JP2007194274A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2007194274A
JP2007194274A JP2006008880A JP2006008880A JP2007194274A JP 2007194274 A JP2007194274 A JP 2007194274A JP 2006008880 A JP2006008880 A JP 2006008880A JP 2006008880 A JP2006008880 A JP 2006008880A JP 2007194274 A JP2007194274 A JP 2007194274A
Authority
JP
Japan
Prior art keywords
semiconductor chip
electrode
electrodes
detection
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006008880A
Other languages
Japanese (ja)
Other versions
JP4881014B2 (en
Inventor
Takashi Miyazaki
崇誌 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2006008880A priority Critical patent/JP4881014B2/en
Publication of JP2007194274A publication Critical patent/JP2007194274A/en
Application granted granted Critical
Publication of JP4881014B2 publication Critical patent/JP4881014B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body

Abstract

<P>PROBLEM TO BE SOLVED: To reduce stress of an electrode itself without limiting a forming method of the electrode. <P>SOLUTION: At least one set of first electrodes 120 of a first semiconductor chip 100 and second electrodes 220 of a second semiconductor chips 200 becomes detection electrodes 132 and 232, which are brought into contact with each other previous to the other electrodes when the semiconductor chips 100 and 200 are brought close in a state where circuit forming faces 110 and 210 are confronted. When the semiconductor chips 100 and 200 are brought close, the contact state of the detection electrodes 132 and 232 is detected, and a relative position of the semiconductor chips 100 and 200 connecting the other electrodes is decided based on the contact state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、回路形成面に複数の電極が形成される第1半導体チップ及び第2半導体チップを、回路形成面が対向した状態で融着材を加熱し溶融させて各電極同士を接続する半導体装置の製造方法に関する。   The present invention relates to a semiconductor in which a first semiconductor chip and a second semiconductor chip each having a plurality of electrodes formed on a circuit formation surface are heated and melted in a state where the circuit formation surfaces are opposed to each other to connect the electrodes to each other. The present invention relates to a device manufacturing method.

近年、電子機器の小型化・高機能化に伴い、複数の半導体チップを1つのパッケージ内にデバイスレベルで集積化するSiP(System-in-Package)技術の需要が高まっている。中でもSiP技術の要素技術であるCoC(Chip-on-Chip)技術は、CMOSロジックとDRAMといった異なるウェハプロセスの最適設計パラメータを持つデバイス同士や、Siデバイスと化合物半導体デバイスといったウェハプロセスでの集積化が困難なデバイスの素子形成面同士を最短距離で電気的に接続することにより、デバイスの高速性とともにデバイスの多様なパフォーマンスを実現する可能性を有する技術として期待されている。   In recent years, with the downsizing and high functionality of electronic devices, there is an increasing demand for SiP (System-in-Package) technology that integrates a plurality of semiconductor chips in one package at a device level. Among them, CoC (Chip-on-Chip) technology, which is an elemental technology of SiP technology, integrates devices with optimum design parameters for different wafer processes such as CMOS logic and DRAM, and integration in wafer processes such as Si devices and compound semiconductor devices. It is expected as a technology that has the possibility of realizing various performances of devices as well as high speed of devices by electrically connecting element forming surfaces of devices that are difficult to realize with the shortest distance.

通常、CoC接続は、2つのチップの回路形成面を対向させ、互いの回路形成面に設けられた電極同士の位置を合わせて接続を行う。近年、半導体素子の小型化・高機能化が進むにつれ、チップが微小化するとともにピン数が増加しており、これに伴って電極にもサイズの微小化が求められるようになっている。   Normally, CoC connection is performed by making the circuit formation surfaces of two chips face each other and aligning the positions of the electrodes provided on each other's circuit formation surfaces. In recent years, as the miniaturization and higher functionality of semiconductor elements have progressed, the number of pins has increased along with the miniaturization of chips, and accordingly, miniaturization of the size of electrodes has been required.

バンプ電極の形成ばらつきを要因として発生する高さの高いバンプ電極の応力集中の回避と、バンプ下部の機能素子のダメージ低減を図るべく、例えば、特許文献1に記載された半導体装置の製造方法が知られている。この製造方法によれば、まず、半導体チップの素子領域外に、素子領域内よりも面積が大きい電極を形成する。そして、少なくとも一方のチップの電極上に無電解めっき法を用いてNi、Cu等の突起電極を形成する。この結果、面積が大きい素子領域外の電極には素子領域内の電極よりも高い突起電極が形成される。この後、素子領域内・外の突起電極上に、突起電極よりも硬度の低い導電材料を形成する。   For example, a method for manufacturing a semiconductor device described in Patent Document 1 has been proposed in order to avoid stress concentration of a bump electrode having a high height, which is caused by variation in formation of the bump electrode, and to reduce damage to a functional element below the bump. Are known. According to this manufacturing method, first, an electrode having a larger area than that in the element region is formed outside the element region of the semiconductor chip. Then, a protruding electrode made of Ni, Cu or the like is formed on the electrode of at least one chip by using an electroless plating method. As a result, a protruding electrode higher than the electrode in the element region is formed on the electrode outside the element region having a large area. Thereafter, a conductive material having a hardness lower than that of the protruding electrode is formed on the protruding electrode inside and outside the element region.

以上のように構成されたチップ同士を向かい合わせて接続を行うと、まず素子領域外の電極における硬度の低い導電材料が接触し変形した後、素子領域外の突起電極同士が接触すると電極の変形が終了する。素子領域内の電極については、突起電極上の硬度の低い導電材料のみが変形し、突起電極同士が接触することはない。
特開平9−232506号公報
When the chips configured as described above are connected to face each other, the conductive material having low hardness in the electrode outside the element region first contacts and deforms, and then the protruding electrode outside the element region contacts and deforms the electrode. Ends. For the electrodes in the element region, only the conductive material having low hardness on the protruding electrodes is deformed, and the protruding electrodes do not contact each other.
Japanese Patent Laid-Open No. 9-232506

しかしながら、特許文献1に記載された製造方法では、素子領域外に硬度が比較的高く突出量の大きな突起電極を形成しなければならないため、突起電極の形成方法が無電解めっき等の限られた方法に限定され、電解めっき等の適用が困難である。
また、硬度が比較的高く突出量の大きな突起電極を形成することから、電極自体の応力を緩和し難い構造であることに変わりはない。
However, in the manufacturing method described in Patent Document 1, a protruding electrode having a relatively high hardness and a large protruding amount has to be formed outside the element region. Therefore, the protruding electrode formation method is limited to electroless plating or the like. It is limited to the method and application of electrolytic plating or the like is difficult.
In addition, since the protruding electrode having a relatively high hardness and a large protruding amount is formed, the structure remains that the stress of the electrode itself is difficult to relax.

本発明によれば、回路形成面に複数の第1電極が形成された第1半導体チップと、回路形成面に複数の第2電極が形成された第2半導体チップを、互いに前記回路形成面が対向して前記各第1電極と前記各第2電極とが接触するよう位置決めし、前記各第1電極と前記各第2電極の少なくとも一方の表面をなす融着材を加熱し溶融させて前記各第1電極及び前記各第2電極を接続するにあたり、前記融着材を前記第1半導体チップと前記第2半導体チップの少なくとも一方の前記回路形成面から突出するよう形成するとともに、前記各第1電極及び前記各第2電極の少なくとも一組が、前記第1半導体チップと前記第2半導体チップを前記回路形成面が対向する状態で互いに接近させると他の電極に先行して接触する検出用電極となるよう電極を形成する電極形成工程と、前記第1半導体チップ及び前記第2半導体チップを、前記回路形成面を対向させた状態で互いに接近させるチップ接近工程と、前記チップ接近工程にて前記第1半導体チップ及び前記第2半導体チップが接近した際に、前記第1半導体チップ及び前記第2半導体チップの前記検出用電極同士の接触状態を検出する接触状態検出工程と、前記接触状態検出工程にて検出された前記検出用電極同士の接触状態に基づいて、他の前記電極同士を接続する前記第1半導体チップ及び前記第2半導体チップの相対位置を決定する接続位置決定工程と、前記接続位置決定工程にて決定された前記相対位置となるよう前記第1半導体チップ及び前記第2半導体チップの位置を制御する位置制御工程と、を含むことを特徴とする半導体装置の製造方法が提供される。   According to the present invention, a first semiconductor chip in which a plurality of first electrodes are formed on a circuit forming surface and a second semiconductor chip in which a plurality of second electrodes are formed on the circuit forming surface are connected to each other. Positioning the respective first electrodes and the respective second electrodes so as to face each other, heating and melting the fusion material forming at least one surface of each of the first electrodes and the respective second electrodes, In connecting each first electrode and each second electrode, the fusion material is formed so as to protrude from at least one of the circuit forming surfaces of the first semiconductor chip and the second semiconductor chip, and each of the first electrodes. For detection, at least one pair of one electrode and each of the second electrodes comes into contact with other electrodes in advance when the first semiconductor chip and the second semiconductor chip are brought close to each other with the circuit forming surfaces facing each other. Electricity to be an electrode Forming an electrode, a chip approaching step in which the first semiconductor chip and the second semiconductor chip are brought close to each other with the circuit formation surface facing each other, and the first semiconductor chip in the chip approaching step And when the second semiconductor chip approaches, a contact state detection step for detecting a contact state between the detection electrodes of the first semiconductor chip and the second semiconductor chip, and a contact state detection step. Based on the contact state between the detection electrodes, a connection position determining step for determining a relative position between the first semiconductor chip and the second semiconductor chip for connecting the other electrodes, and a connection position determining step. And a position control step for controlling the positions of the first semiconductor chip and the second semiconductor chip so as to be the relative positions determined in the above. Method of manufacturing a conductor arrangement is provided.

この半導体装置の製造方法によれば、第1半導体チップ及び第2半導体チップを互いに接近させた際に、検出用電極が他の電極に先行して接触し、検出用電極同士が接触した状態で第1半導体チップ及び第2半導体チップが静止する。このとき、他の電極については第1半導体チップ側と第2半導体チップ側で離隔した状態であり、検出用電極以外の電極に負荷が加わることはない。
この後、各第1電極及び各第2電極を加熱することにより融着材が溶融し、第1半導体チップ及び第2半導体チップが互いに接近可能な状態となる。そして、検出用電極同士の接触状態に基づいて、他の電極同士を接続する第1半導体チップ及び第2半導体チップの相対位置が決定され、この相対位置となるよう第1半導体チップ及び第2半導体チップの位置が制御される。そして、第1半導体チップ及び第2半導体チップの相対位置が一定のまま融着材が冷却して硬化し、全ての電極について接続が完了する。
According to this method for manufacturing a semiconductor device, when the first semiconductor chip and the second semiconductor chip are brought close to each other, the detection electrode comes into contact with the other electrode in advance, and the detection electrodes are in contact with each other. The first semiconductor chip and the second semiconductor chip are stationary. At this time, the other electrodes are separated from each other on the first semiconductor chip side and the second semiconductor chip side, and no load is applied to the electrodes other than the detection electrodes.
Thereafter, by heating each first electrode and each second electrode, the fusing material is melted, and the first semiconductor chip and the second semiconductor chip become accessible to each other. Then, based on the contact state between the detection electrodes, the relative positions of the first semiconductor chip and the second semiconductor chip that connect the other electrodes are determined, and the first semiconductor chip and the second semiconductor are set so as to be the relative positions. The position of the chip is controlled. Then, the fusion material is cooled and hardened while the relative positions of the first semiconductor chip and the second semiconductor chip are constant, and the connection is completed for all the electrodes.

本発明によれば、加熱により溶融する融着材を回路形成面から突出させたので、電極の形成方法が例えば無電解めっき等の限られた方法に限定されることはなく、例えば電解めっき等の適用が可能となる。そして、加熱により溶融する融着材により電極の突出部分を形成したことから、各半導体チップの接続後の電極に生ずる応力を緩和することができる。
さらに、検出用電極同士を先行して接触させ、融着材を加熱して溶融した後に他の電極同士を接触させるようにしたので、他の電極に加わる負荷を低減することができる。また、検出用電極の接触状態に基づいて、他の電極を接続する際の第1半導体チップ及び第2半導体チップの相対位置が決定されるので、他の電極の接続位置を精度よく制御することができる。
According to the present invention, since the fusion material that is melted by heating protrudes from the circuit formation surface, the electrode formation method is not limited to a limited method such as electroless plating, for example, electrolytic plating or the like. Can be applied. And since the protrusion part of the electrode was formed with the melt | fusion material fuse | melted by heating, the stress which arises in the electrode after the connection of each semiconductor chip can be relieved.
Further, since the detection electrodes are brought into contact with each other in advance and the other electrodes are brought into contact with each other after the fusion material is heated and melted, the load applied to the other electrodes can be reduced. Moreover, since the relative positions of the first semiconductor chip and the second semiconductor chip when connecting other electrodes are determined based on the contact state of the detection electrodes, the connection positions of the other electrodes can be controlled with high accuracy. Can do.

図面を参照しつつ、本発明による半導体ウェハの研磨装置の好適な実施形態について詳細に説明する。尚、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。   A preferred embodiment of a semiconductor wafer polishing apparatus according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1から図4は本発明の第1の実施形態を示すものであり、図1は接続前の第1半導体チップ及び第2半導体チップの模式断面図、図2は検出用電極が接触した状態の第1半導体チップ及び第2半導体チップの模式断面図、図3は各電極の融着材が溶融した状態の第1半導体チップ及び第2半導体チップの模式断面図、図4は通常電極の接続位置に位置決めされた第1半導体チップ及び第2半導体チップの模式断面図である。尚、図3及び図4においては、説明のため、符号を一部省略して図示している。   1 to 4 show a first embodiment of the present invention. FIG. 1 is a schematic cross-sectional view of a first semiconductor chip and a second semiconductor chip before connection, and FIG. 2 is a state where detection electrodes are in contact with each other. FIG. 3 is a schematic cross-sectional view of the first semiconductor chip and the second semiconductor chip, FIG. 3 is a schematic cross-sectional view of the first semiconductor chip and the second semiconductor chip in a state where the fusion material of each electrode is melted, and FIG. It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip which were positioned in the position. In FIGS. 3 and 4, for the sake of explanation, some of the reference numerals are omitted.

この製造方法においては、回路形成面110に複数の第1電極120が形成された第1半導体チップ100(図1参照)と、回路形成面210に複数の第2電極220が形成された第2半導体チップ200(図1参照)を、図2に示すように互いに回路形成面110,210が対向して各第1電極120と各第2電極220とが接触するよう位置決めし、図3に示すように各第1電極120と各第2電極220の少なくとも一方の表面をなす融着材を加熱し溶融させて各第1電極120及び各第2電極220を接続して、図4に示すようにCoC接続の半導体装置300を製造する。   In this manufacturing method, the first semiconductor chip 100 (see FIG. 1) in which a plurality of first electrodes 120 are formed on the circuit formation surface 110 and the second in which a plurality of second electrodes 220 are formed on the circuit formation surface 210. As shown in FIG. 2, the semiconductor chip 200 (see FIG. 1) is positioned so that the circuit forming surfaces 110 and 210 face each other and the first electrodes 120 and the second electrodes 220 are in contact with each other, as shown in FIG. As shown in FIG. 4, the first electrode 120 and the second electrode 220 are connected to each other by heating and melting the fusion material that forms at least one surface of each first electrode 120 and each second electrode 220. Then, a CoC-connected semiconductor device 300 is manufactured.

具体的に、図1に示すように、第1半導体チップ100の回路形成面110の第1電極120は、回路形成面110に形成されているパッド電極部122と、パッド電極部122上に形成され例えばNi等からなるバリアメタル層124と、バリアメタル層124上に形成されはんだを主成分とする融着材126と、を有する。融着材126のはんだとして、例えば、SnやAgを含むものが用いられる。融着材126は、一般的に「バンプ」と称され、図1に示すように断面視にて略半球状を呈している。   Specifically, as shown in FIG. 1, the first electrode 120 of the circuit formation surface 110 of the first semiconductor chip 100 is formed on the pad electrode portion 122 formed on the circuit formation surface 110 and the pad electrode portion 122. And a barrier metal layer 124 made of, for example, Ni, and a fusion material 126 formed on the barrier metal layer 124 and containing solder as a main component. As the solder of the fusion material 126, for example, a solder containing Sn or Ag is used. The fusion material 126 is generally referred to as a “bump” and has a substantially hemispherical shape in a sectional view as shown in FIG.

本実施形態においては、第1電極120は、第2半導体チップ200と電気的に接続するための通常電極130及び回路形成面110の周縁側に配された検出用電極132の2種類からなる。通常電極130は、検出用電極132に比して、融着材(バンプ)126の径が小さく、回路形成面110からの突出量が小さくなっている。すなわち、電極形成工程にて、融着材126を第1半導体チップ100の回路形成面110から突出するよう形成するとともに、各第1電極120及び各第2電極220の少なくとも一組が、第1半導体チップ100と第2半導体チップ200を回路形成面110,210が対向する状態で互いに接近させると他の電極に先行して接触する検出用電極132を形成している。この検出用電極132は、各半導体チップ100,200を物理的に接続するものの電気的に接続するものではなく、いわゆるダミーの電極である。   In the present embodiment, the first electrode 120 includes two types of electrodes, that is, a normal electrode 130 for electrical connection with the second semiconductor chip 200 and a detection electrode 132 disposed on the peripheral side of the circuit formation surface 110. The normal electrode 130 has a smaller diameter of the bonding material (bump) 126 and a smaller amount of protrusion from the circuit forming surface 110 than the detection electrode 132. That is, in the electrode formation step, the fusion material 126 is formed so as to protrude from the circuit formation surface 110 of the first semiconductor chip 100, and at least one set of each first electrode 120 and each second electrode 220 is the first. When the semiconductor chip 100 and the second semiconductor chip 200 are brought close to each other with the circuit forming surfaces 110 and 210 facing each other, a detection electrode 132 that comes into contact with other electrodes is formed. The detection electrode 132 is a so-called dummy electrode that physically connects the semiconductor chips 100 and 200 but does not electrically connect them.

また、図1に示すように、第2半導体チップ200の回路形成面210における第2電極220は、回路形成面210に形成されているパッド電極部222と、パッド電極部222上に形成され例えばNi等からなるバリアメタル層224と、を有する。第2電極220においては、第1電極120のようにバンプが形成されているわけでなく、バリアメタル層224の表面にはんだの濡れ性を良くする為に例えばAu等が形成された表面電極部228が形成されている。   Further, as shown in FIG. 1, the second electrode 220 on the circuit formation surface 210 of the second semiconductor chip 200 is formed on the pad electrode portion 222 formed on the circuit formation surface 210 and the pad electrode portion 222, for example. And a barrier metal layer 224 made of Ni or the like. In the second electrode 220, bumps are not formed as in the first electrode 120, but a surface electrode portion in which, for example, Au or the like is formed on the surface of the barrier metal layer 224 in order to improve the wettability of the solder. 228 is formed.

本実施形態においては、第2電極220は、第1半導体チップ100の第1電極120と電気的に接続される通常電極230及び回路形成面210の周縁側に配され第1半導体チップ100の検出用電極132と接続される検出用電極232の2種類からなる。   In the present embodiment, the second electrode 220 is disposed on the peripheral side of the normal electrode 230 and the circuit forming surface 210 that are electrically connected to the first electrode 120 of the first semiconductor chip 100 and is detected by the first semiconductor chip 100. It consists of two types of electrodes 232 for detection connected to the electrode 132 for electrodes.

本実施形態の半導体装置300の製造方法は、以上のように第1半導体チップ100及び第2半導体チップ200の第1電極120及び第2電極220を形成する電極形成工程の他に、チップ接近工程と、接触状態検出工程と、接続位置決定工程と、位置制御工程と、を含んでいる。チップ形成工程では第1半導体チップ100及び第2半導体チップ200を、回路形成面110,210を対向させた状態で互いに接近させる。このとき、各半導体チップ100,200は、図示しない上下一対のヘッドにより、各第1電極120及び各第2電極220を平面視にて一致させた状態で保持されている。そして、各ヘッドに一定の荷重を加えることにより各ヘッドを相対的に近接させる。   The manufacturing method of the semiconductor device 300 according to the present embodiment includes a chip approach process in addition to the electrode forming process of forming the first electrode 120 and the second electrode 220 of the first semiconductor chip 100 and the second semiconductor chip 200 as described above. And a contact state detection step, a connection position determination step, and a position control step. In the chip forming process, the first semiconductor chip 100 and the second semiconductor chip 200 are brought close to each other with the circuit forming surfaces 110 and 210 facing each other. At this time, the semiconductor chips 100 and 200 are held by a pair of upper and lower heads (not shown) in a state where the first electrodes 120 and the second electrodes 220 are aligned in a plan view. Then, by applying a constant load to each head, the heads are brought relatively close to each other.

ここで、前述の電極形成工程にて、第1半導体チップ100の検出用電極132を通常電極130よりも回路形成面110からの突出量が大きくなるよう形成したので、図2に示すように、第1半導体チップ100と第2半導体チップ200を回路形成面110,210が対向する状態で互いに接近させた際に、各通常電極130,230に先行して検出用電極132,232が接触する。このときの、各半導体チップ100,200の検出用電極132,232同士の接触状態を検出する(接触状態検出工程)。   Here, in the above-described electrode forming step, the detection electrode 132 of the first semiconductor chip 100 is formed so that the protruding amount from the circuit forming surface 110 is larger than the normal electrode 130, as shown in FIG. When the first semiconductor chip 100 and the second semiconductor chip 200 are brought close to each other with the circuit forming surfaces 110 and 210 facing each other, the detection electrodes 132 and 232 come into contact with the normal electrodes 130 and 230 in advance. At this time, the contact state between the detection electrodes 132 and 232 of the semiconductor chips 100 and 200 is detected (contact state detection step).

具体的に接触状態検出工程は、接触検出工程と、荷重制御工程と、溶融検知工程と、を含む。接触検出工程は、第1半導体チップ100及び第2半導体チップ200の検出用電極132,232同士の接触を検出する工程である。前述のように、検出用電極132,232が通常電極130,230に先行して接触するので、各半導体チップ100,200が静止する(図2参照)。本実施形態においては、検出用電極132,232の接触は、各ヘッドが相対的に移動しなくなり、各ヘッドにて検知される荷重が所定値を超えることにより検出される。図2に示すように、通常電極130,230については第1半導体チップ100側と第2半導体チップ200側で離隔した状態であり、検出用電極132,232以外の通常電極130,230に負荷が加わることはない。   Specifically, the contact state detection step includes a contact detection step, a load control step, and a melting detection step. The contact detection step is a step of detecting contact between the detection electrodes 132 and 232 of the first semiconductor chip 100 and the second semiconductor chip 200. As described above, since the detection electrodes 132 and 232 are in contact with the normal electrodes 130 and 230 in advance, the semiconductor chips 100 and 200 are stationary (see FIG. 2). In the present embodiment, the contact between the detection electrodes 132 and 232 is detected when the respective heads do not move relatively and the load detected by each head exceeds a predetermined value. As shown in FIG. 2, the normal electrodes 130 and 230 are separated from each other on the first semiconductor chip 100 side and the second semiconductor chip 200 side, and loads are applied to the normal electrodes 130 and 230 other than the detection electrodes 132 and 232. There is no participation.

また、荷重制御工程は、接触検出工程にて検出用電極132,232同士の接触が検出された後、融着材126を加熱するとともに、第1半導体チップ100及び第2半導体チップ200に互いに接近する方向へ予め設定された荷重を加える。尚、本実施形態においては、チップ近接工程から各ヘッドに定常的に一定の荷重が加えられており、荷重制御工程にて各ヘッドに加える荷重が変化するということはない。   In the load control process, after the contact between the detection electrodes 132 and 232 is detected in the contact detection process, the fusion material 126 is heated, and the first semiconductor chip 100 and the second semiconductor chip 200 approach each other. Apply a preset load in the direction of In the present embodiment, a constant load is constantly applied to each head from the chip proximity process, and the load applied to each head in the load control process does not change.

この後、図3に示すように、各第1電極120及び各第2電極220の加熱により融着材126が溶融し、第1半導体チップ100及び第2半導体チップ200が互いに接近可能な状態となる。溶融検知工程は、荷重制御工程の後、検出用電極132の融着材126が溶融して第1半導体チップ100及び第2半導体チップ200が接近を開始したことを検知する。本実施形態においては、図3に示すように、検出用電極132の融着材126が溶融して軟化し、各ヘッドに加えられた荷重に融着材126が抗することができなくなり、各ヘッドが各検出用電極132,232の接触位置から一定量だけ移動したことを検出することにより、融着材126の溶融を検知する。   Thereafter, as shown in FIG. 3, the first electrode 120 and the second electrode 220 are heated to melt the fusion material 126 so that the first semiconductor chip 100 and the second semiconductor chip 200 can approach each other. Become. In the melting detection step, after the load control step, it is detected that the fusion material 126 of the detection electrode 132 has melted and the first semiconductor chip 100 and the second semiconductor chip 200 have started approaching. In the present embodiment, as shown in FIG. 3, the fusion material 126 of the detection electrode 132 is melted and softened, and the fusion material 126 cannot resist the load applied to each head. By detecting that the head has moved from the contact position of each of the detection electrodes 132 and 232 by a certain amount, the melting of the fusion material 126 is detected.

そして、溶融検知工程にて第1半導体チップ100及び第2半導体チップ200が接近を開始した位置を基準として、通常電極130,230同士を接続する第1半導体チップ100及び第2半導体チップ200の相対位置が決定される(接続位置決定工程)。本実施形態においては、検出用電極132,232の融着材126が溶融した各半導体チップ100,200の相対位置と、通常電極130,230を接続するのに最適な各半導体チップ100,200の相対位置と、の差が予め算出されている。そして、検出用電極132,232の融着材126が溶融した各半導体チップ100,200の相対位置からこの差を減じることにより、通常電極130,230を接続するのに最適な各半導体チップ100,200の相対位置が決定される。   Then, relative to the first semiconductor chip 100 and the second semiconductor chip 200 that connect the normal electrodes 130 and 230 with reference to the position where the first semiconductor chip 100 and the second semiconductor chip 200 start approaching in the melting detection step. The position is determined (connection position determination step). In the present embodiment, the relative positions of the semiconductor chips 100 and 200 in which the fusion material 126 of the detection electrodes 132 and 232 is melted and the semiconductor chips 100 and 200 that are optimal for connecting the normal electrodes 130 and 230 are connected. The difference from the relative position is calculated in advance. Then, by subtracting this difference from the relative position of each semiconductor chip 100, 200 in which the fusion material 126 of the detection electrodes 132, 232 is melted, each semiconductor chip 100, optimum for connecting the normal electrodes 130, 230 is obtained. 200 relative positions are determined.

このようにして各半導体チップ100,200の相対位置が決定された後、図4に示すように、この相対位置となるよう第1半導体チップ100及び第2半導体チップ200の位置を制御する(位置制御工程)。本実施形態においては、各ヘッドの相対移動を停止して、通常電極130,230及び検出用電極132,232の融着材126が凝固するまで、各半導体チップ100,200の各回路形成面110,210の間隔を保持する。通常電極130,230及び検出用電極132,232の融着材126が冷却して硬化すると、全ての電極について接続が完了する。   After the relative positions of the semiconductor chips 100 and 200 are thus determined, the positions of the first semiconductor chip 100 and the second semiconductor chip 200 are controlled so as to be the relative positions as shown in FIG. Control process). In this embodiment, the relative movement of the heads is stopped and the circuit forming surfaces 110 of the semiconductor chips 100 and 200 are solidified until the fusion material 126 of the normal electrodes 130 and 230 and the detection electrodes 132 and 232 is solidified. , 210 is maintained. When the fusion material 126 of the normal electrodes 130 and 230 and the detection electrodes 132 and 232 is cooled and hardened, the connection is completed for all the electrodes.

このように、本実施形態によれば、各第1電極120及び各第2電極220を接続する融着材126を回路形成面110に突出形成したので、融着材126の形成方法として、例えば、電解めっき法や、はんだボール転写、はんだ印刷法等の多くの方法を用いることが可能となる。また、融着材126として用いたはんだは比較的塑性変形し易いので、Ni、Cu等により形成され硬度が比較的高いものに比して、接続後の各第1電極120及び各第2電極220に生ずる応力を緩和することができる。   As described above, according to the present embodiment, the fusion material 126 that connects each first electrode 120 and each second electrode 220 is formed to protrude from the circuit formation surface 110. Therefore, as a method for forming the fusion material 126, for example, Many methods such as electrolytic plating, solder ball transfer, and solder printing can be used. In addition, since the solder used as the fusion material 126 is relatively easy to plastically deform, the first electrode 120 and the second electrode after connection are compared to those formed of Ni, Cu or the like and having a relatively high hardness. The stress generated in 220 can be relaxed.

また、検出用電極132,232同士を先行して接触させ、融着材126を加熱して溶融した後に通常電極130,230同士を接触させるようにしたので、通常電極130,230に加わる負荷を低減することができる。また、検出用電極132,232の接触状態に基づいて、通常電極130,230を接続する際の第1半導体チップ100及び第2半導体チップ200の相対位置が決定されるので、通常電極130,230の接続位置を精度よく制御することができる。   In addition, since the detection electrodes 132 and 232 are brought into contact with each other in advance and the fusion material 126 is heated and melted, the normal electrodes 130 and 230 are brought into contact with each other, so that the load applied to the normal electrodes 130 and 230 is increased. Can be reduced. Further, since the relative positions of the first semiconductor chip 100 and the second semiconductor chip 200 when the normal electrodes 130 and 230 are connected are determined based on the contact state of the detection electrodes 132 and 232, the normal electrodes 130 and 230 are determined. Can be accurately controlled.

また、接触状態検出工程にて、はんだが溶融した瞬間を原点位置として認識することにより、加熱による装置等の熱膨張の影響による誤差を小さくすることができる。   Further, by recognizing the moment when the solder is melted as the origin position in the contact state detection step, it is possible to reduce an error due to the influence of the thermal expansion of the apparatus or the like due to heating.

図5から図8は本発明の第2の実施形態を示すものであり、図5は接続前の第1半導体チップ及び第2半導体チップの模式断面図、図6は検出用電極が接触した状態の第1半導体チップ及び第2半導体チップの模式断面図、図7は各電極の融着材が溶融した状態の第1半導体チップ及び第2半導体チップの模式断面図、図8は通常電極の接続位置に位置決めされた第1半導体チップ及び第2半導体チップの模式断面図である。第2の実施形態では、第2半導体チップの通常電極及び検出用電極に融着材が形成されている点が第1の実施形態と異なる。   FIGS. 5 to 8 show a second embodiment of the present invention, FIG. 5 is a schematic cross-sectional view of the first semiconductor chip and the second semiconductor chip before connection, and FIG. 6 is a state in which the detection electrodes are in contact with each other. 7 is a schematic cross-sectional view of the first semiconductor chip and the second semiconductor chip, FIG. 7 is a schematic cross-sectional view of the first semiconductor chip and the second semiconductor chip in a state where the fusion material of each electrode is melted, and FIG. It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip which were positioned in the position. The second embodiment is different from the first embodiment in that a fusion material is formed on the normal electrode and the detection electrode of the second semiconductor chip.

図5に示すように、本実施形態においては、電極形成工程にて、第2半導体チップ200の通常電極230及び検出用電極232には、バリアメタル層224の表面に例えばはんだ等からなる融着材(バンプ)226が形成される。第2半導体チップ200においても、第1半導体チップ100と同様に、検出用電極232の融着材226が、通常電極230の融着材226よりも回路形成面210から突出するよう構成される。尚、第1半導体チップ100の構成は、第1の実施形態と同様であるので、ここでは説明を省略する。   As shown in FIG. 5, in this embodiment, in the electrode forming process, the normal electrode 230 and the detection electrode 232 of the second semiconductor chip 200 are fused to the surface of the barrier metal layer 224, for example, from solder. A material (bump) 226 is formed. In the second semiconductor chip 200, similarly to the first semiconductor chip 100, the fusion material 226 of the detection electrode 232 is configured to protrude from the circuit formation surface 210 more than the fusion material 226 of the normal electrode 230. Note that the configuration of the first semiconductor chip 100 is the same as that of the first embodiment, and thus the description thereof is omitted here.

本実施形態においても、図6に示すように、第1半導体チップ100及び第2半導体チップ200を、回路形成面110,210を対向させた状態で互いに接近させる(チップ接近工程)。そして、電極形成工程にて、第1半導体チップ100及び第2半導体チップ200の各検出用電極132,232を通常電極130,230よりも回路形成面110,210からの突出量が大きくなるよう形成したので、第1半導体チップ100と第2半導体チップ200を回路形成面110,210が対向する状態で互いに接近させた際に、各通常電極130,230に先行して検出用電極132,232が接触する。このときの、各半導体チップ100,200の検出用電極132,232同士の接触状態を検出する(接触状態検出工程)。本実施形態においても、接触状態検出工程は、接触検出工程と、荷重制御工程と、溶融検知工程と、を含む。   Also in the present embodiment, as shown in FIG. 6, the first semiconductor chip 100 and the second semiconductor chip 200 are brought close to each other with the circuit forming surfaces 110 and 210 facing each other (chip approaching step). In the electrode formation step, the detection electrodes 132 and 232 of the first semiconductor chip 100 and the second semiconductor chip 200 are formed so that the protruding amount from the circuit formation surfaces 110 and 210 is larger than the normal electrodes 130 and 230. Therefore, when the first semiconductor chip 100 and the second semiconductor chip 200 are brought close to each other with the circuit forming surfaces 110 and 210 facing each other, the detection electrodes 132 and 232 precede the respective normal electrodes 130 and 230. Contact. At this time, the contact state between the detection electrodes 132 and 232 of the semiconductor chips 100 and 200 is detected (contact state detection step). Also in the present embodiment, the contact state detection step includes a contact detection step, a load control step, and a melting detection step.

そして、接触状態検出工程の溶融検知工程にて第1半導体チップ100及び第2半導体チップ200が接近を開始した位置(図7参照)を基準として、通常電極130,230同士を接続する第1半導体チップ100及び第2半導体チップ200の相対位置が決定される(接続位置決定工程)。そして、各半導体チップ100,200の相対位置が決定された後、図8に示すように、この相対位置となるよう第1半導体チップ100及び第2半導体チップ200の位置を制御する(位置制御工程)。   Then, the first semiconductor that connects the normal electrodes 130 and 230 with reference to the position (see FIG. 7) where the first semiconductor chip 100 and the second semiconductor chip 200 start approaching in the melting detection step of the contact state detection step. The relative positions of the chip 100 and the second semiconductor chip 200 are determined (connection position determination step). Then, after the relative positions of the semiconductor chips 100 and 200 are determined, as shown in FIG. 8, the positions of the first semiconductor chip 100 and the second semiconductor chip 200 are controlled so as to be the relative positions (position control step). ).

このように、本実施形態においては、第1の実施形態の作用効果に加え、第1電極120と第2電極220の両方に融着材126,226を形成したので、検出用電極132,232同士が接触してから、融着材126,226の溶融を検知するまでの各半導体チップ100,200の相対移動のストロークを大きく確保することができる。従って、融着材126,226の溶融検知に高い精度が要求されず、各ヘッドの駆動装置、荷重検知装置等の構成を簡単にすることができる。また、融着材126,226の溶融を的確に検知することができ、溶融の誤認識による各半導体チップ100,200の接続不良等が生じることはない。   As described above, in the present embodiment, in addition to the operational effects of the first embodiment, the fusion materials 126 and 226 are formed on both the first electrode 120 and the second electrode 220, so that the detection electrodes 132 and 232 are formed. A large stroke of the relative movement of each of the semiconductor chips 100 and 200 from when they come into contact with each other until the melting of the fusing materials 126 and 226 is detected can be secured. Therefore, high accuracy is not required for the melting detection of the bonding materials 126 and 226, and the configuration of the drive device of each head, the load detection device, and the like can be simplified. In addition, the melting of the bonding materials 126 and 226 can be accurately detected, and there is no connection failure between the semiconductor chips 100 and 200 due to erroneous recognition of melting.

図9から図12までは本発明の第3の実施形態を示すものであり、図9は接続前の第1半導体チップ及び第2半導体チップの模式断面図、図10は検出用電極が接触した状態の第1半導体チップ及び第2半導体チップの模式断面図、図11は各電極の融着材が溶融した状態の第1半導体チップ及び第2半導体チップの模式断面図、図12は通常電極の接続位置に位置決めされた第1半導体チップ及び第2半導体チップの模式断面図である。第3の実施形態においては、第2の実施形態と融着材の形状が異なっている。   FIGS. 9 to 12 show a third embodiment of the present invention. FIG. 9 is a schematic cross-sectional view of the first semiconductor chip and the second semiconductor chip before connection, and FIG. 11 is a schematic cross-sectional view of the first semiconductor chip and the second semiconductor chip in a state, FIG. 11 is a schematic cross-sectional view of the first semiconductor chip and the second semiconductor chip in a state where the fusion material of each electrode is melted, and FIG. It is a schematic cross section of the first semiconductor chip and the second semiconductor chip positioned at the connection position. In the third embodiment, the shape of the fusion material is different from that of the second embodiment.

図9に示すように、本実施形態においては、電極形成工程にて、第2半導体チップ200の通常電極230及び検出用電極232には、バリアメタル層224の表面に例えばはんだ等からなる融着材226が平坦に形成される。   As shown in FIG. 9, in this embodiment, in the electrode forming process, the normal electrode 230 and the detection electrode 232 of the second semiconductor chip 200 are fused to the surface of the barrier metal layer 224, for example, from solder. The material 226 is formed flat.

本実施形態においても、図10に示すように、第1半導体チップ100及び第2半導体チップ200を、回路形成面110,210を対向させた状態で互いに接近させる(チップ接近工程)。そして、各半導体チップ100,200の検出用電極132,232同士の接触状態を検出する(接触状態検出工程)。   Also in the present embodiment, as shown in FIG. 10, the first semiconductor chip 100 and the second semiconductor chip 200 are brought close to each other with the circuit forming surfaces 110 and 210 facing each other (chip approaching step). Then, the contact state between the detection electrodes 132 and 232 of each semiconductor chip 100 and 200 is detected (contact state detection step).

次いで、接触状態検出工程にて第1半導体チップ100及び第2半導体チップ200が接近を開始した位置(図11参照)を基準として、通常電極130,230同士を接続する第1半導体チップ100及び第2半導体チップ200の相対位置が決定される(接続位置決定工程)。そして、各半導体チップ100,200の相対位置が決定された後、図12に示すように、この相対位置となるよう第1半導体チップ100及び第2半導体チップ200の位置を制御する(位置制御工程)。   Next, the first semiconductor chip 100 and the first semiconductor chip 100 that connect the normal electrodes 130 and 230 with reference to the position (see FIG. 11) where the first semiconductor chip 100 and the second semiconductor chip 200 start approaching in the contact state detection step. 2 The relative position of the semiconductor chip 200 is determined (connection position determination step). Then, after the relative positions of the semiconductor chips 100 and 200 are determined, as shown in FIG. 12, the positions of the first semiconductor chip 100 and the second semiconductor chip 200 are controlled to be the relative positions (position control process). ).

本実施形態においても、融着材126,226の形成方法として多くの方法を用いることができるし、接続後の各第1電極120及び各第2電極220に生ずる応力を緩和することができる。また、通常電極130,230に加わる負荷を低減するとともに、通常電極130,230の接続位置を精度よく制御することができる。   Also in this embodiment, many methods can be used as a method for forming the fusion materials 126 and 226, and stress generated in each first electrode 120 and each second electrode 220 after connection can be relaxed. Further, the load applied to the normal electrodes 130 and 230 can be reduced, and the connection position of the normal electrodes 130 and 230 can be controlled with high accuracy.

図13から図16までは本発明の第4の実施形態を示すものであり、図13は接続前の第1半導体チップ及び第2半導体チップの模式断面図、図14は検出用電極が接触した状態の第1半導体チップ及び第2半導体チップの模式断面図、図15は各電極の融着材が溶融した状態の第1半導体チップ及び第2半導体チップの模式断面図、図16は通常電極の接続位置に位置決めされた第1半導体チップ及び第2半導体チップの模式断面図である。第4の実施形態においては、第2半導体チップの第2電極が金属ポストを有する点で第3の実施形態と異なっている。   FIGS. 13 to 16 show a fourth embodiment of the present invention. FIG. 13 is a schematic sectional view of the first semiconductor chip and the second semiconductor chip before connection, and FIG. 15 is a schematic cross-sectional view of the first semiconductor chip and the second semiconductor chip in a state, FIG. 15 is a schematic cross-sectional view of the first semiconductor chip and the second semiconductor chip in a state where the fusion material of each electrode is melted, and FIG. It is a schematic cross section of the first semiconductor chip and the second semiconductor chip positioned at the connection position. The fourth embodiment is different from the third embodiment in that the second electrode of the second semiconductor chip has a metal post.

図13に示すように、本実施形態においては、電極形成工程にて、各第2電極220に回路形成面110,210から突出し融着材126,226よりも溶融温度の高い金属ポスト240を形成する。すなわち、第2半導体チップ200の通常電極230及び検出用電極232では、パッド電極部222上に例えばNi、Cu等からなる金属ポスト240が形成され、この金属ポスト240の表面にはんだ等からなる融着材226が形成されている。この融着材226は、金属ポスト240の表面に平坦に形成される。   As shown in FIG. 13, in the present embodiment, in the electrode forming process, the metal posts 240 that protrude from the circuit forming surfaces 110 and 210 and have a higher melting temperature than the fusion materials 126 and 226 are formed on the second electrodes 220. To do. That is, in the normal electrode 230 and the detection electrode 232 of the second semiconductor chip 200, a metal post 240 made of, for example, Ni, Cu or the like is formed on the pad electrode portion 222, and a melt made of solder or the like is formed on the surface of the metal post 240. A dressing 226 is formed. The fusion material 226 is formed flat on the surface of the metal post 240.

本実施形態においても、図14に示すように、第1半導体チップ100及び第2半導体チップ200を、回路形成面110,210を対向させた状態で互いに接近させる(チップ接近工程)。そして、各半導体チップ100,200の検出用電極132,232同士の接触状態を検出する(接触状態検出工程)。   Also in this embodiment, as shown in FIG. 14, the first semiconductor chip 100 and the second semiconductor chip 200 are brought close to each other with the circuit formation surfaces 110 and 210 facing each other (chip approaching step). Then, the contact state between the detection electrodes 132 and 232 of each semiconductor chip 100 and 200 is detected (contact state detection step).

次いで、接触状態検出工程にて第1半導体チップ100及び第2半導体チップ200が接近を開始した位置(図15参照)を基準として、通常電極130,230同士を接続する第1半導体チップ100及び第2半導体チップ200の相対位置が決定される(接続位置決定工程)。そして、各半導体チップ100,200の相対位置が決定された後、図16に示すように、この相対位置となるよう第1半導体チップ100及び第2半導体チップ200の位置を制御する(位置制御工程)。   Next, the first semiconductor chip 100 and the first semiconductor chip 100 that connect the normal electrodes 130 and 230 with reference to the position (see FIG. 15) where the first semiconductor chip 100 and the second semiconductor chip 200 start approaching in the contact state detection step. 2 The relative position of the semiconductor chip 200 is determined (connection position determination step). Then, after the relative positions of the semiconductor chips 100 and 200 are determined, as shown in FIG. 16, the positions of the first semiconductor chip 100 and the second semiconductor chip 200 are controlled so as to be the relative positions (position control step). ).

本実施形態においては、第3の実施形態の作用効果に加え、各第2電極220が金属ポスト240を有することにより、接続後の各半導体チップ100,200の回路形成面110,210間の距離を大きく確保することができる。これにより、各半導体チップ100,200の間にアンダーフィルを注入し易く、半導体装置300を製造する際の後工程の作業性が良好となる。   In the present embodiment, in addition to the operational effects of the third embodiment, each second electrode 220 includes a metal post 240, so that the distance between the circuit forming surfaces 110 and 210 of each semiconductor chip 100 and 200 after connection is reached. Can be secured greatly. Thereby, it is easy to inject an underfill between the semiconductor chips 100 and 200, and the workability of the post-process when manufacturing the semiconductor device 300 is improved.

図17から図20までは本発明の第5の実施形態を示すものであり、図17は接続前の第1半導体チップ及び第2半導体チップの模式断面図、図18は検出用電極が接触した状態の第1半導体チップ及び第2半導体チップの模式断面図、図19は各電極の融着材が溶融した状態の第1半導体チップ及び第2半導体チップの模式断面図、図20は通常電極の接続位置に位置決めされた第1半導体チップ及び第2半導体チップの模式断面図である。第5の実施形態においては、融着材が上側の第1半導体チップでなく下側の第2半導体チップに形成されている点が第1の実施形態と異なっている。   FIGS. 17 to 20 show a fifth embodiment of the present invention. FIG. 17 is a schematic cross-sectional view of the first semiconductor chip and the second semiconductor chip before connection, and FIG. 18 shows the detection electrodes in contact with each other. 19 is a schematic cross-sectional view of the first semiconductor chip and the second semiconductor chip in a state, FIG. 19 is a schematic cross-sectional view of the first semiconductor chip and the second semiconductor chip in a state where the fusion material of each electrode is melted, and FIG. It is a schematic cross section of the first semiconductor chip and the second semiconductor chip positioned at the connection position. The fifth embodiment is different from the first embodiment in that the fusing material is formed not on the upper first semiconductor chip but on the lower second semiconductor chip.

図17に示すように、本実施形態においては、第1半導体チップ100の回路形成面110における第1電極120は、回路形成面110に形成されているパッド電極部122と、パッド電極部122上に形成され例えばNi等からなるバリアメタル層124と、を有する。本実施形態においては、第1電極120は、第1の実施形態のようにバンプが形成されているわけでなく、バリアメタル層124の表面にはんだの濡れ性を良くする為に例えばAu等が形成された表面電極部128が形成されている。   As shown in FIG. 17, in the present embodiment, the first electrode 120 on the circuit formation surface 110 of the first semiconductor chip 100 includes the pad electrode portion 122 formed on the circuit formation surface 110 and the pad electrode portion 122. And a barrier metal layer 124 made of, for example, Ni. In the present embodiment, the first electrode 120 is not formed with bumps as in the first embodiment. For example, Au or the like is used on the surface of the barrier metal layer 124 to improve the wettability of the solder. The formed surface electrode portion 128 is formed.

一方、第2半導体チップ200の回路形成面210における第2電極220は、回路形成面210に形成されているパッド電極部222と、パッド電極部222上に形成され例えばNi等からなるバリアメタル層224と、バリアメタル層224上に形成されはんだを主成分とする融着材226と、を有する。融着材226は、一般的に「バンプ」と称され、図17に示すように断面視にて略半球状を呈している。   On the other hand, the second electrode 220 on the circuit formation surface 210 of the second semiconductor chip 200 includes a pad electrode portion 222 formed on the circuit formation surface 210 and a barrier metal layer formed on the pad electrode portion 222 and made of, for example, Ni. 224 and a fusion material 226 formed on the barrier metal layer 224 and containing solder as a main component. The fusing material 226 is generally referred to as “bump” and has a substantially hemispherical shape in a sectional view as shown in FIG.

本実施形態においても、図18に示すように、第1半導体チップ100及び第2半導体チップ200を、回路形成面110,210を対向させた状態で互いに接近させる(チップ接近工程)。そして、各半導体チップ100,200の検出用電極132,232同士の接触状態を検出する(接触状態検出工程)。   Also in the present embodiment, as shown in FIG. 18, the first semiconductor chip 100 and the second semiconductor chip 200 are brought close to each other with the circuit formation surfaces 110 and 210 facing each other (chip approaching step). Then, the contact state between the detection electrodes 132 and 232 of each semiconductor chip 100 and 200 is detected (contact state detection step).

次いで、接触状態検出工程にて第1半導体チップ100及び第2半導体チップ200が接近を開始した位置(図19参照)を基準として、通常電極130,230同士を接続する第1半導体チップ100及び第2半導体チップ200の相対位置が決定される(接続位置決定工程)。そして、各半導体チップ100,200の相対位置が決定された後、図20に示すように、この相対位置となるよう第1半導体チップ100及び第2半導体チップ200の位置を制御する(位置制御工程)。   Next, the first semiconductor chip 100 and the first semiconductor chip 100 that connect the normal electrodes 130 and 230 with reference to the position (see FIG. 19) where the first semiconductor chip 100 and the second semiconductor chip 200 start approaching in the contact state detection step. 2 The relative position of the semiconductor chip 200 is determined (connection position determination step). Then, after the relative positions of the semiconductor chips 100 and 200 are determined, as shown in FIG. 20, the positions of the first semiconductor chip 100 and the second semiconductor chip 200 are controlled so as to be the relative positions (position control step). ).

本実施形態においては、第1の実施形態の作用効果に加え、上側の第1半導体チップ100に融着材がないので、上側の第1半導体チップ100のヘッドを定常的に高温で加熱したままでも、第1半導体チップ100をツールに受け渡した際にバンプが潰れることを防止することができる。従って、上側のヘッドの加熱・冷却時間を短縮することができ、CoC接続時間の大幅な短縮が可能となる。   In the present embodiment, in addition to the effects of the first embodiment, the upper first semiconductor chip 100 has no fusion material, so the head of the upper first semiconductor chip 100 is constantly heated at a high temperature. However, it is possible to prevent the bumps from being crushed when the first semiconductor chip 100 is transferred to the tool. Therefore, the heating / cooling time of the upper head can be shortened, and the CoC connection time can be greatly shortened.

尚、前記各実施形態においては、融着材126,226としてはんだからなるものを示したが、他の材料からなるものであってもよい。融着材126,226がはんだ以外の材料であっても、加熱することで溶融するものであれば冷却後に生ずる応力を緩和することができる。   In each of the above embodiments, the fuses 126 and 226 are made of solder, but may be made of other materials. Even if the fusing materials 126 and 226 are materials other than solder, as long as they are melted by heating, the stress generated after cooling can be relaxed.

また、前記各実施形態においては、検出用電極132,232が溶融した位置を基準として通常電極130,230の接続位置を決定するものを示したが、検出用電極132,232が接触した位置を基準として通常電極130,230の接続位置を決定するようにしてもよいことは勿論である。   In each of the above embodiments, the connection position of the normal electrodes 130 and 230 is determined based on the position where the detection electrodes 132 and 232 are melted. However, the position where the detection electrodes 132 and 232 are in contact with each other is shown. Of course, the connection position of the normal electrodes 130 and 230 may be determined as a reference.

また、前記各実施形態においては、検出用電極132,232がダミーの電極であるものを示したが、各半導体チップ100,200を電気的に接続するものであってもよい。また、通常電極130,230と検出用電極132,232の配置等も任意であるし、その他、具体的な細部構造等についても適宜に変更可能であることは勿論である。   In the above embodiments, the detection electrodes 132 and 232 are dummy electrodes, but the semiconductor chips 100 and 200 may be electrically connected. Further, the arrangement of the normal electrodes 130 and 230 and the detection electrodes 132 and 232 is arbitrary, and it is needless to say that the specific detailed structure and the like can be appropriately changed.

本発明の第1の実施形態を示す接続前の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip before the connection which show the 1st embodiment of the present invention. 本発明の第1の実施形態を示す検出用電極が接触した状態の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip in the state where the detection electrode which shows a 1st embodiment of the present invention contacted. 本発明の第1の実施形態を示す各電極の融着材が溶融した状態の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip in the state where the fusion material of each electrode showing the 1st embodiment of the present invention was melted. 本発明の第1の実施形態を示す通常電極の接続位置に位置決めされた第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip which were positioned in the connection position of the usual electrode which shows the 1st embodiment of the present invention. 本発明の第2の実施形態を示す接続前の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip before the connection which show the 2nd Embodiment of this invention. 本発明の第2の実施形態を示す検出用電極が接触した状態の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip in the state where the electrode for detection showing the 2nd embodiment of the present invention contacted. 本発明の第2の実施形態を示す各電極の融着材が溶融した状態の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip in the state where the fusion material of each electrode showing the 2nd embodiment of the present invention was melted. 本発明の第2の実施形態を示す通常電極の接続位置に位置決めされた第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip which were positioned in the connection position of the usual electrode which shows the 2nd embodiment of the present invention. 本発明の第3の実施形態を示す接続前の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip before the connection which shows the 3rd Embodiment of this invention. 本発明の第3の実施形態を示す検出用電極が接触した状態の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip in the state where the detection electrode which shows a 3rd embodiment of the present invention contacted. 本発明の第3の実施形態を示す各電極の融着材が溶融した状態の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip in the state where the fusion material of each electrode showing the 3rd embodiment of the present invention was melted. 本発明の第3の実施形態を示す通常電極の接続位置に位置決めされた第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip which were positioned in the connection position of the usual electrode which shows the 3rd embodiment of the present invention. 本発明の第4の実施形態を示す接続前の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip before the connection which shows the 4th Embodiment of this invention. 本発明の第4の実施形態を示す検出用電極が接触した状態の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip in the state where the electrode for detection showing the 4th embodiment of the present invention contacted. 本発明の第4の実施形態を示す各電極の融着材が溶融した状態の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip in the state where the fusion material of each electrode showing the 4th embodiment of the present invention was melted. 本発明の第4の実施形態を示す通常電極の接続位置に位置決めされた第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip which were positioned in the connection position of the usual electrode which shows the 4th embodiment of the present invention. 本発明の第5の実施形態を示す接続前の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip before the connection which shows the 5th Embodiment of this invention. 本発明の第5の実施形態を示す検出用電極が接触した状態の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip in the state where the detection electrode which shows a 5th embodiment of the present invention contacted. 本発明の第5の実施形態を示す各電極の融着材が溶融した状態の第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip in the state where the fusion material of each electrode showing the 5th embodiment of the present invention was melted. 本発明の第5の実施形態を示す通常電極の接続位置に位置決めされた第1半導体チップ及び第2半導体チップの模式断面図である。It is a schematic cross section of the 1st semiconductor chip and the 2nd semiconductor chip which were positioned in the connection position of the usual electrode which shows the 5th embodiment of the present invention.

符号の説明Explanation of symbols

100 半導体チップ
110 回路形成面
120 第1電極
122 パッド電極部
124 バリアメタル層
126 融着材
128 表面電極部
130 通常電極
132 検出用電極
200 半導体チップ
210 回路形成面
220 第2電極
222 パッド電極部
224 バリアメタル層
226 融着材
228 表面電極部
230 通常電極
232 検出用電極
240 金属ポスト
300 半導体装置
DESCRIPTION OF SYMBOLS 100 Semiconductor chip 110 Circuit formation surface 120 1st electrode 122 Pad electrode part 124 Barrier metal layer 126 Fusion material 128 Surface electrode part 130 Normal electrode 132 Detection electrode 200 Semiconductor chip 210 Circuit formation surface 220 2nd electrode 222 Pad electrode part 224 Barrier metal layer 226 Fusion material 228 Surface electrode part 230 Normal electrode 232 Detection electrode 240 Metal post 300 Semiconductor device

Claims (4)

回路形成面に複数の第1電極が形成された第1半導体チップと、回路形成面に複数の第2電極が形成された第2半導体チップを、互いに前記回路形成面が対向して前記各第1電極と前記各第2電極とが接触するよう位置決めし、前記各第1電極と前記各第2電極の少なくとも一方の表面をなす融着材を加熱し溶融させて前記各第1電極及び前記各第2電極を接続するにあたり、
前記融着材を前記第1半導体チップと前記第2半導体チップの少なくとも一方の前記回路形成面から突出するよう形成するとともに、前記各第1電極及び前記各第2電極の少なくとも一組が、前記第1半導体チップと前記第2半導体チップを前記回路形成面が対向する状態で互いに接近させると他の電極に先行して接触する検出用電極となるよう電極を形成する電極形成工程と、
前記第1半導体チップ及び前記第2半導体チップを、前記回路形成面を対向させた状態で互いに接近させるチップ接近工程と、
前記チップ接近工程にて前記第1半導体チップ及び前記第2半導体チップが接近した際に、前記第1半導体チップ及び前記第2半導体チップの前記検出用電極同士の接触状態を検出する接触状態検出工程と、
前記接触状態検出工程にて検出された前記検出用電極同士の接触状態に基づいて、他の前記電極同士を接続する前記第1半導体チップ及び前記第2半導体チップの相対位置を決定する接続位置決定工程と、
前記接続位置決定工程にて決定された前記相対位置となるよう前記第1半導体チップ及び前記第2半導体チップの位置を制御する位置制御工程と、を含むことを特徴とする半導体装置の製造方法。
A first semiconductor chip having a plurality of first electrodes formed on a circuit formation surface and a second semiconductor chip having a plurality of second electrodes formed on the circuit formation surface are opposed to each other with the circuit formation surfaces facing each other. Positioning so that one electrode and each said 2nd electrode contact, heating the fusion material which makes at least one surface of each said 1st electrode and each said 2nd electrode, and melting each said 1st electrode and said In connecting each second electrode,
The fusion material is formed so as to protrude from the circuit forming surface of at least one of the first semiconductor chip and the second semiconductor chip, and at least one set of the first electrode and the second electrode is the An electrode forming step of forming an electrode to be a detection electrode that comes into contact with the other electrode in advance when the first semiconductor chip and the second semiconductor chip are brought close to each other with the circuit formation surfaces facing each other;
A chip approaching step of bringing the first semiconductor chip and the second semiconductor chip close to each other with the circuit formation surface facing each other;
A contact state detection step of detecting a contact state between the detection electrodes of the first semiconductor chip and the second semiconductor chip when the first semiconductor chip and the second semiconductor chip approach in the chip approach step. When,
Connection position determination for determining the relative positions of the first semiconductor chip and the second semiconductor chip that connect the other electrodes based on the contact state of the detection electrodes detected in the contact state detection step. Process,
A position control step of controlling the positions of the first semiconductor chip and the second semiconductor chip so as to be the relative positions determined in the connection position determination step.
前記接触状態検出工程は、
前記第1半導体チップ及び前記第2半導体チップの前記検出用電極同士の接触を検出する接触検出工程と、
前記接触検出工程にて前記検出用電極同士の接触が検出された後、前記融着材を加熱するとともに、前記第1半導体チップ及び前記第2半導体チップに互いに接近する方向へ予め設定された荷重を加える荷重制御工程と、
前記荷重制御工程の後、前記検出用電極の前記融着材が溶融して前記第1半導体チップ及び前記第2半導体チップが接近を開始したことを検知する溶融検知工程と、を含み、
前記接続位置決定工程は、前記溶融検知工程にて前記第1半導体チップ及び前記第2半導体チップが接近を開始した位置を基準として、他の前記電極同士を接続する前記第1半導体チップ及び前記第2半導体チップの相対位置を決定することを特徴とする請求項1に記載の半導体装置の製造方法。
The contact state detection step includes
A contact detection step of detecting contact between the detection electrodes of the first semiconductor chip and the second semiconductor chip;
After the contact between the detection electrodes is detected in the contact detection step, the load is set in advance in a direction in which the fusion material is heated and approaches the first semiconductor chip and the second semiconductor chip. A load control process for applying
After the load control step, a melting detection step of detecting that the fusion material of the detection electrode is melted and the first semiconductor chip and the second semiconductor chip start approaching, and
In the connection position determination step, the first semiconductor chip and the first semiconductor chip that connect the other electrodes to each other on the basis of the position where the first semiconductor chip and the second semiconductor chip start approaching in the melting detection step. 2. The method of manufacturing a semiconductor device according to claim 1, wherein a relative position of the two semiconductor chips is determined.
前記電極形成工程にて、前記融着材を、前記各第1電極及び前記各第2電極の表面に配することを特徴とする請求項1または2に記載の半導体装置の製造方法。   3. The method of manufacturing a semiconductor device according to claim 1, wherein, in the electrode forming step, the fusion material is disposed on a surface of each of the first electrodes and each of the second electrodes. 前記電極形成工程にて、前記各第1電極と前記各第2電極の少なくとも一方に、前記回路形成面から突出し前記融着材よりも溶融温度の高い金属ポストを形成することを特徴とする請求項1から3のいずれか一項に記載の半導体装置の製造方法。
In the electrode forming step, a metal post protruding from the circuit forming surface and having a higher melting temperature than the fusion material is formed on at least one of the first electrode and the second electrode. Item 4. The method for manufacturing a semiconductor device according to any one of Items 1 to 3.
JP2006008880A 2006-01-17 2006-01-17 Manufacturing method of semiconductor device Expired - Fee Related JP4881014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006008880A JP4881014B2 (en) 2006-01-17 2006-01-17 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006008880A JP4881014B2 (en) 2006-01-17 2006-01-17 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2007194274A true JP2007194274A (en) 2007-08-02
JP4881014B2 JP4881014B2 (en) 2012-02-22

Family

ID=38449754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008880A Expired - Fee Related JP4881014B2 (en) 2006-01-17 2006-01-17 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4881014B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281393A (en) * 2006-04-12 2007-10-25 Sony Corp Electronic component, semiconductor device using the same, and semiconductor device fabrication method
JP2011165862A (en) * 2010-02-09 2011-08-25 Sony Corp Semiconductor device, chip-on-chip mounting structure, method for manufacturing semiconductor device, and method for forming chip-on-chip mounting structure
WO2016174733A1 (en) * 2015-04-28 2016-11-03 オリンパス株式会社 Semiconductor device
CN107342237A (en) * 2016-04-28 2017-11-10 三星电子株式会社 Manufacture the method for semiconductor package part and the method for manufacture PoP semiconductor devices
CN113777465A (en) * 2020-06-09 2021-12-10 台湾爱司帝科技股份有限公司 Chip detection method, chip detection structure and chip bearing structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273639A (en) * 1985-09-26 1987-04-04 Fujitsu Ltd Method of mounting semiconductor chip
JPH06112463A (en) * 1992-09-25 1994-04-22 Mitsubishi Electric Corp Semiconductor device and mounting method thereof
JPH09232506A (en) * 1996-02-20 1997-09-05 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JPH10144731A (en) * 1996-11-07 1998-05-29 Toshiba Microelectron Corp Manufacture of semiconductor device
JP2002026072A (en) * 2000-07-07 2002-01-25 Hitachi Ltd Manufacturing method for semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273639A (en) * 1985-09-26 1987-04-04 Fujitsu Ltd Method of mounting semiconductor chip
JPH06112463A (en) * 1992-09-25 1994-04-22 Mitsubishi Electric Corp Semiconductor device and mounting method thereof
JPH09232506A (en) * 1996-02-20 1997-09-05 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JPH10144731A (en) * 1996-11-07 1998-05-29 Toshiba Microelectron Corp Manufacture of semiconductor device
JP2002026072A (en) * 2000-07-07 2002-01-25 Hitachi Ltd Manufacturing method for semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281393A (en) * 2006-04-12 2007-10-25 Sony Corp Electronic component, semiconductor device using the same, and semiconductor device fabrication method
JP2011165862A (en) * 2010-02-09 2011-08-25 Sony Corp Semiconductor device, chip-on-chip mounting structure, method for manufacturing semiconductor device, and method for forming chip-on-chip mounting structure
WO2016174733A1 (en) * 2015-04-28 2016-11-03 オリンパス株式会社 Semiconductor device
JPWO2016174733A1 (en) * 2015-04-28 2018-02-22 オリンパス株式会社 Semiconductor device
US10056344B2 (en) 2015-04-28 2018-08-21 Olympus Corporation Semiconductor device
CN107342237A (en) * 2016-04-28 2017-11-10 三星电子株式会社 Manufacture the method for semiconductor package part and the method for manufacture PoP semiconductor devices
CN107342237B (en) * 2016-04-28 2023-07-04 三星电子株式会社 Method of manufacturing semiconductor package and method of manufacturing PoP semiconductor device
CN113777465A (en) * 2020-06-09 2021-12-10 台湾爱司帝科技股份有限公司 Chip detection method, chip detection structure and chip bearing structure
CN113777465B (en) * 2020-06-09 2024-03-26 台湾爱司帝科技股份有限公司 Chip detection method, chip detection structure and chip bearing structure

Also Published As

Publication number Publication date
JP4881014B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
KR100520660B1 (en) Semiconductor wafer, semiconductor device, and method for manufacturing the same
US8368195B2 (en) Semiconductor device including arrangement to control connection height and alignment between a plurity of stacked semiconductor chips
CN101345199B (en) Packaging structure and its forming method
JP4752586B2 (en) Manufacturing method of semiconductor device
JP4881014B2 (en) Manufacturing method of semiconductor device
US7679188B2 (en) Semiconductor device having a bump formed over an electrode pad
TWI684391B (en) Methods of making semiconductor device modules with increased yield
US7067350B1 (en) Method of manufacturing a semiconductor device using electrical contacts formed in an isolation layer
US6489180B1 (en) Flip-chip packaging process utilizing no-flow underfill technique
US20150311146A1 (en) Wiring substrate and method of manufacturing the same, and semiconductor device and method of manufacturing the same
JP2770821B2 (en) Semiconductor device mounting method and mounting structure
US7994638B2 (en) Semiconductor chip and semiconductor device
TWI699840B (en) Method of forming fan-out interconnect structure and interconnect structure
US7514340B2 (en) Composite integrated device and methods for forming thereof
JP2010267741A (en) Method for manufacturing semiconductor device
JP2003124274A (en) Semiconductor wafer, semiconductor device and manufacturing method therefor
CN110164781A (en) The preparation method of electronic packing piece
JP2005209833A (en) Method for manufacturing semiconductor device
Gan et al. Advanced Flip Chip Packaging
JPH02105548A (en) Circuit board for mounting flip chip
JP4606376B2 (en) Semiconductor device
JP2008130727A (en) Method for manufacturing semiconductor device, and chip bonder used for it
US8703533B2 (en) Semiconductor package and method for manufacturing the same
JP2006237280A (en) Semiconductor device and its manufacturing method
KR101178840B1 (en) Substrate for semiconductor package and semiconductor package using the substrate and method of manufacturing semiconductor package using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees