JP2007194004A - Method of manufacturing gas diffusion layer for solid polymer fuel cell, and membrane-electrode assembly - Google Patents

Method of manufacturing gas diffusion layer for solid polymer fuel cell, and membrane-electrode assembly Download PDF

Info

Publication number
JP2007194004A
JP2007194004A JP2006009474A JP2006009474A JP2007194004A JP 2007194004 A JP2007194004 A JP 2007194004A JP 2006009474 A JP2006009474 A JP 2006009474A JP 2006009474 A JP2006009474 A JP 2006009474A JP 2007194004 A JP2007194004 A JP 2007194004A
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion layer
fuel cell
polymer electrolyte
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006009474A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kunisa
康弘 国狭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006009474A priority Critical patent/JP2007194004A/en
Publication of JP2007194004A publication Critical patent/JP2007194004A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a gas diffusion layer for a solid polymer fuel cell capable of maintaining high water repellency for a long period of time, and to provide a membrane-electrode assembly for the solid polymer fuel cell which enables the solid polymer fuel cell to stably operate for a long period of time. <P>SOLUTION: The method of manufacturing the gas diffusion layer 13 includes: a first step for carrying out impregnation of water dispersion solution made by dispersing polytetrafluoroethylene in water into a gas diffusion layer base; a second step for coating a coating liquid made by dispersing carbon black and polytetrafluoroethylene in dispersion medium on the gas diffusion layer base 14; and a third step for baking the gas diffusion layer base 14 on which the coating liquid has been coated in order to make the gas diffusion layer 13, in particular, the water dispersion solution and/or the coating liquid are so made that non-ion surfactant whose half-mass temperature in air is in the range of 100 to 300°C of 0.5 to 10 mass% to the sum of polytetrafluoroethylene, and the surfactant is contained in the water dispersion solution and/or the coating liquid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体高分子形燃料電池用ガス拡散層の製造方法および膜電極接合体に関する。   The present invention relates to a method for producing a gas diffusion layer for a polymer electrolyte fuel cell and a membrane electrode assembly.

固体高分子形燃料電池は、固体高分子電解質膜の両面に電極(カソード(空気極)およびアノード(燃料極))を配置した膜電極接合体を、セパレータを介して複数スタックして構成される。電極は、固体高分子電解質膜に接する触媒層と、該触媒層の外側に配置された多孔質のガス拡散層とから構成される。   A polymer electrolyte fuel cell is configured by stacking a plurality of membrane electrode assemblies in which electrodes (cathode (air electrode) and anode (fuel electrode)) are arranged on both sides of a solid polymer electrolyte membrane via a separator. . The electrode is composed of a catalyst layer in contact with the solid polymer electrolyte membrane and a porous gas diffusion layer disposed outside the catalyst layer.

固体高分子形燃料電池は、以下の理由から、電極が水で濡れやすく、ガス拡散層の細孔が水で閉塞する現象(フラッディング)を起こしやすい。
(1)固体高分子形燃料電池は、80℃程度の低温作動のため、電池反応によりカソード(空気極)で生成する水が凝縮しやすい。
(2)固体高分子電解質膜の導電性を保つため、固体高分子電解質膜が乾燥しないように、空気および燃料ガスは、湿潤した状態で供給される。
The polymer electrolyte fuel cell tends to cause a phenomenon (flooding) in which the electrodes are easily wetted with water and the pores of the gas diffusion layer are closed with water for the following reasons.
(1) Since the polymer electrolyte fuel cell operates at a low temperature of about 80 ° C., water generated at the cathode (air electrode) due to the cell reaction tends to condense.
(2) In order to maintain the conductivity of the solid polymer electrolyte membrane, air and fuel gas are supplied in a wet state so that the solid polymer electrolyte membrane is not dried.

フラッディングが起きると、空気または燃料ガスが触媒層に到達できずに電圧が大きく落ち込むことがある。よって、固体高分子形燃料電池を長期間安定して作動させるためには、フラッディングが起こらないように、ガス拡散層に撥水性を付与することが必要である。   When flooding occurs, air or fuel gas may not reach the catalyst layer and the voltage may drop significantly. Therefore, in order to stably operate the polymer electrolyte fuel cell for a long period of time, it is necessary to impart water repellency to the gas diffusion layer so as not to cause flooding.

撥水性が付与されたガス拡散層としては、ポリテトラフルオロエチレンで撥水性が付与されたガス拡散層が知られている。該ガス拡散層の製造方法としては、たとえば、以下の方法が提案されている。
ポリテトラフルオロエチレンが水に分散した水性分散液を、ガス拡散層基材に含浸させた後、該ガス拡散層基材を350℃で焼成して、水性分散液中の水および界面活性剤を除去し、ガス拡散層基材を撥水処理する。さらに撥水処理されたガス拡散層基材上に、カーボンブラックおよびポリテトラフルオロエチレンが水に分散した塗工液を塗布した後、該ガス拡散層基材を焼成して、塗工液中の水および界面活性剤を除去し、撥水性カーボン層を形成する(特許文献1)。
As a gas diffusion layer imparted with water repellency, a gas diffusion layer imparted with water repellency with polytetrafluoroethylene is known. As a method for producing the gas diffusion layer, for example, the following method has been proposed.
After impregnating the gas diffusion layer base material with an aqueous dispersion in which polytetrafluoroethylene is dispersed in water, the gas diffusion layer base material is baked at 350 ° C., and the water and the surfactant in the aqueous dispersion are removed. The gas diffusion layer base material is subjected to water repellent treatment. Furthermore, after applying a coating liquid in which carbon black and polytetrafluoroethylene are dispersed in water on a gas diffusion layer base material that has been subjected to water repellency treatment, the gas diffusion layer base material is baked to obtain a solution in the coating liquid. Water and the surfactant are removed to form a water-repellent carbon layer (Patent Document 1).

しかし、該方法で得られたガス拡散層は、撥水性を長期間維持できず、しだいにガス拡散層が濡れてきてフラッディングを起こし、電圧が大きく低下するという問題がある。
特開2005−019298号公報(実施例)
However, the gas diffusion layer obtained by this method has a problem that the water repellency cannot be maintained for a long period of time, and the gas diffusion layer gradually gets wet and causes flooding, resulting in a significant decrease in voltage.
JP 2005-019298 A (Example)

本発明の目的は、高い撥水性を長期間維持できる固体高分子形燃料電池用ガス拡散層の製造方法、および固体高分子形燃料電池を長期間安定して作動できる固体高分子形燃料電池用膜電極接合体を提供することにある。   An object of the present invention is to provide a method for producing a gas diffusion layer for a polymer electrolyte fuel cell capable of maintaining high water repellency for a long period of time, and for a polymer electrolyte fuel cell capable of stably operating the polymer electrolyte fuel cell for a long period of time. The object is to provide a membrane electrode assembly.

本発明の固体高分子形燃料電池用ガス拡散層の製造方法は、ポリテトラフルオロエチレンが水に分散した水性分散液を、ガス拡散層基材に含浸させた後、カーボンブラックおよびポリテトラフルオロエチレンが分散媒に分散した塗工液を、ガス拡散層基材上に塗布し、塗工液が塗布されたガス拡散層基材を焼成することによって固体高分子形燃料電池用ガス拡散層を製造する方法であって、前記水性分散液および/または塗工液が、空気中における質量半減温度が100〜300℃である非イオン系界面活性剤を、ポリテトラフルオロエチレンと前記界面活性剤との合量に対して0.5〜10質量%含有することを特徴とする。   The method for producing a gas diffusion layer for a polymer electrolyte fuel cell according to the present invention comprises impregnating a gas diffusion layer base material with an aqueous dispersion in which polytetrafluoroethylene is dispersed in water, and then carbon black and polytetrafluoroethylene. A gas diffusion layer for a polymer electrolyte fuel cell is manufactured by applying a coating liquid dispersed in a dispersion medium onto a gas diffusion layer base material and firing the gas diffusion layer base material coated with the coating liquid. A nonionic surfactant having a mass half-life temperature in air of 100 to 300 ° C., wherein the aqueous dispersion and / or coating solution comprises polytetrafluoroethylene and the surfactant. It is characterized by containing 0.5 to 10% by mass with respect to the total amount.

前記非イオン系界面活性剤は、下式(1)で表される化合物であることが好ましい。
1 O−A−H ・・・(1)。
ただし、R1 は、炭素数8〜18の1級または2級のアルキル基であり、Aは、5〜20個のオキシエチレン基と0〜2個のオキシプロピレン基とからなるポリオキシアルキレン基である。
The nonionic surfactant is preferably a compound represented by the following formula (1).
R 1 O—A—H (1).
However, R 1 is a primary or secondary alkyl group having 8 to 18 carbon atoms, A is a polyoxyalkylene group consisting of 5 to 20 oxyethylene groups and 0 to 2 oxypropylene groups It is.

前記非イオン系界面活性剤は、C1327O−(C24O)8(C36O)−H、C1327O−(C24O)9−H、C1327O−(C24O)10−H、C1021CH(CH3)CH2O−(C24O)10−H、C613CH(C613)O−(C24O)9−H、C1021CH(CH3)CH2O−(C24O)8(C36O)−H、C1225O−(C24O)9−HおよびC817O−(C24O)6−Hからなる群から選ばれる1種以上であることが好ましい。 The nonionic surfactant, C 13 H 27 O- (C 2 H 4 O) 8 (C 3 H 6 O) -H, C 13 H 27 O- (C 2 H 4 O) 9 -H, C 13 H 27 O- (C 2 H 4 O) 10 -H, C 10 H 21 CH (CH 3) CH 2 O- (C 2 H 4 O) 10 -H, C 6 H 13 CH (C 6 H 13) O- (C 2 H 4 O) 9 -H, C 10 H 21 CH (CH 3) CH 2 O- (C 2 H 4 O) 8 (C 3 H 6 O) -H, C 12 H 25 It is preferably at least one selected from the group consisting of O— (C 2 H 4 O) 9 —H and C 8 H 17 O— (C 2 H 4 O) 6 —H.

塗工液が塗布されたガス拡散層基材を焼成する温度は、300〜390℃であることが好ましい。
本発明の固体高分子形燃料電池用膜電極接合体は、固体高分子電解質膜と、固体高分子電解質膜の両面に配置された触媒層と、触媒層の外側に配置されたガス拡散層とを具備し、2つのガス拡散層のうち少なくとも一方が、本発明の製造方法で得られた固体高分子形燃料電池用ガス拡散層であることを特徴とする。
The temperature at which the gas diffusion layer base material coated with the coating liquid is fired is preferably 300 to 390 ° C.
A membrane electrode assembly for a polymer electrolyte fuel cell of the present invention comprises a solid polymer electrolyte membrane, a catalyst layer disposed on both sides of the solid polymer electrolyte membrane, a gas diffusion layer disposed on the outside of the catalyst layer, And at least one of the two gas diffusion layers is a gas diffusion layer for a polymer electrolyte fuel cell obtained by the production method of the present invention.

本発明の固体高分子形燃料電池用ガス拡散層の製造方法によれば、高い撥水性を長期間維持できる固体高分子形燃料電池用ガス拡散層を得ることができる。
本発明の固体高分子形燃料電池用膜電極接合体によれば、固体高分子形燃料電池を長期間安定して作動できる。
According to the method for producing a gas diffusion layer for a polymer electrolyte fuel cell of the present invention, a gas diffusion layer for a polymer electrolyte fuel cell that can maintain high water repellency for a long period of time can be obtained.
According to the membrane electrode assembly for a polymer electrolyte fuel cell of the present invention, the polymer electrolyte fuel cell can be stably operated for a long period of time.

本明細書においては、式(1)で表される化合物を化合物(1)と記す。他の式で表される化合物も同様に記す。   In the present specification, a compound represented by the formula (1) is referred to as a compound (1). The same applies to compounds represented by other formulas.

(ガス拡散層)
固体高分子形燃料電池用ガス拡散層(以下、ガス拡散層と記す。)の製造は、以下の(a)〜(d)の各工程を順に行うことにより実施できる。
(a)ポリテトラフルオロエチレン(以下、PTFEと記す。)が水に分散した水性分散液を、ガス拡散層基材に含浸させる。
(b)必要に応じて、ガス拡散層基材に含浸した水性分散液の水の一部または全部を蒸発させる、または水性分散液が含浸したガス拡散層基材を焼成する。
(c)カーボンブラックおよびPTFEが分散媒に分散した塗工液を、(a)または(b)工程で得たガス拡散層基材上に塗布する。
(d)塗工液が塗布されたガス拡散層基材を焼成する。
(Gas diffusion layer)
The gas diffusion layer for a polymer electrolyte fuel cell (hereinafter referred to as a gas diffusion layer) can be produced by sequentially performing the following steps (a) to (d).
(A) A gas diffusion layer base material is impregnated with an aqueous dispersion in which polytetrafluoroethylene (hereinafter referred to as PTFE) is dispersed in water.
(B) If necessary, part or all of the water of the aqueous dispersion impregnated in the gas diffusion layer base material is evaporated, or the gas diffusion layer base material impregnated with the aqueous dispersion liquid is fired.
(C) A coating liquid in which carbon black and PTFE are dispersed in a dispersion medium is applied onto the gas diffusion layer substrate obtained in the step (a) or (b).
(D) The gas diffusion layer base material coated with the coating liquid is fired.

(a)工程:
水性分散液をガス拡散層基材に含浸させる方法としては、以下の方法が挙げられ、操作が簡易であることから、(a−1)の方法が好ましい。
(a−1)ガス拡散層基材を水性分散液に浸漬させた後、水性分散液から引き上げる方法。
(a−2)過剰の水性分散液をガス拡散層基材に塗布し、含浸させた後、余分な水性分散液を除去する方法。
(A) Process:
Examples of the method for impregnating the gas dispersion layer base material with the aqueous dispersion include the following methods, and the method (a-1) is preferable because the operation is simple.
(A-1) A method in which the gas diffusion layer substrate is immersed in the aqueous dispersion and then pulled up from the aqueous dispersion.
(A-2) A method of removing an excess aqueous dispersion after applying and impregnating an excess aqueous dispersion onto a gas diffusion layer substrate.

ガス拡散層基材は、導電性を有する多孔質基材である。ガス拡散層基材としては、カーボンクロス、カーボンペーパー、カーボンフェルト等が挙げられる。
水性分散液は、PTFEが水に分散した液であり、PTFEを水に分散させるための界面活性剤を含む。
The gas diffusion layer substrate is a porous substrate having conductivity. Examples of the gas diffusion layer substrate include carbon cloth, carbon paper, and carbon felt.
The aqueous dispersion is a liquid in which PTFE is dispersed in water, and includes a surfactant for dispersing PTFE in water.

PTFEは、乳化重合法で得られるPTFE微粒子である。PTFEは、テトラフルオロエチレンの単独重合体であってもよく、クロロトリフルオロエチレン、ヘキサフルオロプロピレン等のハロゲン化オレフィン、パーフルオロ(アルキルビニルエーテル)等の他のフッ素系単量体に由来する単位を含む変性PTFEであってもよい。ただし、他のフッ素系単量体の量は、得られる変性PTFEが実質的に溶融加工できない量に抑える必要がある。   PTFE is PTFE fine particles obtained by an emulsion polymerization method. PTFE may be a homopolymer of tetrafluoroethylene, a unit derived from halogenated olefins such as chlorotrifluoroethylene and hexafluoropropylene, and other fluorine-based monomers such as perfluoro (alkyl vinyl ether). It may be modified PTFE containing. However, it is necessary to suppress the amount of the other fluorine-based monomer to an amount that the obtained modified PTFE cannot be substantially melt processed.

PTFEの平均粒子径は、0.1〜0.5μmが好ましく、0.15〜0.4μmがより好ましく、0.2〜0.35μmが特に好ましい。PTFEの平均粒子径を0.1μm以上とすることにより、PTFEの収量が高くなる。PTFEの平均粒子径を0.5μm以下とすることにより、PTFEが沈降しにくくなり、保存安定性が良好となる。
PTFEは、たとえば、ふっ素樹脂ハンドブック(里川編、日刊工業新聞社、1990年)の第28頁に記載されるような公知の乳化重合法により製造できる。
The average particle diameter of PTFE is preferably 0.1 to 0.5 μm, more preferably 0.15 to 0.4 μm, and particularly preferably 0.2 to 0.35 μm. By making the average particle diameter of PTFE 0.1 μm or more, the yield of PTFE is increased. By setting the average particle diameter of PTFE to 0.5 μm or less, PTFE is less likely to settle and storage stability is improved.
PTFE can be produced, for example, by a known emulsion polymerization method as described on page 28 of a fluorine resin handbook (Satokawa edition, Nikkan Kogyo Shimbun, 1990).

界面活性剤としては、質量半減温度が100〜300℃の非イオン系界面活性剤(以下、低温熱分解型非イオン系界面活性剤と記す。)が好ましい。後述の塗工液が低温熱分解型非イオン系界面活性剤を含む場合、水性分散液は低温熱分解型非イオン系界面活性剤を含まなくてもよいが、ガス拡散層の撥水性の点から、水性分散液および塗工液の両方が低温熱分解型非イオン系界面活性剤を含むことが好ましい。   As the surfactant, a nonionic surfactant having a mass half temperature of 100 to 300 ° C. (hereinafter referred to as a low-temperature pyrolytic nonionic surfactant) is preferable. When the coating liquid described below contains a low-temperature pyrolysis-type nonionic surfactant, the aqueous dispersion may not contain a low-temperature pyrolysis-type nonionic surfactant, but the water repellency of the gas diffusion layer Therefore, it is preferable that both the aqueous dispersion and the coating liquid contain a low-temperature pyrolyzable nonionic surfactant.

低温熱分解型非イオン系界面活性剤の質量半減温度は、100〜300℃であり、150〜290℃が好ましく、200〜280℃がより好ましい。低温熱分解型非イオン系界面活性剤の質量半減温度を100℃以上とすることにより、焼成による熱分解ガスの急激な発生が抑えられ、PTFEとガス拡散層基材との密着性の低下が抑えられる。低温熱分解型非イオン系界面活性剤の質量半減温度を300℃以下とすることにより、焼成によって低温熱分解型非イオン系界面活性剤が充分に熱分解され、PTFE表面に非イオン系界面活性剤が残存することなく、ガス拡散層が高い撥水性を長期間維持できる。   The mass half-life temperature of the low-temperature pyrolytic nonionic surfactant is 100 to 300 ° C, preferably 150 to 290 ° C, and more preferably 200 to 280 ° C. By setting the mass half-temperature of the low-temperature pyrolysis-type nonionic surfactant to 100 ° C. or more, rapid generation of pyrolysis gas due to firing can be suppressed, and the adhesion between PTFE and the gas diffusion layer substrate can be reduced. It can be suppressed. By setting the mass half-temperature of the low-temperature pyrolysis-type nonionic surfactant to 300 ° C. or less, the low-temperature pyrolysis-type nonionic surfactant is sufficiently pyrolyzed by firing, and the PTFE surface has a nonionic surfactant activity. The gas diffusion layer can maintain high water repellency for a long time without any remaining agent.

低温熱分解型非イオン系界面活性剤の含有量は、PTFEと界面活性剤との合量に対して0.5〜10質量%であり、1〜8質量%が好ましく、2〜6質量%がより好ましい。低温熱分解型非イオン系界面活性剤の含有量をPTFEと界面活性剤との合量に対して0.5質量%以上とすることにより、PTFE微粒子が水に安定に分散し、PTFE微粒子の凝集や沈降が抑えられる。低温熱分解型非イオン系界面活性剤の含有量をPTFEと界面活性剤との合量に対して10質量%以下とすることにより、焼成によって非イオン系界面活性剤を充分に除去できる。   The content of the low-temperature pyrolytic nonionic surfactant is 0.5 to 10% by mass, preferably 1 to 8% by mass, and 2 to 6% by mass with respect to the total amount of PTFE and the surfactant. Is more preferable. By setting the content of the low-temperature pyrolysis-type nonionic surfactant to 0.5% by mass or more based on the total amount of PTFE and the surfactant, the PTFE fine particles are stably dispersed in water. Aggregation and sedimentation are suppressed. By setting the content of the low-temperature pyrolysis-type nonionic surfactant to 10% by mass or less based on the total amount of PTFE and the surfactant, the nonionic surfactant can be sufficiently removed by firing.

PTFEに対する低温熱分解型非イオン系界面活性剤の含有量は、以下のようにして求める。
JIS K6893に準じて、水性分散液の10gをアルミ皿にとり、120℃で1時間乾燥した後における、水性分散液(100質量%)に対する残存質量x(質量%)および380℃で35分焼き付けた後における、水性分散液(100質量%)に対する残存質量y(質量%)を求め、(x−y)/x×100をPTFEと界面活性剤との合量に対する低温熱分解型非イオン系界面活性剤の含有量(質量%)とする。
The content of the low temperature pyrolytic nonionic surfactant with respect to PTFE is determined as follows.
According to JIS K6893, 10 g of the aqueous dispersion was put on an aluminum dish and dried at 120 ° C. for 1 hour, and then baked at 380 ° C. for 35 minutes with a residual mass x (mass%) with respect to the aqueous dispersion (100 mass%). Later, the residual mass y (mass%) with respect to the aqueous dispersion (100 mass%) is obtained, and (xy) / xx100 is the low-temperature pyrolytic nonionic interface with respect to the total amount of PTFE and surfactant. The content of the activator (% by mass)

低温熱分解型非イオン系界面活性剤としては、PTFE微粒子の安定化効果が高く、ぬれ性が良好であることから、化合物(1)が好ましい。
1 O−A−H ・・・(1)。
ただし、R1 は、炭素数8〜18の1級または2級のアルキル基であり、Aは、5〜20個のオキシエチレン基と0〜2個のオキシプロピレン基とからなるポリオキシアルキレン基である。
As the low-temperature pyrolysis-type nonionic surfactant, the compound (1) is preferable because the PTFE fine particles have a high stabilizing effect and good wettability.
R 1 O—A—H (1).
However, R 1 is a primary or secondary alkyl group having 8 to 18 carbon atoms, A is a polyoxyalkylene group consisting of 5 to 20 oxyethylene groups and 0 to 2 oxypropylene groups It is.

1 の炭素数は、8〜18であり、10〜16が好ましく、12〜15がより好ましい。R1 の炭素数を8以上とすることにより、水性分散液のぬれ性が良好となる。R1 の炭素数を18以下とすることにより、水性分散液の粘度が安定する。R1 としては、塗布時にはじき、あばた、厚みむら等の不具合を生じにくいことから、分岐を有するアルキル基が好ましい。 The number of carbon atoms of R 1 is 8 to 18, preferably 10 to 16, 12 to 15 is more preferable. By setting the carbon number of R 1 to 8 or more, the wettability of the aqueous dispersion becomes good. By setting the carbon number of R 1 to 18 or less, the viscosity of the aqueous dispersion is stabilized. R 1 is preferably an alkyl group having a branch because it is less likely to cause problems such as flaking, fluttering, and uneven thickness during coating.

Aのオキシエチレン基の数は、5〜20であり、ぬれ性の点から、7〜12が好ましい。オキシエチレン基の数を5以上とすることにより、水性分散液の粘度が安定する。オキシエチレン基の数を20以下とすることにより、水性分散液のぬれ性が良好となる。
Aのオキシプロピレン基の数は、0〜2であり、消泡性が良好になることから、1〜2が好ましい。
The number of oxyethylene groups of A is 5 to 20, and 7 to 12 is preferable from the viewpoint of wettability. By setting the number of oxyethylene groups to 5 or more, the viscosity of the aqueous dispersion is stabilized. By setting the number of oxyethylene groups to 20 or less, the wettability of the aqueous dispersion is improved.
The number of oxypropylene groups in A is 0 to 2, and 1 to 2 is preferable because the antifoaming property is improved.

化合物(1)としては、以下の化合物が好ましい。
1327O−(C24O)8(C36O)−H、
1327O−(C24O)9−H、
1327O−(C24O)10−H、
1021CH(CH3)CH2O−(C24O)10−H、
613CH(C613)O−(C24O)9−H、
1021CH(CH3)CH2O−(C24O)8(C36O)−H、
1225O−(C24O)9−H、
817O−(C24O)6−H。
As the compound (1), the following compounds are preferable.
C 13 H 27 O- (C 2 H 4 O) 8 (C 3 H 6 O) -H,
C 13 H 27 O- (C 2 H 4 O) 9 -H,
C 13 H 27 O- (C 2 H 4 O) 10 -H,
C 10 H 21 CH (CH 3 ) CH 2 O- (C 2 H 4 O) 10 -H,
C 6 H 13 CH (C 6 H 13) O- (C 2 H 4 O) 9 -H,
C 10 H 21 CH (CH 3 ) CH 2 O- (C 2 H 4 O) 8 (C 3 H 6 O) -H,
C 12 H 25 O- (C 2 H 4 O) 9 -H,
C 8 H 17 O- (C 2 H 4 O) 6 -H.

低温熱分解型非イオン系界面活性剤の市販品としては、たとえば、日本乳化剤社製のニューコール1308FA、ニューコール1100、ダウケミカル社製のタージトール15−S−9、日本触媒社製のソフタノールシリーズ、ライオン社製のライオノールTD2007等が挙げられる。
低温熱分解型非イオン系界面活性剤は、1種を単独で用いてもよく、2種以上を併用してもよい。2種以上を併用する場合、R1 の炭素原子数、Aのオキシエチレン基の数、オキシプロピレン基の数等は、平均値であり、各数値は整数に限らない。
Examples of commercially available low-temperature pyrolysis-type nonionic surfactants include New Coal 1308FA, New Coal 1100 manufactured by Nippon Emulsifier Co., Ltd., Taditol 15-S-9 manufactured by Dow Chemical Co., and Softanol manufactured by Nippon Shokubai Co., Ltd. Series, Lion Corporation's Lionol TD2007 and the like.
One type of low-temperature pyrolysis-type nonionic surfactant may be used alone, or two or more types may be used in combination. When using 2 or more types together, the number of carbon atoms of R 1 , the number of oxyethylene groups of A, the number of oxypropylene groups, and the like are average values, and each numerical value is not limited to an integer.

水性分散液は、たとえば、乳化重合法で得られた、PTFEの含有量が10〜40質量%の乳化重合液に、低温熱分解型非イオン系界面活性剤を添加し、電気濃縮法、加熱濃縮法等の公知の濃縮法で濃縮した後、水、および必要に応じて低温熱分解型非イオン系界面活性剤を追加して調製される。乳化重合液には、乳化重合時に用いたフッ素系界面活性剤が含まれていてもよい。フッ素系界面活性剤としては、パーフルオロオクタン酸アンモニウム等が挙げられる。
水性分散液に含まれる水は、乳化重合液に含まれる水であってもよく、濃縮後に追加される水であってもよい。
For example, an aqueous dispersion is obtained by adding a low-temperature pyrolysis-type nonionic surfactant to an emulsion polymerization solution having a PTFE content of 10 to 40% by mass obtained by an emulsion polymerization method. After concentration by a known concentration method such as a concentration method, it is prepared by adding water and, if necessary, a low-temperature pyrolysis-type nonionic surfactant. The emulsion polymerization liquid may contain a fluorine-based surfactant used during emulsion polymerization. Examples of the fluorine-based surfactant include ammonium perfluorooctanoate.
The water contained in the aqueous dispersion may be water contained in the emulsion polymerization solution, or water added after concentration.

水性分散液には、必要に応じて、フッ素化された脂肪酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩等のアニオン系界面活性剤;ポリオキシエチレンポリオキシプロピレン共重合体等の非イオン系界面活性剤;ポリエチレンオキサイド系増粘剤、ポリウレタン会合型増粘剤、シリコーン系添加剤、フッ素系添加剤、防腐剤、等が微量含まれていてもよい。   In the aqueous dispersion, an anionic surfactant such as a fluorinated fatty acid salt, an alkyl sulfate salt, or a polyoxyethylene alkyl sulfate ester salt; a nonoxygen such as a polyoxyethylene polyoxypropylene copolymer, Ionic surfactants: Polyethylene oxide thickeners, polyurethane associative thickeners, silicone additives, fluorine additives, preservatives, and the like may be contained in trace amounts.

(b)工程:
(a)工程で得られたガス拡散層基材は、水性分散液で濡れた状態のまま(c)工程に供されてもよく、必要に応じて、(b−1)ガス拡散層基材に含浸した水性分散液の水の一部または全部を蒸発させた後、(c)工程に供されてもよく、(b−2)焼成された後、(c)工程に供されてもよい。
(B) Process:
The gas diffusion layer substrate obtained in the step (a) may be subjected to the step (c) while being wet with the aqueous dispersion, and (b-1) the gas diffusion layer substrate as necessary. After evaporating part or all of the water of the aqueous dispersion impregnated in step (c), it may be used in step (c), or (b-2) after calcination and step (c). .

ただし、(a)工程で得られたガス拡散層基材を焼成すると、ガス拡散層基材の撥水性が高くなりすぎるため、塗工液の分散媒が水の場合、塗工液をガス拡散層基材上に塗布できないおそれがある。
よって、(a)工程で得られたガス拡散層基材は、水性分散液で濡れた状態のまま、または室温〜80℃の雰囲気下で、ガス拡散層基材に含浸した水性分散液の水の一部を蒸発させた後、(c)工程に供されることが好ましい。
However, if the gas diffusion layer base material obtained in step (a) is fired, the water repellency of the gas diffusion layer base material becomes too high. There is a possibility that it cannot be applied on the layer substrate.
Therefore, the gas diffusion layer base material obtained in the step (a) remains in a wet state with the aqueous dispersion liquid, or the water of the aqueous dispersion liquid impregnated in the gas diffusion layer base material in an atmosphere of room temperature to 80 ° C. It is preferable that after a part of is evaporated, it is subjected to step (c).

(c)工程:
(a)または(b)工程で得たガス拡散層基材上に塗工液を塗布する。
塗工液は、カーボンブラックおよびPTFEが分散媒に分散した液であり、PTFEを水に分散させるための界面活性剤を含む。
PTFEとしては、上述の水性分散液に用いたPTFEと同様のものが挙げられる。
(C) Process:
A coating solution is applied on the gas diffusion layer substrate obtained in the step (a) or (b).
The coating liquid is a liquid in which carbon black and PTFE are dispersed in a dispersion medium, and includes a surfactant for dispersing PTFE in water.
As PTFE, the thing similar to the PTFE used for the above-mentioned aqueous dispersion liquid is mentioned.

カーボンブラックは、得られる塗膜に導電性を付与するものである。カーボンブラックの市販品としては、ライオン社製のケッチェンブラックEC、キャボット社製のバルカンXC−72、電気化学工業社製のアセチレンブラック等が挙げられる。カーボンブラックは、黒鉛化されたグラファイトカーボンであってもよい。   Carbon black imparts conductivity to the resulting coating film. Examples of commercially available carbon black include Ketjen Black EC manufactured by Lion, Vulcan XC-72 manufactured by Cabot, and acetylene black manufactured by Denki Kagaku Kogyo. The carbon black may be graphitized graphite carbon.

界面活性剤としては、上述の低温熱分解型非イオン系界面活性剤が好ましい。また、ガス拡散層の撥水性の点から、水性分散液および塗工液の両方が低温熱分解型非イオン系界面活性剤を含むことが好ましい。   As the surfactant, the above-mentioned low-temperature pyrolytic nonionic surfactant is preferable. Further, from the viewpoint of water repellency of the gas diffusion layer, it is preferable that both the aqueous dispersion and the coating liquid contain a low-temperature pyrolytic nonionic surfactant.

低温熱分解型非イオン系界面活性剤の含有量は、PTFEと界面活性剤との合量に対して0.5〜10質量%であり、1〜8質量%が好ましく、2〜6質量%がより好ましい。低温熱分解型非イオン系界面活性剤の含有量をPTFEと界面活性剤との合量に対して0.5質量%以上とすることにより、PTFE微粒子が水に安定に分散し、PTFE微粒子の凝集や沈降が抑えられる。低温熱分解型非イオン系界面活性剤の含有量をPTFEと界面活性剤との合量に対して10質量%以下とすることにより、焼成によって非イオン系界面活性剤を充分に除去できる。   The content of the low-temperature pyrolytic nonionic surfactant is 0.5 to 10% by mass, preferably 1 to 8% by mass, and 2 to 6% by mass with respect to the total amount of PTFE and the surfactant. Is more preferable. By setting the content of the low-temperature pyrolysis-type nonionic surfactant to 0.5% by mass or more based on the total amount of PTFE and the surfactant, the PTFE fine particles are stably dispersed in water. Aggregation and sedimentation are suppressed. By setting the content of the low-temperature pyrolysis-type nonionic surfactant to 10% by mass or less based on the total amount of PTFE and the surfactant, the nonionic surfactant can be sufficiently removed by firing.

分散媒としては、水、pH調整のためのアンモニア水等が挙げられ、通常は水が用いられる。
塗工液は、たとえば、上述の水性分散液にカーボンブラックを添加し、充分に撹拌することによって調製できる。
Examples of the dispersion medium include water and aqueous ammonia for pH adjustment, and water is usually used.
The coating liquid can be prepared, for example, by adding carbon black to the aqueous dispersion described above and sufficiently stirring.

塗布方法としては、スクリーン印刷法、ドクターブレード法、ダイコート法等が挙げられ、平坦な塗膜が得られることから、ドクターブレード法が好ましい。ガス拡散層基材の表面が平坦な塗膜(後述の撥水性カーボン層)で覆われることにより、ガス拡散層に接する触媒層に機械的な損傷を与えにくくなる。   Examples of the coating method include a screen printing method, a doctor blade method, and a die coating method, and a doctor blade method is preferable because a flat coating film can be obtained. When the surface of the gas diffusion layer substrate is covered with a flat coating film (water repellent carbon layer described later), it becomes difficult to mechanically damage the catalyst layer in contact with the gas diffusion layer.

(d)工程:
(c)工程にて塗工液が塗布されたガス拡散層基材を焼成することにより、水性分散液から水および非イオン系界面活性剤を除去して、ガス拡散層基材にPTFEを付着させてガス拡散層基材を撥水処理すると同時に、塗工液から水および非イオン系界面活性剤を除去して、ガス拡散層基材の表面およびカーボンブラックにPTFEを付着させてカーボンブラックおよびPTFEからなる塗膜、すなわち撥水性カーボン層を形成する。
(D) Process:
(C) By baking the gas diffusion layer substrate coated with the coating liquid in step (c), water and nonionic surfactant are removed from the aqueous dispersion, and PTFE is attached to the gas diffusion layer substrate. The gas diffusion layer substrate is subjected to a water repellent treatment, and at the same time, water and nonionic surfactant are removed from the coating liquid, and PTFE is attached to the surface of the gas diffusion layer substrate and carbon black, and carbon black and A coating film made of PTFE, that is, a water-repellent carbon layer is formed.

撥水性カーボン層は、撥水性およびガス拡散機能を有する多孔質層(マイクロポーラス層)であり、以下の利点を有する。
(i)ガス拡散層基材の表面にカーボン繊維等による毛羽立ちがある場合、固体高分子膜または触媒層を損傷するおそれがあるが、撥水性カーボン層を形成することによって固体高分子膜および触媒層を保護できる。
(ii)ガス拡散層基材より緻密であり、触媒層と充分な接触を保つことができるため、集電に有利である。
(iii)電池反応により生成した水滴状の水を細かく砕いてガス拡散層基材側に送り出すことができ、水の排出がスムーズになるため、高電流密度領域においてもフラッディングが起こりにくく燃料電池性能が安定する。
The water-repellent carbon layer is a porous layer (microporous layer) having water repellency and a gas diffusion function, and has the following advantages.
(I) When the surface of the gas diffusion layer base material has fuzz due to carbon fibers or the like, the solid polymer film or the catalyst layer may be damaged. However, the solid polymer film and the catalyst are formed by forming the water-repellent carbon layer. Can protect the layer.
(Ii) Since it is denser than the gas diffusion layer base material and can maintain sufficient contact with the catalyst layer, it is advantageous for current collection.
(iii) The water droplets produced by the battery reaction can be finely crushed and sent to the gas diffusion layer substrate side, and the water can be discharged smoothly, so that flooding is unlikely to occur even in the high current density region. Is stable.

撥水性カーボン層は、アンカー効果により撥水性カーボン層とガス拡散層基材との密着性が高くなることから、撥水性カーボン層の一部がガス拡散層基材の細孔に侵入していることが好ましい。   Since the water-repellent carbon layer has high adhesion between the water-repellent carbon layer and the gas diffusion layer base due to the anchor effect, a part of the water-repellent carbon layer penetrates into the pores of the gas diffusion layer base. It is preferable.

焼成雰囲気としては、空気、窒素ガス等の不活性雰囲気が挙げられ、酸化物のカーボン表面への吸着を防止する点から、不活性雰囲気が好ましい。
焼成温度は、300〜390℃が好ましく、350〜390℃が特に好ましい。焼成温度を300℃以上とすることにより、非イオン系界面活性剤が充分に除去され、ガス拡散層が高い撥水性を長期間維持できる。焼成温度を390℃以下とすることにより、PTFEの分解が抑えられ、ガス拡散層が高い撥水性を発揮できる。
焼成時間は、30分〜3時間が好ましく、1〜2時間が特に好ましい。焼成時間を30分以上とすることにより、非イオン系界面活性剤が充分に除去される。焼成時間を3時間以下とすることにより、PTFEの分解が抑えられる。
Examples of the firing atmosphere include an inert atmosphere such as air and nitrogen gas, and the inert atmosphere is preferable from the viewpoint of preventing adsorption of oxides to the carbon surface.
The firing temperature is preferably 300 to 390 ° C, particularly preferably 350 to 390 ° C. By setting the firing temperature to 300 ° C. or higher, the nonionic surfactant is sufficiently removed, and the gas diffusion layer can maintain high water repellency for a long period of time. By setting the firing temperature to 390 ° C. or lower, decomposition of PTFE is suppressed, and the gas diffusion layer can exhibit high water repellency.
The firing time is preferably 30 minutes to 3 hours, particularly preferably 1 to 2 hours. By setting the firing time to 30 minutes or longer, the nonionic surfactant is sufficiently removed. By setting the firing time to 3 hours or less, the decomposition of PTFE can be suppressed.

以上説明した本発明のガス拡散層の製造方法にあっては、水性分散液および/または塗工液が、空気中における質量半減温度が100〜300℃である非イオン系界面活性剤を、ポリテトラフルオロエチレンと界面活性剤との合量に対して0.5〜10質量%含有しているため、高い撥水性を長期間維持できる固体高分子形燃料電池用ガス拡散層を得ることができる。   In the method for producing a gas diffusion layer of the present invention described above, the aqueous dispersion and / or the coating liquid contains a nonionic surfactant having a mass half-temperature in air of 100 to 300 ° C. Since it is contained in an amount of 0.5 to 10% by mass with respect to the total amount of tetrafluoroethylene and surfactant, a gas diffusion layer for a polymer electrolyte fuel cell that can maintain high water repellency for a long period of time can be obtained. .

すなわち、従来のガス拡散層の製造方法においては、水性分散液および/または塗工液に含まれる界面活性剤は、焼成によって完全に除去されると思われていた。しかし、PTFEを水に分散するための公知の界面活性剤(たとえば、ポリオキシエチレンアルキルフェノール系界面活性剤。)は、350℃〜390℃で焼成しても完全に除去できないことが、本発明者によってはじめて明らかになった。そして、従来の製造方法で得られたガス拡散層の表面に付着したPTFE微粒子の表面に界面活性剤が残存するため、該ガス拡散層は、撥水性を長期間維持できなかった。   That is, in the conventional method for producing a gas diffusion layer, it has been thought that the surfactant contained in the aqueous dispersion and / or coating solution is completely removed by firing. However, it is the present inventor that a known surfactant (for example, polyoxyethylene alkylphenol surfactant) for dispersing PTFE in water cannot be completely removed even when calcined at 350 ° C. to 390 ° C. For the first time. And since surfactant remains on the surface of the PTFE fine particles adhering to the surface of the gas diffusion layer obtained by the conventional manufacturing method, the gas diffusion layer could not maintain water repellency for a long period of time.

これに対し、本発明の製造方法で用いた、空気中における質量半減温度が100〜300℃である非イオン系界面活性剤は、300〜390℃で焼成した場合、完全に除去されるため、PTFE微粒子の表面に界面活性剤が残存することなく、得られるガス拡散層は、高い撥水性を長期間維持できる。   In contrast, the non-ionic surfactant having a mass half-temperature in air of 100 to 300 ° C. used in the production method of the present invention is completely removed when baked at 300 to 390 ° C. The obtained gas diffusion layer can maintain high water repellency for a long period of time without the surfactant remaining on the surface of the PTFE fine particles.

(膜電極接合体)
図1は、本発明の固体高分子形燃料電池用膜電極接合体(以下、膜電極接合体と記す。)の一例を示す概略断面図である。膜電極接合体10は、固体高分子電解質膜11と、固体高分子電解質膜11の両面に配置された触媒層12と、触媒層12の外側に配置されたガス拡散層13とを具備し、2つのガス拡散層13のうち少なくとも一方が、本発明の製造方法で得られたガス拡散層である。
(Membrane electrode assembly)
FIG. 1 is a schematic cross-sectional view showing an example of a membrane electrode assembly for a polymer electrolyte fuel cell of the present invention (hereinafter referred to as a membrane electrode assembly). The membrane electrode assembly 10 includes a solid polymer electrolyte membrane 11, a catalyst layer 12 disposed on both surfaces of the solid polymer electrolyte membrane 11, and a gas diffusion layer 13 disposed outside the catalyst layer 12, At least one of the two gas diffusion layers 13 is a gas diffusion layer obtained by the production method of the present invention.

ガス拡散層13は、ガス拡散層基材14と、ガス拡散層基材14の表面に形成された撥水性カーボン層15とからなり、撥水性カーボン層15が触媒層12と接する。
電極(空気極および燃料極)は、触媒層12とガス拡散層13とから構成される。
The gas diffusion layer 13 includes a gas diffusion layer base material 14 and a water-repellent carbon layer 15 formed on the surface of the gas diffusion layer base material 14, and the water-repellent carbon layer 15 is in contact with the catalyst layer 12.
The electrodes (air electrode and fuel electrode) are composed of a catalyst layer 12 and a gas diffusion layer 13.

本発明の製造方法にて得られたガス拡散層は、電池反応によって水が多く生じる空気極に用いることが好ましく、空気極および燃料極の両方に用いることがより好ましい。
固体高分子電解質膜としては、公知の膜電極接合体に用いられる固体高分子電解質膜が挙げられる。
触媒層としては、公知の膜電極接合体に用いられる触媒層が挙げられる。
The gas diffusion layer obtained by the production method of the present invention is preferably used for an air electrode in which a large amount of water is generated by a cell reaction, and more preferably used for both an air electrode and a fuel electrode.
Examples of the solid polymer electrolyte membrane include solid polymer electrolyte membranes used for known membrane electrode assemblies.
As a catalyst layer, the catalyst layer used for a well-known membrane electrode assembly is mentioned.

膜電極接合体は、たとえば、固体高分子電解質膜の両面に触媒層を配置し、2つの触媒層のうち少なくとも一方の触媒層の外側に、本発明の製造方法で得られた固体高分子形燃料電池用ガス拡散層を、撥水性カーボン層が触媒層側となるように配置することにより製造される。   The membrane electrode assembly is, for example, a catalyst layer disposed on both sides of a solid polymer electrolyte membrane, and a solid polymer form obtained by the production method of the present invention outside of at least one of the two catalyst layers. The fuel cell gas diffusion layer is produced by disposing the water-repellent carbon layer on the catalyst layer side.

以上説明した本発明の膜電極接合体にあっては、ガス拡散層として、高い撥水性を長期間維持できる、本発明の製造方法で得られたガス拡散層を用いているため、固体高分子形燃料電池を長期間作動させても、ガス拡散層がフラッディングを起こしにくく、電圧が大きく低下することがない。よって、固体高分子形燃料電池を長期間安定して作動できる。   In the membrane electrode assembly of the present invention described above, since the gas diffusion layer obtained by the production method of the present invention, which can maintain high water repellency for a long time, is used as the gas diffusion layer. Even when the fuel cell is operated for a long period of time, the gas diffusion layer is less likely to be flooded, and the voltage is not greatly reduced. Therefore, the polymer electrolyte fuel cell can be stably operated for a long time.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。
例1〜3は実施例であり、例4は比較例である。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
Examples 1 to 3 are examples, and example 4 is a comparative example.

界面活性剤として表1に示す化合物(1−1)〜(1−3)、化合物(2)および化合物(3)を用意した。   As the surfactant, compounds (1-1) to (1-3), compound (2) and compound (3) shown in Table 1 were prepared.

Figure 2007194004
Figure 2007194004

化合物(1−1)は、アルキル基が分岐状であるC1021CH(CH3)CH2O(C24O)8(C36O)Hと、アルキル基が直鎖状であるC1327O(C24O)8(C36O)Hとの1:1(質量比)の混合物である。
化合物(1−2)における「(C24O)9-10」は、エチレンオキシド(C24O)付加モル数の平均値が9〜10モルであることを示している。
化合物(1−3)は、C1225O(C24O)9Hと、C1327O(C24O)9Hと、C1429O(C24O)9Hとの混合物であるが、「(C24O)9」は、化合物(1−2)同様にエチレンオキシド(C24O)付加モル数の平均値が9モルであることを示している。
化合物(3)のC64は、フェニレン基である。
In the compound (1-1), C 10 H 21 CH (CH 3 ) CH 2 O (C 2 H 4 O) 8 (C 3 H 6 O) H in which the alkyl group is branched and the alkyl group is linear 1: 1 (mass ratio) mixture with C 13 H 27 O (C 2 H 4 O) 8 (C 3 H 6 O) H.
“(C 2 H 4 O) 9-10 ” in the compound (1-2) indicates that the average number of moles of ethylene oxide (C 2 H 4 O) added is 9 to 10 moles.
The compound (1-3) includes C 12 H 25 O (C 2 H 4 O) 9 H, C 13 H 27 O (C 2 H 4 O) 9 H, C 14 H 29 O (C 2 H 4 Although it is a mixture with O) 9 H, “(C 2 H 4 O) 9 ” has an average number of moles of ethylene oxide (C 2 H 4 O) added in the same manner as compound (1-2). It is shown that.
C 6 H 4 in the compound (3) is a phenylene group.

実施例における各種測定は、以下のように行った。
(界面活性剤の質量半減温度)
熱分析装置(パーキンエルマー社製、TGA7)を用い、白金容器に入れた約10mgの界面活性剤を、空気雰囲気中で毎分10℃で昇温させ、熱分解曲線を得た後、質量残存率が50%となる温度を読み取った。
Various measurements in the examples were performed as follows.
(Surface active agent mass half temperature)
Using a thermal analyzer (manufactured by Perkin Elmer, TGA7), about 10 mg of the surfactant in a platinum container was heated at 10 ° C./min in an air atmosphere to obtain a thermal decomposition curve, and then the mass remained. The temperature at which the rate was 50% was read.

(PTFEおよび界面活性の含有量)
JIS K6893に準じて、PTFEの水性分散液の10gをアルミ皿にとり、120℃で1時間乾燥した後における、水性分散液(100質量%)に対する残存質量x(質量%)および380℃で35分焼き付けた後における、水性分散液(100質量%)に対する残存質量y(質量%)を求めた。yをPTFEの含有量(質量%)とした。また、(x−y)/x×100をPTFEと界面活性剤との合量に対する界面活性剤の含有量(質量%)とした。
(PTFE and surfactant content)
According to JIS K6893, 10 g of an aqueous dispersion of PTFE was placed in an aluminum dish and dried at 120 ° C. for 1 hour, and then the residual mass x (mass%) relative to the aqueous dispersion (100 mass%) and 35 minutes at 380 ° C. The residual mass y (mass%) relative to the aqueous dispersion (100 mass%) after baking was determined. y was made into content (mass%) of PTFE. Moreover, (xy) / xx100 was made into content (mass%) of surfactant with respect to the total amount of PTFE and surfactant.

(PTFEの平均粒子径)
PTFEの水性分散液を希釈し、該希釈液についてレーザー散乱方式の粒度測定機(堀場製作所社製、LA920)を用いてメジアン径を測定し、これを平均粒子径とした。
(Average particle diameter of PTFE)
An aqueous dispersion of PTFE was diluted, and the median diameter of the diluted liquid was measured using a laser scattering type particle size measuring machine (LA920, manufactured by Horiba, Ltd.), and this was defined as the average particle diameter.

〔例1〕
乳化重合法により、PTFEの平均粒子径が0.25μmであり、PTFEの含有量が25質量%であり、パーフルオロオクタン酸アンモニウムをPTFEに対し約2000ppm含有する乳化重合液(A)を得た。
乳化重合液(A)に、表1に示す化合物(1−1)をPTFE(100質量%)に対して4質量%添加し、電気濃縮法で濃縮した。得られた濃縮液のうち、電極近傍の比重の大きい高濃度液を採取して、PTFE粒子を含まない上澄み液(化合物(1−1)を含む)を除去した。その後、28質量%のアンモニア水を濃縮直後の液に対して0.3質量%添加し、PTFEの含有量が66.0質量%であり、化合物(1−1)の含有量がPTFEと化合物(1−1)との合量に対して2.5質量%である水性分散液(1)を得た。
[Example 1]
By the emulsion polymerization method, an emulsion polymerization liquid (A) having an average particle diameter of PTFE of 0.25 μm, a PTFE content of 25 mass%, and containing about 2000 ppm of ammonium perfluorooctanoate with respect to PTFE was obtained. .
To the emulsion polymerization liquid (A), 4% by mass of the compound (1-1) shown in Table 1 was added with respect to PTFE (100% by mass), and concentrated by an electric concentration method. Of the obtained concentrated liquid, a high-concentration liquid having a large specific gravity in the vicinity of the electrode was collected, and a supernatant liquid (containing compound (1-1)) not containing PTFE particles was removed. Thereafter, 28% by mass of ammonia water was added in an amount of 0.3% by mass with respect to the liquid just after concentration, the PTFE content was 66.0% by mass, and the compound (1-1) content was PTFE and the compound. The aqueous dispersion (1) which is 2.5 mass% with respect to the total amount with (1-1) was obtained.

水性分散液(1)を、PTFEの含有量が5質量%になるまで蒸留水で希釈し、化合物(1−1)の含有量がPTFEと化合物(1−1)との合量に対して2.5質量%である水性分散液(2)を得た。水性分散液(2)にカーボンペーパー(東レ社製、TGP−H−120、厚さ360μm)を、PTFEの付着量が2mg/cm2 となるように浸漬した。水性分散液(2)からカーボンペーパーを引き上げた後、水性分散液(2)含浸カーボンペーパーを、濡れた状態のまま室温で保管した。 The aqueous dispersion (1) is diluted with distilled water until the content of PTFE is 5% by mass, and the content of the compound (1-1) is based on the total amount of PTFE and the compound (1-1). An aqueous dispersion (2) of 2.5% by mass was obtained. Carbon paper (manufactured by Toray Industries, Inc., TGP-H-120, thickness 360 μm) was immersed in the aqueous dispersion (2) so that the adhesion amount of PTFE was 2 mg / cm 2 . After pulling up the carbon paper from the aqueous dispersion (2), the aqueous dispersion (2) -impregnated carbon paper was stored in a wet state at room temperature.

水性分散液(1)を、PTFEの含有量が2.7質量%になるまで蒸留水で希釈し、水性分散液(3)を得た。PTFEが6.3g含まれるように水性分散液(3)を233.34g秤量した。該水性分散液(3)に、アセチレンブラック(電気化学工業社製、デンカブラック)を14.7g添加した。充分な撹拌を行い、化合物(1−1)の含有量がPTFEと化合物(1−1)との合量に対して2.5質量%である、スラリー状の塗工液(4)を得た。   The aqueous dispersion (1) was diluted with distilled water until the PTFE content was 2.7% by mass to obtain an aqueous dispersion (3). 233.34 g of the aqueous dispersion (3) was weighed so that 6.3 g of PTFE was contained. 14.7 g of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., Denka Black) was added to the aqueous dispersion (3). Sufficient stirring is performed to obtain a slurry-like coating liquid (4) in which the content of the compound (1-1) is 2.5% by mass with respect to the total amount of PTFE and the compound (1-1). It was.

塗工液(4)を、水性分散液(2)含浸カーボンペーパー上にダイコーターにより塗布しした。塗工液(4)が塗布されたカーボンペーパーを、窒素ガス中、350℃で、2時間焼成し、撥水性カーボン層を形成してガス拡散層を得た。撥水性カーボン層の厚さは約40μmであった。   The coating liquid (4) was applied onto the aqueous dispersion (2) impregnated carbon paper by a die coater. The carbon paper coated with the coating liquid (4) was baked in nitrogen gas at 350 ° C. for 2 hours to form a water-repellent carbon layer to obtain a gas diffusion layer. The thickness of the water repellent carbon layer was about 40 μm.

フレミオン(登録商標)樹脂(旭硝子社製、イオン交換容量1.1ミリ当量/g乾燥樹脂のパーフルオロカーボンスルホン酸型イオン交換樹脂(テトラフルオロエチレンに由来する単位とCF2=CFOCF(CF3)O(CF32SO3Hに由来する単位とからなる共重合体))と、ケッチェンブラックEC(ライオン社製)を担持カーボンに用いた白金担持カーボン(田中貴金属社製TEC10E50E、Pt担持率45.7質量%。)とを26.8:73.2(質量比)で含み、固形分濃度が9質量%であり、エタノールと水との混合溶媒(エタノール:水=1:1(質量比))を溶媒とする、触媒層形成インクを用意した。
触媒層形成インクを、Pt付着量が0.5mg/cm2 となるように、エチレン−テトラフルオロエチレン共重合体(以下、ETFEと記す。)シート上に塗布し、空気中80℃、20分で乾燥させて溶媒を除去し、触媒層付きETFEシートを得た。
Flemion (registered trademark) resin (produced by Asahi Glass Co., Ltd., perfluorocarbon sulfonic acid type ion exchange resin with an ion exchange capacity of 1.1 meq / g dry resin (units derived from tetrafluoroethylene and CF 2 ═CFOCF (CF 3 ) O) (CF 3 ) 2 SO 3 H-derived copolymer)) and platinum-supported carbon (TEC10E50E, Tanaka Kikinzoku Co., Ltd.) 45.7 mass%) and 26.8: 73.2 (mass ratio), the solid content concentration is 9 mass%, and a mixed solvent of ethanol and water (ethanol: water = 1: 1 (mass). A catalyst layer forming ink was prepared using the ratio)) as a solvent.
The ink for forming the catalyst layer was applied on an ethylene-tetrafluoroethylene copolymer (hereinafter referred to as ETFE) sheet so that the Pt adhesion amount was 0.5 mg / cm 2, and then in air at 80 ° C. for 20 minutes. And the solvent was removed to obtain an ETFE sheet with a catalyst layer.

固体高分子電解質膜としては、フレミオン(登録商標)CSH25(旭硝子社製、イオン交換容量1.1ミリ当量/g乾燥樹脂、キャスト成型法で作製したパーフルオロカーボンスルホン酸型イオン交換樹脂膜、厚さ25μm)を用いた。
2枚の触媒層付きのETFEシートで、触媒層側が固体高分子電解質膜側となるように固体高分子電解質膜を挟み、130℃、3MPaで、5分間ホットプレスし、触媒層を固体高分子電解質膜に転写し、ETFEシートのみを剥離した。有効電極面積は25cm2 とした。充分に加熱処理を施して乾燥させ、膜触媒層接合体(CCM)を得た。
As the solid polymer electrolyte membrane, Flemion (registered trademark) CSH25 (manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1.1 meq / g dry resin, perfluorocarbon sulfonic acid type ion exchange resin membrane produced by cast molding method, thickness 25 μm) was used.
With two ETFE sheets with catalyst layers, sandwich the solid polymer electrolyte membrane so that the catalyst layer side is on the solid polymer electrolyte membrane side, and hot press at 130 ° C. and 3 MPa for 5 minutes to make the catalyst layer a solid polymer electrolyte It transferred to the electrolyte membrane and peeled only the ETFE sheet. The effective electrode area was 25 cm 2 . The membrane was sufficiently heat-treated and dried to obtain a membrane / catalyst layer assembly (CCM).

膜触媒層接合体の両面に、ガス拡散層を、撥水性カーボン層が触媒層側となるように押し当て、膜電極接合体(以下、MEAと記す。)を得た。該MEAについて、電池特性の評価を行った。結果を表2に示す。   A gas diffusion layer was pressed on both surfaces of the membrane catalyst layer assembly so that the water-repellent carbon layer was on the catalyst layer side to obtain a membrane electrode assembly (hereinafter referred to as MEA). The MEA was evaluated for battery characteristics. The results are shown in Table 2.

(電池特性の評価)
MEAを固体高分子形燃料電池用セルに組み込み、MEAの両外側にセパレータを配置して測定セルとし、電子負荷装置(高砂製作所社製、FK400L)および直流電源装置(高砂製作所社製、EX750L)を用い、下記測定条件にて電流電圧特性を測定し、定電流駆動させたときのセル電圧の経時変化を観察した。
(測定条件)水素出口圧力;0.1MPa(常圧)、空気出口圧力;0.1MPa(常圧)、測定セルの作動温度;80℃、燃料極に供給する水素ガスを通すバブラータンク内の温水の温度;80℃、空気極に供給する空気のバブラータンク内の温水の温度;80℃、電流密度;0.8A/cm2 で維持、燃料極側の燃料利用率;70%、空気極側の燃料利用率;40%。
(Evaluation of battery characteristics)
MEA is incorporated into a polymer electrolyte fuel cell and separators are placed on both outer sides of the MEA to form a measurement cell. An electronic load device (Takasago Seisakusho, FK400L) and a DC power supply (Takasago Seisakusho, EX750L) The current-voltage characteristics were measured under the following measurement conditions, and the change over time in the cell voltage was observed when driven at a constant current.
(Measurement conditions) Hydrogen outlet pressure: 0.1 MPa (normal pressure), air outlet pressure: 0.1 MPa (normal pressure), operating temperature of measurement cell: 80 ° C. in a bubbler tank through which hydrogen gas supplied to the fuel electrode is passed Temperature of hot water: 80 ° C. Temperature of hot water in bubbler tank of air supplied to the air electrode: 80 ° C., current density: maintained at 0.8 A / cm 2 , fuel utilization on the fuel electrode side: 70%, air electrode Side fuel utilization: 40%.

〔例2〕
界面活性剤として化合物(1−1)の代わりに表1に示す化合物(1−2)を用いた以外は、例1と同様にしてガス拡散層およびMEAを得た。該MEAについて、例1と同様にして電池特性の評価を行った。結果を表2に示す。
[Example 2]
A gas diffusion layer and MEA were obtained in the same manner as in Example 1 except that the compound (1-2) shown in Table 1 was used instead of the compound (1-1) as the surfactant. About this MEA, it carried out similarly to Example 1, and evaluated the battery characteristic. The results are shown in Table 2.

〔例3〕
界面活性剤として化合物(1−1)の代わりに表1に示す化合物(1−3)を用いた以外は、例1と同様にしてガス拡散層およびMEAを得た。該MEAについて、例1と同様にして電池特性の評価を行った。結果を表2に示す。
[Example 3]
A gas diffusion layer and MEA were obtained in the same manner as in Example 1 except that the compound (1-3) shown in Table 1 was used instead of the compound (1-1) as the surfactant. About this MEA, it carried out similarly to Example 1, and evaluated the battery characteristic. The results are shown in Table 2.

〔例4(比較例)〕
界面活性剤として化合物(1−1)の代わりに表1に示す化合物(3)を用いた以外は、例1と同様にしてガス拡散層およびMEAを得た。該MEAについて、例1と同様にして電池特性の評価を行った。結果を表2に示す。
[Example 4 (comparative example)]
A gas diffusion layer and MEA were obtained in the same manner as in Example 1 except that the compound (3) shown in Table 1 was used instead of the compound (1-1) as the surfactant. About this MEA, it carried out similarly to Example 1, and evaluated the battery characteristic. The results are shown in Table 2.

Figure 2007194004
Figure 2007194004

例1のMEAのセル電圧の低下は、例2のMEAに比べて少なかった。すなわち、例1のMEAでは、ガス拡散層中に存在する非イオン形界面活性剤が焼成により完全に除去され、PTFEの表面が完全に撥水性を維持しているのに対し、例2のMEAでは、ガス拡散層中に存在する界面活性剤が焼成により完全に分解除去されず、PTFEの表面に界面活性剤が残存しているために、PTFE表面の撥水性が維持できずに濡れやすくなっていた。よって、例2のMEAは、ガス拡散層(ガス拡散層基材および撥水性カーボン層)において濡れやすくなり、電池反応で生ずる水および加湿水の排出がスムーズに行われなくなり、細孔が閉塞がちになった。そして、燃料ガスおよび空気の供給が妨げられることにより、濃度過電圧が増大し、結果としてセル電圧が低下した。   The cell voltage drop of the MEA of Example 1 was less than that of the MEA of Example 2. That is, in the MEA of Example 1, the nonionic surfactant present in the gas diffusion layer is completely removed by firing, and the surface of PTFE is completely maintained in water repellency, whereas the MEA of Example 2 is maintained. Then, the surfactant present in the gas diffusion layer is not completely decomposed and removed by firing, and the surfactant remains on the surface of PTFE, so that the water repellency on the surface of PTFE cannot be maintained and is easily wetted. It was. Therefore, the MEA of Example 2 is easily wetted in the gas diffusion layer (the gas diffusion layer base material and the water-repellent carbon layer), the water generated by the battery reaction and the humidified water are not smoothly discharged, and the pores tend to be blocked. Became. Then, the supply of fuel gas and air was hindered, resulting in an increase in concentration overvoltage, resulting in a decrease in cell voltage.

本発明の製造方法によって得られたガス拡散層は、高い撥水性を長期間維持できることから、固体高分子形燃料電池を長期間安定して作動できる膜電極接合体に好適に用いることができる。   Since the gas diffusion layer obtained by the production method of the present invention can maintain high water repellency for a long period of time, it can be suitably used for a membrane electrode assembly that can stably operate a polymer electrolyte fuel cell for a long period of time.

本発明の固体高分子形燃料電池用膜電極接合体の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the membrane electrode assembly for polymer electrolyte fuel cells of this invention.

符号の説明Explanation of symbols

10 膜電極接合体
11 固体高分子電解質膜
12 触媒層
13 ガス拡散層
14 ガス拡散層基材
15 撥水性カーボン層
DESCRIPTION OF SYMBOLS 10 Membrane electrode assembly 11 Solid polymer electrolyte membrane 12 Catalyst layer 13 Gas diffusion layer 14 Gas diffusion layer base material 15 Water-repellent carbon layer

Claims (7)

ポリテトラフルオロエチレンが水に分散した水性分散液を、ガス拡散層基材に含浸させた後、
カーボンブラックおよびポリテトラフルオロエチレンが分散媒に分散した塗工液を、ガス拡散層基材上に塗布し、
塗工液が塗布されたガス拡散層基材を焼成することによって固体高分子形燃料電池用ガス拡散層を製造する方法であって、
前記水性分散液が、空気中における質量半減温度が100〜300℃である非イオン系界面活性剤を、ポリテトラフルオロエチレンと前記界面活性剤との合量に対して0.5〜10質量%含有することを特徴とする固体高分子形燃料電池用ガス拡散層の製造方法。
After impregnating the gas diffusion layer base material with an aqueous dispersion in which polytetrafluoroethylene is dispersed in water,
A coating liquid in which carbon black and polytetrafluoroethylene are dispersed in a dispersion medium is applied onto a gas diffusion layer substrate,
A method for producing a gas diffusion layer for a polymer electrolyte fuel cell by firing a gas diffusion layer base material coated with a coating liquid,
The aqueous dispersion contains 0.5 to 10% by mass of a nonionic surfactant having a mass half temperature in air of 100 to 300 ° C. based on the total amount of polytetrafluoroethylene and the surfactant. A method for producing a gas diffusion layer for a polymer electrolyte fuel cell, comprising:
ポリテトラフルオロエチレンが水に分散した水性分散液を、ガス拡散層基材に含浸させた後、
カーボンブラックおよびポリテトラフルオロエチレンが分散媒に分散した塗工液を、ガス拡散層基材上に塗布し、
塗工液が塗布されたガス拡散層基材を焼成することによって固体高分子形燃料電池用ガス拡散層を製造する方法であって、
前記塗工液が、空気中における質量半減温度が100〜300℃である非イオン系界面活性剤を、ポリテトラフルオロエチレンと前記界面活性剤との合量に対して0.5〜10質量%含有することを特徴とする固体高分子形燃料電池用ガス拡散層の製造方法。
After impregnating the gas diffusion layer base material with an aqueous dispersion in which polytetrafluoroethylene is dispersed in water,
A coating liquid in which carbon black and polytetrafluoroethylene are dispersed in a dispersion medium is applied onto a gas diffusion layer substrate,
A method for producing a gas diffusion layer for a polymer electrolyte fuel cell by firing a gas diffusion layer base material coated with a coating liquid,
The coating liquid contains 0.5 to 10% by mass of a nonionic surfactant having a mass half-temperature in air of 100 to 300 ° C. based on the total amount of polytetrafluoroethylene and the surfactant. A method for producing a gas diffusion layer for a polymer electrolyte fuel cell, comprising:
ポリテトラフルオロエチレンが水に分散した水性分散液を、ガス拡散層基材に含浸させた後、
カーボンブラックおよびポリテトラフルオロエチレンが分散媒に分散した塗工液を、ガス拡散層基材上に塗布し、
塗工液が塗布されたガス拡散層基材を焼成することによって固体高分子形燃料電池用ガス拡散層を製造する方法であって、
前記水性分散液および塗工液のそれぞれが、空気中における質量半減温度が100〜300℃である非イオン系界面活性剤を、ポリテトラフルオロエチレンと前記界面活性剤との合量に対して0.5〜10質量%含有することを特徴とする固体高分子形燃料電池用ガス拡散層の製造方法。
After impregnating the gas diffusion layer base material with an aqueous dispersion in which polytetrafluoroethylene is dispersed in water,
A coating liquid in which carbon black and polytetrafluoroethylene are dispersed in a dispersion medium is applied onto a gas diffusion layer substrate,
A method for producing a gas diffusion layer for a polymer electrolyte fuel cell by firing a gas diffusion layer base material coated with a coating liquid,
Each of the aqueous dispersion and the coating liquid contains a nonionic surfactant having a mass half-temperature in air of 100 to 300 ° C. with respect to the total amount of polytetrafluoroethylene and the surfactant. The manufacturing method of the gas diffusion layer for polymer electrolyte fuel cells characterized by containing 0.5-10 mass%.
前記非イオン系界面活性剤が、下式(1)で表される化合物である、請求項1〜3のいずれかに記載の固体高分子形燃料電池用ガス拡散層の製造方法。
1 O−A−H ・・・(1)
ただし、R1 は、炭素数8〜18の1級または2級のアルキル基であり、Aは、5〜20個のオキシエチレン基と0〜2個のオキシプロピレン基とからなるポリオキシアルキレン基である。
The method for producing a gas diffusion layer for a polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the nonionic surfactant is a compound represented by the following formula (1).
R 1 OAH (1)
However, R 1 is a primary or secondary alkyl group having 8 to 18 carbon atoms, A is a polyoxyalkylene group consisting of 5 to 20 oxyethylene groups and 0 to 2 oxypropylene groups It is.
前記非イオン系界面活性剤が、C1327O−(C24O)8(C36O)−H、C1327O−(C24O)9−H、C1327O−(C24O)10−H、C1021CH(CH3)CH2O−(C24O)10−H、C613CH(C613)O−(C24O)9−H、C1021CH(CH3)CH2O−(C24O)8(C36O)−H、C1225O−(C24O)9−HおよびC817O−(C24O)6−Hからなる群から選ばれる1種以上である、請求項4に記載の固体高分子形燃料電池用ガス拡散層の製造方法。 The nonionic surfactant is, C 13 H 27 O- (C 2 H 4 O) 8 (C 3 H 6 O) -H, C 13 H 27 O- (C 2 H 4 O) 9 -H, C 13 H 27 O- (C 2 H 4 O) 10 -H, C 10 H 21 CH (CH 3) CH 2 O- (C 2 H 4 O) 10 -H, C 6 H 13 CH (C 6 H 13) O- (C 2 H 4 O) 9 -H, C 10 H 21 CH (CH 3) CH 2 O- (C 2 H 4 O) 8 (C 3 H 6 O) -H, C 12 H 25 is O- (C 2 H 4 O) 9 -H and C 8 H 17 O- (C 2 H 4 O) 1 or more selected from the group consisting of 6 -H, solid polymer of claim 4 For manufacturing a gas diffusion layer for a fuel cell. 塗工液が塗布されたガス拡散層基材を焼成する温度が、300〜390℃である、請求項1〜5のいずれかに記載の固体高分子形燃料電池用ガス拡散層の製造方法。   The method for producing a gas diffusion layer for a polymer electrolyte fuel cell according to any one of claims 1 to 5, wherein the temperature at which the gas diffusion layer substrate to which the coating liquid is applied is baked is 300 to 390 ° C. 固体高分子電解質膜と、
固体高分子電解質膜の両面に配置された触媒層と、
触媒層の外側に配置されたガス拡散層とを具備し、
2つのガス拡散層のうち少なくとも一方が、請求項1〜6のいずれかに記載の製造方法で得られた固体高分子形燃料電池用ガス拡散層である、固体高分子形燃料電池用膜電極接合体。
A solid polymer electrolyte membrane;
A catalyst layer disposed on both sides of the solid polymer electrolyte membrane;
A gas diffusion layer disposed outside the catalyst layer,
A membrane electrode for a polymer electrolyte fuel cell, wherein at least one of the two gas diffusion layers is a gas diffusion layer for a polymer electrolyte fuel cell obtained by the production method according to any one of claims 1 to 6. Joined body.
JP2006009474A 2006-01-18 2006-01-18 Method of manufacturing gas diffusion layer for solid polymer fuel cell, and membrane-electrode assembly Withdrawn JP2007194004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006009474A JP2007194004A (en) 2006-01-18 2006-01-18 Method of manufacturing gas diffusion layer for solid polymer fuel cell, and membrane-electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009474A JP2007194004A (en) 2006-01-18 2006-01-18 Method of manufacturing gas diffusion layer for solid polymer fuel cell, and membrane-electrode assembly

Publications (1)

Publication Number Publication Date
JP2007194004A true JP2007194004A (en) 2007-08-02

Family

ID=38449548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009474A Withdrawn JP2007194004A (en) 2006-01-18 2006-01-18 Method of manufacturing gas diffusion layer for solid polymer fuel cell, and membrane-electrode assembly

Country Status (1)

Country Link
JP (1) JP2007194004A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151013A1 (en) * 2008-06-09 2009-12-17 旭硝子株式会社 Membrane electrode assembly for polymer fuel cell
WO2010053164A1 (en) * 2008-11-04 2010-05-14 ジャパンゴアテックス株式会社 Fuel cell
JP2013191537A (en) * 2012-02-13 2013-09-26 Aisin Chemical Co Ltd Paste composition for microporous layer formation, and method of manufacturing the same
JP2015076371A (en) * 2013-10-11 2015-04-20 トヨタ自動車株式会社 Method and apparatus for manufacturing gas diffusion layer for fuel cell
JP2015191826A (en) * 2014-03-28 2015-11-02 東レ株式会社 Method for manufacturing gas diffusion electrode, and manufacturing device therefor
JP2015218207A (en) * 2014-05-15 2015-12-07 アイシン化工株式会社 Paste composition for forming micro porous layer and manufacturing method therefor, and gas diffusion layer for fuel battery and manufacturing method therefor
JP2016012557A (en) * 2014-06-02 2016-01-21 三菱レイヨン株式会社 Gas diffusion layer and method for manufacturing the same
CN112952110A (en) * 2019-12-11 2021-06-11 丰田自动车株式会社 Method for manufacturing gas diffusion layer with microporous layer and method for manufacturing fuel cell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121078A (en) * 1991-10-29 1993-05-18 Tanaka Kikinzoku Kogyo Kk Manufacture of gas diffusion electrode
JPH09180727A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Electrode for fuel cell, manufacture thereof, and apparatus therefor
JP2002056851A (en) * 2000-08-08 2002-02-22 Matsushita Electric Ind Co Ltd Method of manufacturing gas diffusion electrode for polymer electrolyte fuel cell
JP2003017071A (en) * 2001-07-02 2003-01-17 Honda Motor Co Ltd Electrode for fuel cell, its manufacturing method and fuel cell having it
JP2004134134A (en) * 2002-10-08 2004-04-30 National Institute Of Advanced Industrial & Technology Porous gas diffusion body, and reversible cell using it
JP2004171970A (en) * 2002-11-21 2004-06-17 Mikuni Color Ltd Carbonaceous material and dispersion liquid containing this
JP2004247148A (en) * 2003-02-13 2004-09-02 Aisin Chem Co Ltd Water repellent paste for gas diffusion layer
JP2005019298A (en) * 2003-06-27 2005-01-20 Asahi Glass Co Ltd Film/electrode junction for solid polymer type fuel cell
JP2005116338A (en) * 2003-10-08 2005-04-28 Matsushita Electric Ind Co Ltd Polyelectrolyte fuel cell and manufacturing method of its gas diffusion electrode
JP2005514732A (en) * 2001-12-19 2005-05-19 スリーエム イノベイティブ プロパティズ カンパニー Amine oxide coating composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121078A (en) * 1991-10-29 1993-05-18 Tanaka Kikinzoku Kogyo Kk Manufacture of gas diffusion electrode
JPH09180727A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Electrode for fuel cell, manufacture thereof, and apparatus therefor
JP2002056851A (en) * 2000-08-08 2002-02-22 Matsushita Electric Ind Co Ltd Method of manufacturing gas diffusion electrode for polymer electrolyte fuel cell
JP2003017071A (en) * 2001-07-02 2003-01-17 Honda Motor Co Ltd Electrode for fuel cell, its manufacturing method and fuel cell having it
JP2005514732A (en) * 2001-12-19 2005-05-19 スリーエム イノベイティブ プロパティズ カンパニー Amine oxide coating composition
JP2004134134A (en) * 2002-10-08 2004-04-30 National Institute Of Advanced Industrial & Technology Porous gas diffusion body, and reversible cell using it
JP2004171970A (en) * 2002-11-21 2004-06-17 Mikuni Color Ltd Carbonaceous material and dispersion liquid containing this
JP2004247148A (en) * 2003-02-13 2004-09-02 Aisin Chem Co Ltd Water repellent paste for gas diffusion layer
JP2005019298A (en) * 2003-06-27 2005-01-20 Asahi Glass Co Ltd Film/electrode junction for solid polymer type fuel cell
JP2005116338A (en) * 2003-10-08 2005-04-28 Matsushita Electric Ind Co Ltd Polyelectrolyte fuel cell and manufacturing method of its gas diffusion electrode

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151013A1 (en) * 2008-06-09 2009-12-17 旭硝子株式会社 Membrane electrode assembly for polymer fuel cell
US8535847B2 (en) 2008-06-09 2013-09-17 Asahi Glass Company, Limited Membrane/electrode assembly for polymer electrolyte fuel cell
JP5397375B2 (en) * 2008-06-09 2014-01-22 旭硝子株式会社 Membrane electrode assembly for polymer electrolyte fuel cells
WO2010053164A1 (en) * 2008-11-04 2010-05-14 ジャパンゴアテックス株式会社 Fuel cell
JP2013191537A (en) * 2012-02-13 2013-09-26 Aisin Chemical Co Ltd Paste composition for microporous layer formation, and method of manufacturing the same
JP2015076371A (en) * 2013-10-11 2015-04-20 トヨタ自動車株式会社 Method and apparatus for manufacturing gas diffusion layer for fuel cell
JP2015191826A (en) * 2014-03-28 2015-11-02 東レ株式会社 Method for manufacturing gas diffusion electrode, and manufacturing device therefor
JP2015218207A (en) * 2014-05-15 2015-12-07 アイシン化工株式会社 Paste composition for forming micro porous layer and manufacturing method therefor, and gas diffusion layer for fuel battery and manufacturing method therefor
JP2016012557A (en) * 2014-06-02 2016-01-21 三菱レイヨン株式会社 Gas diffusion layer and method for manufacturing the same
CN112952110A (en) * 2019-12-11 2021-06-11 丰田自动车株式会社 Method for manufacturing gas diffusion layer with microporous layer and method for manufacturing fuel cell
JP2021093315A (en) * 2019-12-11 2021-06-17 トヨタ自動車株式会社 Manufacturing method of gas diffusion layer with microporous layer and manufacturing method of fuel battery
JP7125242B2 (en) 2019-12-11 2022-08-24 トヨタ自動車株式会社 Method for producing gas diffusion layer with microporous layer and method for producing fuel cell
US11502307B2 (en) 2019-12-11 2022-11-15 Toyota Jidosha Kabushiki Kaisha Manufacturing method of gas diffusion layer with microporous layer, and manufacturing method of fuel cell
CN112952110B (en) * 2019-12-11 2024-04-09 丰田自动车株式会社 Method for producing gas diffusion layer with microporous layer and method for producing fuel cell

Similar Documents

Publication Publication Date Title
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP5066998B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
JP5482066B2 (en) Microporous layer for fuel cell, gas diffusion electrode with microporous layer, catalyst layer with microporous layer, gas diffusion electrode with catalyst layer and membrane-electrode assembly, and polymer electrolyte fuel cell
JP5034172B2 (en) Gas diffusion layer for fuel cell and fuel cell using the same
JP2007194004A (en) Method of manufacturing gas diffusion layer for solid polymer fuel cell, and membrane-electrode assembly
EP1880440B1 (en) Oxidatively stable microlayers of gas diffusion layers
US8951693B2 (en) Membrane electrode assembly and fuel cell
CN1949573A (en) Fuel cells with hydrophobic diffusion medium
KR20160120078A (en) Polymer electrolyte membrane for fuel cell and membrane-electrode assembly for fuel cell including the same
JP2006324104A (en) Gas diffusion layer for fuel cell and fuel cell using this
JP2004281363A (en) Gas diffusion electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell using it
JP5292729B2 (en) Method for producing gas diffusion layer and paste composition for producing gas diffusion layer
JP5339261B2 (en) Fuel cell
JP5217256B2 (en) Conductive porous sheet and method for producing the same
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP4985737B2 (en) Gas diffusion electrode with microporous layer, catalyst layer with microporous layer, gas diffusion electrode with catalyst layer, membrane-electrode assembly, and polymer electrolyte fuel cell for fuel cell
JP4828864B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly for polymer electrolyte fuel cell, production method thereof, and polymer electrolyte fuel cell
KR20220096257A (en) Gas diffusion layer comprising a microporous layer having a through-path and/or a concentration gradient of a water-repellent resin in the thickness direction, and fuel cell comprising the same
JP2006318790A (en) Solid polymer type fuel cell, gas diffusion electrode therefor, and its manufacturing method
KR101112693B1 (en) Membrane-electrode assembly of fuel cell and preparing method thereof
JP2007048495A (en) Gas diffusion layer for solid polymer fuel cell and solid polymer fuel cell using the same
WO2012098606A1 (en) Membrane electrode assembly for fuel cell and fuel cell using same
JP2006019174A (en) Gas diffusion electrode, membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell
WO2018012435A1 (en) Gas diffusion member and membrane electrode assembly for solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111024