WO2018012435A1 - Gas diffusion member and membrane electrode assembly for solid polymer fuel cell - Google Patents

Gas diffusion member and membrane electrode assembly for solid polymer fuel cell Download PDF

Info

Publication number
WO2018012435A1
WO2018012435A1 PCT/JP2017/025011 JP2017025011W WO2018012435A1 WO 2018012435 A1 WO2018012435 A1 WO 2018012435A1 JP 2017025011 W JP2017025011 W JP 2017025011W WO 2018012435 A1 WO2018012435 A1 WO 2018012435A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
diffusion member
carbon
catalyst layer
ion exchange
Prior art date
Application number
PCT/JP2017/025011
Other languages
French (fr)
Japanese (ja)
Inventor
田沼 敏弘
下田 博司
木下 伸二
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2018012435A1 publication Critical patent/WO2018012435A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a gas diffusion member and a membrane electrode assembly for a polymer electrolyte fuel cell including the gas diffusion member.
  • the polymer electrolyte fuel cell has a structure in which, for example, a cell is formed by sandwiching a membrane electrode assembly between two separators, and a plurality of cells are stacked.
  • the membrane electrode assembly includes an anode and a cathode having a catalyst layer and a gas diffusion layer, and a polymer electrolyte membrane disposed between the anode and the cathode.
  • Patent Document 1 In order to improve the electric conductivity, gas diffusibility, drainage, etc. of the electrode, particularly the cathode, and to improve the power generation performance of the membrane electrode assembly, as the gas diffusion layer, the carbon material and the surface of the porous carbon substrate
  • a porous carbon layer containing a polymer may be used (Patent Document 1, etc.).
  • the conductivity, gas diffusibility, and drainage of the electrode can be improved by having the carbon layer in the gas diffusion layer.
  • a highly humidified state for example, 50 ° C., 100% RH
  • gas diffusibility and drainage in the electrode become insufficient, The power generation performance of the membrane electrode assembly may deteriorate.
  • the present invention provides a gas diffusion member capable of imparting sufficient conductivity to an electrode of a membrane electrode assembly and improving gas diffusibility and drainage in the electrode; and a membrane electrode excellent in power generation performance even in a highly humidified state Provide a joined body.
  • ⁇ 1> a sheet-like porous base material made of a thermoplastic resin material, and a conductive material at least partially impregnated in the porous base material, wherein the conductive material is a carbon fiber and an ion exchange resin.
  • the gas diffusion member characterized by including.
  • ⁇ 2> The gas diffusion member according to ⁇ 1>, wherein the carbon fiber is a vapor growth carbon fiber.
  • ⁇ 3> The gas diffusion member according to ⁇ 1> or ⁇ 2>, wherein an average fiber diameter of the carbon fibers is 1 to 1000 nm, and an average fiber length of the carbon fibers is 1 to 100 ⁇ m.
  • ⁇ 4> The gas diffusion member according to any one of ⁇ 1> to ⁇ 3>, wherein the amount of the carbon fiber is 0.1 to 10 mg per 1 cm 2 of the gas diffusion member.
  • ⁇ 5> The gas diffusion member according to any one of ⁇ 1> to ⁇ 4>, wherein the ion exchange capacity of the ion exchange resin is 0.5 to 2.0 meq / g dry resin.
  • ⁇ 6> The gas diffusion according to any one of ⁇ 1> to ⁇ 5>, wherein the mass ratio of the content of the ion exchange resin to the content of the carbon fiber is 0.05 to 1.5. Element.
  • ⁇ 7> The gas diffusion member according to any one of ⁇ 1> to ⁇ 6>, wherein the ion exchange resin is a polymer having a unit represented by the formula u1 described later.
  • ⁇ 8> The gas diffusion member according to any one of ⁇ 1> to ⁇ 6>, wherein the ion exchange resin is a polymer having a unit represented by the formula u2 described later.
  • ⁇ 9> The gas diffusion member according to any one of ⁇ 1> to ⁇ 8>, wherein the conductive material further includes a fluororesin other than the ion exchange resin.
  • ⁇ 10> The gas diffusion member according to any one of ⁇ 1> to ⁇ 9>, wherein the porous substrate is a nonwoven fabric.
  • thermoplastic resin material comprises an olefin resin or a fluororesin.
  • nonwoven fabric has a basis weight of 1 to 10 g / m 2 .
  • thermoplastic resin material includes an olefin resin or a fluororesin.
  • thermoplastic resin material includes an olefin resin or a fluororesin.
  • the gas diffusion member of the present invention can impart sufficient conductivity to the electrode of the membrane electrode assembly, and can improve the gas diffusibility and drainage of the electrode.
  • the membrane / electrode assembly for a polymer electrolyte fuel cell of the present invention is excellent in power generation performance even in a highly humidified state.
  • the meanings of terms in the present specification are as follows.
  • the “unit” in the polymer refers to a polymer unit derived from the monomer formed by polymerizing the monomer, and a polymer unit in which a part of the polymer unit is converted into another structure by treating the polymer.
  • the “ion exchange group” means a group in which a part of the cation contained in the group can exchange with another cation, and examples thereof include a sulfonic acid group, a sulfonimide group, and a sulfonemethide group.
  • Sulfonic acid group are -SO 3 - H + or -SO 3 - M + (However, M + is a monovalent metal ion or one or more hydrogen atoms may be substituted with a hydrocarbon group It is an ammonium ion.
  • the numerical range represented by “to” indicates a numerical range in which the numerical values before and after “to” are the lower limit value and the upper limit value.
  • the unit represented by the formula u1 is referred to as “unit u1”.
  • Units represented by other formulas are also described in the same manner.
  • the monomer represented by the formula m1 is referred to as “monomer m1”. The same applies to monomers represented by other formulas.
  • the gas diffusion member of the present invention is a sheet-like member obtained by impregnating a sheet-like porous substrate with a conductive material.
  • the sheet-like gas diffusion member may be a sheet cut into a predetermined size, or may be a long web-like member (continuous body).
  • the thickness of the gas diffusion member is preferably 10 to 300 ⁇ m, more preferably 30 to 200 ⁇ m, and even more preferably 50 to 150 ⁇ m.
  • the thickness is not less than the lower limit of the above range, a gas diffusion member having excellent mechanical properties can be obtained. If the thickness is not more than the upper limit of the above range, a gas diffusion member having excellent conductivity, gas diffusibility and drainage can be obtained.
  • the density of the gas diffusion member is preferably 0.1 to 0.6 g / cm 3 , more preferably 0.2 to 0.5 g / cm 3 .
  • the density is not less than the lower limit of the above range, a gas diffusion member having excellent mechanical properties can be obtained. If this density is below the upper limit of the said range, the gas diffusion member excellent in gas diffusibility and drainage will be obtained.
  • FIG. 1 is a schematic cross-sectional view showing an example of a gas diffusion member of the present invention.
  • the gas diffusion member 10 includes a porous substrate 12 and a conductive material 14 that is partially impregnated into the porous substrate 12 and the remaining part covers the first surface of the porous substrate 12.
  • the conductive material 14 includes an impregnation portion 14 a impregnated in the porous substrate 12 and a base portion 14 b that covers the first surface of the porous substrate 12.
  • FIG. 2 is a schematic cross-sectional view showing another example of the gas diffusion member of the present invention.
  • the gas diffusion member 10 includes a porous substrate 12 and a conductive material 14 that is entirely impregnated in the porous substrate 12.
  • the porous base material is a sheet-like base material made of a thermoplastic resin material.
  • the sheet-like porous substrate may be a sheet cut into a predetermined size, or may be a long web-like (continuous body).
  • Examples of the porous substrate include a nonwoven fabric, a woven fabric, and a porous body (sponge etc.).
  • a nonwoven fabric is preferable because a gas diffusion member having excellent gas diffusibility and drainage can be obtained.
  • Basis weight of the nonwoven fabric is preferably 1 ⁇ 10g / m 2, and more preferably 3 ⁇ 7g / m 2.
  • Basis weight is not less than the lower limit of the above range, a gas diffusion member having excellent mechanical properties can be obtained.
  • the basis weight is not more than the upper limit of the above range, the pore volume of the porous substrate becomes sufficiently large, so that a gas diffusion member excellent in conductivity, gas diffusibility and drainage can be obtained.
  • the thermoplastic resin material includes a thermoplastic resin.
  • the thermoplastic resin material may contain other components (such as various fillers and various additives) as necessary.
  • an olefin resin or a fluororesin is preferable because a gas diffusion member having excellent drainage properties is obtained, and an olefin resin is more preferable because it is inexpensive and easily processed into a porous substrate.
  • the olefin resin include ethylene resins (polyethylene, ethylene- ⁇ -olefin copolymers, etc.) and propylene resins (polypropylene, propylene- ⁇ -olefin copolymers, etc.).
  • polypropylene is preferable from the viewpoint of processability and chemical stability.
  • the fluororesin a fluororesin that can be melt-molded is preferable because it can be easily processed into a porous substrate.
  • the melt-moldable fluororesin include, for example, a tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (hereinafter also referred to as PFA) and a tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter also referred to as FEP).
  • ETFE Ethylene-tetrafluoroethylene copolymer
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • ECTFE ethylene-chlorotrifluoroethylene And a copolymer
  • the conductive material is preferably impregnated in the entire porous substrate from the viewpoint that a gas diffusion member having excellent conductivity, gas diffusibility and drainage can be obtained.
  • a part of the conductive material is impregnated into the porous substrate, and the remaining part covers either one or both of the first surface and the second surface of the porous substrate.
  • the entire amount may be impregnated in the porous substrate.
  • the conductive material includes carbon fiber and ion exchange resin.
  • the conductive material preferably further contains a fluororesin other than the ion exchange resin from the viewpoint that a gas diffusion member having excellent drainage properties can be obtained.
  • the conductive material may contain other components (such as various fillers and various additives) as necessary.
  • Examples of the carbon fiber include vapor grown carbon fiber, carbon nanotube (single wall, double wall, multi-wall, cup laminated type, etc.), PAN-based carbon fiber, and pitch-based carbon fiber.
  • Examples of the form of carbon fiber include chopped fiber and milled fiber.
  • As the carbon fiber a vapor-grown carbon fiber is preferable, and since good dispersibility can be obtained, a carbon fiber containing a linear vapor-grown carbon fiber is preferable.
  • Commercially available carbon fibers can be used. Examples of commercially available carbon fibers include VGCF-H (product name of Showa Denko KK) and HCNTs series (product name of Shenzhen SUSN Sinotech New Materials Co., Ltd.).
  • the average fiber diameter of the carbon fibers is preferably 1 to 1000 nm, more preferably 20 to 500 nm, and further preferably 50 to 250 nm. If the average fiber diameter is not less than the lower limit of the above range, the conductive material itself is sufficiently formed with pores, so that a gas diffusion member excellent in gas diffusibility and drainage can be obtained. When the average fiber diameter is not more than the upper limit of the above range, the impregnation property of the conductive material into the porous substrate is excellent. Moreover, when preparing the electroconductive material paste mentioned later, carbon fiber can be favorably disperse
  • the average fiber length of carbon fibers is preferably 1 to 100 ⁇ m, more preferably 5 to 40 ⁇ m.
  • the conductive material itself is sufficiently formed with pores, so that a gas diffusion member excellent in gas diffusibility and drainage can be obtained.
  • the average fiber length is not more than the upper limit of the above range, the impregnation property of the conductive material into the porous substrate is excellent.
  • carbon fiber can be favorably disperse
  • the carbon fiber content in the gas diffusion member is preferably 0.1 to 10 mg, more preferably 0.5 to 6 mg, and further preferably 1 to 4 mg per 1 cm 2 of the gas diffusion member. If the content is not less than the lower limit of the above range, the conductive material itself is sufficiently formed with pores, so that a gas diffusion member having excellent gas diffusibility and drainage can be obtained. If this content is below the upper limit of the said range, it is excellent in the impregnation property of the electroconductive material to a porous base material. Moreover, when preparing the electroconductive material mentioned later, carbon fiber can be favorably disperse
  • the ion exchange resin is preferably a fluorine-containing ion exchange resin from the viewpoint of durability, and more preferably a perfluorocarbon polymer having an ion exchange group (which may contain an etheric oxygen atom).
  • the perfluorocarbon polymer include a polymer H described later, a polymer Q described later, and a polymer having a unit derived from a perfluoromonomer having an ion exchange group and a 5-membered ring described in International Publication No. 2011/013577.
  • Known polymers may be mentioned, and polymer H or polymer Q is preferable from the viewpoint of availability and manufacturing, and polymer H is more preferable from the viewpoint of ease of manufacturing.
  • the polymer H is a polymer having the unit u1.
  • Q 1 is a single bond or a perfluoroalkylene group which may have an etheric oxygen atom
  • R f1 is a perfluoroalkyl group which may have an etheric oxygen atom
  • X 1 is an oxygen atom, a nitrogen atom or a carbon atom
  • a is 0 when X 1 is an oxygen atom, 1 when X 1 is a nitrogen atom, and 2 when X 1 is a carbon atom
  • Y 1 is a fluorine atom or a monovalent perfluoro organic group
  • s is 0 or 1.
  • a single bond means that the carbon atom of CFY 1 and the sulfur atom of SO 2 are directly bonded.
  • An organic group means a group containing one or more carbon atoms.
  • the oxygen atom may be one or may be two or more. Further, the oxygen atom may exist between the carbon atoms of the perfluoroalkylene group, or may exist between the CFY 1 group of the perfluoroalkylene group and the adjacent carbon atom.
  • the perfluoroalkylene group may be linear or branched.
  • the perfluoroalkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • the perfluoroalkyl group for R f1 may be linear or branched, and is preferably linear.
  • the perfluoroalkyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms.
  • As the perfluoroalkyl group a perfluoromethyl group, a perfluoroethyl group and the like are preferable.
  • - (SO 2 X 1 (SO 2 R f1) a) - H + group is an ion-exchange group, preferably a sulfonic acid group (-SO 3 - H + group), a sulfonimide group (-SO 2 N (SO 2 R f1 ) ⁇ H + group) or a sulfonemethide group (—SO 2 C (SO 2 R f1 ) 2 ) ⁇ H + group).
  • Y 1 is preferably a fluorine atom or a C 1-6 perfluoroalkyl group, particularly preferably a fluorine atom or a trifluoromethyl group.
  • the unit u1 is preferably the unit u1-1. From the viewpoint of easy production of the polymer H and easy industrial implementation, the unit u1-11, the unit u1-12, the unit u1-13 or the unit u1-14 Is more preferable.
  • Z is a fluorine atom or a trifluoromethyl group
  • m is an integer of 0 to 3
  • n is an integer of 1 to 12
  • p is 0 or 1 and m + p> 0.
  • the polymer H may further have units derived from other monomers (hereinafter referred to as “other units 1”) other than the monomer that provides the unit u1. What is necessary is just to adjust the ratio of the other unit 1 suitably so that the ion exchange capacity of the polymer H may become the below-mentioned preferable range.
  • the other unit 1 is preferably a unit derived from a perfluoromonomer from the viewpoint of mechanical properties and chemical durability, and more preferably a unit derived from tetrafluoroethylene (hereinafter also referred to as TFE).
  • Polymer H is produced by polymerizing monomer m1 and, if necessary, another monomer other than monomer m1 to obtain a precursor polymer, and then converting —SO 2 F groups in the precursor polymer into sulfonic acid groups. it can.
  • the conversion of —SO 2 F group to sulfonic acid group is performed by hydrolysis and acidification treatment.
  • Polymer Q is a polymer having unit u2. As the polymer Q, those belonging to the polymer H are excluded.
  • Q 21 is an etheric good perfluoroalkylene group which may have an oxygen atom
  • Q 22 is a single bond, or which may have an etheric oxygen atom perfluoroalkylene group
  • R f2 is a perfluoroalkyl group which may have an etheric oxygen atom
  • X 2 is an oxygen atom, a nitrogen atom or a carbon atom
  • b is 0 when X 2 is an oxygen atom.
  • X 2 is 1 when X 2 is a nitrogen atom
  • Y 2 is a fluorine atom or a monovalent perfluoro organic group
  • t is 0 or 1.
  • the single bond means that the carbon atom of CY 2 and the sulfur atom of SO 2 are directly bonded.
  • An organic group means a group containing one or more carbon atoms.
  • the oxygen atom may be one or two or more. Further, the oxygen atom may exist between the carbon atoms of the perfluoroalkylene group, or may exist between the CY 2 group of the perfluoroalkylene group and the adjacent carbon atom.
  • the perfluoroalkylene group may be linear or branched, and is preferably linear.
  • the perfluoroalkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. If the number of carbon atoms is 6 or less, the boiling point of the raw fluorine-containing monomer is lowered, and distillation purification becomes easy.
  • Q 22 is preferably a C 1-6 perfluoroalkylene group which may have an etheric oxygen atom.
  • Q 22 is a perfluoroalkylene group having 1 to 6 carbon atoms which may have an etheric oxygen atom
  • the polymer electrolyte fuel cell was operated over a longer period than when Q 22 is a single bond.
  • the stability of the power generation performance is excellent.
  • At least one of Q 21 and Q 22 is preferably a C 1-6 perfluoroalkylene group having an etheric oxygen atom.
  • the fluorine-containing monomer having a C 1-6 perfluoroalkylene group having an etheric oxygen atom can be synthesized without undergoing a fluorination reaction with a fluorine gas, the yield is good and the production is easy.
  • the perfluoroalkyl group for R f2 may be linear or branched, and is preferably linear.
  • the perfluoroalkyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms.
  • As the perfluoroalkyl group a perfluoromethyl group, a perfluoroethyl group and the like are preferable.
  • the R f2s may be the same group or different groups.
  • the — (SO 2 X 2 (SO 2 R f2 ) b ) — H + group is an ion exchange group.
  • Y 2 is preferably a fluorine atom or a linear perfluoroalkyl group having 1 to 6 carbon atoms which may have an etheric oxygen atom.
  • the unit u2 is preferably the unit u2-1, more preferably the unit u2-11, the unit u2-12 or the unit u2-13 from the viewpoint of easy production of the polymer Q and easy industrial implementation.
  • R F21 is a linear perfluoroalkylene group having 1 to 6 carbon atoms which may have a single bond or an etheric oxygen atom
  • R F22 is a linear chain having 1 to 6 carbon atoms. Perfluoroalkylene group.
  • the polymer Q may further have units other than the unit u2 (hereinafter referred to as other units 2). What is necessary is just to adjust the ratio of the other unit 2 suitably so that the ion exchange capacity of the polymer Q may become the below-mentioned preferable range.
  • the other unit 1 and the other unit 2 may include units derived from the same type of monomer.
  • the other unit 2 is preferably a unit derived from a perfluoromonomer, more preferably a unit derived from TFE, from the viewpoint of mechanical properties and chemical durability.
  • the polymer Q can be produced by, for example, a method described in International Publication No. 2007/013533.
  • the ion exchange capacity of the ion exchange resin in the conductive material is preferably 0.5 to 2.0 meq / g dry resin from the viewpoint of obtaining a gas diffusion member having excellent conductivity and gas permeability.
  • a 1.5 meq / g dry resin is particularly preferred.
  • the ratio (F / C) of the ion exchange resin content F to the carbon fiber content C (F / C) in the conductive material is preferably 0.05 to 1.5, more preferably 0.05 to 1.2, and 1 to 0.7 is more preferable. If F / C is not less than the lower limit of the above range, the carbon fiber will not increase too much and the conductive material will not easily become brittle.
  • F / C is less than or equal to the upper limit of the above range, the amount of ion exchange resin does not increase too much, and pores are sufficiently formed in the conductive material itself. Therefore, a gas diffusion member having excellent gas permeability and drainage properties is obtained. can get.
  • fluororesin other than the ion exchange resin contained in the conductive material examples include polytetrafluoroethylene (hereinafter also referred to as PTFE), PVDF, polyvinyl fluoride (PVF), PCTFE, PFA, FEP, ETFE, and ECTFE. Can be mentioned.
  • PTFE is preferable because a gas diffusion member having excellent drainage can be obtained.
  • the ratio (P / C) of the fluororesin content P to the carbon fiber content C in the conductive material is preferably 0.05 to 0.5, more preferably 0.1 to 0.4. If P / C is not less than the lower limit of the above range, the carbon fiber will not increase too much and the conductive material will not easily become brittle. If P / C is less than or equal to the upper limit of the above range, the fluororesin will not increase too much and the conductive material will not easily become brittle. Moreover, the gas diffusion member excellent in electroconductivity is obtained.
  • a gas diffusion member is manufactured by the following method, for example. As shown in FIG. 3, a conductive material paste is applied to the surface of the first carrier film 100 and dried to form the base portion 14b. Next, the porous substrate 12 is placed on the base portion 14b. Next, a conductive material paste is applied to the surface of the porous substrate 12, impregnated on the entire porous substrate 12, and dried to form an impregnation portion 14 a, thereby forming the conductive material on the porous substrate 12. A gas diffusion member 10 in which a part of 14 is impregnated is obtained. Next, a method of peeling the first carrier film 100 from the gas diffusion member 10.
  • the porous substrate 12 is placed on the first carrier film 100.
  • a conductive material paste is applied to the surface of the porous substrate 12, impregnated on the top of the porous substrate 12, and dried to form the first semi-impregnated portion 14c.
  • the second carrier film 102 is adhered to the first semi-impregnated portion 14c, and the first carrier film 100 is peeled off.
  • the conductive material paste is applied to the surface of the porous substrate 12, impregnated in the non-impregnated portion of the porous substrate 12, and dried to form the second semi-impregnated portion 14d.
  • the gas diffusion member 10 in which the material 12 is impregnated with the entire amount of the conductive material 14 is obtained.
  • the conductive material paste includes carbon fiber, ion exchange resin, and liquid medium.
  • the conductive material paste may contain a fluororesin other than the ion exchange resin and other components as necessary.
  • the liquid medium preferably contains an organic solvent and water.
  • organic solvent alcohols are preferable.
  • alcohols include non-fluorine alcohols (methanol, ethanol, 1-propanol, 2-propanol, etc.), fluorine alcohols (2,2,2-trifluoroethanol, 2,2,3,3, etc.).
  • the mass ratio of the organic solvent to water is preferably 55:45 to 30:70, and more preferably 50:50 to 40:60. If the organic solvent is less than or equal to the upper limit of the range (water is greater than or equal to the lower limit of the range), the conductive material is less likely to crack. If the organic solvent is not less than the lower limit of the above range (water is not more than the upper limit of the above range), the dispersion stability of the conductive material paste is good.
  • the solid content concentration of the conductive material paste is preferably 5 to 40% by mass, more preferably 8 to 30% by mass, and particularly preferably 10 to 25% by mass. When the solid content concentration is within the above range, the viscosity is suitable for coating and impregnation.
  • carrier films include ETFE films and olefin resin films.
  • a known coating method such as a die coating method may be used.
  • the drying temperature is preferably 40 to 130 ° C, more preferably 45 to 80 ° C.
  • a drying method a known drying method may be used.
  • the gas diffusion member of the present invention described above has conductivity because the porous base material is impregnated with the conductive material containing carbon fiber and ion exchange resin. Therefore, sufficient conductivity can be imparted to the electrode by using the gas diffusion member in the gas diffusion layer of the electrode of the membrane electrode assembly. Further, since the gas diffusion member of the present invention described above is based on a porous base material, a carbon layer containing a conventional carbon material and polymer even after impregnation with a conductive material. As compared with the above, the pore volume can be increased. Therefore, the gas diffusion member of the present invention is excellent in gas diffusibility and drainage as compared with a conventional carbon layer. Therefore, by using the gas diffusion member for the gas diffusion layer of the electrode of the membrane electrode assembly, the gas diffusibility and drainage of the electrode can be improved.
  • a membrane electrode assembly for a polymer electrolyte fuel cell of the present invention (hereinafter referred to as a membrane electrode assembly) includes an anode having a catalyst layer and a gas diffusion layer, a cathode having a catalyst layer and a gas diffusion layer, and an anode A polymer electrolyte membrane disposed between the catalyst layer and the cathode catalyst layer, and either or both of the anode and cathode gas diffusion layers have the gas diffusion member of the present invention.
  • the reaction in the polymer electrolyte fuel cell is represented by the following formulas (R1) and (R2).
  • the reaction at the cathode represented by the formula (R2) is rate-limiting, and in order to promote the reaction, it is necessary to increase the proton concentration and the oxygen concentration in the reaction field.
  • the cathode is required to have sufficient conductivity and gas diffusibility.
  • a highly humidified oxidant gas (air) humidified by a humidifier or the like is supplied to the cathode.
  • water vapor is generated by reaction at the cathode, pore clogging (flooding) due to condensation of water vapor is likely to occur. Therefore, the cathode is also required to have sufficient drainage. Therefore, it is preferable that at least the gas diffusion layer of the cathode has the gas diffusion member of the present invention that improves conductivity, gas diffusion property, drainage property and the like.
  • FIG. 5 is a schematic cross-sectional view showing an example of the membrane electrode assembly of the present invention.
  • the membrane electrode assembly 1 includes an anode 20 having a catalyst layer 22 and a gas diffusion layer 24; a cathode 30 having a catalyst layer 32 and a gas diffusion layer 34; and a catalyst layer 22 of the anode 20 and a catalyst layer 32 of the cathode 30. And a polymer electrolyte membrane 40 disposed therebetween.
  • the gas diffusion layer 24 of the anode 20 includes a porous carbon base material 26 and a porous carbon layer 28 provided between the catalyst layer 22 and the carbon base material 26.
  • the gas diffusion layer 34 of the cathode 30 includes a porous carbon base material 36 and the gas diffusion member 10 of the present invention provided between the catalyst layer 32 and the carbon base material 36.
  • FIG. 6 is a schematic cross-sectional view showing another example of the membrane electrode assembly of the present invention.
  • the gas diffusion layer 34 of the cathode 30 is the same as the description of FIG. 5 except that the gas diffusion layer 34 of the present invention is composed of the gas diffusion member 10 of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing another example of the membrane electrode assembly of the present invention.
  • the gas diffusion layer 24 of the anode 20 is made of the gas diffusion member 10 of the present invention
  • the gas diffusion layer 34 of the cathode 30 is the same as the description of FIG. 5 except that it is made of the gas diffusion member 10 of the present invention.
  • the catalyst layer is a layer containing a catalyst and an ion exchange resin.
  • the anode catalyst layer and the cathode catalyst layer may be the same component, composition, thickness, or the like, or may be different layers.
  • the catalyst may be any catalyst that promotes the oxidation-reduction reaction in the polymer electrolyte fuel cell, and a catalyst containing platinum is preferable, and a supported catalyst in which platinum or a platinum alloy is supported on a carbon support is particularly preferable.
  • the carbon carrier include activated carbon and carbon black. From the viewpoint of high chemical durability, those graphitized by heat treatment or the like are preferable.
  • the specific surface area of the carbon support is preferably 200 m 2 / g or more. The specific surface area of the carbon support is measured by nitrogen adsorption on the carbon surface with a BET specific surface area apparatus.
  • Platinum alloys include platinum group metals other than platinum (ruthenium, rhodium, palladium, osmium, iridium), gold, silver, chromium, iron, titanium, manganese, cobalt, nickel, molybdenum, tungsten, aluminum, silicon, zinc, An alloy of platinum and one or more metals selected from the group consisting of tin and platinum is preferable.
  • the platinum alloy may contain a metal alloyed with platinum and an intermetallic compound of platinum.
  • the supported amount of platinum or platinum alloy is preferably 10 to 70% by mass of the supported catalyst.
  • the amount of platinum contained in the catalyst layer is preferably 0.01 to 0.5 mg / cm 2 from the viewpoint of the optimum thickness of the catalyst layer for efficiently carrying out the electrode reaction, and the balance between the cost and performance of the raw material is preferable. From the viewpoint, 0.05 to 0.35 mg / cm 2 is more preferable.
  • the ion exchange resin is preferably a fluorine-containing ion exchange resin from the viewpoint of durability, more preferably a perfluorocarbon polymer having an ion exchange group (which may contain an etheric oxygen atom), and the above-mentioned polymer H or Polymer Q is more preferred, and polymer H is particularly preferred.
  • the ion exchange capacity of the fluorine-containing ion exchange resin is preferably 0.5 to 2.0 meq / g dry resin, particularly preferably 0.8 to 1.5 meq / g dry resin.
  • the gas diffusion layer of the anode and the gas diffusion layer of the cathode may be the same or different from each other in components, composition, thickness and the like.
  • the gas diffusion layer may be composed of only the gas diffusion member of the present invention; it may have the gas diffusion member of the present invention and a carbon substrate; and it has a carbon substrate and a carbon layer. It may be composed of only a carbon substrate.
  • the cathode gas diffusion layer has the gas diffusion member of the present invention.
  • the gas diffusion member is adjacent to the catalyst layer from the viewpoint of sufficiently improving the conductivity, gas diffusion property and drainage property of the electrode.
  • the gas diffusion layer preferably has a carbon base material and a carbon layer from the viewpoint of improving the conductivity, gas diffusibility and drainage in the anode.
  • the carbon substrate include carbon paper, carbon cloth, carbon felt and the like.
  • the carbon layer is a layer containing a carbon material and a polymer.
  • the carbon material include carbon particles, carbon fibers, and the like, and carbon fibers are preferable because the effect of improving the power generation performance is sufficiently exhibited.
  • Examples of the carbon particles include carbon black.
  • Examples of the carbon fiber include vapor grown carbon fiber, carbon nanotube (single wall, double wall, multi-wall, cup laminated type, etc.), PAN-based carbon fiber, and pitch-based carbon fiber.
  • Examples of the form of carbon fiber include chopped fiber and milled fiber.
  • the average fiber diameter of the carbon fibers is preferably 20 to 500 nm, more preferably 50 to 250 nm. If the average fiber diameter of the carbon fiber is not less than the lower limit of the above range, the carbon layer has good gas diffusibility and drainage. When the average fiber diameter of the carbon fibers is not more than the upper limit of the above range, the carbon fibers can be favorably dispersed in the dispersion medium when preparing the carbon layer forming paste described later.
  • Examples of the polymer include fluorine resins other than fluorine-containing ion exchange resins and fluorine-containing ion exchange resins, and fluorine-containing ion exchange resins are preferable from the viewpoint of the durability of the carbon layer and the dispersion stability of the carbon fibers.
  • An example of the fluororesin is PTFE.
  • the fluorine-containing ion exchange resin a perfluorocarbon polymer having an ion exchange group is preferable, the above-described polymer H or polymer Q is more preferable, and polymer H is particularly preferable.
  • the ion exchange capacity of the fluorine-containing ion exchange resin is preferably 0.5 to 2.0 meq / g dry resin, and 0.8 to 1.5 meq / g dry resin from the viewpoint of conductivity and gas permeability. Is particularly preferred.
  • the polymer electrolyte membrane is a membrane containing an ion exchange resin.
  • the ion exchange resin is preferably a fluorine-containing ion exchange resin from the viewpoint of durability, more preferably a perfluorocarbon polymer having an ion exchange group (which may contain an etheric oxygen atom), and the above-mentioned polymer H or Polymer Q is more preferred, and polymer H is particularly preferred.
  • the ion exchange capacity of the fluorine-containing ion exchange resin is preferably 0.5 to 2.0 meq / g dry resin, particularly preferably 0.8 to 1.5 meq / g dry resin.
  • the polymer electrolyte membrane may be reinforced with a reinforcing material.
  • the reinforcing material include porous bodies, fibers, woven fabrics, and nonwoven fabrics.
  • the polymer electrolyte membrane may contain cerium ions or manganese ions.
  • the thickness of the polymer electrolyte membrane is preferably 10 to 30 ⁇ m, more preferably 15 to 25 ⁇ m.
  • the thickness of the polymer electrolyte membrane is measured by observing the cross section of the polymer electrolyte membrane with a scanning electron microscope or the like.
  • the membrane electrode assembly 1 in FIG. 5 may have two frame-shaped subgaskets (not shown) arranged so as to sandwich the polymer electrolyte membrane 40 at the peripheral edge of the membrane electrode assembly 1.
  • a catalyst layer 22 is formed on the first surface of the polymer electrolyte membrane 40, and a catalyst layer 32 is formed on the second surface to obtain a membrane catalyst layer assembly.
  • the carbon base material 26 with the carbon layer 28, the membrane catalyst layer assembly, the gas diffusion member 10, and the carbon base material 36 are stacked in this order, and are manufactured by a method of heat treating them.
  • the catalyst layer 22 is formed on the first surface of the polymer electrolyte membrane 40 and the catalyst layer 32 is formed on the second surface to obtain a membrane catalyst layer assembly. Then, the carbon base material 26 with the carbon layer 28, the membrane catalyst layer assembly, and the gas diffusion member 10 are stacked in this order and manufactured by a method of heat treating them.
  • the catalyst layer 22 is formed on the first surface of the polymer electrolyte membrane 40, and the catalyst layer 32 is formed on the second surface to obtain a membrane catalyst layer assembly. Then, the gas diffusion member 10, the membrane catalyst layer assembly, and the gas diffusion member 10 are stacked in this order and are manufactured by a method of heat treating them.
  • the polymer electrolyte membrane 40 can be formed, for example, by a method in which a liquid composition containing an ion exchange resin and a liquid medium is applied to the surface of a carrier film and dried.
  • the liquid medium preferably contains an organic solvent and water.
  • the alcohols include non-fluorinated alcohols and fluorinated alcohols.
  • Examples of the method for forming the catalyst layer include the following methods. A method in which a catalyst layer forming paste is applied to the surface of a carrier film, dried to form a catalyst layer, and then the catalyst layer is transferred to the surface of the polymer electrolyte membrane 40. A method in which the catalyst layer forming paste is applied to the surface of the polymer electrolyte membrane 40 and dried.
  • the paste for forming a catalyst layer includes an ion exchange resin, a catalyst, and a liquid medium.
  • the catalyst layer forming paste can be prepared, for example, by mixing a liquid composition containing an ion exchange resin and a liquid medium and a dispersion containing the catalyst and the liquid medium.
  • the carbon layer can be formed, for example, by a method of applying a carbon layer forming paste to the surface of the carbon substrate and drying it.
  • the carbon layer forming paste includes a carbon material, a polymer, and a liquid medium.
  • the gas diffusion layer of either one or both of the anode and the cathode can impart sufficient conductivity to the electrode of the membrane electrode assembly, and gas diffusion in the electrode can be performed. Since the gas diffusion member of the present invention that can improve the performance and drainage is provided, the power generation performance is excellent even in a highly humidified state.
  • the membrane electrode assembly of the present invention includes an anode having a catalyst layer and a gas diffusion layer, a cathode having a catalyst layer and a gas diffusion layer, and a polymer electrolyte disposed between the anode catalyst layer and the cathode catalyst layer. It is only necessary that the gas diffusion layer of any one or both of the anode and the cathode has the gas diffusion member of the present invention, and is not limited to the membrane electrode assembly of the illustrated example.
  • the gas diffusion layer of the anode may have the gas diffusion member of the present invention, and the gas diffusion layer of the cathode may not have the gas diffusion member of the present invention.
  • the gas diffusion layer may have a carbon layer between the carbon base material and the gas diffusion member of the present invention.
  • the manufacturing method of a membrane electrode assembly is not limited to the method mentioned above, You may manufacture a membrane electrode assembly by another method.
  • the membrane electrode assembly of the present invention is used for a polymer electrolyte fuel cell.
  • a polymer electrolyte fuel cell is manufactured, for example, by forming a cell by sandwiching a membrane electrode assembly between two separators and stacking a plurality of cells.
  • the separator include a conductive carbon plate in which a groove serving as a passage for an oxidant gas (air, oxygen, etc.) containing fuel gas or oxygen is formed.
  • the polymer electrolyte fuel cell include a hydrogen / oxygen fuel cell and a direct methanol fuel cell (DMFC).
  • the methanol or methanol aqueous solution used for the DMFC fuel may be a liquid feed or a gas feed.
  • Examples 1 to 3 are examples, and examples 4 to 6 are comparative examples.
  • Cell voltage The temperature of the membrane electrode assembly in the power generation cell is maintained at 50 ° C., hydrogen (dew point: 50 ° C., utilization rate: 70%) at the anode, and air (dew point: 50 ° C., utilization rate: 50%) at the cathode , Each was pressurized to 50 kPa (absolute pressure) and supplied. Both hydrogen and air were supplied at a relative humidity of 100% RH, and the cell voltage was measured when the current density was 1.0 A / cm 2 .
  • the internal resistance was calculated by applying an alternating current to the cell and dividing the amplitude of the voltage generated between the terminals by the amplitude of the alternating current.
  • Platinum catalyst 1 manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E (a catalyst in which platinum is supported on a carbon support so that 50% by mass of the total mass of the catalyst is included).
  • Platinum catalyst 2 manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC10EA20E (a catalyst in which platinum is supported on a carbon carrier so that 20% by mass of the total mass of the catalyst is contained).
  • Vapor growth carbon fiber VGCF-H (average fiber diameter: 150 nm, average fiber length: 10 to 20 ⁇ m) manufactured by Showa Denko KK
  • Non-woven fabric manufactured by Japan Vilene (polypropylene, basis weight: 5 g / m 2 ).
  • PTFE dispersion Fluon (registered trademark of Asahi Glass Co., Ltd.) AD911E (solid content concentration: 60% by mass).
  • Carbon base material a manufactured by NOK, X0086 T10X13 (without carbon layer).
  • Carbon substrate b manufactured by NOK, X0086 IX92 CX320 (carbon substrate with carbon layer).
  • the carbon layer includes carbon black and PTFE.
  • Carbon substrate c X0086 IX52 CX320 (carbon substrate with carbon layer) manufactured by NOK.
  • the carbon layer includes carbon black and PTFE.
  • the mass ratio of the ion exchange resin content to the carbon fiber content was 0.3, and the solid content concentration was 20 mass%.
  • a carbon layer forming paste is applied to the surface of the carbon substrate a using a die coater and dried at 80 ° C. for 10 minutes to obtain a carbon substrate d with a carbon layer having a carbon layer of 0.3 mg / cm 2. It was.
  • Polymer H Polymer H-1 (ion exchange capacity: 1.1 meq / g dry resin) composed of units derived from TFE and units u1-11 was prepared.
  • Electrode membrane (1) The liquid composition was applied to the surface of the ETFE film using a die coater, dried at 80 ° C. for 15 minutes, further heat-treated at 160 ° C. for 30 minutes, and electrolyte membrane (1) (thickness: 17 ⁇ m, cerium content: 15 A polymer electrolyte membrane with an ETFE film having a mol%) was obtained.
  • “cerium content” means the ratio (mol%) of the number of cation exchange groups substituted with cerium ions to the number of cation exchange groups contained in the polymer electrolyte membrane.
  • the catalyst layer forming paste 1 had a mass ratio of the ion exchange resin content to the carbon carrier content of 0.95 and a solid content concentration of 9 mass%.
  • the catalyst layer forming paste 1 is applied to the surface of the ETFE film using a die coater, dried at 80 ° C. for 10 minutes, and provided with a catalyst layer (1) having a platinum amount of 0.5 mg / cm 2. A catalyst layer was obtained.
  • the mass ratio of the ion exchange resin content to the carbon fiber content was 0.3, and the solid content concentration was 20% by mass.
  • the conductive material paste 1 was applied to the surface of the ETFE film using a die coater so that the carbon fiber content was 0.4 mg / cm 2, and dried at 80 ° C. for 10 minutes to form a base part. .
  • the nonwoven fabric was mounted on the base part.
  • the conductive material paste 1 is applied to the surface of the nonwoven fabric so that the carbon fiber content is 1.6 mg / cm 2 , impregnated throughout the nonwoven fabric, dried at 80 ° C. for 10 minutes, and further 130 Heat treatment was performed at 0 ° C. for 30 minutes.
  • a gas diffusion member 1 was obtained in which a part of the conductive material was impregnated into the nonwoven fabric, and the remaining part of the conductive material covered one side of the nonwoven fabric.
  • the ETFE film was peeled from the gas diffusion member 1.
  • Table 1 shows the thickness, density, and carbon fiber content (contained) of the gas diffusion member 1.
  • the thickness, density, and amount of carbon fiber of the gas diffusion member are shown in Table 1.
  • the laminate 1 was obtained by heat treatment at 120 ° C. and 3 MPa for 6 minutes.
  • an electrolyte membrane (1) obtained by peeling an ETFE film from a polymer electrolyte membrane with an ETFE film provided with the electrolyte membrane (1), and an ETFE provided with another catalyst layer (1)
  • the catalyst layer (1) of the catalyst layer with a film was stacked so as to be in contact with each other, and heat-treated at 120 ° C. and 3 MPa for 6 minutes.
  • the conductive material paste is applied to the first surface of the nonwoven fabric so that the layer (1) is in contact with the first surface of the nonwoven fabric.
  • the mass ratio of the ion exchange resin content to the carbon fiber content is 0.3
  • the fluororesin content to the carbon fiber content is 0.3.
  • the solid content concentration was 20% by mass.
  • a nonwoven fabric was placed on the first ETFE film.
  • the conductive material paste 2 is applied to the surface of the nonwoven fabric so that the amount of carbon fibers is 1.2 mg / cm 2 , impregnated on the top of the nonwoven fabric, dried at 80 ° C. for 10 minutes, A semi-impregnated part was formed.
  • the 2nd ETFE film was stuck to the 1st semi-impregnation part, and the 1st ETFE film was peeled from the nonwoven fabric.
  • the conductive material paste 2 was applied to the surface of the nonwoven fabric obtained by peeling off the first ETFE film so that the amount of carbon fiber was 1.2 mg / cm 2, and was applied to the non-impregnated portion of the nonwoven fabric. It was impregnated, dried at 80 ° C. for 10 minutes, and further heat treated at 130 ° C. for 30 minutes. A gas diffusion member (2) in which the nonwoven fabric was impregnated with the entire amount of the conductive material was obtained. Next, the second ETFE film was peeled from the gas diffusion member (2).
  • a membrane electrode assembly (2) having an electrode area of 25 cm 2 is obtained in the same manner as in Example 1 except that the gas diffusion member (2) of Example 2 is used instead of the gas diffusion member (1) of Example 1. It was.
  • the membrane electrode assembly (2) was incorporated into a power generation cell so that the electrode having the gas diffusion member (2) was a cathode.
  • Example 3 The same conductive material paste 1 as in Example 1 was prepared. After changing the amount of carbon fiber of the conductive material paste 1 applied to the surface of the nonwoven fabric placed on the first ETFE film to 0.6 mg / cm 2 to form the first semi-impregnated portion, Example 2 except that the amount of carbon fiber of the conductive material paste 1 applied to the surface of the nonwoven fabric on the side where the first ETFE was peeled was changed to 2.4 mg / cm 2. Similarly, a gas diffusion member (3) in which the nonwoven fabric was impregnated with the entire amount of the conductive material was obtained.
  • a membrane electrode assembly (3) having an electrode area of 25 cm 2 was obtained in the same manner as in Example 1 except that the gas diffusion member (3) of Example 3 was used instead of the gas diffusion member (1) of Example 1. It was.
  • the membrane electrode assembly (3) was incorporated in a power generation cell so that the electrode having the gas diffusion member (3) was a cathode.
  • the membrane electrode assembly (3) has a conductive material on the surface of the catalyst layer (1) in the membrane catalyst layer assembly (1) and the nonwoven fabric on the side where the first ETFE in the gas diffusion member (3) is peeled off.
  • the paste 1 was laminated so that the surface formed by applying the carbon fiber of the paste 1 to 2.4 mg / cm 2 was in contact.
  • Example 4 A membrane catalyst layer assembly was obtained in the same manner as in Example 1.
  • the carbon base material b, the frame-shaped subgasket, the membrane catalyst layer assembly, the frame-shaped subgasket, and the carbon base material d in this order, the catalyst of the carbon layer and the carbon catalyst layer assembly in the carbon base material d.
  • the layers (1) were stacked so as to be in contact with each other, and these were heat-treated at 160 ° C. and 3 MPa for 2 minutes to obtain a membrane / electrode assembly (4) having an electrode area of 25 cm 2 .
  • the membrane electrode assembly (4) was incorporated into a power generation cell so that the electrode having the carbon base material d would be a cathode.
  • Example 5 A membrane catalyst layer assembly was obtained in the same manner as in Example 1.
  • the carbon base material b, the carbon layer in the carbon base material c, and the catalyst layer (1) are in the order of the carbon base material b, the frame-shaped subgasket, the membrane catalyst layer assembly, the frame-shaped subgasket, and the carbon base material c. They were stacked so as to be in contact with each other, and heat-treated under conditions of 160 ° C. and 3 MPa for 2 minutes to obtain a membrane / electrode assembly (5) having an electrode area of 25 cm 2 .
  • the membrane electrode assembly (5) was incorporated into a power generation cell so that the electrode having the carbon base material b would be a cathode.
  • the mass ratio of the content of the ion exchange resin to the content of the carbon support was 0.8, and the solid content concentration was 8% by mass.
  • the catalyst layer forming paste 2 is applied to the surface of the ETFE film using a die coater, dried at 80 ° C. for 10 minutes, and provided with a catalyst layer (2) having a platinum amount of 0.05 mg / cm 2. A catalyst layer was obtained.
  • the liquid composition is applied to the surface of the catalyst layer (2) of the catalyst layer with the ETFE film provided with the catalyst layer (2) using a die coater, dried at 80 ° C. for 10 minutes, and further heat-treated at 160 ° C. for 30 minutes. , An ETFE film, a catalyst layer (2), and an electrolyte membrane (1) (thickness: 17 ⁇ m, cerium content: 15 mol%) were obtained in this order to obtain a laminate 2.
  • a catalyst layer containing platinum catalyst 1 polymer H-1, ethanol, water and 1,1,2,2,3,3,4-heptafluorocyclopentane (Zeon Corporation (registered trademark) H) Paste 3 was prepared.
  • the mass ratio of ethanol / water / Zeorolla (registered trademark) H was 46/50/4.
  • the catalyst layer forming paste 3 had a mass ratio of the ion exchange resin content to the carbon support content of 0.95 and a solid content concentration of 10 mass%.
  • the catalyst layer forming paste 3 is applied to the surface of the carbon layer of the carbon base material d using a die coater, dried at 80 ° C. for 10 minutes, and a platinum layer having a platinum amount of 0.5 mg / cm 2 (3) Thus, an electrode 1 was obtained.
  • the laminate 2 and the electrode 1 were laminated so that the electrolyte membrane (1) of the laminate 2 and the catalyst layer (3) of the electrode 1 were in contact with each other, and heat-treated at 160 ° C. and 3 MPa for 2 minutes. Next, heat treatment was performed at 160 ° C. for 30 minutes in a nitrogen gas atmosphere.
  • the ETFE film is peeled off, and the carbon layer in the carbon base material b and the catalyst layer (2) obtained by peeling off the ETFE film are stacked so that they are in contact with each other.
  • a membrane electrode assembly (6) having an area of 25 cm 2 was obtained.
  • the membrane electrode assembly (6) was incorporated into the power generation cell so that the electrode 1 side of the membrane electrode assembly 6 was the cathode.
  • the cell voltage of the membrane electrode assemblies of Examples 1 to 3 had the gas diffusion member of the present invention in the gas diffusion layer, the cell voltage was relatively high even in a highly humidified state (50 ° C., 100% RH). It can be seen that the internal resistance of the membrane electrode assemblies of Examples 1 to 3 is relatively low, and the electrodes of the membrane electrode assemblies have sufficient conductivity. Further, since the cell voltage of the membrane electrode assemblies of Examples 1 to 3 is high, it can be seen that the gas diffusibility and drainage of the electrode are excellent. In Examples 4 to 6, since the gas diffusion member of the present invention was not included in the gas diffusion layer, the cell voltage was relatively low in a highly humidified state (50 ° C., 100% RH).
  • the gas diffusion member of the present invention is useful as a gas diffusion layer in a membrane electrode assembly for a polymer electrolyte fuel cell.
  • 1 membrane electrode assembly
  • 10 gas diffusion member
  • 12 porous base material
  • 14 conductive material
  • 14a impregnation part
  • 14b base part
  • 14c first semi-impregnation part
  • 14d second Semi-impregnated part
  • 20 anode
  • 22 catalyst layer
  • 24 gas diffusion layer
  • 26 carbon substrate
  • 28 carbon layer
  • 30 cathode
  • 32 catalyst layer
  • 34 gas diffusion layer
  • 36 carbon substrate 40: polymer electrolyte membrane
  • 100 first carrier film
  • 102 second carrier film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Provided are: a gas diffusion member capable of imparting sufficient electrical conductivity to an electrode and improving gas diffusivity and drainage performance in the electrode; and a membrane electrode assembly exhibiting excellent power generation performance even under high humidity conditions. A gas diffusion member 10 includes: a sheet-like porous substrate 12 made of a thermoplastic resin material; and a conductive material 14 at least partly impregnated into the porous substrate 12, the conductive material 14 containing carbon fibers and an ion exchange resin. The membrane electrode assembly for a solid polymer fuel cell is provided with: an anode having a catalyst layer and a gas diffusion layer; a cathode having a catalyst layer and a gas diffusion layer; and a polymer electrolyte membrane disposed between the catalyst layer of the anode and the catalyst layer of the cathode. The gas diffusion layer of any one or both of the anode and the cathode has the gas diffusion member 10.

Description

ガス拡散部材および固体高分子形燃料電池用膜電極接合体Gas diffusion member and membrane electrode assembly for polymer electrolyte fuel cell
 本発明は、ガス拡散部材、およびガス拡散部材を備えた固体高分子形燃料電池用膜電極接合体に関する。 The present invention relates to a gas diffusion member and a membrane electrode assembly for a polymer electrolyte fuel cell including the gas diffusion member.
 固体高分子形燃料電池は、たとえば、2つのセパレータの間に膜電極接合体を挟んでセルを形成し、複数のセルをスタックした構造を有する。膜電極接合体は、触媒層およびガス拡散層を有するアノードおよびカソードと、アノードとカソードとの間に配置された高分子電解質膜とを備える。 The polymer electrolyte fuel cell has a structure in which, for example, a cell is formed by sandwiching a membrane electrode assembly between two separators, and a plurality of cells are stacked. The membrane electrode assembly includes an anode and a cathode having a catalyst layer and a gas diffusion layer, and a polymer electrolyte membrane disposed between the anode and the cathode.
 電極、特にカソードにおける導電性、ガス拡散性、排水性等を改善し、膜電極接合体の発電性能を向上させるために、ガス拡散層として、多孔質のカーボン基材の表面に、炭素材料およびポリマーを含む多孔質のカーボン層を設けたものを用いることがある(特許文献1等)。 In order to improve the electric conductivity, gas diffusibility, drainage, etc. of the electrode, particularly the cathode, and to improve the power generation performance of the membrane electrode assembly, as the gas diffusion layer, the carbon material and the surface of the porous carbon substrate One provided with a porous carbon layer containing a polymer may be used (Patent Document 1, etc.).
国際公開第2007/052650号International Publication No. 2007/052650
 ガス拡散層がカーボン層を有することによって、電極における導電性、ガス拡散性および排水性を向上できるとされている。
 しかし、炭素材料およびポリマーを含む多孔質のカーボン層を有する電極であっても、高加湿状態(たとえば、50℃、100%RH)においては、電極におけるガス拡散性および排水性が不充分となり、膜電極接合体の発電性能が低下することがある。
It is said that the conductivity, gas diffusibility, and drainage of the electrode can be improved by having the carbon layer in the gas diffusion layer.
However, even in an electrode having a porous carbon layer containing a carbon material and a polymer, in a highly humidified state (for example, 50 ° C., 100% RH), gas diffusibility and drainage in the electrode become insufficient, The power generation performance of the membrane electrode assembly may deteriorate.
 本発明は、膜電極接合体の電極に充分な導電性を付与でき、かつ電極におけるガス拡散性および排水性を向上できるガス拡散部材;および、高加湿状態であっても発電性能に優れる膜電極接合体を提供する。 The present invention provides a gas diffusion member capable of imparting sufficient conductivity to an electrode of a membrane electrode assembly and improving gas diffusibility and drainage in the electrode; and a membrane electrode excellent in power generation performance even in a highly humidified state Provide a joined body.
 <1>熱可塑性樹脂材料からなるシート状の多孔質基材と、前記多孔質基材に少なくとも一部が含浸した導電性材料と、を含み、前記導電性材料が、炭素繊維とイオン交換樹脂とを含むことを特徴とするガス拡散部材。
 <2>前記炭素繊維が、気相成長炭素繊維である、前記<1>のガス拡散部材。
 <3>前記炭素繊維の平均繊維径が、1~1000nmであり、かつ前記炭素繊維の平均繊維長が、1~100μmである、前記<1>または<2>のガス拡散部材。
 <4>前記炭素繊維の量が、前記ガス拡散部材の1cmあたり、0.1~10mgである、前記<1>~<3>のいずれかのガス拡散部材。
 <5>前記イオン交換樹脂のイオン交換容量が0.5~2.0ミリ当量/g乾燥樹脂である、前記<1>~<4>のいずれか一項に記載のガス拡散部材。
 <6>前記イオン交換樹脂の含有量の前記炭素繊維の含有量に対する質量比が、0.05~1.5である、前記<1>~<5>のいずれか一項に記載のガス拡散部材。
 <7>前記イオン交換樹脂が、後記する式u1で表される単位を有するポリマーである、前記<1>~<6>のいずれかのガス拡散部材。
 <8>前記イオン交換樹脂が、後記する式u2で表される単位を有するポリマーである、前記<1>~<6>のいずれかのガス拡散部材。
 <9>前記導電性材料が、前記イオン交換樹脂以外のフッ素樹脂をさらに含む、前記<1>~<8>のいずれかのガス拡散部材。
 <10>前記多孔質基材が、不織布である、前記<1>~<9>のいずれかのガス拡散部材。
 <11>前記熱可塑性樹脂材料が、オレフィン系樹脂またはフッ素樹脂からなる、前記<1>~<10>のいずれかのガス拡散部材。
 <12>前記不織布の目付量が1~10g/mである、前記<10>に記載のガス拡散部材。
 <13>前記熱可塑性樹脂材料がオレフィン系樹脂またはフッ素樹脂を含む、前記<1>~<12>のいずれか一項に記載のガス拡散部材。
 <14>前記ガス拡散部材の厚さが、10~300μmである、前記<1>~<13>のいずれかのガス拡散部材。
 <15>触媒層およびガス拡散層を有するアノードと、触媒層およびガス拡散層を有するカソードと、前記アノードの触媒層と前記カソードの触媒層との間に配置された高分子電解質膜とを備え、前記アノードおよび前記カソードのいずれか一方または両方のガス拡散層が、前記<1>~<14>のいずれかのガス拡散部材を有する、固体高分子形燃料電池用膜電極接合体。
<1> a sheet-like porous base material made of a thermoplastic resin material, and a conductive material at least partially impregnated in the porous base material, wherein the conductive material is a carbon fiber and an ion exchange resin. The gas diffusion member characterized by including.
<2> The gas diffusion member according to <1>, wherein the carbon fiber is a vapor growth carbon fiber.
<3> The gas diffusion member according to <1> or <2>, wherein an average fiber diameter of the carbon fibers is 1 to 1000 nm, and an average fiber length of the carbon fibers is 1 to 100 μm.
<4> The gas diffusion member according to any one of <1> to <3>, wherein the amount of the carbon fiber is 0.1 to 10 mg per 1 cm 2 of the gas diffusion member.
<5> The gas diffusion member according to any one of <1> to <4>, wherein the ion exchange capacity of the ion exchange resin is 0.5 to 2.0 meq / g dry resin.
<6> The gas diffusion according to any one of <1> to <5>, wherein the mass ratio of the content of the ion exchange resin to the content of the carbon fiber is 0.05 to 1.5. Element.
<7> The gas diffusion member according to any one of <1> to <6>, wherein the ion exchange resin is a polymer having a unit represented by the formula u1 described later.
<8> The gas diffusion member according to any one of <1> to <6>, wherein the ion exchange resin is a polymer having a unit represented by the formula u2 described later.
<9> The gas diffusion member according to any one of <1> to <8>, wherein the conductive material further includes a fluororesin other than the ion exchange resin.
<10> The gas diffusion member according to any one of <1> to <9>, wherein the porous substrate is a nonwoven fabric.
<11> The gas diffusion member according to any one of <1> to <10>, wherein the thermoplastic resin material comprises an olefin resin or a fluororesin.
<12> The gas diffusion member according to <10>, wherein the nonwoven fabric has a basis weight of 1 to 10 g / m 2 .
<13> The gas diffusion member according to any one of <1> to <12>, wherein the thermoplastic resin material includes an olefin resin or a fluororesin.
<14> The gas diffusion member according to any one of <1> to <13>, wherein the thickness of the gas diffusion member is 10 to 300 μm.
<15> An anode having a catalyst layer and a gas diffusion layer, a cathode having a catalyst layer and a gas diffusion layer, and a polymer electrolyte membrane disposed between the catalyst layer of the anode and the catalyst layer of the cathode A membrane electrode assembly for a polymer electrolyte fuel cell, wherein the gas diffusion layer of any one or both of the anode and the cathode has the gas diffusion member of any one of <1> to <14>.
 本発明のガス拡散部材は、膜電極接合体の電極に充分な導電性を付与でき、かつ電極におけるガス拡散性および排水性を向上できる。
 本発明の固体高分子形燃料電池用膜電極接合体は、高加湿状態であっても発電性能に優れる。
The gas diffusion member of the present invention can impart sufficient conductivity to the electrode of the membrane electrode assembly, and can improve the gas diffusibility and drainage of the electrode.
The membrane / electrode assembly for a polymer electrolyte fuel cell of the present invention is excellent in power generation performance even in a highly humidified state.
本発明のガス拡散部材の一例の模式断面図である。It is a schematic cross section of an example of the gas diffusion member of the present invention. 本発明のガス拡散部材の他の例の模式断面図である。It is a schematic cross section of the other example of the gas diffusion member of this invention. 本発明のガス拡散部材の製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of the gas diffusion member of this invention. 本発明のガス拡散部材の製造方法の他の例を示す概略図である。It is the schematic which shows the other example of the manufacturing method of the gas diffusion member of this invention. 本発明の固体高分子形燃料電池用膜電極接合体の一例を示す模式断面図である。It is a schematic cross section which shows an example of the membrane electrode assembly for polymer electrolyte fuel cells of this invention. 本発明の固体高分子形燃料電池用膜電極接合体の他の例を示す模式断面図である。It is a schematic cross section which shows the other example of the membrane electrode assembly for polymer electrolyte fuel cells of this invention. 本発明の固体高分子形燃料電池用膜電極接合体の他の例を示す模式断面図である。It is a schematic cross section which shows the other example of the membrane electrode assembly for polymer electrolyte fuel cells of this invention.
 本明細書における用語の意味は以下の通りである。
 ポリマーにおける「単位」とは、モノマーが重合することによって形成された該モノマーに由来する重合単位、および、ポリマーを処理することによって該重合単位の一部が別の構造に変換された重合単位を意味する。
 「イオン交換基」とは、該基に含まれる陽イオンの一部が、他の陽イオンに交換しうる基を意味し、スルホン酸基、スルホンイミド基、スルホンメチド基等が挙げられる。
 「スルホン酸基」は、-SO または-SO (ただし、Mは、一価の金属イオン、または1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンである。)を意味する。
 「~」で表される数値範囲は、「~」の前後の数値を下限値および上限値とする数値範囲を示す。
 本明細書においては、式u1で表される単位を、「単位u1」と記す。他の式で表される単位も同様に記す。また、式m1で表されるモノマーを、「モノマーm1」と記す。他の式で表されるモノマーも同様に記す。
The meanings of terms in the present specification are as follows.
The “unit” in the polymer refers to a polymer unit derived from the monomer formed by polymerizing the monomer, and a polymer unit in which a part of the polymer unit is converted into another structure by treating the polymer. means.
The “ion exchange group” means a group in which a part of the cation contained in the group can exchange with another cation, and examples thereof include a sulfonic acid group, a sulfonimide group, and a sulfonemethide group.
"Sulfonic acid group" are -SO 3 - H + or -SO 3 - M + (However, M + is a monovalent metal ion or one or more hydrogen atoms may be substituted with a hydrocarbon group It is an ammonium ion.
The numerical range represented by “to” indicates a numerical range in which the numerical values before and after “to” are the lower limit value and the upper limit value.
In this specification, the unit represented by the formula u1 is referred to as “unit u1”. Units represented by other formulas are also described in the same manner. The monomer represented by the formula m1 is referred to as “monomer m1”. The same applies to monomers represented by other formulas.
 本発明のガス拡散部材は、シート状の多孔質基材に導電性材料が含浸したシート状の部材である。シート状のガス拡散部材は、所定の大きさに切断された枚葉のものであってもよく、長尺のウェブ状のもの(連続体)であってもよい。 The gas diffusion member of the present invention is a sheet-like member obtained by impregnating a sheet-like porous substrate with a conductive material. The sheet-like gas diffusion member may be a sheet cut into a predetermined size, or may be a long web-like member (continuous body).
 ガス拡散部材の厚さは、10~300μmが好ましく、30~200μmがより好ましく、50~150μmがさらに好ましい。該厚さが前記範囲の下限値以上であれば、機械的特性に優れるガス拡散部材が得られる。該厚さが前記範囲の上限値以下であれば、導電性、ガス拡散性および排水性に優れるガス拡散部材が得られる。 The thickness of the gas diffusion member is preferably 10 to 300 μm, more preferably 30 to 200 μm, and even more preferably 50 to 150 μm. When the thickness is not less than the lower limit of the above range, a gas diffusion member having excellent mechanical properties can be obtained. If the thickness is not more than the upper limit of the above range, a gas diffusion member having excellent conductivity, gas diffusibility and drainage can be obtained.
 ガス拡散部材の密度は、0.1~0.6g/cmが好ましく、0.2~0.5g/cmがより好ましい。該密度が前記範囲の下限値以上であれば、機械的特性に優れるガス拡散部材が得られる。該密度が前記範囲の上限値以下であれば、ガス拡散性および排水性に優れるガス拡散部材が得られる。 The density of the gas diffusion member is preferably 0.1 to 0.6 g / cm 3 , more preferably 0.2 to 0.5 g / cm 3 . When the density is not less than the lower limit of the above range, a gas diffusion member having excellent mechanical properties can be obtained. If this density is below the upper limit of the said range, the gas diffusion member excellent in gas diffusibility and drainage will be obtained.
 図1は、本発明のガス拡散部材の一例を示す概略断面図である。
 ガス拡散部材10は、多孔質基材12と、多孔質基材12に一部が含浸し、残部が多孔質基材12の第1の表面を覆う導電性材料14とを含む。
 導電性材料14は、多孔質基材12に含浸した含浸部14aと、多孔質基材12の第1の表面を覆う下地部14bとを有する。
FIG. 1 is a schematic cross-sectional view showing an example of a gas diffusion member of the present invention.
The gas diffusion member 10 includes a porous substrate 12 and a conductive material 14 that is partially impregnated into the porous substrate 12 and the remaining part covers the first surface of the porous substrate 12.
The conductive material 14 includes an impregnation portion 14 a impregnated in the porous substrate 12 and a base portion 14 b that covers the first surface of the porous substrate 12.
 図2は、本発明のガス拡散部材の他の例を示す模式断面図である。ガス拡散部材10は、多孔質基材12と、多孔質基材12に全部が含浸した導電性材料14とを含む。
 多孔質基材は、熱可塑性樹脂材料をからなるシート状の基材である。シート状の多孔質基材は、所定の大きさに切断された枚葉のものであってもよく、長尺のウェブ状のもの(連続体)であってもよい。
 多孔質基材としては、たとえば、不織布、織布、多孔体(スポンジ等)が挙げられる。多孔質基材としては、ガス拡散性および排水性に優れるガス拡散部材が得られる点から、不織布が好ましい。
FIG. 2 is a schematic cross-sectional view showing another example of the gas diffusion member of the present invention. The gas diffusion member 10 includes a porous substrate 12 and a conductive material 14 that is entirely impregnated in the porous substrate 12.
The porous base material is a sheet-like base material made of a thermoplastic resin material. The sheet-like porous substrate may be a sheet cut into a predetermined size, or may be a long web-like (continuous body).
Examples of the porous substrate include a nonwoven fabric, a woven fabric, and a porous body (sponge etc.). As the porous substrate, a nonwoven fabric is preferable because a gas diffusion member having excellent gas diffusibility and drainage can be obtained.
 不織布の目付量は、1~10g/mが好ましく、3~7g/mがより好ましい。該目付量が前記範囲の下限値以上であれば、機械的特性に優れるガス拡散部材が得られる。該目付量が前記範囲の上限値以下であれば、多孔質基材の細孔容量が充分に大きくなるため、導電性、ガス拡散性および排水性に優れるガス拡散部材が得られる。 Basis weight of the nonwoven fabric is preferably 1 ~ 10g / m 2, and more preferably 3 ~ 7g / m 2. When the basis weight is not less than the lower limit of the above range, a gas diffusion member having excellent mechanical properties can be obtained. When the basis weight is not more than the upper limit of the above range, the pore volume of the porous substrate becomes sufficiently large, so that a gas diffusion member excellent in conductivity, gas diffusibility and drainage can be obtained.
 熱可塑性樹脂材料は、熱可塑性樹脂を含む。熱可塑性樹脂材料は、必要に応じて他の成分(各種充填材、各種添加剤等)を含んでいてもよい。
 熱可塑性樹脂としては、排水性に優れるガス拡散部材が得られる点から、オレフィン系樹脂またはフッ素樹脂が好ましく、安価で、かつ多孔質基材に加工しやすい点から、オレフィン系樹脂がより好ましい。
 上記オレフィン系樹脂としては、たとえば、エチレン系樹脂(ポリエチレン、エチレン-α-オレフィン共重合体等)、プロピレン系樹脂(ポリプロピレン、プロピレン-α-オレフィン共重合体等)が挙げられる。オレフィン系樹脂としては、加工性、化学的安定性の点から、ポリプロピレンが好ましい。
The thermoplastic resin material includes a thermoplastic resin. The thermoplastic resin material may contain other components (such as various fillers and various additives) as necessary.
As the thermoplastic resin, an olefin resin or a fluororesin is preferable because a gas diffusion member having excellent drainage properties is obtained, and an olefin resin is more preferable because it is inexpensive and easily processed into a porous substrate.
Examples of the olefin resin include ethylene resins (polyethylene, ethylene-α-olefin copolymers, etc.) and propylene resins (polypropylene, propylene-α-olefin copolymers, etc.). As the olefin resin, polypropylene is preferable from the viewpoint of processability and chemical stability.
 上記フッ素樹脂としては、多孔質基材に加工しやすい点から、溶融成形可能なフッ素樹脂が好ましい。溶融成形可能なフッ素樹脂としては、たとえば、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体(以下、PFAとも記す。)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(以下、FEPとも記す。)、エチレン-テトラフルオロエチレン共重合体(以下、ETFEとも記す。)、ポリフッ化ビニリデン(以下、PVDFとも記す。)、ポリクロロトリフルオロエチレン(以下、PCTFEとも記す。)、エチレン-クロロトリフルオロエチレン共重合体(以下、ECTFEとも記す。)が挙げられる。 As the fluororesin, a fluororesin that can be melt-molded is preferable because it can be easily processed into a porous substrate. Examples of the melt-moldable fluororesin include, for example, a tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (hereinafter also referred to as PFA) and a tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter also referred to as FEP). , Ethylene-tetrafluoroethylene copolymer (hereinafter also referred to as ETFE), polyvinylidene fluoride (hereinafter also referred to as PVDF), polychlorotrifluoroethylene (hereinafter also referred to as PCTFE), ethylene-chlorotrifluoroethylene And a copolymer (hereinafter also referred to as ECTFE).
 導電性材料は、導電性、ガス拡散性および排水性に優れるガス拡散部材が得られる点から、多孔質基材の全体に含浸していることが好ましい。
 導電性材料は、たとえば図1に示すように、一部が多孔質基材に含浸し、残部が多孔質基材の第1の表面および第2の表面のいずれか一方または両方を覆っていてもよく;図2に示すように、全量が多孔質基材に含浸していてもよい。
The conductive material is preferably impregnated in the entire porous substrate from the viewpoint that a gas diffusion member having excellent conductivity, gas diffusibility and drainage can be obtained.
For example, as shown in FIG. 1, a part of the conductive material is impregnated into the porous substrate, and the remaining part covers either one or both of the first surface and the second surface of the porous substrate. As shown in FIG. 2, the entire amount may be impregnated in the porous substrate.
 導電性材料は、炭素繊維とイオン交換樹脂とを含む。導電性材料は、排水性に優れるガス拡散部材が得られる点から、イオン交換樹脂以外のフッ素樹脂をさらに含むことが好ましい。導電性材料は、必要に応じて他の成分(各種充填材、各種添加剤等)を含んでいてもよい。 The conductive material includes carbon fiber and ion exchange resin. The conductive material preferably further contains a fluororesin other than the ion exchange resin from the viewpoint that a gas diffusion member having excellent drainage properties can be obtained. The conductive material may contain other components (such as various fillers and various additives) as necessary.
 炭素繊維としては、たとえば、気相成長炭素繊維、カーボンナノチューブ(シングルウォール、ダブルウォール、マルチウォール、カップ積層型等)、PAN系炭素繊維、ピッチ系炭素繊維が挙げられる。炭素繊維の形態としては、たとえば、チョップドファイバー、ミルドファイバーが挙げられる。
 炭素繊維としては、気相成長炭素繊維が好ましく、良好な分散性が得られるため、直線状の気相成長炭素繊維を含むものが好ましい。
 炭素繊維としては、市販のものを用いることができる。市販の炭素繊維としては、例えば、VGCF-H(昭和電工社製品名)、HCNTsシリーズ(Shenzhen SUSN Sinotech New Materials Co.,Ltd製品名)が挙げられる。
Examples of the carbon fiber include vapor grown carbon fiber, carbon nanotube (single wall, double wall, multi-wall, cup laminated type, etc.), PAN-based carbon fiber, and pitch-based carbon fiber. Examples of the form of carbon fiber include chopped fiber and milled fiber.
As the carbon fiber, a vapor-grown carbon fiber is preferable, and since good dispersibility can be obtained, a carbon fiber containing a linear vapor-grown carbon fiber is preferable.
Commercially available carbon fibers can be used. Examples of commercially available carbon fibers include VGCF-H (product name of Showa Denko KK) and HCNTs series (product name of Shenzhen SUSN Sinotech New Materials Co., Ltd.).
 炭素繊維の平均繊維径は、1~1000nmが好ましく、20~500nmがより好ましく、50~250nmがさらに好ましい。該平均繊維径が前記範囲の下限値以上であれば、導電性材料自体に細孔が充分に形成されるため、ガス拡散性および排水性に優れるガス拡散部材が得られる。該平均繊維径が前記範囲の上限値以下であれば、多孔質基材への導電性材料の含浸性に優れる。また、後述する導電性材料ペーストを調製する際、分散媒に炭素繊維を良好に分散できる。 The average fiber diameter of the carbon fibers is preferably 1 to 1000 nm, more preferably 20 to 500 nm, and further preferably 50 to 250 nm. If the average fiber diameter is not less than the lower limit of the above range, the conductive material itself is sufficiently formed with pores, so that a gas diffusion member excellent in gas diffusibility and drainage can be obtained. When the average fiber diameter is not more than the upper limit of the above range, the impregnation property of the conductive material into the porous substrate is excellent. Moreover, when preparing the electroconductive material paste mentioned later, carbon fiber can be favorably disperse | distributed to a dispersion medium.
 炭素繊維の平均繊維長は、1~100μmが好ましく、5~40μmがより好ましい。該平均繊維長が前記範囲の下限値以上であれば、導電性材料自体に細孔が充分に形成されるため、ガス拡散性および排水性に優れるガス拡散部材が得られる。該平均繊維長が前記範囲の上限値以下であれば、多孔質基材への導電性材料の含浸性に優れる。また、後述する導電性材料ペーストを調製する際、液状媒体に炭素繊維を良好に分散できる。 The average fiber length of carbon fibers is preferably 1 to 100 μm, more preferably 5 to 40 μm. When the average fiber length is equal to or greater than the lower limit of the above range, the conductive material itself is sufficiently formed with pores, so that a gas diffusion member excellent in gas diffusibility and drainage can be obtained. When the average fiber length is not more than the upper limit of the above range, the impregnation property of the conductive material into the porous substrate is excellent. Moreover, when preparing the electroconductive material paste mentioned later, carbon fiber can be favorably disperse | distributed to a liquid medium.
 ガス拡散部材における炭素繊維の含有量は、ガス拡散部材の1cmあたり、0.1~10mgが好ましく、0.5~6mgがより好ましく、1~4mgがさらに好ましい。該含有量が前記範囲の下限値以上であれば、導電性材料自体に細孔が充分に形成されるため、ガス拡散性および排水性に優れるガス拡散部材が得られる。該含有量が前記範囲の上限値以下であれば、多孔質基材への導電性材料の含浸性に優れる。また、後述する導電性材料を調製する際、分散媒に炭素繊維を良好に分散できる。 The carbon fiber content in the gas diffusion member is preferably 0.1 to 10 mg, more preferably 0.5 to 6 mg, and further preferably 1 to 4 mg per 1 cm 2 of the gas diffusion member. If the content is not less than the lower limit of the above range, the conductive material itself is sufficiently formed with pores, so that a gas diffusion member having excellent gas diffusibility and drainage can be obtained. If this content is below the upper limit of the said range, it is excellent in the impregnation property of the electroconductive material to a porous base material. Moreover, when preparing the electroconductive material mentioned later, carbon fiber can be favorably disperse | distributed to a dispersion medium.
 イオン交換樹脂としては、耐久性の点から、含フッ素イオン交換樹脂が好ましく、イオン交換基を有するペルフルオロカーボンポリマー(エーテル性酸素原子を含んでいてもよい。)がより好ましい。該ペルフルオロカーボンポリマーとしては、後述するポリマーH、後述するポリマーQ、国際公開第2011/013577号等に記載された、イオン交換基および5員環を有するペルフルオロモノマーに由来する単位を有するポリマー等の公知のポリマーが挙げられ、入手のしやすさや製造のしやすさの点から、ポリマーHまたはポリマーQが好ましく、製造の容易さの点から、ポリマーHがより好ましい。 The ion exchange resin is preferably a fluorine-containing ion exchange resin from the viewpoint of durability, and more preferably a perfluorocarbon polymer having an ion exchange group (which may contain an etheric oxygen atom). Examples of the perfluorocarbon polymer include a polymer H described later, a polymer Q described later, and a polymer having a unit derived from a perfluoromonomer having an ion exchange group and a 5-membered ring described in International Publication No. 2011/013577. Known polymers may be mentioned, and polymer H or polymer Q is preferable from the viewpoint of availability and manufacturing, and polymer H is more preferable from the viewpoint of ease of manufacturing.
 ポリマーHは、単位u1を有するポリマーである。
Figure JPOXMLDOC01-appb-C000003
The polymer H is a polymer having the unit u1.
Figure JPOXMLDOC01-appb-C000003
 ただし、Qは、単結合、またはエーテル性の酸素原子を有していてもよいペルフルオロアルキレン基であり、Rf1は、エーテル性の酸素原子を有していてもよいペルフルオロアルキル基であり、Xは、酸素原子、窒素原子または炭素原子であり、aは、Xが酸素原子の場合0であり、Xが窒素原子の場合1であり、Xが炭素原子の場合2であり、Yは、フッ素原子または1価のペルフルオロ有機基であり、sは、0または1である。単結合は、CFYの炭素原子と、SOのイオウ原子とが直接結合していることを意味する。有機基は、炭素原子を1以上含む基を意味する。 However, Q 1 is a single bond or a perfluoroalkylene group which may have an etheric oxygen atom, R f1 is a perfluoroalkyl group which may have an etheric oxygen atom, X 1 is an oxygen atom, a nitrogen atom or a carbon atom, a is 0 when X 1 is an oxygen atom, 1 when X 1 is a nitrogen atom, and 2 when X 1 is a carbon atom , Y 1 is a fluorine atom or a monovalent perfluoro organic group, and s is 0 or 1. A single bond means that the carbon atom of CFY 1 and the sulfur atom of SO 2 are directly bonded. An organic group means a group containing one or more carbon atoms.
 Qのペルフルオロアルキレン基がエーテル性の酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキレン基の炭素原子間に存在していてもよく、ペルフルオロアルキレン基のCFY基と隣接する炭素原子との間に存在していてもよい。ペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよい。
 ペルフルオロアルキレン基の炭素数は、1~6が好ましく、1~4がより好ましい。
When the perfluoroalkylene group of Q 1 has an etheric oxygen atom, the oxygen atom may be one or may be two or more. Further, the oxygen atom may exist between the carbon atoms of the perfluoroalkylene group, or may exist between the CFY 1 group of the perfluoroalkylene group and the adjacent carbon atom. The perfluoroalkylene group may be linear or branched.
The perfluoroalkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
 Rf1のペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。ペルフルオロアルキル基の炭素数は、1~6が好ましく、1~4がより好ましい。ペルフルオロアルキル基としては、ペルフルオロメチル基、ペルフルオロエチル基等が好ましい。 The perfluoroalkyl group for R f1 may be linear or branched, and is preferably linear. The perfluoroalkyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms. As the perfluoroalkyl group, a perfluoromethyl group, a perfluoroethyl group and the like are preferable.
 -(SO(SOf1基は、イオン交換基であり、好ましくは、スルホン酸基(-SO 基)、スルホンイミド基(-SON(SOf1基)、またはスルホンメチド基(-SOC(SOf1基)が挙げられる。
 Yとしては、フッ素原子または炭素数1~6のペルフルオロアルキル基が好ましく、フッ素原子またはトリフルオロメチル基が特に好ましい。
- (SO 2 X 1 (SO 2 R f1) a) - H + group is an ion-exchange group, preferably a sulfonic acid group (-SO 3 - H + group), a sulfonimide group (-SO 2 N (SO 2 R f1 ) H + group) or a sulfonemethide group (—SO 2 C (SO 2 R f1 ) 2 ) H + group).
Y 1 is preferably a fluorine atom or a C 1-6 perfluoroalkyl group, particularly preferably a fluorine atom or a trifluoromethyl group.
 単位u1としては、単位u1-1が好ましく、ポリマーHの製造が容易であり、工業的実施が容易である点から、単位u1-11、単位u1-12、単位u1-13または単位u1-14がより好ましい。 The unit u1 is preferably the unit u1-1. From the viewpoint of easy production of the polymer H and easy industrial implementation, the unit u1-11, the unit u1-12, the unit u1-13 or the unit u1-14 Is more preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ただし、式(u1-1)中、Zは、フッ素原子またはトリフルオロメチル基であり、mは、0~3の整数であり、nは、1~12の整数であり、pは、0または1であり、かつ、m+p>0である。 In the formula (u1-1), Z is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 1 to 12, and p is 0 or 1 and m + p> 0.
 ポリマーHは、さらに、単位u1を与えるモノマー以外の、他のモノマーに由来する単位(以下、「他の単位1」と記す。)を有していてもよい。他の単位1の割合は、ポリマーHのイオン交換容量が後述の好ましい範囲となるように、適宜調整すればよい。
 他の単位1としては、機械的特性および化学的耐久性の点から、ペルフルオロモノマーに由来する単位が好ましく、テトラフルオロエチレン(以下、TFEとも記す。)に由来する単位がより好ましい。
The polymer H may further have units derived from other monomers (hereinafter referred to as “other units 1”) other than the monomer that provides the unit u1. What is necessary is just to adjust the ratio of the other unit 1 suitably so that the ion exchange capacity of the polymer H may become the below-mentioned preferable range.
The other unit 1 is preferably a unit derived from a perfluoromonomer from the viewpoint of mechanical properties and chemical durability, and more preferably a unit derived from tetrafluoroethylene (hereinafter also referred to as TFE).
 ポリマーHは、モノマーm1および必要に応じてモノマーm1以外の他のモノマーを重合して前駆体ポリマーを得た後、前駆体ポリマー中の-SOF基をスルホン酸基に変換することによって製造できる。-SOF基のスルホン酸基への変換は、加水分解および酸型化処理により行われる。
 CF=CF-(CFOCF-CFY-Q-SOF   式m1。
Polymer H is produced by polymerizing monomer m1 and, if necessary, another monomer other than monomer m1 to obtain a precursor polymer, and then converting —SO 2 F groups in the precursor polymer into sulfonic acid groups. it can. The conversion of —SO 2 F group to sulfonic acid group is performed by hydrolysis and acidification treatment.
CF 2 ═CF— (CF 2 ) s OCF 2 —CFY 1 —Q 1 —SO 2 F Formula m1.
 ポリマーQは、単位u2を有するポリマーである。なお、ポリマーQとしては、ポリマーHに属するものは除かれる。 Polymer Q is a polymer having unit u2. As the polymer Q, those belonging to the polymer H are excluded.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 ただし、Q21は、エーテル性の酸素原子を有していてもよいペルフルオロアルキレン基であり、Q22は、単結合、またはエーテル性の酸素原子を有していてもよいペルフルオロアルキレン基であり、Rf2は、エーテル性の酸素原子を有していてもよいペルフルオロアルキル基であり、Xは、酸素原子、窒素原子または炭素原子であり、bは、Xが酸素原子の場合0であり、Xが窒素原子の場合1であり、Xが炭素原子の場合2であり、Yは、フッ素原子または1価のペルフルオロ有機基であり、tは、0または1である。単結合は、CYの炭素原子と、SOのイオウ原子とが直接結合していることを意味する。有機基は、炭素原子を1以上含む基を意味する。 However, Q 21 is an etheric good perfluoroalkylene group which may have an oxygen atom, Q 22 is a single bond, or which may have an etheric oxygen atom perfluoroalkylene group, R f2 is a perfluoroalkyl group which may have an etheric oxygen atom, X 2 is an oxygen atom, a nitrogen atom or a carbon atom, and b is 0 when X 2 is an oxygen atom. , X 2 is 1 when X 2 is a nitrogen atom, 2 when X 2 is a carbon atom, Y 2 is a fluorine atom or a monovalent perfluoro organic group, and t is 0 or 1. The single bond means that the carbon atom of CY 2 and the sulfur atom of SO 2 are directly bonded. An organic group means a group containing one or more carbon atoms.
 Q21、Q22のペルフルオロアルキレン基がエーテル性の酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキレン基の炭素原子間に存在していてもよく、ペルフルオロアルキレン基のCY基と隣接する炭素原子との間に存在していてもよい。
 ペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
 ペルフルオロアルキレン基の炭素数は、1~6が好ましく、1~4がより好ましい。炭素数が6以下であれば、原料の含フッ素モノマーの沸点が低くなり、蒸留精製が容易となる。
When the perfluoroalkylene group of Q 21 and Q 22 has an etheric oxygen atom, the oxygen atom may be one or two or more. Further, the oxygen atom may exist between the carbon atoms of the perfluoroalkylene group, or may exist between the CY 2 group of the perfluoroalkylene group and the adjacent carbon atom.
The perfluoroalkylene group may be linear or branched, and is preferably linear.
The perfluoroalkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. If the number of carbon atoms is 6 or less, the boiling point of the raw fluorine-containing monomer is lowered, and distillation purification becomes easy.
 Q22は、エーテル性の酸素原子を有していてもよい炭素数1~6のペルフルオロアルキレン基であることが好ましい。Q22がエーテル性の酸素原子を有していてもよい炭素数1~6のペルフルオロアルキレン基であれば、Q22が単結合である場合に比べ、長期にわたって固体高分子形燃料電池を運転した際に、発電性能の安定性に優れる。
 Q21、Q22の少なくとも一方は、エーテル性の酸素原子を有する炭素数1~6のペルフルオロアルキレン基であることが好ましい。エーテル性の酸素原子を有する炭素数1~6のペルフルオロアルキレン基を有する含フッ素モノマーは、フッ素ガスによるフッ素化反応を経ずに合成できるため、収率が良好で、製造が容易である。
Q 22 is preferably a C 1-6 perfluoroalkylene group which may have an etheric oxygen atom. When Q 22 is a perfluoroalkylene group having 1 to 6 carbon atoms which may have an etheric oxygen atom, the polymer electrolyte fuel cell was operated over a longer period than when Q 22 is a single bond. In particular, the stability of the power generation performance is excellent.
At least one of Q 21 and Q 22 is preferably a C 1-6 perfluoroalkylene group having an etheric oxygen atom. Since the fluorine-containing monomer having a C 1-6 perfluoroalkylene group having an etheric oxygen atom can be synthesized without undergoing a fluorination reaction with a fluorine gas, the yield is good and the production is easy.
 Rf2のペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。ペルフルオロアルキル基の炭素数は、1~6が好ましく、1~4がより好ましい。ペルフルオロアルキル基としては、ペルフルオロメチル基、ペルフルオロエチル基等が好ましい。
 単位u2が2つ以上のRf2を有する場合、Rf2は、それぞれ同じ基であってもよく、それぞれ異なる基であってもよい。
The perfluoroalkyl group for R f2 may be linear or branched, and is preferably linear. The perfluoroalkyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms. As the perfluoroalkyl group, a perfluoromethyl group, a perfluoroethyl group and the like are preferable.
When the unit u2 has two or more R f2 s , the R f2s may be the same group or different groups.
 -(SO(SOf2基は、イオン交換基である。
 -(SO(SOf2基としては、スルホン酸基(-SO 基)、スルホンイミド基(-SON(SOf2基)、またはスルホンメチド基(-SOC(SOf2基)が挙げられる。
 Yとしては、フッ素原子、またはエーテル性の酸素原子を有していてもよい炭素数1~6の直鎖のペルフルオロアルキル基であることが好ましい。
The — (SO 2 X 2 (SO 2 R f2 ) b ) H + group is an ion exchange group.
- (SO 2 X 2 (SO 2 R f2) b) - as the H + group, a sulfonic acid group (-SO 3 - H + group), a sulfonimide group (-SO 2 N (SO 2 R f2) - H + Group) or a sulfonemethide group (—SO 2 C (SO 2 R f2 ) 2 ) H + group).
Y 2 is preferably a fluorine atom or a linear perfluoroalkyl group having 1 to 6 carbon atoms which may have an etheric oxygen atom.
 単位u2としては、単位u2-1が好ましく、ポリマーQの製造が容易であり、工業的実施が容易である点から、単位u2-11、単位u2-12または単位u2-13がより好ましい。 The unit u2 is preferably the unit u2-1, more preferably the unit u2-11, the unit u2-12 or the unit u2-13 from the viewpoint of easy production of the polymer Q and easy industrial implementation.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ただし、RF21は、単結合、またはエーテル性の酸素原子を有していてもよい炭素数1~6の直鎖状のペルフルオロアルキレン基であり、RF22は、炭素数1~6の直鎖状のペルフルオロアルキレン基である。 R F21 is a linear perfluoroalkylene group having 1 to 6 carbon atoms which may have a single bond or an etheric oxygen atom, and R F22 is a linear chain having 1 to 6 carbon atoms. Perfluoroalkylene group.
 ポリマーQは、さらに単位u2以外の他の単位(以下、他の単位2という。)を有していてもよい。他の単位2の割合は、ポリマーQのイオン交換容量が後述の好ましい範囲となるように、適宜調整すればよい。なお、前記他の単位1と他の単位2は同じ種類のモノマーに由来する単位を含んでいてもよい。
 他の単位2としては、機械的特性および化学的耐久性の点から、ペルフルオロモノマーに由来する単位が好ましく、TFEに由来する単位がより好ましい。
 ポリマーQは、たとえば、国際公開第2007/013533号等に記載の方法によって製造できる。
The polymer Q may further have units other than the unit u2 (hereinafter referred to as other units 2). What is necessary is just to adjust the ratio of the other unit 2 suitably so that the ion exchange capacity of the polymer Q may become the below-mentioned preferable range. The other unit 1 and the other unit 2 may include units derived from the same type of monomer.
The other unit 2 is preferably a unit derived from a perfluoromonomer, more preferably a unit derived from TFE, from the viewpoint of mechanical properties and chemical durability.
The polymer Q can be produced by, for example, a method described in International Publication No. 2007/013533.
 導電性材料におけるイオン交換樹脂のイオン交換容量は、導電性およびガス透過性に優れるガス拡散部材が得られる点から、0.5~2.0ミリ当量/g乾燥樹脂が好ましく、0.8~1.5ミリ当量/g乾燥樹脂が特に好ましい。
 導電性材料におけるイオン交換樹脂の含有量Fの炭素繊維の含有量Cに対する比(F/C)は、0.05~1.5が好ましく、0.05~1.2がより好ましく、0.1~0.7がさらに好ましい。F/Cが前記範囲の下限値以上であれば、炭素繊維が多くなりすぎず、導電性材料が脆くなりにくい。F/Cが前記範囲の上限値以下であれば、イオン交換樹脂が多くなりすぎず、導電性材料自体に細孔が充分に形成されるため、ガス透過性および排水性に優れるガス拡散部材が得られる。
The ion exchange capacity of the ion exchange resin in the conductive material is preferably 0.5 to 2.0 meq / g dry resin from the viewpoint of obtaining a gas diffusion member having excellent conductivity and gas permeability. A 1.5 meq / g dry resin is particularly preferred.
The ratio (F / C) of the ion exchange resin content F to the carbon fiber content C (F / C) in the conductive material is preferably 0.05 to 1.5, more preferably 0.05 to 1.2, and 1 to 0.7 is more preferable. If F / C is not less than the lower limit of the above range, the carbon fiber will not increase too much and the conductive material will not easily become brittle. If F / C is less than or equal to the upper limit of the above range, the amount of ion exchange resin does not increase too much, and pores are sufficiently formed in the conductive material itself. Therefore, a gas diffusion member having excellent gas permeability and drainage properties is obtained. can get.
 導電性材料に含まれるイオン交換樹脂以外のフッ素樹脂としては、たとえば、ポリテトラフルオロエチレン(以下、PTFEとも記す。)、PVDF、ポリフッ化ビニル(PVF)、PCTFE、PFA、FEP、ETFE、ECTFEが挙げられる。排水性に優れるガス拡散部材が得られる点から、PTFEが好ましい。 Examples of the fluororesin other than the ion exchange resin contained in the conductive material include polytetrafluoroethylene (hereinafter also referred to as PTFE), PVDF, polyvinyl fluoride (PVF), PCTFE, PFA, FEP, ETFE, and ECTFE. Can be mentioned. PTFE is preferable because a gas diffusion member having excellent drainage can be obtained.
 導電性材料におけるフッ素樹脂の含有量Pの炭素繊維の含有量Cに対する比(P/C)は、0.05~0.5が好ましく、0.1~0.4がより好ましい。P/Cが前記範囲の下限値以上であれば、炭素繊維が多くなりすぎず、導電性材料が脆くなりにくい。P/Cが前記範囲の上限値以下であれば、フッ素樹脂が多くなりすぎず、導電性材料が脆くなりにくい。また、導電性に優れるガス拡散部材が得られる。 The ratio (P / C) of the fluororesin content P to the carbon fiber content C in the conductive material is preferably 0.05 to 0.5, more preferably 0.1 to 0.4. If P / C is not less than the lower limit of the above range, the carbon fiber will not increase too much and the conductive material will not easily become brittle. If P / C is less than or equal to the upper limit of the above range, the fluororesin will not increase too much and the conductive material will not easily become brittle. Moreover, the gas diffusion member excellent in electroconductivity is obtained.
 (ガス拡散部材の製造方法)
 ガス拡散部材は、たとえば、下記の方法によって製造される。
 図3に示すように、導電性材料ペーストを第1のキャリアフィルム100の表面に塗布し、乾燥させて下地部14bを形成する。
 次いで、下地部14bの上に多孔質基材12を載置する。次いで、導電性材料ペーストを多孔質基材12の表面に塗布し、多孔質基材12の全体に含浸させ、乾燥させて含浸部14aを形成することによって、多孔質基材12に導電性材料14の一部が含浸したガス拡散部材10を得る。次いで、ガス拡散部材10から第1のキャリアフィルム100を剥離する方法。
(Method for producing gas diffusion member)
A gas diffusion member is manufactured by the following method, for example.
As shown in FIG. 3, a conductive material paste is applied to the surface of the first carrier film 100 and dried to form the base portion 14b.
Next, the porous substrate 12 is placed on the base portion 14b. Next, a conductive material paste is applied to the surface of the porous substrate 12, impregnated on the entire porous substrate 12, and dried to form an impregnation portion 14 a, thereby forming the conductive material on the porous substrate 12. A gas diffusion member 10 in which a part of 14 is impregnated is obtained. Next, a method of peeling the first carrier film 100 from the gas diffusion member 10.
 図4に示すように、第1のキャリアフィルム100の上に多孔質基材12を載置する。
 次いで、導電性材料ペーストを多孔質基材12の表面に塗布し、多孔質基材12の上部に含浸させ、乾燥させて第1の半含浸部14cを形成する。
 次いで、第1の半含浸部14cに第2のキャリアフィルム102を貼着させ、第1のキャリアフィルム100を剥離する。
 次いで、導電性材料ペーストを多孔質基材12の表面に塗布し、多孔質基材12の未含浸部に含浸させ、乾燥させて第2の半含浸部14dを形成することによって、多孔質基材12に導電性材料14の全量が含浸したガス拡散部材10を得る。
 次いで、ガス拡散部材10から第2のキャリアフィルム102を剥離する方法。
As shown in FIG. 4, the porous substrate 12 is placed on the first carrier film 100.
Next, a conductive material paste is applied to the surface of the porous substrate 12, impregnated on the top of the porous substrate 12, and dried to form the first semi-impregnated portion 14c.
Next, the second carrier film 102 is adhered to the first semi-impregnated portion 14c, and the first carrier film 100 is peeled off.
Next, the conductive material paste is applied to the surface of the porous substrate 12, impregnated in the non-impregnated portion of the porous substrate 12, and dried to form the second semi-impregnated portion 14d. The gas diffusion member 10 in which the material 12 is impregnated with the entire amount of the conductive material 14 is obtained.
Next, a method of peeling the second carrier film 102 from the gas diffusion member 10.
 導電性材料ペーストは、炭素繊維、イオン交換樹脂および液状媒体を含む。導電性材料ペーストは、必要に応じて、イオン交換樹脂以外のフッ素樹脂および他の成分を含んでいてもよい。 The conductive material paste includes carbon fiber, ion exchange resin, and liquid medium. The conductive material paste may contain a fluororesin other than the ion exchange resin and other components as necessary.
 液状媒体としては、有機溶媒と水とを含むものが好ましい。
 有機溶媒としては、アルコール類が好ましい。アルコール類としては、たとえば、非フッ素系アルコール類(メタノール、エタノール、1-プロパノール、2-プロパノール等)、フッ素系アルコール類(2,2,2-トリフルオロエタノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、2,2,3,3-テトラフルオロ-1-プロパノール、4,4,5,5,5-ペンタフルオロ-1-ペンタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、3,3,3-トリフルオロ-1-プロパノール、3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノール等)が挙げられる。
The liquid medium preferably contains an organic solvent and water.
As the organic solvent, alcohols are preferable. Examples of alcohols include non-fluorine alcohols (methanol, ethanol, 1-propanol, 2-propanol, etc.), fluorine alcohols (2,2,2-trifluoroethanol, 2,2,3,3, etc.). 3-pentafluoro-1-propanol, 2,2,3,3-tetrafluoro-1-propanol, 4,4,5,5,5-pentafluoro-1-pentanol, 1,1,1,3 3,3-hexafluoro-2-propanol, 3,3,3-trifluoro-1-propanol, 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexanol, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8-tridecafluoro-1-octanol).
 有機溶媒と水との含有質量比(有機溶媒:水)は、55:45~30:70が好ましく、50:50~40:60がより好ましい。有機溶媒が前記範囲の上限値以下(水が前記範囲の下限値以上)であれば、導電性材料にクラックが発生しにくい。有機溶媒が前記範囲の下限値以上(水が前記範囲の上限値以下)であれば、導電性材料ペーストの分散安定性がよい。 The mass ratio of the organic solvent to water (organic solvent: water) is preferably 55:45 to 30:70, and more preferably 50:50 to 40:60. If the organic solvent is less than or equal to the upper limit of the range (water is greater than or equal to the lower limit of the range), the conductive material is less likely to crack. If the organic solvent is not less than the lower limit of the above range (water is not more than the upper limit of the above range), the dispersion stability of the conductive material paste is good.
 導電性材料ペーストの固形分濃度は、5~40質量%が好ましく、8~30質量%がより好ましく、10~25質量%が特に好ましい。固形分濃度が前記範囲内であれば、塗布および含浸に適した粘度となる。 The solid content concentration of the conductive material paste is preferably 5 to 40% by mass, more preferably 8 to 30% by mass, and particularly preferably 10 to 25% by mass. When the solid content concentration is within the above range, the viscosity is suitable for coating and impregnation.
 キャリアフィルムとしては、たとえば、ETFEフィルム、オレフィン系樹脂フィルムが挙げられる。導電性材料ペーストの塗布方法としては、ダイコート法等、公知の塗布方法を用いればよい。乾燥温度は、40~130℃が好ましく、45~80℃がより好ましい。乾燥方法としては、公知の乾燥方法を用いればよい。 Examples of carrier films include ETFE films and olefin resin films. As a method for applying the conductive material paste, a known coating method such as a die coating method may be used. The drying temperature is preferably 40 to 130 ° C, more preferably 45 to 80 ° C. As a drying method, a known drying method may be used.
 以上説明した本発明のガス拡散部材にあっては、炭素繊維とイオン交換樹脂とを含む導電性材料が多孔質基材に含浸しているため、導電性を有する。そのため、ガス拡散部材を膜電極接合体の電極のガス拡散層に用いることによって、電極に充分な導電性を付与できる。
 また、以上説明した本発明のガス拡散部材にあっては、多孔質基材をベースにしているため、導電性材料を含浸させた後であっても、従来の炭素材料およびポリマーを含むカーボン層に比べ、細孔容量を大きくできる。そのため、本発明のガス拡散部材は、従来のカーボン層に比べ、ガス拡散性および排水性に優れる。そのため、ガス拡散部材を膜電極接合体の電極のガス拡散層に用いることによって、電極におけるガス拡散性および排水性を向上できる。
The gas diffusion member of the present invention described above has conductivity because the porous base material is impregnated with the conductive material containing carbon fiber and ion exchange resin. Therefore, sufficient conductivity can be imparted to the electrode by using the gas diffusion member in the gas diffusion layer of the electrode of the membrane electrode assembly.
Further, since the gas diffusion member of the present invention described above is based on a porous base material, a carbon layer containing a conventional carbon material and polymer even after impregnation with a conductive material. As compared with the above, the pore volume can be increased. Therefore, the gas diffusion member of the present invention is excellent in gas diffusibility and drainage as compared with a conventional carbon layer. Therefore, by using the gas diffusion member for the gas diffusion layer of the electrode of the membrane electrode assembly, the gas diffusibility and drainage of the electrode can be improved.
 本発明の固体高分子形燃料電池用膜電極接合体(以下、膜電極接合体と記す。)は、触媒層およびガス拡散層を有するアノードと、触媒層およびガス拡散層を有するカソードと、アノードの触媒層とカソードの触媒層との間に配置された高分子電解質膜とを備え、アノードおよびカソードのいずれか一方または両方のガス拡散層が、本発明のガス拡散部材を有するものである。 A membrane electrode assembly for a polymer electrolyte fuel cell of the present invention (hereinafter referred to as a membrane electrode assembly) includes an anode having a catalyst layer and a gas diffusion layer, a cathode having a catalyst layer and a gas diffusion layer, and an anode A polymer electrolyte membrane disposed between the catalyst layer and the cathode catalyst layer, and either or both of the anode and cathode gas diffusion layers have the gas diffusion member of the present invention.
 膜電極接合体においては、下記の理由から、少なくともカソードのガス拡散層が本発明のガス拡散部材を有することが好ましい。
 固体高分子形燃料電池における反応は、下式(R1)、(R2)で表わされる。
 アノード:H → 2H + 2e   (R1)、
 カソード:2H + 1/2O + 2e → HO   (R2)。
 固体高分子形燃料電池においては、式(R2)で表わされるカソードでの反応が律速となるといわれており、該反応を促進するために、反応場におけるプロトン濃度および酸素濃度を高める必要がある。そのため、カソードには、充分な導電性およびガス拡散性が要求される。そしてカソードの導電性を保つために、カソードには加湿器等で加湿を行った高加湿度の酸化剤ガス(空気)が供給される。また、カソードにおいては反応によって水蒸気が発生するため、水蒸気の凝縮による細孔の閉塞(フラッディング)が発生しやすい。そのため、カソードには、充分な排水性も要求される。
 よって、少なくともカソードのガス拡散層が、導電性、ガス拡散性、排水性等を改善する本発明のガス拡散部材を有することが好ましい。
In the membrane / electrode assembly, it is preferable that at least the gas diffusion layer of the cathode has the gas diffusion member of the present invention for the following reasons.
The reaction in the polymer electrolyte fuel cell is represented by the following formulas (R1) and (R2).
Anode: H 2 → 2H + + 2e (R1),
Cathode: 2H + + 1 / 2O 2 + 2e → H 2 O (R2).
In the polymer electrolyte fuel cell, it is said that the reaction at the cathode represented by the formula (R2) is rate-limiting, and in order to promote the reaction, it is necessary to increase the proton concentration and the oxygen concentration in the reaction field. Therefore, the cathode is required to have sufficient conductivity and gas diffusibility. In order to maintain the conductivity of the cathode, a highly humidified oxidant gas (air) humidified by a humidifier or the like is supplied to the cathode. Further, since water vapor is generated by reaction at the cathode, pore clogging (flooding) due to condensation of water vapor is likely to occur. Therefore, the cathode is also required to have sufficient drainage.
Therefore, it is preferable that at least the gas diffusion layer of the cathode has the gas diffusion member of the present invention that improves conductivity, gas diffusion property, drainage property and the like.
 図5は、本発明の膜電極接合体の一例を示す模式断面図である。
 膜電極接合体1は、触媒層22およびガス拡散層24を有するアノード20と;触媒層32およびガス拡散層34を有するカソード30と;アノード20の触媒層22とカソード30の触媒層32との間に配置される高分子電解質膜40とを備える。
 アノード20のガス拡散層24は、多孔質のカーボン基材26と、触媒層22とカーボン基材26との間に設けられた多孔質のカーボン層28とを有する。カソード30のガス拡散層34は、多孔質のカーボン基材36と、触媒層32とカーボン基材36との間に設けられた本発明のガス拡散部材10とを有する。
FIG. 5 is a schematic cross-sectional view showing an example of the membrane electrode assembly of the present invention.
The membrane electrode assembly 1 includes an anode 20 having a catalyst layer 22 and a gas diffusion layer 24; a cathode 30 having a catalyst layer 32 and a gas diffusion layer 34; and a catalyst layer 22 of the anode 20 and a catalyst layer 32 of the cathode 30. And a polymer electrolyte membrane 40 disposed therebetween.
The gas diffusion layer 24 of the anode 20 includes a porous carbon base material 26 and a porous carbon layer 28 provided between the catalyst layer 22 and the carbon base material 26. The gas diffusion layer 34 of the cathode 30 includes a porous carbon base material 36 and the gas diffusion member 10 of the present invention provided between the catalyst layer 32 and the carbon base material 36.
 図6は、本発明の膜電極接合体の他の例を示す模式断面図である。カソード30のガス拡散層34は、本発明のガス拡散部材10からなる点を除いて図5の説明と同じである。
 図7は、本発明の膜電極接合体の他の例を示す模式断面図である。アノード20のガス拡散層24は、本発明のガス拡散部材10からなり、カソード30のガス拡散層34は、本発明のガス拡散部材10からなる点を除いて図5の説明と同じである。
FIG. 6 is a schematic cross-sectional view showing another example of the membrane electrode assembly of the present invention. The gas diffusion layer 34 of the cathode 30 is the same as the description of FIG. 5 except that the gas diffusion layer 34 of the present invention is composed of the gas diffusion member 10 of the present invention.
FIG. 7 is a schematic cross-sectional view showing another example of the membrane electrode assembly of the present invention. The gas diffusion layer 24 of the anode 20 is made of the gas diffusion member 10 of the present invention, and the gas diffusion layer 34 of the cathode 30 is the same as the description of FIG. 5 except that it is made of the gas diffusion member 10 of the present invention.
 膜電極接合体において、触媒層は、触媒およびイオン交換樹脂を含む層である。アノードの触媒層およびカソードの触媒層は、成分、組成、厚さ等が同じ層であってもよく、異なる層であってもよい。
 触媒としては、固体高分子形燃料電池における酸化還元反応を促進するものであればよく、白金を含む触媒が好ましく、白金または白金合金がカーボン担体に担持された担持触媒が特に好ましい。
 カーボン担体としては、活性炭、カーボンブラック等が挙げられ、化学的耐久性が高い点から、熱処理等によりグラファイト化したものが好ましい。
 カーボン担体の比表面積は、200m/g以上が好ましい。カーボン担体の比表面積は、BET比表面積装置により、カーボン表面への窒素吸着により測定される。
In the membrane / electrode assembly, the catalyst layer is a layer containing a catalyst and an ion exchange resin. The anode catalyst layer and the cathode catalyst layer may be the same component, composition, thickness, or the like, or may be different layers.
The catalyst may be any catalyst that promotes the oxidation-reduction reaction in the polymer electrolyte fuel cell, and a catalyst containing platinum is preferable, and a supported catalyst in which platinum or a platinum alloy is supported on a carbon support is particularly preferable.
Examples of the carbon carrier include activated carbon and carbon black. From the viewpoint of high chemical durability, those graphitized by heat treatment or the like are preferable.
The specific surface area of the carbon support is preferably 200 m 2 / g or more. The specific surface area of the carbon support is measured by nitrogen adsorption on the carbon surface with a BET specific surface area apparatus.
 白金合金としては、白金を除く白金族の金属(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム)、金、銀、クロム、鉄、チタン、マンガン、コバルト、ニッケル、モリブデン、タングステン、アルミニウム、ケイ素、亜鉛、およびスズからなる群から選ばれる1種以上の金属と、白金との合金が好ましい。該白金合金には、白金と合金化される金属と、白金との金属間化合物が含まれていてもよい。白金または白金合金の担持量は、担持触媒のうち、10~70質量%が好ましい。 Platinum alloys include platinum group metals other than platinum (ruthenium, rhodium, palladium, osmium, iridium), gold, silver, chromium, iron, titanium, manganese, cobalt, nickel, molybdenum, tungsten, aluminum, silicon, zinc, An alloy of platinum and one or more metals selected from the group consisting of tin and platinum is preferable. The platinum alloy may contain a metal alloyed with platinum and an intermetallic compound of platinum. The supported amount of platinum or platinum alloy is preferably 10 to 70% by mass of the supported catalyst.
 触媒層に含まれる白金量は、電極反応を効率よく行うための触媒層の最適な厚さの点から、0.01~0.5mg/cmが好ましく、原料のコストと性能とのバランスの点から、0.05~0.35mg/cmがより好ましい。 The amount of platinum contained in the catalyst layer is preferably 0.01 to 0.5 mg / cm 2 from the viewpoint of the optimum thickness of the catalyst layer for efficiently carrying out the electrode reaction, and the balance between the cost and performance of the raw material is preferable. From the viewpoint, 0.05 to 0.35 mg / cm 2 is more preferable.
 イオン交換樹脂としては、耐久性の点から、含フッ素イオン交換樹脂が好ましく、イオン交換基を有するペルフルオロカーボンポリマー(エーテル性酸素原子を含んでいてもよい。)がより好ましく、上述のポリマーHまたはポリマーQがさらに好ましく、ポリマーHが特に好ましい。
 含フッ素イオン交換樹脂のイオン交換容量は、0.5~2.0ミリ当量/g乾燥樹脂が好ましく、0.8~1.5ミリ当量/g乾燥樹脂が特に好ましい。
The ion exchange resin is preferably a fluorine-containing ion exchange resin from the viewpoint of durability, more preferably a perfluorocarbon polymer having an ion exchange group (which may contain an etheric oxygen atom), and the above-mentioned polymer H or Polymer Q is more preferred, and polymer H is particularly preferred.
The ion exchange capacity of the fluorine-containing ion exchange resin is preferably 0.5 to 2.0 meq / g dry resin, particularly preferably 0.8 to 1.5 meq / g dry resin.
 アノードのガス拡散層およびカソードのガス拡散層は、成分、組成、厚さ等が同じ層であってもよく、異なる層であってもよい。
 ガス拡散層は、本発明のガス拡散部材のみからなるものであってもよく;本発明のガス拡散部材とカーボン基材とを有するものであってもよく;カーボン基材とカーボン層とを有するものであってもよく;カーボン基材のみからなるものであってもよい。
The gas diffusion layer of the anode and the gas diffusion layer of the cathode may be the same or different from each other in components, composition, thickness and the like.
The gas diffusion layer may be composed of only the gas diffusion member of the present invention; it may have the gas diffusion member of the present invention and a carbon substrate; and it has a carbon substrate and a carbon layer. It may be composed of only a carbon substrate.
 上述した理由から、少なくともカソードのガス拡散層が本発明のガス拡散部材を有することが好ましい。
 ガス拡散層が本発明のガス拡散部材を有する場合、電極における導電性、ガス拡散性および排水性を充分に改善する点から、ガス拡散部材は触媒層に隣接することが好ましい。
For the reasons described above, it is preferable that at least the cathode gas diffusion layer has the gas diffusion member of the present invention.
When the gas diffusion layer has the gas diffusion member of the present invention, it is preferable that the gas diffusion member is adjacent to the catalyst layer from the viewpoint of sufficiently improving the conductivity, gas diffusion property and drainage property of the electrode.
 ガス拡散層が本発明のガス拡散部材を有しない場合、ガス拡散層としては、アノードにおける導電性、ガス拡散性および排水性を改善する点から、カーボン基材とカーボン層とを有するものが好ましい。
 カーボン基材としては、カーボンペーパー、カーボンクロス、カーボンフェルト等が挙げられる。
 カーボン層は、炭素材料およびポリマーを含む層である。炭素材料としては、カーボン粒子、炭素繊維等が挙げられ、発電性能の向上効果が充分に発揮される点から、炭素繊維が好ましい。カーボン粒子としては、カーボンブラック等が挙げられる。
When the gas diffusion layer does not have the gas diffusion member of the present invention, the gas diffusion layer preferably has a carbon base material and a carbon layer from the viewpoint of improving the conductivity, gas diffusibility and drainage in the anode. .
Examples of the carbon substrate include carbon paper, carbon cloth, carbon felt and the like.
The carbon layer is a layer containing a carbon material and a polymer. Examples of the carbon material include carbon particles, carbon fibers, and the like, and carbon fibers are preferable because the effect of improving the power generation performance is sufficiently exhibited. Examples of the carbon particles include carbon black.
 炭素繊維としては、たとえば、気相成長炭素繊維、カーボンナノチューブ(シングルウォール、ダブルウォール、マルチウォール、カップ積層型等)、PAN系炭素繊維、ピッチ系炭素繊維が挙げられる。炭素繊維の形態としては、たとえば、チョップドファイバー、ミルドファイバーが挙げられる。 Examples of the carbon fiber include vapor grown carbon fiber, carbon nanotube (single wall, double wall, multi-wall, cup laminated type, etc.), PAN-based carbon fiber, and pitch-based carbon fiber. Examples of the form of carbon fiber include chopped fiber and milled fiber.
 炭素繊維の平均繊維径は、20~500nmが好ましく、50~250nmがより好ましい。炭素繊維の平均繊維径が前記範囲の下限値以上であれば、カーボン層が良好なガス拡散性、排水性を有する。炭素繊維の平均繊維径が前記範囲の上限値以下であれば、後述するカーボン層形成用ペーストを調製する際、分散媒に炭素繊維を良好に分散できる。 The average fiber diameter of the carbon fibers is preferably 20 to 500 nm, more preferably 50 to 250 nm. If the average fiber diameter of the carbon fiber is not less than the lower limit of the above range, the carbon layer has good gas diffusibility and drainage. When the average fiber diameter of the carbon fibers is not more than the upper limit of the above range, the carbon fibers can be favorably dispersed in the dispersion medium when preparing the carbon layer forming paste described later.
 ポリマーとしては、たとえば、含フッ素イオン交換樹脂以外のフッ素樹脂、含フッ素イオン交換樹脂が挙げられ、カーボン層の耐久性と炭素繊維の分散安定性の点から、含フッ素イオン交換樹脂が好ましい。フッ素樹脂としては、たとえば、PTFEが挙げられる。 Examples of the polymer include fluorine resins other than fluorine-containing ion exchange resins and fluorine-containing ion exchange resins, and fluorine-containing ion exchange resins are preferable from the viewpoint of the durability of the carbon layer and the dispersion stability of the carbon fibers. An example of the fluororesin is PTFE.
 含フッ素イオン交換樹脂としては、イオン交換基を有するペルフルオロカーボンポリマーが好ましく、上述のポリマーHまたはポリマーQがより好ましく、ポリマーHが特に好ましい。
 含フッ素イオン交換樹脂のイオン交換容量は、導電性およびガス透過性の点から、0.5~2.0ミリ当量/g乾燥樹脂が好ましく、0.8~1.5ミリ当量/g乾燥樹脂が特に好ましい。
As the fluorine-containing ion exchange resin, a perfluorocarbon polymer having an ion exchange group is preferable, the above-described polymer H or polymer Q is more preferable, and polymer H is particularly preferable.
The ion exchange capacity of the fluorine-containing ion exchange resin is preferably 0.5 to 2.0 meq / g dry resin, and 0.8 to 1.5 meq / g dry resin from the viewpoint of conductivity and gas permeability. Is particularly preferred.
 高分子電解質膜は、イオン交換樹脂を含む膜である。
 イオン交換樹脂としては、耐久性の点から、含フッ素イオン交換樹脂が好ましく、イオン交換基を有するペルフルオロカーボンポリマー(エーテル性酸素原子を含んでいてもよい。)がより好ましく、上述のポリマーHまたはポリマーQがさらに好ましく、ポリマーHが特に好ましい。
 含フッ素イオン交換樹脂のイオン交換容量は、0.5~2.0ミリ当量/g乾燥樹脂が好ましく、0.8~1.5ミリ当量/g乾燥樹脂が特に好ましい。
The polymer electrolyte membrane is a membrane containing an ion exchange resin.
The ion exchange resin is preferably a fluorine-containing ion exchange resin from the viewpoint of durability, more preferably a perfluorocarbon polymer having an ion exchange group (which may contain an etheric oxygen atom), and the above-mentioned polymer H or Polymer Q is more preferred, and polymer H is particularly preferred.
The ion exchange capacity of the fluorine-containing ion exchange resin is preferably 0.5 to 2.0 meq / g dry resin, particularly preferably 0.8 to 1.5 meq / g dry resin.
 高分子電解質膜は、補強材で補強されていてもよい。補強材としては、多孔体、繊維、織布、不織布等が挙げられる。高分子電解質膜は、セリウムイオンまたはマンガンイオンを含んでいてもよい。 The polymer electrolyte membrane may be reinforced with a reinforcing material. Examples of the reinforcing material include porous bodies, fibers, woven fabrics, and nonwoven fabrics. The polymer electrolyte membrane may contain cerium ions or manganese ions.
 高分子電解質膜の厚さは、10~30μmが好ましく、15~25μmがより好ましい。該厚さが前記範囲の上限値以下であれば、低加湿条件での固体高分子形燃料電池の発電性能の低下が抑えられる。また、該厚さを前記範囲の下限値以上とすることにより、ガスリークや電気的な短絡を抑えることができる。
 高分子電解質膜の厚さは、高分子電解質膜の断面を走査型電子顕微鏡等によって観察することにより測定する。
The thickness of the polymer electrolyte membrane is preferably 10 to 30 μm, more preferably 15 to 25 μm. When the thickness is equal to or less than the upper limit of the above range, a decrease in power generation performance of the polymer electrolyte fuel cell under low humidification conditions can be suppressed. Moreover, gas leakage and an electrical short circuit can be suppressed by making this thickness more than the lower limit of the said range.
The thickness of the polymer electrolyte membrane is measured by observing the cross section of the polymer electrolyte membrane with a scanning electron microscope or the like.
 図5の膜電極接合体1は、膜電極接合体1の周縁部の高分子電解質膜40を挟み込むように配置された2つのフレーム状のサブガスケット(図示略)を有していてもよい。
 図5の膜電極接合体1は、たとえば、高分子電解質膜40の第1の面に触媒層22を形成し、第2の面に触媒層32を形成して膜触媒層接合体を得て、次いで、カーボン層28付きカーボン基材26、膜触媒層接合体、ガス拡散部材10、カーボン基材36の順に積み重ね、これらを熱処理する方法にて製造される。
The membrane electrode assembly 1 in FIG. 5 may have two frame-shaped subgaskets (not shown) arranged so as to sandwich the polymer electrolyte membrane 40 at the peripheral edge of the membrane electrode assembly 1.
In the membrane electrode assembly 1 of FIG. 5, for example, a catalyst layer 22 is formed on the first surface of the polymer electrolyte membrane 40, and a catalyst layer 32 is formed on the second surface to obtain a membrane catalyst layer assembly. Then, the carbon base material 26 with the carbon layer 28, the membrane catalyst layer assembly, the gas diffusion member 10, and the carbon base material 36 are stacked in this order, and are manufactured by a method of heat treating them.
 図6の膜電極接合体1は、たとえば、高分子電解質膜40の第1の面に触媒層22を形成し、第2の面に触媒層32を形成して膜触媒層接合体を得て、次いで、カーボン層28付きカーボン基材26、膜触媒層接合体、ガス拡散部材10の順に積み重ね、これらを熱処理する方法にて製造される。 In the membrane electrode assembly 1 of FIG. 6, for example, the catalyst layer 22 is formed on the first surface of the polymer electrolyte membrane 40 and the catalyst layer 32 is formed on the second surface to obtain a membrane catalyst layer assembly. Then, the carbon base material 26 with the carbon layer 28, the membrane catalyst layer assembly, and the gas diffusion member 10 are stacked in this order and manufactured by a method of heat treating them.
 図7の膜電極接合体1は、たとえば、高分子電解質膜40の第1の面に触媒層22を形成し、第2の面に触媒層32を形成して膜触媒層接合体を得て、次いで、ガス拡散部材10、膜触媒層接合体、ガス拡散部材10の順に積み重ね、これらを熱処理する方法にて製造される。 In the membrane electrode assembly 1 of FIG. 7, for example, the catalyst layer 22 is formed on the first surface of the polymer electrolyte membrane 40, and the catalyst layer 32 is formed on the second surface to obtain a membrane catalyst layer assembly. Then, the gas diffusion member 10, the membrane catalyst layer assembly, and the gas diffusion member 10 are stacked in this order and are manufactured by a method of heat treating them.
 高分子電解質膜40は、たとえば、イオン交換樹脂および液状媒体を含む液状組成物をキャリアフィルムの表面に塗布し、乾燥させる方法によって形成できる。
 液状媒体としては、有機溶媒と水とを含むものが好ましい。アルコール類としては、たとえば、非フッ素系アルコール類、フッ素系アルコール類が挙げられる。
The polymer electrolyte membrane 40 can be formed, for example, by a method in which a liquid composition containing an ion exchange resin and a liquid medium is applied to the surface of a carrier film and dried.
The liquid medium preferably contains an organic solvent and water. Examples of the alcohols include non-fluorinated alcohols and fluorinated alcohols.
 触媒層の形成方法としては、下記の方法が挙げられる。
 ・触媒層形成用ペーストをキャリアフィルムの表面に塗布し、乾燥させ、触媒層を形成した後、該触媒層を高分子電解質膜40の表面に転写する方法。
 ・触媒層形成用ペーストを、高分子電解質膜40の表面に塗布し、乾燥させる方法。
 触媒層形成用ペーストは、イオン交換樹脂、触媒および液状媒体を含む。触媒層形成用ペーストは、たとえば、イオン交換樹脂および液状媒体を含む液状組成物と、触媒および液状媒体を含む分散液とを混合することにより調製できる。
Examples of the method for forming the catalyst layer include the following methods.
A method in which a catalyst layer forming paste is applied to the surface of a carrier film, dried to form a catalyst layer, and then the catalyst layer is transferred to the surface of the polymer electrolyte membrane 40.
A method in which the catalyst layer forming paste is applied to the surface of the polymer electrolyte membrane 40 and dried.
The paste for forming a catalyst layer includes an ion exchange resin, a catalyst, and a liquid medium. The catalyst layer forming paste can be prepared, for example, by mixing a liquid composition containing an ion exchange resin and a liquid medium and a dispersion containing the catalyst and the liquid medium.
 カーボン層は、たとえば、カーボン層形成用ペーストをカーボン基材の表面に塗布し、乾燥させる方法によって形成できる。カーボン層形成用ペーストは、炭素材料、ポリマーおよび液状媒体を含む。 The carbon layer can be formed, for example, by a method of applying a carbon layer forming paste to the surface of the carbon substrate and drying it. The carbon layer forming paste includes a carbon material, a polymer, and a liquid medium.
 以上説明した本発明の膜電極接合体にあっては、アノードおよびカソードのいずれか一方または両方のガス拡散層が、膜電極接合体の電極に充分な導電性を付与でき、かつ電極におけるガス拡散性および排水性を向上できる本発明のガス拡散部材を有するため、高加湿状態であっても発電性能に優れる。 In the membrane electrode assembly of the present invention described above, the gas diffusion layer of either one or both of the anode and the cathode can impart sufficient conductivity to the electrode of the membrane electrode assembly, and gas diffusion in the electrode can be performed. Since the gas diffusion member of the present invention that can improve the performance and drainage is provided, the power generation performance is excellent even in a highly humidified state.
 本発明の膜電極接合体は、触媒層およびガス拡散層を有するアノードと、触媒層およびガス拡散層を有するカソードと、アノードの触媒層とカソードの触媒層との間に配置された高分子電解質膜とを備え、アノードおよびカソードのいずれか一方または両方のガス拡散層が、本発明のガス拡散部材を有するものであればよく、図示例の膜電極接合体に限定はされない。
 たとえば、アノードのガス拡散層が、本発明のガス拡散部材を有し、カソードのガス拡散層が、本発明のガス拡散部材を有しないものであってもよい。
 また、ガス拡散層が、カーボン基材と本発明のガス拡散部材との間にカーボン層を有するものであってもよい。また、膜電極接合体の製造方法は、上述した方法に限定されず、膜電極接合体は、他の方法で製造しても構わない。
The membrane electrode assembly of the present invention includes an anode having a catalyst layer and a gas diffusion layer, a cathode having a catalyst layer and a gas diffusion layer, and a polymer electrolyte disposed between the anode catalyst layer and the cathode catalyst layer. It is only necessary that the gas diffusion layer of any one or both of the anode and the cathode has the gas diffusion member of the present invention, and is not limited to the membrane electrode assembly of the illustrated example.
For example, the gas diffusion layer of the anode may have the gas diffusion member of the present invention, and the gas diffusion layer of the cathode may not have the gas diffusion member of the present invention.
The gas diffusion layer may have a carbon layer between the carbon base material and the gas diffusion member of the present invention. Moreover, the manufacturing method of a membrane electrode assembly is not limited to the method mentioned above, You may manufacture a membrane electrode assembly by another method.
 本発明の膜電極接合体は、固体高分子形燃料電池に用いられる。固体高分子形燃料電池は、たとえば、2つのセパレータの間に膜電極接合体を挟んでセルを形成し、複数のセルをスタックすることにより製造される。セパレータとしては、燃料ガスまたは酸素を含む酸化剤ガス(空気、酸素等)の通路となる溝が形成された導電性カーボン板等が挙げられる。
 固体高分子形燃料電池の種類としては、たとえば、水素/酸素型燃料電池、直接メタノール型燃料電池(DMFC)が挙げられる。DMFCの燃料に用いるメタノールまたはメタノール水溶液は、液フィードであってもよく、ガスフィードであってもよい。
The membrane electrode assembly of the present invention is used for a polymer electrolyte fuel cell. A polymer electrolyte fuel cell is manufactured, for example, by forming a cell by sandwiching a membrane electrode assembly between two separators and stacking a plurality of cells. Examples of the separator include a conductive carbon plate in which a groove serving as a passage for an oxidant gas (air, oxygen, etc.) containing fuel gas or oxygen is formed.
Examples of the polymer electrolyte fuel cell include a hydrogen / oxygen fuel cell and a direct methanol fuel cell (DMFC). The methanol or methanol aqueous solution used for the DMFC fuel may be a liquid feed or a gas feed.
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。なお、例1~3は実施例であり、例4~6は比較例である。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. Examples 1 to 3 are examples, and examples 4 to 6 are comparative examples.
 (セル電圧)
 発電用セル中の膜電極接合体の温度を50℃に維持し、アノードに水素(露点:50℃、利用率:70%)、カソードに空気(露点:50℃、利用率:50%)を、それぞれ50kPa(絶対圧力)に加圧して供給した。水素および空気ともに相対湿度:100%RHで供給し、電流密度が1.0A/cmのときのセル電圧を測定した。
(Cell voltage)
The temperature of the membrane electrode assembly in the power generation cell is maintained at 50 ° C., hydrogen (dew point: 50 ° C., utilization rate: 70%) at the anode, and air (dew point: 50 ° C., utilization rate: 50%) at the cathode , Each was pressurized to 50 kPa (absolute pressure) and supplied. Both hydrogen and air were supplied at a relative humidity of 100% RH, and the cell voltage was measured when the current density was 1.0 A / cm 2 .
 (内部抵抗)
 内部抵抗は、セルに交流電流を与え、端子間に生じる電圧の振幅を交流電流の振幅で除算することにより算出した。
(Internal resistance)
The internal resistance was calculated by applying an alternating current to the cell and dividing the amplitude of the voltage generated between the terminals by the amplitude of the alternating current.
 以下の例において用いた材料は以下のとおりである。
 白金触媒1:田中貴金属工業社製、TEC10E50E(カーボン担体に白金が触媒全質量の50質量%含まれるように担持された触媒)。
 白金触媒2:田中貴金属工業社製、TEC10EA20E(カーボン担体に白金が触媒全質量の20質量%含まれるように担持された触媒)。
 気相成長炭素繊維:昭和電工社製、VGCF-H(平均繊維径:150nm、平均繊維長:10~20μm)。
 不織布:日本バイリーン社製(ポリプロピレン、目付量:5g/m)。
 PTFE分散液:Fluon(旭硝子社登録商標)AD911E(固形分濃度:60質量%)。
The materials used in the following examples are as follows.
Platinum catalyst 1: manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E (a catalyst in which platinum is supported on a carbon support so that 50% by mass of the total mass of the catalyst is included).
Platinum catalyst 2: manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC10EA20E (a catalyst in which platinum is supported on a carbon carrier so that 20% by mass of the total mass of the catalyst is contained).
Vapor growth carbon fiber: VGCF-H (average fiber diameter: 150 nm, average fiber length: 10 to 20 μm) manufactured by Showa Denko KK
Non-woven fabric: manufactured by Japan Vilene (polypropylene, basis weight: 5 g / m 2 ).
PTFE dispersion: Fluon (registered trademark of Asahi Glass Co., Ltd.) AD911E (solid content concentration: 60% by mass).
 カーボン基材a:NOK社製、X0086 T10X13(カーボン層なし)。
 カーボン基材b:NOK社製、X0086 IX92 CX320(カーボン層付きカーボン基材)。カーボン層は、カーボンブラックおよびPTFEを含む。
 カーボン基材c:NOK社製、X0086 IX52 CX320(カーボン層付きカーボン基材)。カーボン層は、カーボンブラックおよびPTFEを含む。
Carbon base material a: manufactured by NOK, X0086 T10X13 (without carbon layer).
Carbon substrate b: manufactured by NOK, X0086 IX92 CX320 (carbon substrate with carbon layer). The carbon layer includes carbon black and PTFE.
Carbon substrate c: X0086 IX52 CX320 (carbon substrate with carbon layer) manufactured by NOK. The carbon layer includes carbon black and PTFE.
(カーボン基材d)
 気相成長炭素繊維、ポリマーH-1、エタノールおよび水(エタノール/水=50/50(質量比))を含むカーボン層形成用ペーストを調製した。前記カーボン層形成用ペーストは、イオン交換樹脂の含有量の炭素繊維の含有量に対する質量比が0.3であり、固形分濃度が20質量%であった。
 カーボン基材aの表面にカーボン層形成用ペーストを、ダイコータを用いて塗布し、80℃で10分間乾燥させ、カーボン層が0.3mg/cmであるカーボン層付きのカーボン基材dを得た。
(Carbon substrate d)
A carbon layer forming paste containing vapor grown carbon fiber, polymer H-1, ethanol and water (ethanol / water = 50/50 (mass ratio)) was prepared. In the carbon layer forming paste, the mass ratio of the ion exchange resin content to the carbon fiber content was 0.3, and the solid content concentration was 20 mass%.
A carbon layer forming paste is applied to the surface of the carbon substrate a using a die coater and dried at 80 ° C. for 10 minutes to obtain a carbon substrate d with a carbon layer having a carbon layer of 0.3 mg / cm 2. It was.
(ポリマーH)
 TFEに由来する単位と単位u1-11とからなるポリマーH-1(イオン交換容量:1.1ミリ当量/g乾燥樹脂)を用意した。
Figure JPOXMLDOC01-appb-C000007
(Polymer H)
Polymer H-1 (ion exchange capacity: 1.1 meq / g dry resin) composed of units derived from TFE and units u1-11 was prepared.
Figure JPOXMLDOC01-appb-C000007
 (液状組成物)
 ポリマーH-1を、エタノールと水との混合溶媒(エタノール/水=60/40(質量比))に分散させ、さらに炭酸セリウム水和物(Ce(CO・8HO)を加え、固形分濃度が25質量%の液状組成物を調製した。
(Liquid composition)
Polymer H-1 was dispersed in a mixed solvent of ethanol and water (ethanol / water = 60/40 (mass ratio)), and cerium carbonate hydrate (Ce 2 (CO 3 ) 3 · 8H 2 O) was further added. In addition, a liquid composition having a solid content concentration of 25% by mass was prepared.
 (電解質膜(1))
 液状組成物を、ETFEフィルムの表面にダイコータを用いて塗布し、80℃で15分間乾燥させ、さらに160℃で30分間熱処理し、電解質膜(1)(厚さ:17μm、セリウム含有量:15モル%)を備えたETFEフィルム付き高分子電解質膜を得た。ここで、「セリウム含有量」は、高分子電解質膜に含まれる陽イオン交換基の数に対する、セリウムイオンに置換された前記陽イオン交換基の数の割合(モル%)を意味している。
(Electrolyte membrane (1))
The liquid composition was applied to the surface of the ETFE film using a die coater, dried at 80 ° C. for 15 minutes, further heat-treated at 160 ° C. for 30 minutes, and electrolyte membrane (1) (thickness: 17 μm, cerium content: 15 A polymer electrolyte membrane with an ETFE film having a mol%) was obtained. Here, “cerium content” means the ratio (mol%) of the number of cation exchange groups substituted with cerium ions to the number of cation exchange groups contained in the polymer electrolyte membrane.
 (触媒層1)
 白金触媒1、ポリマーH-1、エタノールおよび水(エタノール/水=50/50(質量比))を含む触媒層形成用ペースト1を調製した。前記触媒層形成用ペースト1は、イオン交換樹脂の含有量のカーボン担体の含有量に対する質量比が0.95であり、固形分濃度が9質量%であった。
 触媒層形成用ペースト1を、ETFEフィルムの表面にダイコータを用いて塗布し、80℃で10分間乾燥させ、白金量が0.5mg/cmである触媒層(1)を備えたETFEフィルム付き触媒層を得た。
(Catalyst layer 1)
A catalyst layer forming paste 1 containing platinum catalyst 1, polymer H-1, ethanol and water (ethanol / water = 50/50 (mass ratio)) was prepared. The catalyst layer forming paste 1 had a mass ratio of the ion exchange resin content to the carbon carrier content of 0.95 and a solid content concentration of 9 mass%.
The catalyst layer forming paste 1 is applied to the surface of the ETFE film using a die coater, dried at 80 ° C. for 10 minutes, and provided with a catalyst layer (1) having a platinum amount of 0.5 mg / cm 2. A catalyst layer was obtained.
 (例1)
 気相成長炭素繊維、ポリマーH-1、エタノールおよび水(エタノール/水=40/60(質量比))を含む導電性材料ペースト1を調製した。前記導電性材料ペースト1は、イオン交換樹脂の含有量の炭素繊維の含有量に対する質量比が0.3であり、固形分濃度が20質量%であった。
 前記導電性材料ペースト1を、炭素繊維の含有量が0.4mg/cmとなるように、ETFEフィルムの表面にダイコータを用いて塗布し、80℃で10分間乾燥させ、下地部を形成した。
(Example 1)
A conductive material paste 1 containing vapor-grown carbon fiber, polymer H-1, ethanol and water (ethanol / water = 40/60 (mass ratio)) was prepared. In the conductive material paste 1, the mass ratio of the ion exchange resin content to the carbon fiber content was 0.3, and the solid content concentration was 20% by mass.
The conductive material paste 1 was applied to the surface of the ETFE film using a die coater so that the carbon fiber content was 0.4 mg / cm 2, and dried at 80 ° C. for 10 minutes to form a base part. .
 次いで、下地部の上に不織布を載置した。次いで、導電性材料ペースト1を、炭素繊維の含有量が1.6mg/cmとなるように、不織布の表面に塗布し、不織布の全体に含浸させ、80℃で10分間乾燥させ、さらに130℃で30分間熱処理した。不織布に導電性材料の一部が含浸し、不織布の片面を導電性材料の残部が覆う、ガス拡散部材1を得た。
 次いで、ガス拡散部材1からETFEフィルムを剥離した。ガス拡散部材1の厚さ、密度、および炭素繊維の(含有)量を表1に示す。例2および3も同様に、ガス拡散部材の厚さ、密度、および炭素繊維の量を表1に示す。
Then, the nonwoven fabric was mounted on the base part. Next, the conductive material paste 1 is applied to the surface of the nonwoven fabric so that the carbon fiber content is 1.6 mg / cm 2 , impregnated throughout the nonwoven fabric, dried at 80 ° C. for 10 minutes, and further 130 Heat treatment was performed at 0 ° C. for 30 minutes. A gas diffusion member 1 was obtained in which a part of the conductive material was impregnated into the nonwoven fabric, and the remaining part of the conductive material covered one side of the nonwoven fabric.
Next, the ETFE film was peeled from the gas diffusion member 1. Table 1 shows the thickness, density, and carbon fiber content (contained) of the gas diffusion member 1. Similarly, in Examples 2 and 3, the thickness, density, and amount of carbon fiber of the gas diffusion member are shown in Table 1.
 次いで、電解質膜(1)を備えたETFEフィルム付き高分子電解質膜と、触媒層1を備えたETFEフィルム付き触媒層とを、電解質膜(1)と触媒層(1)とが接するように重ね、120℃、3MPaで6分間熱処理して、積層体1を得た。
 前記積層体1における、電解質膜(1)を備えたETFEフィルム付き高分子電解質膜からETFEフィルムを剥離して得られた電解質膜(1)と、さらに別の触媒層(1)を備えたETFEフィルム付き触媒層の触媒層(1)とを接するように重ね、120℃、3MPaで6分間熱処理した。次いで、120℃、0.5MPaで24分間熱処理した。電解質膜(1)の両面に配設された触媒層(1)を備えたETFEフィルム付き触媒層からETFEフィルムを剥離し、膜触媒層接合体を得た。
Next, the polymer electrolyte membrane with an ETFE film provided with the electrolyte membrane (1) and the catalyst layer with an ETFE film provided with the catalyst layer 1 are overlapped so that the electrolyte membrane (1) and the catalyst layer (1) are in contact with each other. The laminate 1 was obtained by heat treatment at 120 ° C. and 3 MPa for 6 minutes.
In the laminate 1, an electrolyte membrane (1) obtained by peeling an ETFE film from a polymer electrolyte membrane with an ETFE film provided with the electrolyte membrane (1), and an ETFE provided with another catalyst layer (1) The catalyst layer (1) of the catalyst layer with a film was stacked so as to be in contact with each other, and heat-treated at 120 ° C. and 3 MPa for 6 minutes. Next, heat treatment was performed at 120 ° C. and 0.5 MPa for 24 minutes. The ETFE film was peeled from the catalyst layer with the ETFE film provided with the catalyst layer (1) disposed on both surfaces of the electrolyte membrane (1) to obtain a membrane-catalyst layer assembly.
 カーボン基材b、フレーム状のサブガスケット、膜触媒層接合体、ガス拡散部材1、フレーム状のサブガスケット、カーボン基材aの順に、カーボン基材bにおけるカーボン層と膜触媒層接合体における触媒層(1)とが接するように、また、膜触媒層接合体におけるもう一方の触媒層(1)とガス拡散部材(1)において導電性材料ペーストを不織布の第1の表面に炭素繊維の量が1.6mg/cmとなるように塗布して形成された面とが接するように積層し、これらを160℃、3MPaで2分間熱処理し、電極面積が25cmの膜電極接合体(1)を得た。膜電極接合体(1)を、ガス拡散部材(1)を有する電極がカソードとなるように、発電用セルに組み込んだ。
 セル電圧、内部抵抗を表1に示す。以下の例についても同様にセル電圧、内部抵抗を表1に示す。
The carbon base material b, the frame-shaped subgasket, the membrane catalyst layer assembly, the gas diffusion member 1, the frame-shaped subgasket, and the carbon base material a in this order, the carbon layer in the carbon base material b and the catalyst in the membrane catalyst layer assembly. In the other catalyst layer (1) and gas diffusion member (1) in the membrane-catalyst layer assembly, the conductive material paste is applied to the first surface of the nonwoven fabric so that the layer (1) is in contact with the first surface of the nonwoven fabric. There was laminated so as to be in contact and the coated formed surface so that 1.6 mg / cm 2, these 160 ° C., and heat-treated for 2 minutes at 3 MPa, electrode area of 25 cm 2 membrane electrode assembly (1 ) The membrane electrode assembly (1) was incorporated in a power generation cell so that the electrode having the gas diffusion member (1) was a cathode.
Table 1 shows the cell voltage and the internal resistance. Table 1 shows the cell voltage and the internal resistance in the following examples.
 (例2)
 PTFE分散液を用い、気相成長炭素繊維、ポリマーH-1、PTFE、エタノールおよび水(エタノール/水=50/50(質量比))を含む導電性材料ペースト2を調製した。導電性材料ペースト2は、イオン交換樹脂の含有量の炭素繊維の含有量に対する質量比が0.3であり、フッ素樹脂の含有量の炭素繊維の含有量に対する質量比が0.3であり、固形分濃度が20質量%であった。
(Example 2)
A conductive material paste 2 containing vapor-grown carbon fiber, polymer H-1, PTFE, ethanol and water (ethanol / water = 50/50 (mass ratio)) was prepared using a PTFE dispersion. In the conductive material paste 2, the mass ratio of the ion exchange resin content to the carbon fiber content is 0.3, and the fluororesin content to the carbon fiber content is 0.3. The solid content concentration was 20% by mass.
 第1のETFEフィルムの上に不織布を載置した。
 次いで、導電性材料ペースト2を、炭素繊維の量が1.2mg/cmとなるように、不織布の表面に塗布し、不織布の上部に含浸させ、80℃で10分間乾燥させ、第1の半含浸部を形成した。
 次いで、第1の半含浸部に第2のETFEフィルムを貼着させ、第1のETFEフィルムを不織布から剥離した。
A nonwoven fabric was placed on the first ETFE film.
Next, the conductive material paste 2 is applied to the surface of the nonwoven fabric so that the amount of carbon fibers is 1.2 mg / cm 2 , impregnated on the top of the nonwoven fabric, dried at 80 ° C. for 10 minutes, A semi-impregnated part was formed.
Subsequently, the 2nd ETFE film was stuck to the 1st semi-impregnation part, and the 1st ETFE film was peeled from the nonwoven fabric.
 次いで、導電性材料ペースト2を、炭素繊維の量が1.2mg/cmとなるように、第1のETFEフィルムを剥離して得られた不織布の表面に塗布し、不織布の未含浸部に含浸させ、80℃で10分間乾燥させ、さらに130℃で30分間熱処理した。不織布に導電性材料の全量が含浸したガス拡散部材(2)を得た。
 次いで、ガス拡散部材(2)から第2のETFEフィルムを剥離した。
Next, the conductive material paste 2 was applied to the surface of the nonwoven fabric obtained by peeling off the first ETFE film so that the amount of carbon fiber was 1.2 mg / cm 2, and was applied to the non-impregnated portion of the nonwoven fabric. It was impregnated, dried at 80 ° C. for 10 minutes, and further heat treated at 130 ° C. for 30 minutes. A gas diffusion member (2) in which the nonwoven fabric was impregnated with the entire amount of the conductive material was obtained.
Next, the second ETFE film was peeled from the gas diffusion member (2).
 例1のガス拡散部材(1)の代わりに例2のガス拡散部材(2)を用いた以外は、例1と同様にして、電極面積が25cmである膜電極接合体(2)を得た。膜電極接合体(2)を、ガス拡散部材(2)を有する電極がカソードとなるように、発電用セルに組み込んだ。 A membrane electrode assembly (2) having an electrode area of 25 cm 2 is obtained in the same manner as in Example 1 except that the gas diffusion member (2) of Example 2 is used instead of the gas diffusion member (1) of Example 1. It was. The membrane electrode assembly (2) was incorporated into a power generation cell so that the electrode having the gas diffusion member (2) was a cathode.
 (例3)
 例1と同じ導電性材料ペースト1を調製した。
 第1のETFEフィルムの上に載置した不織布の表面に塗布する導電性材料ペースト1の炭素繊維の量を0.6mg/cmに変更し第1の半含浸部を形成した後、第2のETFEフィルムを貼着させ、次いで第1のETFEを剥離した側の不織布の表面に塗布する導電性材料ペースト1の炭素繊維の量を2.4mg/cmに変更した以外は、例2と同様にして、不織布に導電性材料の全量が含浸したガス拡散部材(3)を得た。
(Example 3)
The same conductive material paste 1 as in Example 1 was prepared.
After changing the amount of carbon fiber of the conductive material paste 1 applied to the surface of the nonwoven fabric placed on the first ETFE film to 0.6 mg / cm 2 to form the first semi-impregnated portion, Example 2 except that the amount of carbon fiber of the conductive material paste 1 applied to the surface of the nonwoven fabric on the side where the first ETFE was peeled was changed to 2.4 mg / cm 2. Similarly, a gas diffusion member (3) in which the nonwoven fabric was impregnated with the entire amount of the conductive material was obtained.
 例1のガス拡散部材(1)の代わりに例3のガス拡散部材(3)を用いた以外は、例1と同様にして、電極面積が25cmである膜電極接合体(3)を得た。膜電極接合体(3)を、ガス拡散部材(3)を有する電極がカソードとなるように、発電用セルに組み込んだ。なお、膜電極接合体(3)は、膜触媒層接合体(1)における触媒層(1)と、ガス拡散部材(3)における第1のETFEを剥離した側の不織布の表面に導電性材料ペースト1の炭素繊維の量を2.4mg/cmとなるように塗布して形成された面とが接するように積層した。 A membrane electrode assembly (3) having an electrode area of 25 cm 2 was obtained in the same manner as in Example 1 except that the gas diffusion member (3) of Example 3 was used instead of the gas diffusion member (1) of Example 1. It was. The membrane electrode assembly (3) was incorporated in a power generation cell so that the electrode having the gas diffusion member (3) was a cathode. In addition, the membrane electrode assembly (3) has a conductive material on the surface of the catalyst layer (1) in the membrane catalyst layer assembly (1) and the nonwoven fabric on the side where the first ETFE in the gas diffusion member (3) is peeled off. The paste 1 was laminated so that the surface formed by applying the carbon fiber of the paste 1 to 2.4 mg / cm 2 was in contact.
 (例4)
 例1と同様にして膜触媒層接合体を得た。
 カーボン基材b、フレーム状のサブガスケット、膜触媒層接合体、フレーム状のサブガスケット、カーボン基材dの順に、カーボン基材bおよびカーボン基材dにおけるカーボン層と膜触媒層接合体の触媒層(1)とが接するように積み重ね、これらを160℃、3MPaで2分間熱処理し、電極面積が25cmである膜電極接合体(4)を得た。膜電極接合体(4)を、カーボン基材dを有する電極がカソードとなるように、発電用セルに組み込んだ。
(Example 4)
A membrane catalyst layer assembly was obtained in the same manner as in Example 1.
The carbon base material b, the frame-shaped subgasket, the membrane catalyst layer assembly, the frame-shaped subgasket, and the carbon base material d in this order, the catalyst of the carbon layer and the carbon catalyst layer assembly in the carbon base material d. The layers (1) were stacked so as to be in contact with each other, and these were heat-treated at 160 ° C. and 3 MPa for 2 minutes to obtain a membrane / electrode assembly (4) having an electrode area of 25 cm 2 . The membrane electrode assembly (4) was incorporated into a power generation cell so that the electrode having the carbon base material d would be a cathode.
 (例5)
 例1と同様にして膜触媒層接合体を得た。
 カーボン基材b、フレーム状のサブガスケット、膜触媒層接合体、フレーム状のサブガスケット、カーボン基材cの順に、カーボン基材bおよびカーボン基材cにおけるカーボン層と触媒層(1)とが接するように積み重ね、これらを160℃、3MPa2分間の条件にて熱処理し、電極面積が25cmである膜電極接合体(5)を得た。膜電極接合体(5)をカーボン基材bを有する電極がカソードとなるように、発電用セルに組み込んだ。
(Example 5)
A membrane catalyst layer assembly was obtained in the same manner as in Example 1.
The carbon base material b, the carbon layer in the carbon base material c, and the catalyst layer (1) are in the order of the carbon base material b, the frame-shaped subgasket, the membrane catalyst layer assembly, the frame-shaped subgasket, and the carbon base material c. They were stacked so as to be in contact with each other, and heat-treated under conditions of 160 ° C. and 3 MPa for 2 minutes to obtain a membrane / electrode assembly (5) having an electrode area of 25 cm 2 . The membrane electrode assembly (5) was incorporated into a power generation cell so that the electrode having the carbon base material b would be a cathode.
 (例6)
 白金触媒2、ポリマーH-1、エタノールおよび水(エタノール/水=50/50(質量比))を含む触媒層形成用ペースト2を調製した。触媒層形成用ペースト2は、イオン交換樹脂の含有量のカーボン担体の含有量に対する質量比が0.8であり、固形分濃度が8質量%であった。
 触媒層形成用ペースト2を、ETFEフィルムの表面にダイコータを用いて塗布し、80℃で10分間乾燥させ、白金量が0.05mg/cmである触媒層(2)を備えたETFEフィルム付き触媒層を得た。
(Example 6)
A catalyst layer forming paste 2 containing platinum catalyst 2, polymer H-1, ethanol and water (ethanol / water = 50/50 (mass ratio)) was prepared. In the catalyst layer forming paste 2, the mass ratio of the content of the ion exchange resin to the content of the carbon support was 0.8, and the solid content concentration was 8% by mass.
The catalyst layer forming paste 2 is applied to the surface of the ETFE film using a die coater, dried at 80 ° C. for 10 minutes, and provided with a catalyst layer (2) having a platinum amount of 0.05 mg / cm 2. A catalyst layer was obtained.
 触媒層(2)を備えたETFEフィルム付き触媒層の触媒層(2)の表面に、液状組成物をダイコータを用いて塗布し、80℃で10分間乾燥させ、さらに160℃で30分間熱処理し、ETFEフィルム、触媒層(2)、電解質膜(1)(厚さ:17μm、セリウム含有量:15モル%)の順に積層した積層体2を得た。 The liquid composition is applied to the surface of the catalyst layer (2) of the catalyst layer with the ETFE film provided with the catalyst layer (2) using a die coater, dried at 80 ° C. for 10 minutes, and further heat-treated at 160 ° C. for 30 minutes. , An ETFE film, a catalyst layer (2), and an electrolyte membrane (1) (thickness: 17 μm, cerium content: 15 mol%) were obtained in this order to obtain a laminate 2.
 白金触媒1、ポリマーH-1、エタノール、水および1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン(日本ゼオン社製、ゼオローラ(登録商標)H)を含む触媒層形成用ペースト3を調製した。前記触媒層形成用ペースト3における、エタノール/水/ゼオローラ(登録商標)Hの質量比は、46/50/4であった。前記触媒層形成用ペースト3は、イオン交換樹脂の含有量のカーボン担体の含有量に対する質量比が0.95であり、固形分濃度が10質量%であった。
 触媒層形成用ペースト3を、カーボン基材dのカーボン層の表面に、ダイコータを用いて塗布し、80℃で10分間乾燥させ、白金量が0.5mg/cmである触媒層(3)を形成して、電極1を得た。
For formation of a catalyst layer containing platinum catalyst 1, polymer H-1, ethanol, water and 1,1,2,2,3,3,4-heptafluorocyclopentane (Zeon Corporation (registered trademark) H) Paste 3 was prepared. In the catalyst layer forming paste 3, the mass ratio of ethanol / water / Zeorolla (registered trademark) H was 46/50/4. The catalyst layer forming paste 3 had a mass ratio of the ion exchange resin content to the carbon support content of 0.95 and a solid content concentration of 10 mass%.
The catalyst layer forming paste 3 is applied to the surface of the carbon layer of the carbon base material d using a die coater, dried at 80 ° C. for 10 minutes, and a platinum layer having a platinum amount of 0.5 mg / cm 2 (3) Thus, an electrode 1 was obtained.
 前記積層体2と電極1とを、積層体2の電解質膜(1)と電極1の触媒層(3)とが接するように積層し、160℃、3MPaで2分間熱処理した。次いで、窒素ガス雰囲気下、160℃で30分間熱処理した。 The laminate 2 and the electrode 1 were laminated so that the electrolyte membrane (1) of the laminate 2 and the catalyst layer (3) of the electrode 1 were in contact with each other, and heat-treated at 160 ° C. and 3 MPa for 2 minutes. Next, heat treatment was performed at 160 ° C. for 30 minutes in a nitrogen gas atmosphere.
 次いで、ETFEフィルムを剥離し、カーボン基材bにおけるカーボン層とETFEフィルムを剥離して得られた触媒層(2)とが接するように重ね、これらを160℃、3MPaで2分間熱処理し、電極面積が25cmである膜電極接合体(6)を得た。膜電極接合体6における電極1の側がカソードとなるように、膜電極接合体(6)を発電用セルに組み込んだ。 Next, the ETFE film is peeled off, and the carbon layer in the carbon base material b and the catalyst layer (2) obtained by peeling off the ETFE film are stacked so that they are in contact with each other. A membrane electrode assembly (6) having an area of 25 cm 2 was obtained. The membrane electrode assembly (6) was incorporated into the power generation cell so that the electrode 1 side of the membrane electrode assembly 6 was the cathode.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 例1~例3の膜電極接合体は、ガス拡散層に本発明のガス拡散部材を有するため、高加湿状態(50℃、100%RH)であってもセル電圧が比較的高かった。例1~例3の膜電極接合体における内部抵抗が比較的低く、膜電極接合体の電極が充分な導電性を有することがわかる。また、例1~例3の膜電極接合体のセル電圧が高いことから、電極におけるガス拡散性および排水性に優れていることがわかかる。
 例4~例6は、ガス拡散層に本発明のガス拡散部材を有しないため、高加湿状態(50℃、100%RH)においてセル電圧が比較的低かった。
Since the membrane electrode assemblies of Examples 1 to 3 had the gas diffusion member of the present invention in the gas diffusion layer, the cell voltage was relatively high even in a highly humidified state (50 ° C., 100% RH). It can be seen that the internal resistance of the membrane electrode assemblies of Examples 1 to 3 is relatively low, and the electrodes of the membrane electrode assemblies have sufficient conductivity. Further, since the cell voltage of the membrane electrode assemblies of Examples 1 to 3 is high, it can be seen that the gas diffusibility and drainage of the electrode are excellent.
In Examples 4 to 6, since the gas diffusion member of the present invention was not included in the gas diffusion layer, the cell voltage was relatively low in a highly humidified state (50 ° C., 100% RH).
 本発明のガス拡散部材は、固体高分子形燃料電池用膜電極接合体におけるガス拡散層として有用である。 The gas diffusion member of the present invention is useful as a gas diffusion layer in a membrane electrode assembly for a polymer electrolyte fuel cell.
 1: 膜電極接合体、 10: ガス拡散部材、 12: 多孔質基材、 14: 導電性材料、 14a: 含浸部、 14b: 下地部、 14c: 第1の半含浸部、14d:第2の半含浸部、 20:アノード、 22: 触媒層、 24:ガス拡散層、 26:カーボン基材、 28: カーボン層、 30:カソード、 32:触媒層、 34:ガス拡散層、 36: カーボン基材、 40:高分子電解質膜、 100: 第1のキャリアフィルム、 102: 第2のキャリアフィルム。 1: membrane electrode assembly, 10: gas diffusion member, 12: porous base material, 14: conductive material, 14a: impregnation part, 14b: base part, 14c: first semi-impregnation part, 14d: second Semi-impregnated part, 20: anode, 22: catalyst layer, 24: gas diffusion layer, 26: carbon substrate, 28: carbon layer, 30: cathode, 32: catalyst layer, 34: gas diffusion layer, 36: carbon substrate 40: polymer electrolyte membrane, 100: first carrier film, 102: second carrier film.
 なお、2016年7月15日に出願された日本特許出願2016-140605号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2016-140605 filed on July 15, 2016 are cited here as disclosure of the specification of the present invention. Incorporate.

Claims (15)

  1.  熱可塑性樹脂材料からなるシート状の多孔質基材と、前記多孔質基材に少なくとも一部が含浸した導電性材料と、を含み、前記導電性材料が炭素繊維とイオン交換樹脂とを含むことを特徴とするガス拡散部材。 A sheet-like porous base material made of a thermoplastic resin material, and a conductive material at least partially impregnated in the porous base material, wherein the conductive material contains carbon fiber and an ion exchange resin. A gas diffusion member characterized by the above.
  2.  前記炭素繊維が気相成長炭素繊維である、請求項1に記載のガス拡散部材。 The gas diffusion member according to claim 1, wherein the carbon fiber is a vapor-grown carbon fiber.
  3.  前記炭素繊維の平均繊維径が1~1000nmであり、かつ前記炭素繊維の平均繊維長が1~100μmである、請求項1または2に記載のガス拡散部材。 3. The gas diffusion member according to claim 1, wherein the average fiber diameter of the carbon fibers is 1 to 1000 nm, and the average fiber length of the carbon fibers is 1 to 100 μm.
  4.  前記炭素繊維の含有量が、前記ガス拡散部材の1cmあたり、0.1~10mgである、請求項1~3のいずれか一項に記載のガス拡散部材。 The gas diffusion member according to any one of claims 1 to 3, wherein a content of the carbon fiber is 0.1 to 10 mg per 1 cm 2 of the gas diffusion member.
  5.  前記イオン交換樹脂のイオン交換容量が0.5~2.0ミリ当量/g乾燥樹脂である、請求項1~4のいずれか一項に記載のガス拡散部材。 The gas diffusion member according to any one of claims 1 to 4, wherein the ion exchange capacity of the ion exchange resin is 0.5 to 2.0 meq / g dry resin.
  6.  前記イオン交換樹脂の含有量の前記炭素繊維の含有量に対する質量比が、0.05~1.5である、請求項1~5のいずれか一項に記載のガス拡散部材。 The gas diffusion member according to any one of claims 1 to 5, wherein a mass ratio of the content of the ion exchange resin to the content of the carbon fiber is 0.05 to 1.5.
  7.  前記イオン交換樹脂が、下式u1で表される単位を有するポリマーである、請求項1~6のいずれか一項に記載のガス拡散部材。
    Figure JPOXMLDOC01-appb-C000001
     ただし、Qは、単結合、またはエーテル性の酸素原子を有していてもよいペルフルオロアルキレン基であり、Rf1は、エーテル性の酸素原子を有していてもよいペルフルオロアルキル基であり、Xは、酸素原子、窒素原子または炭素原子であり、aは、Xが酸素原子の場合0であり、Xが窒素原子の場合1であり、Xが炭素原子の場合2であり、Yは、フッ素原子または1価のペルフルオロ有機基であり、sは、0または1である。
    The gas diffusion member according to any one of claims 1 to 6, wherein the ion exchange resin is a polymer having a unit represented by the following formula u1.
    Figure JPOXMLDOC01-appb-C000001
    However, Q 1 is a single bond or a perfluoroalkylene group which may have an etheric oxygen atom, R f1 is a perfluoroalkyl group which may have an etheric oxygen atom, X 1 is an oxygen atom, a nitrogen atom or a carbon atom, a is 0 when X 1 is an oxygen atom, 1 when X 1 is a nitrogen atom, and 2 when X 1 is a carbon atom , Y 1 is a fluorine atom or a monovalent perfluoro organic group, and s is 0 or 1.
  8.  前記イオン交換樹脂が、下式(u2)で表される単位を有するポリマーである、請求項1~6のいずれか一項に記載のガス拡散部材。
    Figure JPOXMLDOC01-appb-C000002
     ただし、Q21は、エーテル性の酸素原子を有していてもよいペルフルオロアルキレン基であり、Q22は、単結合、またはエーテル性の酸素原子を有していてもよいペルフルオロアルキレン基であり、Rf2は、エーテル性の酸素原子を有していてもよいペルフルオロアルキル基であり、Xは、酸素原子、窒素原子または炭素原子であり、bは、Xが酸素原子の場合0であり、Xが窒素原子の場合1であり、Xが炭素原子の場合2であり、Yは、フッ素原子または1価のペルフルオロ有機基であり、tは、0または1である。単結合は、CYの炭素原子と、SOのイオウ原子とが直接結合していることを意味する。有機基は、炭素原子を1以上含む基を意味する。
    The gas diffusion member according to any one of claims 1 to 6, wherein the ion exchange resin is a polymer having a unit represented by the following formula (u2).
    Figure JPOXMLDOC01-appb-C000002
    However, Q 21 is an etheric good perfluoroalkylene group which may have an oxygen atom, Q 22 is a single bond, or which may have an etheric oxygen atom perfluoroalkylene group, R f2 is a perfluoroalkyl group which may have an etheric oxygen atom, X 2 is an oxygen atom, a nitrogen atom or a carbon atom, and b is 0 when X 2 is an oxygen atom. , X 2 is 1 when X 2 is a nitrogen atom, 2 when X 2 is a carbon atom, Y 2 is a fluorine atom or a monovalent perfluoro organic group, and t is 0 or 1. The single bond means that the carbon atom of CY 2 and the sulfur atom of SO 2 are directly bonded. An organic group means a group containing one or more carbon atoms.
  9.  前記導電性材料が、前記イオン交換樹脂以外のフッ素樹脂をさらに含む、請求項1~8のいずれか一項に記載のガス拡散部材。 The gas diffusion member according to any one of claims 1 to 8, wherein the conductive material further includes a fluororesin other than the ion exchange resin.
  10.  前記多孔質基材が不織布である請求項1~9のいずれか一項に記載のガス拡散部材。 The gas diffusion member according to any one of claims 1 to 9, wherein the porous substrate is a nonwoven fabric.
  11.  前記多孔質基材が、オレフィン系樹脂またはフッ素樹脂からなる、請求項1~10のいずれか一項に記載のガス拡散部材。 The gas diffusion member according to any one of claims 1 to 10, wherein the porous substrate is made of an olefin resin or a fluororesin.
  12.  前記不織布の目付量が1~10g/mである、請求項10に記載のガス拡散部材。 The gas diffusion member according to claim 10, wherein the basis weight of the nonwoven fabric is 1 to 10 g / m 2 .
  13.  前記熱可塑性樹脂材料がオレフィン系樹脂またはフッ素樹脂を含む、請求項1~12のいずれか一項に記載のガス拡散部材。 The gas diffusion member according to any one of claims 1 to 12, wherein the thermoplastic resin material contains an olefin resin or a fluororesin.
  14.  前記ガス拡散部材の厚さが10~300μmである、請求項1~13のいずれか一項に記載のガス拡散部材。 The gas diffusion member according to any one of claims 1 to 13, wherein the gas diffusion member has a thickness of 10 to 300 µm.
  15.  触媒層およびガス拡散層を有するアノードと、触媒層およびガス拡散層を有するカソードと、前記アノードの触媒層と前記カソードの触媒層との間に配置された高分子電解質膜とを備え、
     前記アノードおよび前記カソードのいずれか一方または両方のガス拡散層が、請求項1~14のいずれか一項に記載のガス拡散部材を有する、固体高分子形燃料電池用膜電極接合体。
    An anode having a catalyst layer and a gas diffusion layer, a cathode having a catalyst layer and a gas diffusion layer, and a polymer electrolyte membrane disposed between the catalyst layer of the anode and the catalyst layer of the cathode,
    A membrane electrode assembly for a polymer electrolyte fuel cell, wherein the gas diffusion layer of either one or both of the anode and the cathode has the gas diffusion member according to any one of claims 1 to 14.
PCT/JP2017/025011 2016-07-15 2017-07-07 Gas diffusion member and membrane electrode assembly for solid polymer fuel cell WO2018012435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-140605 2016-07-15
JP2016140605A JP2019149223A (en) 2016-07-15 2016-07-15 Gas diffusion member and membrane-electrode assembly for solid polymer fuel cell

Publications (1)

Publication Number Publication Date
WO2018012435A1 true WO2018012435A1 (en) 2018-01-18

Family

ID=60952427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025011 WO2018012435A1 (en) 2016-07-15 2017-07-07 Gas diffusion member and membrane electrode assembly for solid polymer fuel cell

Country Status (2)

Country Link
JP (1) JP2019149223A (en)
WO (1) WO2018012435A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022075462A1 (en) * 2020-10-09 2022-04-14

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220843A (en) * 2003-01-10 2004-08-05 Toyota Central Res & Dev Lab Inc Membrane electrode assembly
JP2005302339A (en) * 2004-04-07 2005-10-27 Honda Motor Co Ltd Solid polymer fuel cell
JP2006339124A (en) * 2005-06-06 2006-12-14 Nissan Motor Co Ltd Membrane-electrode assembly for fuel cell, and solid polymer fuel cell using this
WO2009116630A1 (en) * 2008-03-21 2009-09-24 旭硝子株式会社 Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP2012018871A (en) * 2010-07-09 2012-01-26 Asahi Glass Co Ltd Method of manufacturing membrane electrode assembly for solid polymer fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220843A (en) * 2003-01-10 2004-08-05 Toyota Central Res & Dev Lab Inc Membrane electrode assembly
JP2005302339A (en) * 2004-04-07 2005-10-27 Honda Motor Co Ltd Solid polymer fuel cell
JP2006339124A (en) * 2005-06-06 2006-12-14 Nissan Motor Co Ltd Membrane-electrode assembly for fuel cell, and solid polymer fuel cell using this
WO2009116630A1 (en) * 2008-03-21 2009-09-24 旭硝子株式会社 Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP2012018871A (en) * 2010-07-09 2012-01-26 Asahi Glass Co Ltd Method of manufacturing membrane electrode assembly for solid polymer fuel cell

Also Published As

Publication number Publication date
JP2019149223A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
JP5107050B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
US6733915B2 (en) Gas diffusion backing for fuel cells
JP5066998B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
US8535847B2 (en) Membrane/electrode assembly for polymer electrolyte fuel cell
JP6098430B2 (en) Polymer electrolyte fuel cell
JP2010146965A (en) Membrane-electrode assembly for solid polymer fuel cell, coating liquid for forming catalyst layer of solid polymer fuel cell, and manufacturing method for membrane-electrode assembly of solid polymer fuel cell
CN109790244B (en) Polymer, solid polymer electrolyte membrane, and membrane electrode assembly
JP5195286B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
US8475967B2 (en) Membrane/electrode assembly for polymer electrolyte fuel cell and process for producing cathode for polymer electrolyte fuel cell
JP2016106371A (en) Membrane electrode assemblies including mixed carbon particles
JP5601779B2 (en) Gas diffusion layer, membrane-electrode assembly and fuel cell
JP5694638B2 (en) Gas diffusion layer, membrane-electrode assembly and fuel cell
JP5181717B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and method for producing the same
WO2018012435A1 (en) Gas diffusion member and membrane electrode assembly for solid polymer fuel cell
US20150270567A1 (en) Process for producing membrane/electrode assembly for polymer electrolyte fuel cell and paste for forming interlayer
JP4828864B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly for polymer electrolyte fuel cell, production method thereof, and polymer electrolyte fuel cell
JP5410944B2 (en) Gas diffusion layer, membrane-electrode assembly and fuel cell
JP2006318790A (en) Solid polymer type fuel cell, gas diffusion electrode therefor, and its manufacturing method
JP5563279B2 (en) Gas diffusion layer, membrane-electrode assembly and fuel cell
JP2021190176A (en) Membrane electrode gas diffusion layer assembly for fuel battery cell
JP2012074319A (en) Moisture control sheet, gas diffusion sheet, membrane-electrode assembly and solid polymer fuel cell
JP2009026726A (en) Membrane electrode assembly using porous electrode substrate to which hydrophilicity is given, and fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17827563

Country of ref document: EP

Kind code of ref document: A1