孔の台形形状の径方向内側端部の幅より大きい台形形状とされたことを特徴とする埋込磁石型モータ。   (G) In the interior magnet type motor according to any one of claims 1 to 5 and (a) to (d) above, a portion excluding the radially outer end of the radial accommodation hole is a shaft. The trapezoidal shape becomes wider as it goes radially outward when viewed from the direction, and the magnet disposed in the radial accommodation hole is wider as it goes radially outward when viewed from the axial direction. An embedded magnet type motor having a trapezoidal shape in which a width of a radially inner end portion is larger than a width of a radially inner end portion of the trapezoidal shape of the radial accommodation hole.

同構成によれば、径方向収容孔における不均等部の形状に関わらず、磁石のN極から直ぐに自身のS極に向かう磁路を遠くできるので、漏れ磁束を低減することができる。
(チ)請求項1乃至5及び上記(イ)〜(ト)のいずれか1つに記載の埋込磁石型モータにおいて、前記磁石収容部は、軸方向から見て直線状であってその幅が径方向に一定とされ、前記磁石収容部内に配設される前記磁石は、略直方体形状とされたことを特徴とする埋込磁石型モータ。
According to this configuration, regardless of the shape of the non-uniform portion in the radial accommodation hole, the magnetic path from the N-pole of the magnet to the S-pole of the magnet can be made far away, so that leakage flux can be reduced.
(H) In the interior magnet type motor according to any one of claims 1 to 5 and (a) to (g), the magnet housing portion is linear when viewed in the axial direction and has a width thereof. The interior magnet motor is characterized in that the magnet is fixed in the radial direction, and the magnet disposed in the magnet housing portion has a substantially rectangular parallelepiped shape.

同構成によれば、磁石は、略直方体形状とされるため、例えば、軸方向から見て湾曲した形状の磁石に比べて、簡単な形状となる。
(リ)請求項1乃至5及び上記(イ)〜(ト)のいずれか1つに記載の埋込磁石型モータにおいて、前記磁石収容部は、軸方向から見て湾曲した形状とされ、前記磁石収容部内に配設される前記磁石は、該磁石収容部に沿って湾曲した形状とされたことを特徴とする埋込磁石型モータ。
According to this configuration, the magnet has a substantially rectangular parallelepiped shape, and thus has a simpler shape than, for example, a curved magnet as viewed from the axial direction.
(I) In the interior magnet type motor according to any one of claims 1 to 5 and (a) to (g), the magnet housing portion has a curved shape when viewed in the axial direction, The embedded magnet type motor, wherein the magnet disposed in the magnet housing portion has a curved shape along the magnet housing portion.

同構成によれば、磁石は湾曲した形状とされるため、略直方体形状の磁石に比べて磁石を多く使用でき、更に高トルク化を図ることができる。
(ヌ)請求項1乃至3、5及び上記(イ)〜(リ)のいずれか1つに記載の埋込磁石型モータにおいて、前記V字収容孔は、前記磁石収容部の径方向外側同士を連通する頂部を有したことを特徴とする埋込磁石型モータ。
According to this configuration, since the magnet has a curved shape, more magnets can be used than a substantially rectangular parallelepiped magnet, and a higher torque can be achieved.
(Nu) Claim 1 thru | or 3, 5 and the interior magnet type motor as described in any one of said (i)-(ri) WHEREIN: The said V-shaped accommodation hole is radial direction outer sides of the said magnet accommodation part. An embedded magnet type motor having a top portion for communicating with each other.

同構成によれば、磁石収容部の径方向外側同士は頂部にて連通されるため、該部分において、各磁石収容部内に配設される磁石のN極から直ぐに自身のS極に向かう漏れ磁束が防止される。   According to this configuration, since the outer sides in the radial direction of the magnet housing portions communicate with each other at the top, the leakage magnetic flux that immediately goes from the N pole of the magnet disposed in each magnet housing portion toward its own S pole. Is prevented.

