JP2005312102A - Motor - Google Patents

Motor Download PDF

Info

Publication number
JP2005312102A
JP2005312102A JP2004121993A JP2004121993A JP2005312102A JP 2005312102 A JP2005312102 A JP 2005312102A JP 2004121993 A JP2004121993 A JP 2004121993A JP 2004121993 A JP2004121993 A JP 2004121993A JP 2005312102 A JP2005312102 A JP 2005312102A
Authority
JP
Japan
Prior art keywords
magnetic path
circumferential direction
pair
end portions
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2004121993A
Other languages
Japanese (ja)
Inventor
Kaname Egawa
要 江川
Yoshito Nishikawa
義人 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2004121993A priority Critical patent/JP2005312102A/en
Publication of JP2005312102A publication Critical patent/JP2005312102A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor utilizing reluctance torque in which torque ripple and cogging torque can be reduced. <P>SOLUTION: A buried magnet type motor comprises a stator 2 having a plurality of teeth 7 formed to extend toward the axial center at an equiangular interval in the circumferential direction and applied with winding, and a rotor 3 having a rotor core 11 provided with a plurality of non-magnetic path forming parts (containing holes 21a, 21b, 22a, 22b and V-shaped permanent magnets 12, 13) in the circumferential direction and rotary drives the rotor 3 using the reluctance torque as a part of driving force. Outer extensions 42a-42d are formed in proximity to the outer circumference of the rotor core 11 at the end part of the containing holes 21a, 21b, 22a, 22b. A pair of approximate extensions 42a and 42d are formed such that a part thereof (outer extension 42b, 42d) has a shape partially different from that of a pair of outer extensions 42b and 42c adjacent in the circumferential direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リラクタンストルクを利用するモータに関するものである。   The present invention relates to a motor using reluctance torque.

リラクタンストルクを利用するモータとしては、埋込磁石型モータ等がある。埋込磁石型モータは、ロータコア内に永久磁石が埋設されたロータを有するモータであり、ステータが作り出す回転磁界とロータとの間のマグネットトルクに加え、ロータに形成される磁路(磁路形成部)に基づくリラクタンストルクを有効に利用することにより高いモータ効率を得ることができる。   An example of a motor that uses reluctance torque is an embedded magnet type motor. An embedded magnet type motor is a motor having a rotor in which a permanent magnet is embedded in a rotor core. In addition to a magnet torque between a rotating magnetic field generated by a stator and the rotor, a magnetic path formed in the rotor (magnetic path formation) High motor efficiency can be obtained by effectively utilizing the reluctance torque based on (1).

このような埋込磁石型モータのロータとしては、ロータコアに形成された収容孔に永久磁石を収容保持し、その永久磁石の端部からロータコアの外周に近接するように延びる空隙(非磁路端部)を収容孔の一部として形成し、その空隙により漏れ磁束(N極から直ぐに自身のS極に向かう磁束)を小さくしたものがある(例えば、特許文献1参照)。   As a rotor of such an embedded magnet type motor, a permanent magnet is accommodated and held in an accommodation hole formed in the rotor core, and a gap extending from the end of the permanent magnet so as to be close to the outer periphery of the rotor core (non-magnetic path end) Part) is formed as a part of the accommodation hole, and the leakage magnetic flux (magnetic flux that immediately goes from the N pole to its own S pole) is reduced by the gap (see, for example, Patent Document 1).

そして、特許文献1では、ロータコアの外周面と空隙の内面との間隔(厚さ)を隣り合う永久磁石側に向けて小さくすることで、トルクリップルを低減する技術が開示されている。
特開2000−217287号公報
Patent Document 1 discloses a technique for reducing torque ripple by reducing the distance (thickness) between the outer peripheral surface of the rotor core and the inner surface of the air gap toward the adjacent permanent magnet side.
JP 2000-217287 A

しかしながら、上記のようなロータでは、各空隙の形状が同じであるため、各空隙にて形成される各磁路のティースに対する状態(相対関係)が同じとなり、各磁路毎に基づくモータトルクが同じとなって、トルクリップル及びコギングトルクが大きくなってしまう(積み上げられてしまう)という問題がある。尚、このことは、モータの振動や騒音を大きくしてしまう原因となる。又、リラクタンストルクのみを駆動力とするモータ(リラクタンスモータ)においても、同様の問題が発生する。   However, in the rotor as described above, since the shape of each air gap is the same, the state (relative relationship) with respect to the teeth of each magnetic path formed in each air gap is the same, and the motor torque based on each magnetic path is the same. In the same manner, there is a problem that torque ripple and cogging torque are increased (accumulated). This causes the motor vibration and noise to increase. The same problem occurs in a motor (reluctance motor) that uses only reluctance torque as a driving force.

本発明は、上記問題点を解決するためになされたものであって、その目的は、リラクタンストルクを利用するモータにおいて、トルクリップル及びコギングトルクを低減することができるモータを提供する。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a motor that can reduce torque ripple and cogging torque in a motor that uses reluctance torque.

請求項1に記載の発明では、略円筒状に形成され、周方向等角度間隔で軸中心に向かって延びるように形成された複数のティースに巻線が巻回されたステータと、前記ステータの内側に回転可能に収容され、非磁路形成部が周方向に複数設けられたロータコアを有するロータとを備え、リラクタンストルクを駆動力の少なくとも一部として前記ロータを回転駆動させるモータにおいて、前記非磁路形成部は、その両端部が前記ロータコア外周に近接する非磁路端部を有し、周方向に隣り合う前記非磁路形成部の近接する一対の非磁路端部が、その周方向に隣り合う一対の非磁路端部に対して異なる形状に形成された構成を有する。   According to the first aspect of the present invention, a stator having a substantially cylindrical shape and wound around a plurality of teeth formed so as to extend toward the center of the shaft at equal circumferential intervals, and the stator A motor that is rotatably housed inside and has a rotor core having a plurality of non-magnetic path forming portions provided in the circumferential direction, and that rotates the rotor using at least part of a reluctance torque as a driving force. The magnetic path forming portion has non-magnetic path end portions that are close to the outer periphery of the rotor core, and a pair of non-magnetic path end portions that are adjacent to the non-magnetic path forming portion adjacent in the circumferential direction are It has the structure formed in the different shape with respect to a pair of non-magnetic path edge part adjacent to a direction.

請求項2に記載の発明では、請求項1に記載のモータにおいて、周方向に隣り合う前記非磁路形成部の近接する非磁路端部同士が異なる形状に形成された構成を有する。
請求項3に記載の発明では、請求項1又は2に記載のモータにおいて、前記一対の非磁路端部と、その周方向に隣り合う前記一対の非磁路端部とは、それぞれの一方の前記非磁路端部が同じ形状に形成され、それぞれの他方の前記非磁路端部が異なる形状に形成される。
According to a second aspect of the present invention, in the motor according to the first aspect, the nonmagnetic path end portions adjacent to each other in the circumferential direction are formed in different shapes.
According to a third aspect of the present invention, in the motor according to the first or second aspect, each of the pair of nonmagnetic path end portions and the pair of nonmagnetic path end portions adjacent to each other in the circumferential direction is The nonmagnetic path end portions are formed in the same shape, and the other nonmagnetic path end portions are formed in different shapes.

請求項4に記載の発明では、請求項1に記載のモータにおいて、前記一対の非磁路端部と、その周方向に隣り合う前記一対の非磁路端部とは、それぞれの各非磁路端部が全て異なる形状に形成される。   According to a fourth aspect of the present invention, in the motor according to the first aspect, the pair of non-magnetic path end portions and the pair of non-magnetic path end portions adjacent to each other in the circumferential direction include the respective non-magnetic paths. The road end portions are all formed in different shapes.

請求項5に記載の発明では、請求項1に記載のモータにおいて、周方向に隣り合う前記非磁路形成部の近接する非磁路端部同士が同じ形状に形成され、前記一対の非磁路端部における一方と他方の両非磁路端部が、周方向に隣り合う一対の非磁路端部における一方と他方の両非磁路端部と、それぞれ同じだけ異なるように形成される。   According to a fifth aspect of the present invention, in the motor according to the first aspect, adjacent nonmagnetic path end portions of the nonmagnetic path forming portions adjacent in the circumferential direction are formed in the same shape, and the pair of nonmagnetic paths. One and the other non-magnetic path end at the road end are formed to be different from each other by the same amount as the other non-magnetic path end at the pair of non-magnetic path ends adjacent in the circumferential direction. .

請求項6に記載の発明では、請求項1乃至5のいずれか1項に記載のモータにおいて、前記一対の非磁路端部と、その周方向に隣り合う前記一対の非磁路端部とは、前記ロータコアの全周に渡って交互に形成される。   According to a sixth aspect of the present invention, in the motor according to any one of the first to fifth aspects, the pair of non-magnetic path ends and the pair of non-magnetic path ends adjacent in the circumferential direction Are alternately formed over the entire circumference of the rotor core.

請求項7に記載の発明では、請求項1乃至6のいずれか1項に記載のモータにおいて、前記非磁路形成部は、前記ロータコアに形成された収容孔とその収容孔に配設された永久磁石であって、前記非磁路端部は、前記永久磁石が配設されない前記収容孔の一部である。   According to a seventh aspect of the present invention, in the motor according to any one of the first to sixth aspects, the non-magnetic path forming portion is disposed in a housing hole formed in the rotor core and the housing hole. It is a permanent magnet, The said non-magnetic path edge part is a part of said accommodating hole in which the said permanent magnet is not arrange | positioned.

請求項8に記載の発明では、略円筒状に形成され、周方向等角度間隔で軸中心に向かって延びるように形成された複数のティースに巻線が巻回されたステータと、前記ステータの内側に回転可能に収容され、非磁路形成部が周方向に複数設けられたロータコアを有するロータとを備え、リラクタンストルクを駆動力の少なくとも一部として前記ロータを回転駆動させるモータにおいて、前記非磁路形成部は、その両端部が前記ロータコア外周に近接する非磁路端部を有し、周方向に隣り合う前記非磁路形成部の近接する非磁路端部同士が異なる形状に形成された構成を有する。   According to an eighth aspect of the present invention, there is provided a stator in which a winding is wound around a plurality of teeth that are formed in a substantially cylindrical shape and extend toward the axis center at equal circumferential intervals. A motor that is rotatably housed inside and has a rotor core having a plurality of non-magnetic path forming portions provided in the circumferential direction, and that rotates the rotor using at least part of a reluctance torque as a driving force. The magnetic path forming portion has non-magnetic path end portions that are close to the outer periphery of the rotor core, and the adjacent non-magnetic path end portions of the non-magnetic path forming portions adjacent in the circumferential direction are formed in different shapes. It has the structure made.

請求項9に記載の発明では、略円筒状に形成され、周方向等角度間隔で軸中心に向かって延びるように形成された複数のティースに巻線が巻回されたステータと、前記ステータの内側に回転可能に収容され、非磁路形成部が周方向に複数設けられたロータコアを軸方向に複数有するロータとを備え、リラクタンストルクを駆動力の少なくとも一部として前記ロータを回転駆動させるモータにおいて、前記非磁路形成部は、その両端部が前記ロータコア外周に近接する非磁路端部を有し、周方向に隣り合う前記非磁路形成部の近接する一対の前記非磁路端部が、異なる前記ロータコアにおける一対の前記非磁路端部に対して異なる形状に形成された構成を有する。   In a ninth aspect of the present invention, a stator having a substantially cylindrical shape and windings wound around a plurality of teeth formed to extend toward the axis center at equal circumferential intervals, and the stator A motor that is rotatably housed inside and has a plurality of rotor cores in the axial direction in which a plurality of non-magnetic path forming portions are provided in the circumferential direction, and drives the rotor to rotate by using reluctance torque as at least part of the driving force The non-magnetic path forming portion has a non-magnetic path end portion whose both end portions are close to the outer periphery of the rotor core, and a pair of the non-magnetic path end portions adjacent to the non-magnetic path forming portion adjacent in the circumferential direction. The portion has a configuration formed in a different shape with respect to the pair of non-magnetic path end portions in different rotor cores.

(作用)
請求項1に記載の発明によれば、周方向に隣り合う非磁路形成部の近接する一対の非磁路端部が、その周方向に隣り合う一対の非磁路端部に対して異なる形状に形成された構成を有するため、モータトルクの脈動(変動)が滑らかとなり、トルクリップル及びコギングトルクが低減される。
(Function)
According to the first aspect of the present invention, the pair of non-magnetic path ends adjacent to each other in the circumferential direction are different from the pair of non-magnetic path ends adjacent in the circumferential direction. Since it has a configuration formed in a shape, the pulsation (variation) of the motor torque becomes smooth, and torque ripple and cogging torque are reduced.

請求項2に記載の発明によれば、周方向に隣り合う非磁路形成部の近接する非磁路端部同士が異なる形状に形成された構成を有するため、その部分でのモータトルクの脈動(変動)が滑らかとなり、トルクリップル及びコギングトルクが低減される。   According to the invention described in claim 2, since the non-magnetic path end portions adjacent to each other in the circumferential direction are formed in different shapes, the pulsation of the motor torque at that portion (Fluctuation) becomes smooth, and torque ripple and cogging torque are reduced.

請求項3に記載の発明によれば、一対の非磁路端部と、その周方向に隣り合う一対の非磁路端部とは、それぞれの一方の非磁路端部が同じ形状に形成されながらも、それぞれの他方の非磁路端部が異なる形状に形成されることで、一対の非磁路端部がその周方向に隣り合う一対の非磁路端部に対して異なる形状に形成される。   According to the third aspect of the present invention, the pair of non-magnetic path ends and the pair of non-magnetic path ends adjacent to each other in the circumferential direction are formed in the same shape. However, by forming each other non-magnetic path end in a different shape, the pair of non-magnetic path ends have a different shape relative to the pair of non-magnetic path ends adjacent in the circumferential direction. It is formed.

請求項4に記載の発明によれば、一対の非磁路端部と、その周方向に隣り合う一対の非磁路端部とは、それぞれの各非磁路端部が全て異なる形状に形成されることで、一対の非磁路端部がその周方向に隣り合う一対の非磁路端部に対して異なる形状に形成される。   According to the fourth aspect of the present invention, the pair of non-magnetic path ends and the pair of non-magnetic path ends adjacent to each other in the circumferential direction are all formed in different shapes. By doing so, the pair of non-magnetic path end portions are formed in different shapes with respect to the pair of non-magnetic path end portions adjacent in the circumferential direction.

請求項5に記載の発明によれば、周方向に隣り合う前記非磁路形成部の近接する非磁路端部同士が同じ形状に形成される。そして、前記一対の非磁路端部における一方と他方の両非磁路端部が、周方向に隣り合う一対の非磁路端部における一方と他方の両非磁路端部と、それぞれ同じだけ異なるように形成されることで、一対の非磁路端部がその周方向に隣り合う一対の非磁路端部に対して異なる形状に形成される。   According to invention of Claim 5, the non-magnetic path edge parts which the said non-magnetic path formation part adjacent to the circumferential direction adjoins are formed in the same shape. The one and other non-magnetic path ends of the pair of non-magnetic path ends are the same as the one and the other non-magnetic path ends of the pair of non-magnetic path ends adjacent to each other in the circumferential direction. By being formed so as to be different from each other, the pair of non-magnetic path end portions are formed in different shapes with respect to the pair of non-magnetic path end portions adjacent in the circumferential direction.

請求項6に記載の発明によれば、一対の非磁路端部と、その周方向に隣り合う前記一対の非磁路端部とは、ロータコアの全周に渡って交互に形成されるため、ロータコアの全周に渡ってモータトルクの脈動(変動)が滑らかとなり、トルクリップル及びコギングトルクが低減される。   According to the invention described in claim 6, the pair of non-magnetic path end portions and the pair of non-magnetic path end portions adjacent in the circumferential direction are alternately formed over the entire circumference of the rotor core. The pulsation (variation) of the motor torque is smooth over the entire circumference of the rotor core, and torque ripple and cogging torque are reduced.

請求項7に記載の発明によれば、非磁路形成部は、前記ロータコアに形成された収容孔とその収容孔に配設された永久磁石であって、非磁路端部は前記永久磁石が配設されない前記収容孔の一部であるため、リラクタンストルク及び永久磁石によるマグネットトルクを駆動力としてロータを高いモータ効率で回転駆動させることができる。   According to the seventh aspect of the present invention, the non-magnetic path forming portion is a housing hole formed in the rotor core and a permanent magnet disposed in the housing hole, and the non-magnetic path end is the permanent magnet. Therefore, the rotor can be rotationally driven with high motor efficiency using the reluctance torque and the magnet torque generated by the permanent magnet as a driving force.

請求項8に記載の発明によれば、周方向に隣り合う非磁路形成部の近接する非磁路端部同士が異なる形状に形成された構成を有するため、その部分でのモータトルクの脈動(変動)が滑らかとなり、トルクリップル及びコギングトルクが低減される。   According to the eighth aspect of the invention, since the nonmagnetic path end portions adjacent to each other in the circumferential direction are formed in different shapes, the motor torque pulsation in that portion is formed. (Fluctuation) becomes smooth, and torque ripple and cogging torque are reduced.

請求項9に記載の発明によれば、周方向に隣り合う前記非磁路形成部の近接する一対の前記非磁路端部が、異なる前記ロータコアにおける一対の前記非磁路端部に対して異なる形状に形成された構成を有するため、モータトルクの脈動(変動)が滑らかとなり、トルクリップル及びコギングトルクが低減される。   According to the ninth aspect of the present invention, the pair of nonmagnetic path end portions adjacent to each other in the circumferential direction adjacent to the nonmagnetic path forming portion is different from the pair of nonmagnetic path end portions in the different rotor cores. Since it has the structure formed in the different shape, the pulsation (fluctuation) of motor torque becomes smooth, and a torque ripple and a cogging torque are reduced.

以上詳述したように、本発明によれば、リラクタンストルクを利用するモータにおいて、トルクリップル及びコギングトルクを低減することができるモータを提供することができる。   As described above in detail, according to the present invention, it is possible to provide a motor that can reduce torque ripple and cogging torque in a motor that uses reluctance torque.

以下、本発明を埋込磁石型モータに具体化した一実施の形態を図1〜図4に従って説明する。図1に示すように、埋込磁石型モータは、ハウジング1とステータ2とロータ3とを備える。   Hereinafter, an embodiment in which the present invention is embodied in an interior magnet type motor will be described with reference to FIGS. As shown in FIG. 1, the embedded magnet type motor includes a housing 1, a stator 2, and a rotor 3.

ハウジング1は、略有底筒状のケース4と、ケース4の開口部(図1中、下端部)を閉塞するための蓋部5とを備える。そして、ステータ2はケース4の内周面に固定され、ロータ3はその回転軸6がケース4及び蓋部5に設けられた軸受4a,5aに支持されることでステータ2の内側に回転可能に収容される。   The housing 1 includes a substantially bottomed cylindrical case 4 and a lid 5 for closing the opening (the lower end in FIG. 1) of the case 4. The stator 2 is fixed to the inner peripheral surface of the case 4, and the rotor 3 is rotatable to the inside of the stator 2 by supporting the rotating shaft 6 by bearings 4 a and 5 a provided on the case 4 and the lid 5. Is housed in.

ステータ2は、略円筒状に形成され、周方向等角度間隔で軸中心に向かって延びるように形成された複数のティース7(図3参照)を有したステータコア8と、ティース7にインシュレータ9(図1参照)を介して巻回された巻線10とを備える。尚、本実施の形態では、ティース7は、60個形成されている。又、図3においては、インシュレータ9及び巻線10の図示を省略している。又、巻線10はティース7に分布巻にて巻回される。   The stator 2 is formed in a substantially cylindrical shape, and has a stator core 8 having a plurality of teeth 7 (see FIG. 3) formed so as to extend toward the axis center at equal circumferential intervals, and an insulator 9 ( 1) and a winding 10 wound via the wire. In the present embodiment, 60 teeth 7 are formed. In FIG. 3, the insulator 9 and the winding 10 are not shown. The winding 10 is wound around the tooth 7 by distributed winding.

ロータ3は、図1に示すように、前記回転軸6と、ロータコア11と、永久磁石としてのV字永久磁石12,13(図2及び図3参照)とを備える。本実施の形態のロータコア11は、複数の円盤状のコアシートが積層されて形成されている。尚、図1及び図2においては、複数のコアシートの境界線の図示を省略している。又、ロータコア11の軸中心には回転軸6が嵌着される中心孔11aが形成されている。又、図2は、回転軸6を除くロータ3の概略斜視図である。   As shown in FIG. 1, the rotor 3 includes the rotating shaft 6, the rotor core 11, and V-shaped permanent magnets 12 and 13 (see FIGS. 2 and 3) as permanent magnets. The rotor core 11 of the present embodiment is formed by laminating a plurality of disk-shaped core sheets. In addition, in FIG.1 and FIG.2, illustration of the boundary line of a several core sheet | seat is abbreviate | omitted. A central hole 11 a into which the rotary shaft 6 is fitted is formed at the axial center of the rotor core 11. FIG. 2 is a schematic perspective view of the rotor 3 excluding the rotating shaft 6.

ロータコア11には、図2及び図3に示すように、軸方向に貫通し、一対で径方向内側に凸の略V字形状をなす収容孔21a,21b〜30a,30bが、周方向に10対並んで形成されている。そして、ロータコア11には、隣り合う前記V字の間で径方向に延びる磁路形成部31〜40が形成される。又、各収容孔21a,21b〜30a,30bの両端部には、漏れ磁束(磁石のN極から直ぐに自身のS極に向かう磁束)を小さくすべく延設された内側延設部41及び外側延設部42a〜42dが(孔の一部として)形成されている(図3及び図4参照)。   As shown in FIGS. 2 and 3, the rotor core 11 has 10 pairs of receiving holes 21a, 21b to 30a, 30b that penetrate in the axial direction and have a substantially V-shape projecting radially inward in the circumferential direction. It is formed side by side. And in the rotor core 11, the magnetic path formation parts 31-40 extended in a radial direction between the said V-shaped adjacent are formed. In addition, at both ends of each of the receiving holes 21a, 21b to 30a, 30b, there are an inner extending portion 41 and an outer portion that extend to reduce leakage magnetic flux (magnetic flux that immediately goes from the N pole of the magnet toward its own S pole). Extension parts 42a-42d are formed (as a part of hole) (refer to Drawing 3 and Drawing 4).

そして、(内側延設部41及び外側延設部42a〜42dを除く)収容孔21a,21b〜30a,30bには、径方向内側に凸の略V字形状に配置されるV字永久磁石12,13が収容保持されている。本実施の形態では、V字永久磁石12,13は、4角柱状の一対の永久磁石12a,12b,13a,13bを各収容孔21a,21b〜30a,30bに収容することで略V字形状に配置してなる。又、隣り合うV字永久磁石12,13は、N極とS極が逆に設定され、例えばV字永久磁石12(永久磁石12a,12b)は径方向外側がN極、V字永久磁石13(永久磁石13a,13b)は径方向外側がS極に設定される。   And in the accommodation holes 21a, 21b to 30a, 30b (excluding the inner extending portion 41 and the outer extending portions 42a to 42d), the V-shaped permanent magnet 12 is arranged in a substantially V-shape projecting radially inward. 13 are accommodated and held. In the present embodiment, the V-shaped permanent magnets 12 and 13 are substantially V-shaped by accommodating a pair of quadrangular prism-shaped permanent magnets 12a, 12b, 13a, and 13b in the accommodating holes 21a, 21b to 30a, and 30b. Arranged. The adjacent V-shaped permanent magnets 12 and 13 are set so that the N pole and the S pole are reversed. For example, the V-shaped permanent magnet 12 (permanent magnets 12a and 12b) has an N-pole on the radially outer side and the V-shaped permanent magnet 13. (Permanent magnets 13a, 13b) are set to the S pole on the outside in the radial direction.

そして、周方向に隣り合う一方の磁路形成部31,33,35,37,39における周方向中心L1がティース7の周方向中心LTと径方向に直列状態となった状態(図3参照)で、周方向に隣り合う他方の磁路形成部32,34,36,38,40における周方向中心L2はティース7の周方向中心LTに対して周方向にずれるように設定されている。詳しくは、磁路形成部31〜40は、5.5スロット分間隔と6.5スロット分間隔を周方向に繰り返すように形成され、前記収容孔21a,21b〜30a,30b及びV字永久磁石12,13(永久磁石12a,12b,13a,13b)が形成するV字の角度は、上記のように形成される磁路形成部31〜40の間隔に対応して設定されている。尚、本実施の形態では、収容孔21a,21b〜30a,30bとV字永久磁石12,13が複数の非磁路形成部を構成し、各非磁路形成部の両端部でロータコア11外周に近接する(V字永久磁石12,13が配設されない)外側延設部42a〜42dが非磁路端部を構成している。   And the circumferential direction center L1 in one magnetic path formation part 31, 33, 35, 37, 39 adjacent to the circumferential direction was in the serial state in the radial direction with circumferential direction center LT of the teeth 7 (refer FIG. 3). Thus, the circumferential center L2 of the other magnetic path forming portions 32, 34, 36, 38, and 40 adjacent in the circumferential direction is set so as to be shifted in the circumferential direction with respect to the circumferential center LT of the teeth 7. Specifically, the magnetic path forming portions 31 to 40 are formed so as to repeat an interval of 5.5 slots and an interval of 6.5 slots in the circumferential direction, and the receiving holes 21a, 21b to 30a, 30b and the V-shaped permanent magnets. 12 and 13 (permanent magnets 12a, 12b, 13a and 13b) are formed in an angle corresponding to the interval between the magnetic path forming portions 31 to 40 formed as described above. In the present embodiment, the receiving holes 21a, 21b to 30a, 30b and the V-shaped permanent magnets 12, 13 constitute a plurality of non-magnetic path forming portions, and the outer periphery of the rotor core 11 at both ends of each non-magnetic path forming portion. The outer extending portions 42a to 42d that are close to (the V-shaped permanent magnets 12 and 13 are not disposed) constitute non-magnetic path end portions.

ここで、周方向に隣り合う前記非磁路形成部の近接する一対の非磁路端部(一対の外側延設部)は、その周方向に隣り合う一対の非磁路端部に対して異なる形状に形成されている。即ち、図4に示すように、近接する一対の外側延設部42a,42dは、その周方向に隣り合う一対の外側延設部42b,42cに対して少なくとも一部分が異なる形状に形成されている。   Here, a pair of non-magnetic path end portions (a pair of outer extending portions) adjacent to each other in the circumferential direction are adjacent to a pair of non-magnetic path ends adjacent in the circumferential direction. They are formed in different shapes. That is, as shown in FIG. 4, at least a part of the pair of adjacent outer extending portions 42a and 42d adjacent to each other is formed in a shape different from the pair of outer extending portions 42b and 42c adjacent in the circumferential direction. .

詳述すると、本実施の形態では、周方向に隣り合う外側延設部42a〜42dの周方向に近接するもの同士が異なる形状(非対称)に形成されている。即ち、外側延設部42aと外側延設部42dとが異なる形状(非対称)に形成され、外側延設部42bと外側延設部42cとが異なる形状(非対称)に形成されている。又、一対の外側延設部42a,42dと、その周方向に隣り合う一対の外側延設部42b,42cとは、それぞれの一方の外側延設部42a,42cが同じ形状に形成され、それぞれの他方の外側延設部42b,42dがそれぞれ異なる形状に形成されている。これにより、一対の外側延設部42a,42dが、一対の外側延設部42b,42cに対して一部分(外側延設部42bと外側延設部42d)が異なる形状に形成されている。又、本実施の形態では、前述した外側延設部42aから外側延設部42dがロータコア11の全周に渡って順次繰り返されて(一対の外側延設部42d,42aと一対の外側延設部42b,42cとが交互に)形成されている。尚、本実施の形態では、外側延設部42a,42cは外側延設部42bより周方向幅が大きく設定され、外側延設部42bは外側延設部42dより周方向幅が大きく設定されている。   More specifically, in the present embodiment, the outer extending portions 42a to 42d adjacent in the circumferential direction are formed in different shapes (asymmetric) in the vicinity of each other in the circumferential direction. That is, the outer extending portion 42a and the outer extending portion 42d are formed in different shapes (asymmetric), and the outer extending portion 42b and the outer extending portion 42c are formed in different shapes (asymmetric). The pair of outer extending portions 42a and 42d and the pair of outer extending portions 42b and 42c adjacent to each other in the circumferential direction are formed in the same shape. The other outer extending portions 42b and 42d are formed in different shapes. As a result, the pair of outer extending portions 42a and 42d are formed in different shapes from the pair of outer extending portions 42b and 42c (the outer extending portion 42b and the outer extending portion 42d). In the present embodiment, the outer extending portion 42a to the outer extending portion 42d are sequentially repeated over the entire circumference of the rotor core 11 (the pair of outer extending portions 42d and 42a and the pair of outer extending portions). The portions 42b and 42c are alternately formed. In the present embodiment, the outer extending portions 42a and 42c are set to have a larger circumferential width than the outer extending portion 42b, and the outer extending portion 42b is set to have a larger circumferential width than the outer extending portion 42d. Yes.

上記のように構成された埋込磁石型モータでは、リラクタンストルク及びマグネットトルクを駆動力としてロータ3を高いモータ効率で回転駆動させることができる。
次に、上記実施の形態の特徴的な作用効果を以下に記載する。
In the embedded magnet type motor configured as described above, the rotor 3 can be rotationally driven with high motor efficiency using the reluctance torque and the magnet torque as driving forces.
Next, characteristic effects of the above embodiment will be described below.

(1)近接する一対の外側延設部42a,42dは、その周方向に隣り合う一対の外側延設部42b,42cに対して少なくとも一部分(外側延設部42bと外側延設部42d)が異なる形状に形成されている。よって、一対の外側延設部42a,42dと一対の外側延設部42b,42cとで(対同士で)ティース7に対する状態(相対関係)が異なることになる。よって、モータトルクの脈動(変動)が滑らかとなり、トルクリップル及びコギングトルクが低減される。その結果、埋込磁石型モータの振動や騒音を低減することができる。   (1) A pair of adjacent outer extending portions 42a and 42d is at least partially (outer extending portion 42b and outer extending portion 42d) with respect to a pair of outer extending portions 42b and 42c adjacent in the circumferential direction. They are formed in different shapes. Therefore, the pair of outer extending portions 42a and 42d and the pair of outer extending portions 42b and 42c (in pairs) have different states (relative relationships) with respect to the teeth 7. Therefore, the pulsation (variation) of the motor torque becomes smooth, and torque ripple and cogging torque are reduced. As a result, vibration and noise of the embedded magnet type motor can be reduced.

(2)近接する外側延設部42aと外側延設部42dとが異なる形状(非対称)に形成され、外側延設部42bと外側延設部42cとが異なる形状(非対称)に形成されるため、それぞれの部分でのモータトルクの脈動(変動)が滑らかとなり、トルクリップル及びコギングトルクが低減される。   (2) The adjacent outer extending portion 42a and the outer extending portion 42d are formed in different shapes (asymmetric), and the outer extending portion 42b and the outer extending portion 42c are formed in different shapes (asymmetric). The pulsation (variation) of the motor torque in each part becomes smooth, and the torque ripple and the cogging torque are reduced.

(3)前記一対の外側延設部42a,42dと前記一対の外側延設部42b,42cとがロータコア11の全周に渡って交互に形成されるため、ロータコア11の全周に渡ってモータトルクの脈動(変動)が滑らかとなり、トルクリップル及びコギングトルクが低減される。   (3) Since the pair of outer extending portions 42 a and 42 d and the pair of outer extending portions 42 b and 42 c are alternately formed over the entire circumference of the rotor core 11, the motor extends over the entire circumference of the rotor core 11. Torque pulsation (variation) becomes smooth, and torque ripple and cogging torque are reduced.

(4)周方向に隣り合う一方の磁路形成部31,33,35,37,39における周方向中心L1がティース7の周方向中心LTと径方向に直列状態となった状態(図3参照)で、周方向に隣り合う他方の磁路形成部32,34,36,38,40における周方向中心L2はティース7の周方向中心LTに対して周方向にずれるように設定されている。これにより、隣り合う磁路形成部におけるそれぞれの周方向中心L1,L2と、ティース7の周方向中心LTとが同時にそれぞれ径方向に直列状態とならない。よって、隣り合う磁路形成部に同時に直線的なコイル磁束の流れが形成される(生じる)ことが防止され、トルクリップル及びコギングトルクが低減される。   (4) The state where the circumferential center L1 in one of the magnetic path forming portions 31, 33, 35, 37, 39 adjacent in the circumferential direction is in series with the circumferential center LT of the teeth 7 in the radial direction (see FIG. 3). ), The circumferential center L2 of the other magnetic path forming portions 32, 34, 36, 38, 40 adjacent in the circumferential direction is set so as to be shifted in the circumferential direction with respect to the circumferential center LT of the tooth 7. Thereby, each circumferential direction center L1, L2 in the adjacent magnetic path formation part and the circumferential direction center LT of the teeth 7 are not simultaneously in series in the radial direction. Therefore, it is prevented that a linear coil magnetic flux flow is simultaneously formed (generated) in adjacent magnetic path forming portions, and torque ripple and cogging torque are reduced.

上記実施の形態は、以下のように変更して実施してもよい。
・上記実施の形態では、一対の外側延設部42a,42dと、その周方向に隣り合う一対の外側延設部42b,42cとは、それぞれの一方の外側延設部42a,42cが同じ形状に形成され、それぞれの他方の外側延設部42b,42dがそれぞれ異なる形状に形成されるとしたが、これに限定されない。即ち、近接する一対の外側延設部が、その周方向に隣り合う一対の外側延設部に対して少なくとも一部分が異なる形状に形成される構成を有するように、他の構成に変更してもよい。
The above embodiment may be modified as follows.
In the above embodiment, the pair of outer extending portions 42a and 42d and the pair of outer extending portions 42b and 42c adjacent to each other in the circumferential direction have the same shape as one of the outer extending portions 42a and 42c. The other outer extending portions 42b and 42d are formed in different shapes. However, the present invention is not limited to this. That is, even if it changes to another structure so that it may have a structure in which a pair of adjacent outer extension part has a shape in which at least one part differs with respect to a pair of outer extension part adjacent to the circumferential direction. Good.

例えば、近接する外側延設部同士を同じ形状(対称)に形成し、一対の外側延設部における一方と他方の両外側延設部を、周方向に隣り合う一対の外側延設部における一方と他方の両外側延設部とそれぞれ同じだけ異なるように形成してもよい。上記実施の形態の外側延設部42a〜42dと対応した符号で記載すると、外側延設部42dと外側延設部42aを同じ形状(対称)に形成し、外側延設部42bと外側延設部42cを同じ形状(対称)に形成し、外側延設部42dに対する外側延設部42bと、外側延設部42aに対する外側延設部42cとを同じだけ異なるように形成してもよい。   For example, the adjacent outer extending portions are formed in the same shape (symmetric), and one of the pair of outer extending portions and the other outer extending portion are connected to one of the pair of outer extending portions adjacent in the circumferential direction. And the other outer extending portions may be formed so as to differ by the same amount. If it describes with the code | symbol corresponding to the outer side extension parts 42a-42d of the said embodiment, the outer side extension part 42d and the outer side extension part 42a will be formed in the same shape (symmetric), and the outer side extension part 42b and the outer side extension part will be provided. The part 42c may be formed in the same shape (symmetric), and the outer extension part 42b with respect to the outer extension part 42d and the outer extension part 42c with respect to the outer extension part 42a may be formed to be different by the same amount.

又、例えば、図5に示すように、一対の外側延設部43a,43dと、その周方向に隣り合う一対の外側延設部43b,43cとにおける各外側延設部43a〜43dを全て異なる形状に形成してもよい。尚、この例(図5参照)では、外側延設部43cは外側延設部43aより周方向幅が大きく設定され、外側延設部43aは外側延設部43bより周方向幅が大きく設定され、外側延設部43bは外側延設部43dより周方向幅が大きく設定されている。又、この例では、前述した外側延設部43aから外側延設部43dがロータコア11の全周に渡って順次繰り返されて(一対の外側延設部43d,43aと一対の外側延設部43b,43cとが交互に)形成されている。   Further, for example, as shown in FIG. 5, the outer extending portions 43 a to 43 d in the pair of outer extending portions 43 a and 43 d and the pair of outer extending portions 43 b and 43 c adjacent in the circumferential direction are all different. You may form in a shape. In this example (see FIG. 5), the outer extending portion 43c has a larger circumferential width than the outer extending portion 43a, and the outer extending portion 43a has a larger circumferential width than the outer extending portion 43b. The outer extending portion 43b is set to have a larger circumferential width than the outer extending portion 43d. In this example, the outer extending portion 43a to the outer extending portion 43d are sequentially repeated over the entire circumference of the rotor core 11 (a pair of outer extending portions 43d and 43a and a pair of outer extending portions 43b). , 43c alternately).

又、例えば、図6(a)に模式的に示すように、一対のV字永久磁石(12,13)と対応した周方向に複数のブロックA1〜A5毎に、前述した外側延設部(非磁路端部)が異なる形状(パターンB1〜B5)となるように形成してもよい。   Further, for example, as schematically shown in FIG. 6A, the above-described outer extending portion (for each of the plurality of blocks A1 to A5 in the circumferential direction corresponding to the pair of V-shaped permanent magnets (12, 13)) ( You may form so that it may become a shape (pattern B1-B5) from which a nonmagnetic path edge part differs.

又、例えば、図6(b)に模式的に示すように、一対のV字永久磁石(12,13)と対応した周方向に複数のブロックC1〜C5における一部(この例では1つ)のブロックC5のみが他のブロックC1〜C4の外側延設部の形状(パターンD1)と異なる外側延設部の形状(パターンD2)となるように形成してもよい。   Further, for example, as schematically shown in FIG. 6B, a part of the blocks C1 to C5 in the circumferential direction corresponding to the pair of V-shaped permanent magnets (12, 13) (one in this example). Only the block C5 may be formed to have a shape (pattern D2) of the outer extending portion different from the shape of the outer extending portion (pattern D1) of the other blocks C1 to C4.

又、例えば、図6(c)に模式的に示すように、ロータコアにおける各外側延設部(ブロックE1〜E20)を全て異なる形状(パターンF1〜F20)に形成してもよい。
・上記実施の形態では、ロータコア11が1つ(軸方向に同じ形状)のものに具体化したが、ロータコアを軸方向に複数有するもの(ロータ)に具体化してもよい。この場合、近接する一対の外側延設部(非磁路端部)を、(軸方向に)異なるロータコアにおける一対の外側延設部(非磁路端部)に対して異なる形状に形成してもよい。
Further, for example, as schematically shown in FIG. 6C, all the outer extending portions (blocks E1 to E20) in the rotor core may be formed in different shapes (patterns F1 to F20).
In the above embodiment, the rotor core 11 is embodied as one (same shape in the axial direction), but may be embodied as a rotor core having a plurality of rotor cores in the axial direction (rotor). In this case, a pair of adjacent outer extending portions (non-magnetic path end portions) are formed in different shapes with respect to the pair of outer extending portions (non-magnetic path end portions) in different rotor cores (in the axial direction). Also good.

例えば、図7(a)に模式的に示すように、軸方向に並設される5つのロータコアG1〜G5を有するロータにおいて、各ロータコアG1〜G5内では周方向に複数の外側延設部(非磁路端部)を同じ形状とし、ロータコアG1〜G5毎には外側延設部(非磁路端部)を異なる形状(パターンH1〜H5)となるように形成してもよい。尚、この例では、各ロータコアG1〜G5の軸方向長さを同じとしている。   For example, as schematically shown in FIG. 7A, in a rotor having five rotor cores G1 to G5 arranged in parallel in the axial direction, a plurality of outer extending portions (in the circumferential direction) in each rotor core G1 to G5. The non-magnetic path end portions may have the same shape, and the outer extending portions (non-magnetic path end portions) may be formed in different shapes (patterns H1 to H5) for each of the rotor cores G1 to G5. In this example, the axial lengths of the rotor cores G1 to G5 are the same.

又、例えば、図7(b)に模式的に示すように、軸方向に並設される2つのロータコアI1,I2を有するロータにおいて、各ロータコアI1,I2の軸方向長さを異ならせてもよい。尚、この例では、各ロータコアI1,I2内で周方向に複数の外側延設部(非磁路端部)を同じ形状とし、ロータコアI1,I2毎には外側延設部(非磁路端部)を異なる形状(パターンJ1,J2)となるように形成している。   Further, for example, as schematically shown in FIG. 7B, in a rotor having two rotor cores I1 and I2 arranged in parallel in the axial direction, the axial lengths of the rotor cores I1 and I2 may be varied. Good. In this example, a plurality of outer extending portions (non-magnetic path end portions) are formed in the same shape in the circumferential direction in each of the rotor cores I1 and I2, and the outer extending portions (non-magnetic path end portions) are respectively provided for the rotor cores I1 and I2. Are formed in different shapes (patterns J1, J2).

・上記実施の形態では、ロータコア11に配設される永久磁石を、V字永久磁石12,13としたが、これに限定されず、永久磁石を他の形状に変更してもよい。尚、この場合、勿論、収容孔21a,21b〜30a,30bについても永久磁石の形状に応じて変更する。   -In above-mentioned embodiment, although the permanent magnet arrange | positioned at the rotor core 11 was set to the V-shaped permanent magnets 12 and 13, it is not limited to this, You may change a permanent magnet into another shape. In this case, of course, the accommodation holes 21a, 21b to 30a, 30b are also changed according to the shape of the permanent magnet.

例えば、図8(a)に模式的に示すように、ロータコア51に配設される永久磁石を、単に周方向に沿った直線状の永久磁石52に変更してもよい。尚、この例では、収容孔53,54と永久磁石52が複数の非磁路形成部を構成し、収容孔53,54の一部であって各非磁路形成部の両端部でロータコア51外周に近接する(永久磁石52が配設されない)外側延設部53a,53b,54a,54bが非磁路端部を構成している。又、外側延設部53a,53b,54a,54bは、それぞれ上記実施の形態の外側延設部42a,42b,42c,42dと同様に周方向幅が設定されている。又、図8(a)では、永久磁石52が周方向に4つ配設されるロータの略半分のみ図示し、同様に形成される部分(周方向に180度ずらされた形状の部分)については省略している。   For example, as schematically shown in FIG. 8A, the permanent magnets disposed on the rotor core 51 may be simply changed to linear permanent magnets 52 along the circumferential direction. In this example, the receiving holes 53 and 54 and the permanent magnet 52 constitute a plurality of non-magnetic path forming portions, and the rotor core 51 is a part of the receiving holes 53 and 54 at both ends of each non-magnetic path forming portion. Outer extending portions 53a, 53b, 54a, 54b that are close to the outer periphery (the permanent magnet 52 is not disposed) constitute non-magnetic path end portions. The outer extending portions 53a, 53b, 54a, and 54b have circumferential widths set in the same manner as the outer extending portions 42a, 42b, 42c, and 42d of the above-described embodiment. In FIG. 8A, only about half of the rotor in which four permanent magnets 52 are arranged in the circumferential direction is shown, and similarly formed portions (portions shifted in the circumferential direction by 180 degrees) are shown. Is omitted.

又、例えば、図8(b)に模式的に示すように、ロータコア61に配設される永久磁石を、径方向内側が凸となる曲線状の永久磁石62に変更してもよい。尚、この例では、収容孔63,64と永久磁石62が複数の非磁路形成部を構成し、収容孔63,64の一部であって各非磁路形成部の両端部でロータコア61外周に近接する(永久磁石62が配設されない)外側延設部63a,63b,64a,64bが非磁路端部を構成している。又、外側延設部63a,63b,64a,64bは、それぞれ上記実施の形態の外側延設部42a,42b,42c,42dと同様に周方向幅が設定されている。又、図8(b)では、永久磁石62が周方向に4つ配設されるロータの略半分のみ図示し、同様に形成される部分(周方向に180度ずらされた形状の部分)については省略している。   Further, for example, as schematically shown in FIG. 8B, the permanent magnet disposed on the rotor core 61 may be changed to a curved permanent magnet 62 having a radially inner side convex. In this example, the receiving holes 63 and 64 and the permanent magnet 62 constitute a plurality of non-magnetic path forming portions, and the rotor core 61 is a part of the receiving holes 63 and 64 at both ends of each non-magnetic path forming portion. Outer extending portions 63a, 63b, 64a, and 64b that are close to the outer periphery (where no permanent magnet 62 is disposed) constitute nonmagnetic path ends. The outer extending portions 63a, 63b, 64a, and 64b have circumferential widths set in the same manner as the outer extending portions 42a, 42b, 42c, and 42d of the above-described embodiment. Further, in FIG. 8B, only about half of the rotor in which four permanent magnets 62 are arranged in the circumferential direction is shown, and similarly formed portions (portions having a shape shifted by 180 degrees in the circumferential direction). Is omitted.

又、例えば、図8(c)に模式的に示すように、ロータコア71に配設される永久磁石を、周方向に沿った直線部とその両端から径方向外側に延びる延設部とからなる永久磁石72に変更してもよい。尚、この例では、収容孔73,74と永久磁石72が複数の非磁路形成部を構成し、収容孔73,74の一部であって各非磁路形成部の両端部でロータコア71外周に近接する(永久磁石72が配設されない)外側延設部73a,73b,74a,74bが非磁路端部を構成している。又、外側延設部73a,73b,74a,74bは、それぞれ上記実施の形態の外側延設部42a,42b,42c,42dと同様に周方向幅が設定されている。又、図8(c)では、永久磁石72が周方向に4つ配設されるロータの略半分のみ図示し、同様に形成される部分(周方向に180度ずらされた形状の部分)については省略している。   Further, for example, as schematically shown in FIG. 8C, the permanent magnet disposed in the rotor core 71 is composed of a linear portion along the circumferential direction and an extending portion extending radially outward from both ends thereof. The permanent magnet 72 may be changed. In this example, the receiving holes 73 and 74 and the permanent magnet 72 constitute a plurality of non-magnetic path forming portions, and the rotor core 71 is a part of the receiving holes 73 and 74 at both ends of each non-magnetic path forming portion. Outer extending portions 73a, 73b, 74a, and 74b that are close to the outer periphery (where no permanent magnet 72 is disposed) constitute non-magnetic path end portions. The outer extending portions 73a, 73b, 74a, and 74b have circumferential widths set in the same manner as the outer extending portions 42a, 42b, 42c, and 42d of the above-described embodiment. Further, in FIG. 8C, only about half of the rotor in which the four permanent magnets 72 are arranged in the circumferential direction is shown, and a portion that is similarly formed (a portion that is shifted by 180 degrees in the circumferential direction) is shown. Is omitted.

・上記実施の形態では、収容孔21a,21b〜30a,30bとV字永久磁石12,13とが非磁路形成部を構成するとしたが、リラクタンストルクを発生するための磁路(磁路形成部)を形成する構成であれば、非磁路形成部を他の構成に変更してもよい。   In the above embodiment, the receiving holes 21a, 21b to 30a, 30b and the V-shaped permanent magnets 12 and 13 constitute the non-magnetic path forming portion. However, the magnetic path (magnetic path forming for generating the reluctance torque) Part) may be changed to another configuration.

例えば、図9に示すように、非磁路形成部を、ロータコア80の周方向に複数形成した非磁性部としての空隙81〜90としてもよい。即ち、所謂リラクタンスモータに具体化してもよい。この例における空隙81〜90は、径方向内側が凸となる曲線状に形成されている。そして、空隙81〜90の一部であってその両端部でロータコア80外周に近接する外側延設部91a〜91dが非磁路端部を構成している。又、周方向に順次形成されるとともに繰り返し形成される外側延設部91a,91b,91c,91dは、それぞれ上記実施の形態の外側延設部42a,42b,42c,42dと同様に周方向幅が設定されている。このようにすると、ロータを(永久磁石を用いず)簡単な構造としながら、リラクタンストルクのみを駆動力としてロータを回転駆動させることができる。   For example, as shown in FIG. 9, the nonmagnetic path forming portions may be gaps 81 to 90 as nonmagnetic portions formed in a plurality in the circumferential direction of the rotor core 80. That is, it may be embodied in a so-called reluctance motor. The voids 81 to 90 in this example are formed in a curved shape in which the radially inner side is convex. And the outer extension parts 91a-91d which are a part of the space | gaps 81-90, and adjoin to the rotor core 80 outer periphery in the both ends constitute the nonmagnetic path edge part. Further, the outer extending portions 91a, 91b, 91c, and 91d that are sequentially formed and repeatedly formed in the circumferential direction are respectively circumferential widths similar to the outer extending portions 42a, 42b, 42c, and 42d of the above-described embodiment. Is set. In this way, the rotor can be rotationally driven using only the reluctance torque as a driving force, while the rotor has a simple structure (without using a permanent magnet).

・上記実施の形態の外側延設部(非磁路端部)においても永久磁石が(隙間がないように)配設される構成に変更してもよい。尚、この場合、永久磁石の形状を変更するとともに永久磁石を複数種類用いる必要がある。   -You may change to the structure by which a permanent magnet is arrange | positioned also in the outer side extension part (non-magnetic path edge part) of the said embodiment (so that there may be no clearance gap). In this case, it is necessary to change the shape of the permanent magnet and use a plurality of types of permanent magnets.

・上記実施の形態では、近接する一対の外側延設部42a,42dは、その周方向に隣り合う一対の外側延設部42b,42cに対して一部分が異なる形状に形成されるとしたが、それらが対同士で同じ形状であっても、近接する外側延設部同士が異なる形状(非対称)に形成されれば、上記実施の形態の効果(2)と同様の効果を得ることができる。   In the above embodiment, the pair of adjacent outer extending portions 42a and 42d are formed in a shape that is partially different from the pair of outer extending portions 42b and 42c adjacent in the circumferential direction. Even if they have the same shape as each other, the same effect as the effect (2) of the above embodiment can be obtained if the adjacent outer extending portions are formed in different shapes (asymmetric).

・上記実施の形態では、周方向に隣り合う一方の磁路形成部31,33,35,37,39における周方向中心L1がティース7の周方向中心LTと径方向に直列状態となった状態で、他方の磁路形成部32,34,36,38,40における周方向中心L2がティース7の周方向中心LTに対して周方向にずれるとしたが、これに限定されない。即ち、隣り合う磁路形成部におけるそれぞれの周方向中心と、ティースの周方向中心とが同時にそれぞれ径方向に直列状態となる構成のものに変更してもよい。   In the above embodiment, the circumferential center L1 in one of the magnetic path forming portions 31, 33, 35, 37, 39 adjacent in the circumferential direction is in series with the circumferential center LT of the teeth 7 in the radial direction. Thus, although the circumferential center L2 in the other magnetic path forming portions 32, 34, 36, 38, 40 is shifted in the circumferential direction with respect to the circumferential center LT of the teeth 7, the present invention is not limited to this. That is, the configuration may be such that each circumferential center in adjacent magnetic path forming portions and the circumferential center of the teeth are simultaneously in series in the radial direction.

・上記実施の形態では、ロータコア11は、複数の円盤状のコアシートが積層されて形成されるとしたが、同様の形状であればよく、例えば、磁性粉体を焼結して形成してもよい。   In the above embodiment, the rotor core 11 is formed by laminating a plurality of disk-shaped core sheets. However, the rotor core 11 may be formed in the same shape, for example, by sintering magnetic powder. Also good.

上記各実施の形態から把握できる技術的思想について、以下にその効果とともに記載する。
(イ)請求項1乃至6のいずれか1項に記載のモータにおいて、前記非磁路形成部は、前記ロータコアに形成された収容孔に(隙間がないように)配設された永久磁石であることを特徴とするモータ。このようにすると、リラクタンストルク及び永久磁石によるマグネットトルクを駆動力としてロータを高いモータ効率で回転駆動させることができる。
The technical idea that can be grasped from the above embodiments will be described below together with the effects thereof.
(A) In the motor according to any one of claims 1 to 6, the non-magnetic path forming portion is a permanent magnet disposed in an accommodation hole formed in the rotor core (so that there is no gap). A motor characterized by being. If it does in this way, a rotor can be rotationally driven with high motor efficiency by using reluctance torque and magnet torque by a permanent magnet as driving force.

(ロ)請求項1乃至6のいずれか1項に記載のモータにおいて、前記非磁路形成部は、前記ロータコアに形成された非磁性部であって、リラクタンストルクのみを駆動力として前記ロータを回転駆動させることを特徴とするモータ。このようにすると、ロータを簡単な構造としながら、リラクタンストルクのみを駆動力としてロータを回転駆動させることができる。   (B) In the motor according to any one of claims 1 to 6, the non-magnetic path forming portion is a non-magnetic portion formed in the rotor core, and the rotor is driven only by reluctance torque. A motor characterized by being driven to rotate. In this way, the rotor can be rotationally driven using only the reluctance torque as the driving force, while the rotor has a simple structure.

(ハ)請求項1乃至7のいずれか1項に記載のモータにおいて、前記ロータコアは、前記一対の非磁路端部の間に形成される磁路形成部における周方向中心が前記ティースの周方向中心と径方向に直列状態となった状態で、周方向に隣り合う磁路形成部における周方向中心がティースの周方向中心に対して周方向にずれるように設定されたことを特徴とするモータ。このようにすると、隣り合う磁路形成部におけるそれぞれの周方向中心と、ティースの周方向中心とが同時にそれぞれ径方向に直列状態とならない。よって、隣り合う磁路形成部に同時に直線的なコイル磁束の流れが形成される(生じる)ことが防止され、トルクリップル及びコギングトルクが低減される。   (C) The motor according to any one of claims 1 to 7, wherein the rotor core has a circumferential center in a magnetic path forming portion formed between the pair of non-magnetic path end portions. The center in the circumferential direction of the magnetic path forming portion adjacent in the circumferential direction is set so as to be shifted in the circumferential direction with respect to the circumferential center of the teeth in a state in which the center in the radial direction and the radial direction are in series. motor. If it does in this way, each circumference direction center in an adjacent magnetic path formation part and the circumference direction center of teeth will not be in a serial state in the diameter direction simultaneously, respectively. Therefore, it is prevented that a linear coil magnetic flux flow is simultaneously formed (generated) in adjacent magnetic path forming portions, and torque ripple and cogging torque are reduced.

本実施の形態における埋込磁石型モータの側断面図。The side sectional view of the interior magnet type motor in this embodiment. 本実施の形態における回転軸を除くロータの概略斜視図。The schematic perspective view of the rotor except a rotating shaft in this Embodiment. 本実施の形態におけるステータ及びロータの平面図。The top view of the stator and rotor in this Embodiment. 本実施の形態におけるステータ及びロータの平面一部拡大図。FIG. 2 is a partially enlarged plan view of a stator and a rotor in the present embodiment. 別例におけるロータの平面図。The top view of the rotor in another example. (a)〜(c)別例におけるロータの模式平面図。(A)-(c) The schematic plan view of the rotor in another example. (a)(b)別例におけるロータの模式斜視図。(A) (b) The model perspective view of the rotor in another example. (a)〜(c)別例におけるロータの一部分模式平面図。(A)-(c) The partial schematic plan view of the rotor in another example. 別例におけるロータの平面図。The top view of the rotor in another example.

符号の説明Explanation of symbols

2…ステータ、3…ロータ、7…ティース、10…巻線、11,51,61,71,80,G1〜G5,I1,I2…ロータコア、12,13…非磁路形成部の一部を構成するV字永久磁石(永久磁石)、21a,21b〜30a,30b,53,54,63,64,73,74…非磁路形成部の一部を構成する収容孔、42a〜42d,43a〜43d,53a,53b,54a,54b,63a,63b,64a,64b,73a,73b,74a,74b,91a〜91d…外側延設部(非磁路端部)。   2 ... Stator, 3 ... Rotor, 7 ... Teeth, 10 ... Winding, 11, 51, 61, 71, 80, G1-G5, I1, I2 ... Rotor core, 12, 13 ... Part of the non-magnetic path forming part Constructing V-shaped permanent magnets (permanent magnets), 21a, 21b-30a, 30b, 53, 54, 63, 64, 73, 74 ... receiving holes constituting a part of the non-magnetic path forming portion, 42a-42d, 43a ˜43d, 53a, 53b, 54a, 54b, 63a, 63b, 64a, 64b, 73a, 73b, 74a, 74b, 91a to 91d... Externally extending portion (non-magnetic path end).

Claims (9)

略円筒状に形成され、周方向等角度間隔で軸中心に向かって延びるように形成された複数のティースに巻線が巻回されたステータと、
前記ステータの内側に回転可能に収容され、非磁路形成部が周方向に複数設けられたロータコアを有するロータとを備え、リラクタンストルクを駆動力の少なくとも一部として前記ロータを回転駆動させるモータにおいて、
前記非磁路形成部は、その両端部が前記ロータコア外周に近接する非磁路端部を有し、
周方向に隣り合う前記非磁路形成部の近接する一対の非磁路端部が、その周方向に隣り合う一対の非磁路端部に対して異なる形状に形成された構成を有することを特徴とするモータ。
A stator in which a winding is wound around a plurality of teeth that are formed in a substantially cylindrical shape and extend toward the axis center at equal angular intervals in the circumferential direction;
A motor having a rotor core rotatably accommodated inside the stator and having a plurality of non-magnetic path forming portions provided in a circumferential direction, and rotating the rotor with reluctance torque as at least part of a driving force. ,
The non-magnetic path forming portion has a non-magnetic path end portion whose both end portions are close to the outer periphery of the rotor core,
A pair of non-magnetic path end portions adjacent to each other in the circumferential direction adjacent to the non-magnetic path forming portion has a configuration formed in a different shape with respect to a pair of non-magnetic path end portions adjacent in the circumferential direction. Characteristic motor.
請求項1に記載のモータにおいて、
周方向に隣り合う前記非磁路形成部の近接する非磁路端部同士が異なる形状に形成された構成を有することを特徴とするモータ。
The motor according to claim 1,
A motor having a configuration in which non-magnetic path end portions adjacent to each other in the circumferential direction are formed in different shapes.
請求項1又は2に記載のモータにおいて、
前記一対の非磁路端部と、その周方向に隣り合う前記一対の非磁路端部とは、それぞれの一方の前記非磁路端部が同じ形状に形成され、それぞれの他方の前記非磁路端部が異なる形状に形成されたことを特徴とするモータ。
The motor according to claim 1 or 2,
The pair of non-magnetic path end portions and the pair of non-magnetic path end portions adjacent to each other in the circumferential direction are formed such that one of the non-magnetic path end portions has the same shape, and the other non-magnetic path end portion is A motor characterized in that magnetic path end portions are formed in different shapes.
請求項1に記載のモータにおいて、
前記一対の非磁路端部と、その周方向に隣り合う前記一対の非磁路端部とは、それぞれの各非磁路端部が全て異なる形状に形成されたことを特徴とするモータ。
The motor according to claim 1,
The pair of non-magnetic path end portions and the pair of non-magnetic path end portions adjacent to each other in the circumferential direction are all formed in different shapes.
請求項1に記載のモータにおいて、
周方向に隣り合う前記非磁路形成部の近接する非磁路端部同士が同じ形状に形成され、
前記一対の非磁路端部における一方と他方の両非磁路端部が、周方向に隣り合う一対の非磁路端部における一方と他方の両非磁路端部と、それぞれ同じだけ異なるように形成されたことを特徴とするモータ。
The motor according to claim 1,
Non-magnetic path end portions adjacent to each other in the circumferential direction are formed in the same shape,
One and the other non-magnetic path ends of the pair of non-magnetic path ends are different from each other by the same amount between one and the other non-magnetic path ends of the pair of non-magnetic path ends adjacent in the circumferential direction. A motor characterized by being formed as described above.
請求項1乃至5のいずれか1項に記載のモータにおいて、
前記一対の非磁路端部と、その周方向に隣り合う前記一対の非磁路端部とは、前記ロータコアの全周に渡って交互に形成されたことを特徴とするモータ。
The motor according to any one of claims 1 to 5,
The pair of non-magnetic path end portions and the pair of non-magnetic path end portions adjacent to each other in the circumferential direction are alternately formed over the entire circumference of the rotor core.
請求項1乃至6のいずれか1項に記載のモータにおいて、
前記非磁路形成部は、前記ロータコアに形成された収容孔とその収容孔に配設された永久磁石であって、前記非磁路端部は、前記永久磁石が配設されない前記収容孔の一部であることを特徴とするモータ。
The motor according to any one of claims 1 to 6,
The non-magnetic path forming portion is a housing hole formed in the rotor core and a permanent magnet disposed in the housing hole, and the non-magnetic path end portion is a portion of the housing hole in which the permanent magnet is not disposed. A motor characterized by being a part.
略円筒状に形成され、周方向等角度間隔で軸中心に向かって延びるように形成された複数のティースに巻線が巻回されたステータと、
前記ステータの内側に回転可能に収容され、非磁路形成部が周方向に複数設けられたロータコアを有するロータとを備え、リラクタンストルクを駆動力の少なくとも一部として前記ロータを回転駆動させるモータにおいて、
前記非磁路形成部は、その両端部が前記ロータコア外周に近接する非磁路端部を有し、
周方向に隣り合う前記非磁路形成部の近接する非磁路端部同士が異なる形状に形成された構成を有することを特徴とするモータ。
A stator in which a winding is wound around a plurality of teeth that are formed in a substantially cylindrical shape and extend toward the axis center at equal angular intervals in the circumferential direction;
A motor having a rotor core rotatably accommodated inside the stator and having a plurality of non-magnetic path forming portions provided in a circumferential direction, and rotating the rotor with reluctance torque as at least part of a driving force. ,
The non-magnetic path forming portion has a non-magnetic path end portion whose both end portions are close to the outer periphery of the rotor core,
A motor having a configuration in which non-magnetic path end portions adjacent to each other in the circumferential direction are formed in different shapes.
略円筒状に形成され、周方向等角度間隔で軸中心に向かって延びるように形成された複数のティースに巻線が巻回されたステータと、
前記ステータの内側に回転可能に収容され、非磁路形成部が周方向に複数設けられたロータコアを軸方向に複数有するロータとを備え、リラクタンストルクを駆動力の少なくとも一部として前記ロータを回転駆動させるモータにおいて、
前記非磁路形成部は、その両端部が前記ロータコア外周に近接する非磁路端部を有し、
周方向に隣り合う前記非磁路形成部の近接する一対の前記非磁路端部が、異なる前記ロータコアにおける一対の前記非磁路端部に対して異なる形状に形成された構成を有することを特徴とするモータ。
A stator in which a winding is wound around a plurality of teeth that are formed in a substantially cylindrical shape and extend toward the axis center at equal angular intervals in the circumferential direction;
A rotor that is rotatably accommodated inside the stator, and has a plurality of rotor cores in the axial direction in which a plurality of non-magnetic path forming portions are provided in the circumferential direction, and the rotor is rotated with reluctance torque as at least part of the driving force. In the motor to drive,
The non-magnetic path forming portion has a non-magnetic path end portion whose both end portions are close to the outer periphery of the rotor core,
A pair of the non-magnetic path end portions adjacent to each other in the circumferential direction adjacent to the non-magnetic path forming portion are configured to have different shapes with respect to the pair of non-magnetic path end portions in the different rotor cores. Characteristic motor.
JP2004121993A 2004-04-16 2004-04-16 Motor Abandoned JP2005312102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004121993A JP2005312102A (en) 2004-04-16 2004-04-16 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121993A JP2005312102A (en) 2004-04-16 2004-04-16 Motor

Publications (1)

Publication Number Publication Date
JP2005312102A true JP2005312102A (en) 2005-11-04

Family

ID=35440252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121993A Abandoned JP2005312102A (en) 2004-04-16 2004-04-16 Motor

Country Status (1)

Country Link
JP (1) JP2005312102A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195391A (en) * 2005-12-22 2007-08-02 Asmo Co Ltd Embedded magnet type motor
JP2009240036A (en) * 2008-03-26 2009-10-15 Asmo Co Ltd Embedded magnet motor
GB2465054A (en) * 2008-11-11 2010-05-12 Ford Global Tech Llc Permanent magnet rotor machine with asymmetric flux
US7791236B2 (en) 2007-08-16 2010-09-07 Ford Global Technologies, Llc Permanent magnet machine
US8008825B2 (en) * 2007-03-20 2011-08-30 Kabushiki Kaisha Yaskawa Denki Electromagnetic steel plate forming member, electromagnetic steel plate laminator, permanent magnet type synchronous rotating electric machine rotor provided with the same, permanent magnet type synchronous rotating electric machine, and vehicle, elevator, fluid machine, and processing machine using the rotating electric machine
US8461739B2 (en) 2009-09-25 2013-06-11 Ford Global Technologies, Llc Stator for an electric machine
JP2013123327A (en) * 2011-12-12 2013-06-20 Toyota Motor Corp Rotary electric machine
US8536748B2 (en) 2008-11-11 2013-09-17 Ford Global Technologies, Llc Permanent magnet machine with different pole arc angles
WO2015037428A1 (en) * 2013-09-13 2015-03-19 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
JP2016063650A (en) * 2014-09-18 2016-04-25 株式会社東芝 Permanent magnet type electrical rotating machine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195391A (en) * 2005-12-22 2007-08-02 Asmo Co Ltd Embedded magnet type motor
US8546990B2 (en) 2007-03-20 2013-10-01 Kabushiki Kaisha Yaskawa Denki Permanent magnet synchronous rotating electric machine and rotor core
US8227953B2 (en) 2007-03-20 2012-07-24 Kabushiki Kaisha Yaskawa Denki Rotor, rotating electric machine, vehicle, elevator, fluid machine, and processing machine
US8008825B2 (en) * 2007-03-20 2011-08-30 Kabushiki Kaisha Yaskawa Denki Electromagnetic steel plate forming member, electromagnetic steel plate laminator, permanent magnet type synchronous rotating electric machine rotor provided with the same, permanent magnet type synchronous rotating electric machine, and vehicle, elevator, fluid machine, and processing machine using the rotating electric machine
US7791236B2 (en) 2007-08-16 2010-09-07 Ford Global Technologies, Llc Permanent magnet machine
US8044546B2 (en) 2007-08-16 2011-10-25 Ford Global Technologies, Llc Permanent magnet machine
US8350431B2 (en) 2007-08-16 2013-01-08 Ford Global Technologies, Llc Permanent magnet machine
JP2009240036A (en) * 2008-03-26 2009-10-15 Asmo Co Ltd Embedded magnet motor
US9035522B2 (en) 2008-11-11 2015-05-19 Ford Global Technologies, Llc Permanent magnet machine with different pole arc angles
US8536748B2 (en) 2008-11-11 2013-09-17 Ford Global Technologies, Llc Permanent magnet machine with different pole arc angles
GB2465054A (en) * 2008-11-11 2010-05-12 Ford Global Tech Llc Permanent magnet rotor machine with asymmetric flux
US8018109B2 (en) 2008-11-11 2011-09-13 Ford Global Technologies, Llc Permanent magnet machine with offset pole spacing
GB2465054B (en) * 2008-11-11 2014-05-21 Ford Global Tech Llc Permanent magnet machine with offset pole spacing
US8461739B2 (en) 2009-09-25 2013-06-11 Ford Global Technologies, Llc Stator for an electric machine
JP2013123327A (en) * 2011-12-12 2013-06-20 Toyota Motor Corp Rotary electric machine
WO2015037428A1 (en) * 2013-09-13 2015-03-19 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
JP6009088B2 (en) * 2013-09-13 2016-10-19 三菱電機株式会社 Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
US10008893B2 (en) 2013-09-13 2018-06-26 Mitsubishi Electric Corporation Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
JP2016063650A (en) * 2014-09-18 2016-04-25 株式会社東芝 Permanent magnet type electrical rotating machine

Similar Documents

Publication Publication Date Title
US7528519B2 (en) Permanent magnet rotary motor
JP4264433B2 (en) Brushless DC motor
US20070057589A1 (en) Interior permanent magnet rotor and interior permanent magnet motor
JP2005176424A (en) Rotor for dynamo-electric machine
JP2001136721A (en) Axially-spaced permanent magnet synchronous machine
JP2003153508A (en) Motor
JP2010098929A (en) Double gap motor
JPWO2019064801A1 (en) Permanent magnet type rotating electric machine
JP5653984B2 (en) Electric motor having a stator core for reducing cogging torque
JP2005312102A (en) Motor
JP2007151233A (en) Permanent magnet motor
JP4358703B2 (en) Embedded magnet type motor
WO2018135382A1 (en) Rotor and motor using same
JP5006009B2 (en) Embedded magnet type motor
JP2006115584A (en) Embedded magnet type motor
JP4313378B2 (en) Embedded magnet type rotating electric machine
JP2011015555A (en) Dynamo-electric machine
JP2002058184A (en) Rotor construction and motor
JP2003018773A (en) Motor with core
JP2006025572A (en) Magnets-embedded motor
JP2009284716A (en) Outer rotor type brushless motor
JP2006050820A (en) Rotary electric machine
JP2005218228A (en) Magnet-embedded motor
JP5897939B2 (en) Rotor and motor
JP2007116822A (en) Magnet embedded motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20090305