(ル)請求項1乃至5及び上記(イ)〜(ヌ)のいずれか1つに記載の埋込磁石型モータにおいて、前記径方向収容孔における前記不均等部を含む径方向外側端部の全ての部分は、軸方向から見た周方向の幅が前記径方向収容孔内に配設される前記磁石の幅より大きく設定されたことを特徴とする埋込磁石型モータ。   (L) In the interior magnet type motor according to any one of claims 1 to 5 and (a) to (n) above, the radial outer end portion including the non-uniform portion in the radial accommodation hole. All the parts are embedded magnet type motors characterized in that the width in the circumferential direction as viewed from the axial direction is set larger than the width of the magnet disposed in the radial accommodation hole.

同構成によれば、径方向収容孔における不均等部を含む径方向外側端部の全ての部分は、軸方向から見た周方向の幅が径方向収容孔内に配設される磁石の幅より大きく設定されるため、その部分における磁気抵抗が増加し(磁路が遠くなり)、漏れ磁束を更に低減することができる。   According to the same configuration, all the portions of the radially outer end including the unequal portion in the radial accommodation hole have a width in the circumferential direction viewed from the axial direction of the magnet disposed in the radial accommodation hole. Since the magnetic resistance is set larger, the magnetic resistance in that portion increases (the magnetic path becomes far), and the leakage magnetic flux can be further reduced.

本実施の形態における埋込磁石型モータのステータ及びロータの平面図。The top view of the stator and rotor of an embedded magnet type motor in this Embodiment. 本実施の形態におけるコアシートの平面図。The top view of the core sheet in this Embodiment. 本実施の形態におけるロータコアの分解斜視図。The exploded perspective view of the rotor core in this Embodiment. 角度−コギングトルク特性図。Angle-cogging torque characteristic diagram. 別例におけるロータの平面図。The top view of the rotor in another example. 別例におけるロータコアの分解斜視図。The disassembled perspective view of the rotor core in another example. 別例におけるロータの平面図。The top view of the rotor in another example.

符号の説明Explanation of symbols

2…ロータ、8…ロータコア、8a,44…径方向収容孔、8b,41…V字収容孔、8c,8h,44a…不均等部、8f,41a…磁石収容部、8k…内側ブリッジ部、9,10,42,43……磁石、11…コアシート、11a,11c…積層前不均等部、21…収容部間ブリッジ部。   2 ... rotor, 8 ... rotor core, 8a, 44 ... radial accommodation hole, 8b, 41 ... V-shaped accommodation hole, 8c, 8h, 44a ... non-uniform part, 8f, 41a ... magnet accommodation part, 8k ... inner bridge part, 9, 10, 42, 43... Magnet, 11... Core sheet, 11a, 11c.

Claims (5)

軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備えた埋込磁石型モータであって、
前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、
前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、
前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成され、
前記径方向収容孔及び前記V字収容孔の径方向外側端部には、前記径方向収容孔及び前記V字収容孔の他の部分における各周方向中心からの距離が周方向の一方と他方とで異なるように設定された不均等部が、軸方向の他の部分と異なる形状となるように形成されたことを特徴とする埋込磁石型モータ。
An embedded magnet type motor having a rotor core in which a plurality of housing holes penetrating in the axial direction are formed in the circumferential direction and having a rotor in which magnets are disposed in the housing holes so that the number of magnetic poles is P. There,
The housing hole is formed by forming P / 2 radial housing holes extending in a substantially radial direction and substantially V-shaped housing holes protruding outward in the radial direction. Formed alternately,
The magnets are disposed in the radial accommodating holes and are disposed in the respective magnet accommodating portions corresponding to the respective straight lines forming the V shape of the V-shaped accommodating holes,
The magnet arranged in the radial accommodation hole and the magnet arranged in the magnet accommodation part adjacent to one of the circumferential directions constitute one magnetic pole, and the radial accommodation hole A different magnetic pole is constituted by the magnet disposed in the magnet and the magnet disposed in the magnet housing portion adjacent to the other in the circumferential direction,
At the radially outer ends of the radial accommodation holes and the V-shaped accommodation holes, distances from the respective circumferential centers in the other portions of the radial accommodation holes and the V-shaped accommodation holes are one and the other in the circumferential direction. And a non-uniform portion set differently for each of the other portions in a different shape from the other portions in the axial direction.
請求項1に記載の埋込磁石型モータにおいて、
前記径方向収容孔における前記不均等部を含む径方向外側端部の少なくとも一部は、軸方向から見た周方向の幅が前記径方向収容孔内に配設される前記磁石の幅より大きく設定されたことを特徴とする埋込磁石型モータ。
The interior magnet type motor according to claim 1,
At least a part of the radially outer end including the non-uniform portion in the radial accommodation hole has a circumferential width as viewed from the axial direction larger than the width of the magnet disposed in the radial accommodation hole. An embedded magnet type motor characterized by being set.
請求項1又は2に記載の埋込磁石型モータにおいて、
前記磁石収容部の径方向内側端部は、前記径方向収容孔内に配設された前記磁石の磁束流出面又は磁束流入面と対向するとともに、前記磁石収容部の径方向内側と前記径方向収容孔との間に形成される内側ブリッジ部の軸方向から見た幅が径方向に沿って一定となるように形成されたことを特徴とする埋込磁石型モータ。
The interior magnet type motor according to claim 1 or 2,
A radially inner end portion of the magnet housing portion opposes a magnetic flux outflow surface or a magnetic flux inflow surface of the magnet disposed in the radial housing hole, and the radially inner side and the radial direction of the magnet housing portion. An embedded magnet type motor characterized in that the inner bridge portion formed between the housing holes is formed so that the width viewed from the axial direction is constant along the radial direction.
請求項1乃至3のいずれか1項に記載の埋込磁石型モータにおいて、
前記V字収容孔のV字を形成する各直線に対応した一対の前記磁石収容部がそれぞれ独立して形成されることで、一対の前記磁石収容部間における径方向外側に径方向に延びる収容部間ブリッジ部が形成されたことを特徴とする埋込磁石型モータ。
The interior magnet type motor according to any one of claims 1 to 3,
A pair of magnet housing portions corresponding to each straight line forming the V-shape of the V-shaped housing hole are independently formed, so that the housing extends radially outwardly between the pair of magnet housing portions. An embedded magnet type motor characterized in that an inter-unit bridge is formed.
請求項1乃至4のいずれか1項に記載の埋込磁石型モータにおいて、
前記ロータコアは、コアシートが軸方向に積層されてなるものであって、
前記コアシートにおける各前記径方向収容孔の径方向外側端部と対応した位置には、前記径方向収容孔の他の部分と対応した部分における周方向中心からの距離が周方向の一方と他方とで異なるように設定された積層前不均等部が周方向に部分的に形成され、
前記ロータコアは、前記積層前不均等部が周方向に均等に配設されるように前記コアシートが積層されてなることを特徴とする埋込磁石型モータ。
The interior magnet type motor according to any one of claims 1 to 4,
The rotor core is formed by laminating core sheets in the axial direction,
At the position corresponding to the radially outer end of each of the radial accommodation holes in the core sheet, the distance from the circumferential center in the part corresponding to the other part of the radial accommodation hole is one and the other in the circumferential direction. And the pre-lamination non-uniform portion set to be different in and partially formed in the circumferential direction,
The rotor core is an embedded magnet type motor in which the core sheets are laminated so that the pre-lamination non-uniform portions are evenly arranged in the circumferential direction.
JP2006118298A 2005-11-07 2006-04-21 Embedded magnet type motor Expired - Fee Related JP4777822B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006118298A JP4777822B2 (en) 2005-12-22 2006-04-21 Embedded magnet type motor
US11/557,299 US7705504B2 (en) 2005-11-07 2006-11-07 Embedded magnet type motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005369591 2005-12-22
JP2005369591 2005-12-22
JP2006118298A JP4777822B2 (en) 2005-12-22 2006-04-21 Embedded magnet type motor

Publications (2)

Publication Number Publication Date
JP2007195391A true JP2007195391A (en) 2007-08-02
JP4777822B2 JP4777822B2 (en) 2011-09-21

Family

ID=38450615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006118298A Expired - Fee Related JP4777822B2 (en) 2005-11-07 2006-04-21 Embedded magnet type motor

Country Status (1)

Country Link
JP (1) JP4777822B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008044127A1 (en) 2007-11-28 2009-06-25 Asmo Co., Ltd. Embedded magnet type motor has protrusion which is formed in accommodation hole of core sheet and is protruded from anticlockwise rotating side along radial direction of magnet
JP2009261154A (en) * 2008-04-17 2009-11-05 Asmo Co Ltd Embedded magnet type motor and its design method
US7800272B2 (en) 2007-11-28 2010-09-21 Asmo Co., Ltd. Embedded magnet motor and manufacturing method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256441A (en) * 1995-01-20 1996-10-01 Hitachi Metals Ltd Permanent magnet rotor
JP2001231196A (en) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd Permanent magnet rotor and its magnetizing method
JP2005051982A (en) * 2003-07-17 2005-02-24 Asmo Co Ltd Buried-type magnetic motor
JP2005312102A (en) * 2004-04-16 2005-11-04 Asmo Co Ltd Motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256441A (en) * 1995-01-20 1996-10-01 Hitachi Metals Ltd Permanent magnet rotor
JP2001231196A (en) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd Permanent magnet rotor and its magnetizing method
JP2005051982A (en) * 2003-07-17 2005-02-24 Asmo Co Ltd Buried-type magnetic motor
JP2005312102A (en) * 2004-04-16 2005-11-04 Asmo Co Ltd Motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008044127A1 (en) 2007-11-28 2009-06-25 Asmo Co., Ltd. Embedded magnet type motor has protrusion which is formed in accommodation hole of core sheet and is protruded from anticlockwise rotating side along radial direction of magnet
US7800272B2 (en) 2007-11-28 2010-09-21 Asmo Co., Ltd. Embedded magnet motor and manufacturing method of the same
US7868503B1 (en) 2007-11-28 2011-01-11 Asmo Co., Ltd. Embedded magnet motor and manufacturing method of the same
US8080915B2 (en) 2007-11-28 2011-12-20 Asmo Co., Ltd. Embedded magnet motor and manufacturing method of the same
US8232703B2 (en) 2007-11-28 2012-07-31 Asmo Co., Ltd. Embedded magnet motor and manufacturing method of the same
JP2009261154A (en) * 2008-04-17 2009-11-05 Asmo Co Ltd Embedded magnet type motor and its design method

Also Published As

Publication number Publication date
JP4777822B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4372798B2 (en) Embedded magnet type motor
US7528519B2 (en) Permanent magnet rotary motor
JP5806073B2 (en) Brushless motor
JP5117833B2 (en) Embedded magnet type motor
JP2012075208A (en) Rotor
JP2009273304A (en) Rotor of rotating electric machine, and rotating electric machine
JP2008193809A (en) Embedded magnet type motor
JP2006254599A (en) Embedded magnet type motor
JPH1118339A (en) Motor
JP2008148447A (en) Motor for electric power steering device
JP5611680B2 (en) motor
JP2006014450A (en) Magnet embedded rotor
JP5006009B2 (en) Embedded magnet type motor
JP5128387B2 (en) Embedded magnet type motor
JP4777822B2 (en) Embedded magnet type motor
JP2007330027A (en) Buried-magnet motor
JP5373370B2 (en) Embedded magnet type motor
JP5801693B2 (en) motor
JP4758215B2 (en) Embedded magnet type motor
WO2020100675A1 (en) Rotor, and rotary electric machine provided with same
JP5897939B2 (en) Rotor and motor
JP2019057984A (en) Rotor of permanent magnet type rotary electric machine
JP5303907B2 (en) Axial gap type rotating electrical machine and field element core
WO2024057837A1 (en) Rotary electric machine core and rotary electric machine
JP2008220143A (en) Rotor of rotary electric machine and rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees