JP2007192770A - Vacuum feed through for thermocouple - Google Patents

Vacuum feed through for thermocouple Download PDF

Info

Publication number
JP2007192770A
JP2007192770A JP2006013476A JP2006013476A JP2007192770A JP 2007192770 A JP2007192770 A JP 2007192770A JP 2006013476 A JP2006013476 A JP 2006013476A JP 2006013476 A JP2006013476 A JP 2006013476A JP 2007192770 A JP2007192770 A JP 2007192770A
Authority
JP
Japan
Prior art keywords
thermocouple
vacuum
wires
wire
vacuum space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006013476A
Other languages
Japanese (ja)
Other versions
JP4866616B2 (en
Inventor
Shigetaka Haga
重崇 芳賀
Toshihiko Ogasawara
俊彦 小笠原
Kuniaki Miura
邦明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sukegawa Electric Co Ltd
Original Assignee
Sukegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukegawa Electric Co Ltd filed Critical Sukegawa Electric Co Ltd
Priority to JP2006013476A priority Critical patent/JP4866616B2/en
Publication of JP2007192770A publication Critical patent/JP2007192770A/en
Application granted granted Critical
Publication of JP4866616B2 publication Critical patent/JP4866616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To extract thermocouple lines from a vacuum space to the outside, even in a W-Re thermocouple or the like including a fine pore in its inside, under the condition where high airtightness is held, to measure a temperature under the condition where connection parts between the thermocouple lines and compensation conductors are held at the same temperature in the outside of the vacuum space, and to prevent thereby an error from being generated in electromotive force indicated by the thermocouple. <P>SOLUTION: Lead wire sides of the thermocouple lines 9a, 9b penetrated through an inorganic insulator 7 sealing a thermocouple port 3 are pulled out from the vacuum space to the outside, in this vacuum field through of the thermocouple, base parts of the thermocouple lines 9a, 9b including pulled-out portions of the thermocouple lines 9a, 9b are coated with a resin insulator 10 to be sealed airtightly, and the lead wire sides of the thermocouple lines 9a, 9b are connected to the compensation conductors 15a, 15b in the outside of the vacuum space. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、 測温接点が真空空間内に設置された熱電対線を封止部から真空空間の外部に引き出す熱電対の真空フィードスルーに関し、特に粉末冶金により線材加工されて作られるW−Re系熱電対のように、微細な気孔を有する熱電対線を封止部から真空空間の外部に引き出すのに好適な熱電対の真空フィードスルーに関する。   The present invention relates to a thermocouple vacuum feedthrough in which a thermocouple wire having a temperature measuring contact installed in a vacuum space is drawn out from a sealed portion to the outside of the vacuum space, and in particular, W-Re made by wire processing by powder metallurgy. The present invention relates to a vacuum feedthrough of a thermocouple suitable for drawing out a thermocouple wire having fine pores from a sealing portion to the outside of a vacuum space, such as a system thermocouple.

高融点のため、粉末冶金により線材加工されて作られるW−Re系熱電対は、微細な通孔を有するため、それをそのまま真空空間から熱電対ポートを通して引き出すと、封止部をロー付けすることが困難である。仮にそうしたとしても気密性が悪く、Heリーク試験を行うと、Heリークが確認されることが多い。   Because of its high melting point, W-Re thermocouples that are made by wire processing by powder metallurgy have fine through holes, so if they are pulled out of the vacuum space as they are through the thermocouple port, the sealing part is brazed. Is difficult. Even if such is the case, the airtightness is poor, and when a He leak test is performed, a He leak is often confirmed.

そこで従来のW−Re系熱電対の真空フィードスルーでは、熱電対線と補償導線との接続を真空空間内で行い、補償導線を熱電対ポートから引き出している。W−Re系熱電対は、一般に5%Re−W合金と、26%Re−W合金とからなる熱電対線を接合したものであるが、前者の熱電対線に接続される補償導線にはアロイ405が、後者の熱電対線に接続される補償導線にはアロイ426が使用される。これらの補償導線は押出、延伸により線材加工が可能であるため、組織が緻密であり、Agロー付けによる封止が容易であり、気密性も高く、Heリーク試験においてもリークは確認されない。また、これらの補償導線は延性が高いため、曲げ加工性に優れ、強度も高いという利点がある。   Therefore, in the conventional vacuum feedthrough of the W-Re thermocouple, the thermocouple wire and the compensation lead wire are connected in a vacuum space, and the compensation lead wire is drawn out from the thermocouple port. A W-Re thermocouple is generally a thermocouple wire made of a 5% Re-W alloy and a 26% Re-W alloy, but the compensation wire connected to the former thermocouple wire is Alloy 426 is used for the compensating lead wire to which alloy 405 is connected to the latter thermocouple wire. Since these compensating lead wires can be processed by extrusion and drawing, the structure is dense, easy to seal by Ag brazing, high airtightness, and no leak is confirmed in the He leak test. Moreover, since these compensation conducting wires have high ductility, they have the advantage of excellent bending workability and high strength.

図4は、従来の一般的なW−Re系熱電対の真空フィードスルーの例を示す縦断面図である。真空チャンバの熱電対ポート31にフランジ32が設けられ、このフランジ32にフィードスルー端子のフランジ33が気密に接合されている。フランジ32、33の接合は、Oリング等のガスケット35を挟んでボルトとナット34による締め付けによりなされている。   FIG. 4 is a longitudinal sectional view showing an example of a vacuum feedthrough of a conventional general W-Re thermocouple. A flange 32 is provided in the thermocouple port 31 of the vacuum chamber, and a flange 33 of a feedthrough terminal is airtightly joined to the flange 32. The flanges 32 and 33 are joined by fastening with bolts and nuts 34 with a gasket 35 such as an O-ring interposed therebetween.

外側のフランジ33には金属スリーブ36の一端が気密に溶接され、この金属スリーブ36の他端はアルミナ等の無機絶縁体37が嵌め込まれて封止されている。この無機絶縁体37には細い2本の金属スリーブ38、38が貫通している。この金属スリーブ38、38にアロイ405、アロイ426からなる補償導線45a、45bがそれぞれ引き通され、これら補償導線45a、45bを引き通した金属スリーブ38、38の先端がロー付けまたは溶接等の手段で気密に封止されている。これら金属スリーブ38、38を通して真空チャンバ側に導入された補償導線45a、45bの先端はリング状になっており、この先端部分に5%Re−W合金と26%Re−W合金とからなる熱電対線39a、39bがネジ止めにより接続される。   One end of a metal sleeve 36 is air-tightly welded to the outer flange 33, and the other end of the metal sleeve 36 is sealed by fitting an inorganic insulator 37 such as alumina. The inorganic insulator 37 is penetrated by two thin metal sleeves 38. Compensation conductors 45a and 45b made of alloy 405 and alloy 426 are respectively passed through the metal sleeves 38 and 38, and the tips of the metal sleeves 38 and 38 passing through the compensation conductors 45a and 45b are brazed or welded. It is hermetically sealed. The tips of the compensating conductors 45a and 45b introduced to the vacuum chamber side through the metal sleeves 38 and 38 have a ring shape, and a thermoelectric consisting of 5% Re-W alloy and 26% Re-W alloy at the tip portion. The paired wires 39a and 39b are connected by screwing.

前述したように、W−Re系熱電対のプラス極側の5%Re−W合金の熱電対線39aにはアロイ405からなる補償導線45aが接続され、マイナス極側の26%Re−W合金の熱電対線39bには、アロイ426からなる補償導線45bが接続される。このようなW−Re系熱電対と補償導線の組合せはASTMという米国規格で規定されている。アロイ405やアロイ426はNi系合金であり、溶解、延伸、線材加工が極めて容易で緻密な組織の線材が得られ、その溶接、ロー付け等は何れも容易であり、気密性も高い。   As described above, the compensating lead wire 45a made of alloy 405 is connected to the thermocouple wire 39a of the 5% Re-W alloy on the positive electrode side of the W-Re thermocouple, and the 26% Re-W alloy on the negative electrode side. The thermocouple wire 39b is connected to a compensating lead wire 45b made of an alloy 426. Such a combination of a W-Re thermocouple and a compensating lead wire is defined by an American standard called ASTM. Alloy 405 and alloy 426 are Ni-based alloys, and a wire material having a fine structure can be obtained with extremely easy melting, stretching, and wire processing. Both welding and brazing are easy and airtightness is high.

一方、W−Re系熱電対は高融点であるため、溶融のためには真空中での電子ビームによる溶解装置が必要であるが、そのような装置は極めて高価であり、処理に要する手数や時間もかかり、コスト高である。そのため、W−Re系熱電対の線材加工は粉末冶金により行われている。この場合、WはReより酸化しやすく、酸化すると昇華するため、真空中か不活性ガス雰囲気中で焼成する必要がある。焼成温度は高温であればある程焼結しやすく、緻密化する。もちろん、CIP等の静水圧力で押し固め、予め高密度の棒状成形体としておくことにより、焼成時の気孔を減らすことが出来る。この点で焼成前の材料の加圧成形技術も重要な技術である。   On the other hand, since a W-Re thermocouple has a high melting point, a melting apparatus using an electron beam in a vacuum is necessary for melting, but such an apparatus is extremely expensive, and the number of steps required for processing It takes time and is expensive. Therefore, wire processing of W-Re thermocouples is performed by powder metallurgy. In this case, W is easier to oxidize than Re and sublimates when oxidized, so it must be fired in a vacuum or in an inert gas atmosphere. The higher the firing temperature, the easier the sintering and densification. Of course, pores at the time of firing can be reduced by compacting with a hydrostatic pressure such as CIP and preliminarily forming a high-density rod-shaped molded body. In this respect, the pressure forming technique of the material before firing is also an important technique.

粉末冶金により線材加工された熱電対線は延性が低く、折れやすいため、熱電対線と補償導線との接続はネジ止めが一般的である。W−Re系熱電対は酸化しやすいので、真空中や不活性ガス中での超高温領域での測定に適している。
図1により前述したように、熱電対線と補償導線との接続は、真空空間側で行い、補償導線をセラミック端子を通して外部に引き出す真空フィードスルーの構造が採用される。補償導線を通す金属スリーブとしては、コバールやインバー等の低熱膨張係数合金が使用され、その端部をロー付けや溶接で気密封止し、真空バウンダリを形成する。より具体的には、アルミナ等の無機絶縁体の金属スリーブを通す孔は、Mo−Mn等の金属ペーストを塗布し、これを真空中、不活性ガス雰囲気中或いはHを含む還元雰囲気中で焼き付けることにより、予めメタライズする。このメタライズした孔に前記金属スリーブを嵌め込み、ロー付けする。この金属スリーブに補償導線を通して引き出し、金属スリーブの端部をロー付けや溶接で気密封止し、真空バウンダリを形成する。
Thermocouple wires processed by powder metallurgy have low ductility and are easy to break. Therefore, the connection between the thermocouple wires and the compensating conductors is generally screwed. Since W-Re thermocouples are easily oxidized, they are suitable for measurement in a very high temperature region in a vacuum or in an inert gas.
As described above with reference to FIG. 1, the thermocouple wire and the compensation lead wire are connected on the vacuum space side, and a vacuum feed-through structure is adopted in which the compensation lead wire is drawn out through the ceramic terminal. A low thermal expansion coefficient alloy such as Kovar or Invar is used as the metal sleeve for passing the compensating conductor, and its end is hermetically sealed by brazing or welding to form a vacuum boundary. More specifically, hole into which the metal sleeve of the inorganic insulating material such as alumina is coated with a metal paste such as Mo-Mn, which in a vacuum, in a reducing atmosphere containing in or H 2 inert gas atmosphere Pre-metallized by baking. The metal sleeve is fitted into the metallized hole and brazed. The metal sleeve is pulled out through a compensating conductor, and the end of the metal sleeve is hermetically sealed by brazing or welding to form a vacuum boundary.

5%Re−W合金の熱電対線39aとアロイ405の補償導線45aとの接続部と、26%Re−W合金の熱電対線39bとアロイ426の補償導線45bとの接続部における温度差が無視出来る程度に小さい場合は問題は無い。しかし、それら接続部の温度差が大きいとその1.3倍に比例する起電力が接続部の間に発生し、熱電対の温度指示値に大きな誤差を生じる。プラス極側の5%Re−W合金の熱電対線39aとアロイ405の補償導線45aとの接続部の温度がマイナス極側の26%Re−W合金の熱電対線39bとアロイ426の補償導線45bとの接続部の温度より高いと、熱電対が示す起電力はマイナス側にシフトし、その逆ではプラス側にシフトする。   There is a temperature difference between the connecting portion between the thermocouple wire 39a of the 5% Re-W alloy and the compensating lead wire 45a of the alloy 405, and the connecting portion between the thermocouple wire 39b of the 26% Re-W alloy and the compensating lead wire 45b of the alloy 426. If it is small enough to be ignored, there is no problem. However, if the temperature difference between these connecting portions is large, an electromotive force proportional to 1.3 times that is generated between the connecting portions, resulting in a large error in the temperature indication value of the thermocouple. The temperature of the connecting portion between the 5% Re-W alloy thermocouple wire 39a on the positive pole side and the compensating lead wire 45a of the alloy 405 is 26% Re-W alloy thermocouple wire 39b on the negative pole side and the compensating lead wire of the alloy 426. If the temperature is higher than the temperature at the connection with 45b, the electromotive force indicated by the thermocouple shifts to the minus side, and vice versa.

例えば、プラス極側の5%Re−W合金の熱電対線39aとアロイ405の補償導線45aとの接続部の温度がマイナス極側の26%Re−W合金の熱電対線39bとアロイ426の補償導線45bとの接続部の温度より100℃高いと、それに伴って熱電対に−130℃分の起電力が生じ、熱電対の測温接点での実際の温度が1500℃の場合、熱電対の起電力が示す温度は1500−130=1370℃を示す。この逆に、前者のプラス極側の接続部の温度が後者のマイナス極側の接続部の温度より100℃低いと、熱電対の測温接点での実際の温度が1500℃の場合、熱電対の起電力が示す温度は1500+130=1630℃を示す。何れの場合も約±8.7%の誤差を生じる。   For example, the temperature of the connecting portion between the thermocouple wire 39a of the 5% Re-W alloy on the positive electrode side and the compensating lead wire 45a of the alloy 405 is between the thermocouple wire 39b of the 26% Re-W alloy on the negative electrode side and the alloy 426. When the temperature of the connecting portion with the compensating lead wire 45b is 100 ° C. higher, an electromotive force of −130 ° C. is generated in the thermocouple, and when the actual temperature at the temperature measuring junction of the thermocouple is 1500 ° C., the thermocouple The temperature indicated by the electromotive force is 1500−130 = 1370 ° C. On the other hand, if the temperature of the former positive electrode side connection portion is 100 ° C. lower than the temperature of the latter negative electrode side connection portion, the actual temperature at the thermocouple junction is 1500 ° C. The temperature indicated by the electromotive force of 1500 + 130 = 1630 ° C. In either case, an error of about ± 8.7% occurs.

この熱電対線と補償導線との接続部の温度差に起因する温度測定誤差を避けるためには、補償導線を真空チャンバ内から気密に引き出すのではなく、熱電対線を真空チャンバ内から気密に引き出し、真空チャンバ外で熱電対線と補償導線との接続部を形成し、その接続部を同じ温度に保持することが必要である。   In order to avoid the temperature measurement error due to the temperature difference between the thermocouple wire and the compensation lead wire, the thermocouple wire should be airtight from the vacuum chamber rather than drawn out from the vacuum chamber. It is necessary to form a connection portion between the thermocouple wire and the compensation lead wire outside the vacuum chamber and keep the connection portion at the same temperature.

しかし、前述したようにW−Re系熱電対は融点が高いため、溶解した素材から線材加工することは殆どなく、粉末冶金により高温焼成で線材加工するのが一般的である。このような粉末冶金により線材加工された熱電対線の欠点は、内部に僅かに気孔が残ってしまって、Agロー付けによる封止では気密性が悪く、Heリーク試験においてHeの漏れが生じやすい。   However, as described above, since the W-Re thermocouple has a high melting point, the wire material is hardly processed from the melted material, and the wire material is generally processed by high-temperature firing by powder metallurgy. The disadvantage of the thermocouple wire processed by powder metallurgy is that a few pores remain inside, the airtightness is poor in the sealing by Ag brazing, and He leaks easily in the He leak test. .

またW−Re系熱電対に含まれるWは酸化しやすく、しかもその酸化物は昇華するため、Agロー付けは真空中か或いは不活性ガス雰囲気で行う必要がある。Agロー付けの気密性を高めるためには、Agロー付けのロー材を熱電対線の気孔部に浸透させて、Heリークが生じない程度の長さまでAgロー付けることが必要である。しかし、Agロー付けのロー材を熱電対線の気孔部に浸透させることや、Heリークが生じない程度の10〜20mm程度の長さまでAgロー付けすることも共に困難であり、Agロー付けでは完全な気密性を得ることは現実的には難しい。さらに、Agロー付け部は折れやすく、そのロー付け部がAgロー材を含む合金として異種の金属接続部を形成してしまうので、封止部で温度差が生じると、やはり熱電対が示す起電力に誤差を生じてしまう。
特開平7−273050号公報 特開2001−221692号公報 特開2001−343290号公報
In addition, W contained in the W-Re thermocouple is easily oxidized, and the oxide sublimates. Therefore, Ag brazing must be performed in a vacuum or in an inert gas atmosphere. In order to increase the air tightness of Ag brazing, it is necessary to penetrate the pores of the thermocouple wire into the Ag brazing brazing material and braze the Ag brazing to a length that does not cause He leakage. However, it is difficult to penetrate the brazing material of the Ag brazing into the pore portion of the thermocouple wire or to braze to a length of about 10 to 20 mm so that no He leak occurs. It is practically difficult to obtain perfect airtightness. Furthermore, the Ag brazed portion is easily broken, and the brazed portion forms a dissimilar metal connecting portion as an alloy containing an Ag brazing material. An error occurs in the power.
JP 7-273050 A Japanese Patent Laid-Open No. 2001-221692 JP 2001-343290 A

本発明は、このような従来の熱電対の真空フィードスルーにおける課題に鑑み、内部に細かい気孔を含むW−Re系熱電対のような熱電対線であっても、真空空間からその外部に高い気密性を保持した状態で引き出すことが出来、これにより熱電対線と補償導線との接続部を真空空間の外部で同じ温度に保持した状態で温度測定を可能として、熱電対が指示する起電力に誤差が生じないようにすることを目的とする。   In view of the problems in vacuum feedthrough of such conventional thermocouples, the present invention is high from the vacuum space to the outside even for thermocouple wires such as W-Re type thermocouples containing fine pores inside. It can be pulled out while maintaining airtightness, which enables temperature measurement with the connection between the thermocouple wire and compensation lead wire kept at the same temperature outside the vacuum space, and the electromotive force indicated by the thermocouple The purpose is to prevent errors from occurring.

前記の目的を達成するため、本発明では、真空チャンバ等の内部に形成される真空空間の熱電対ポート1を封止したアルミナ等からなる無機絶縁体7を通して熱電対線9a、9bを真空空間からその外部に引き出すと共に、熱電対線9a、9bの引出部を含めてその基部を樹脂絶縁体10で覆い、熱電対線9a、9bを真空空間の外部で補償導線と接続可能とするものである。これにより、それらの接続部を同じ温度下に容易に保持出来るようにしたものである。前記樹脂絶縁体10はHeリーク試験においてHeのリークが起こらない程度の長さにわたって熱電対線9a、9bの基部を覆うことで、気密性も確保することが出来る。   In order to achieve the above object, in the present invention, the thermocouple wires 9a and 9b are passed through the inorganic insulator 7 made of alumina or the like that seals the thermocouple port 1 of the vacuum space formed inside the vacuum chamber or the like. The base including the lead portions of the thermocouple wires 9a and 9b are covered with the resin insulator 10 so that the thermocouple wires 9a and 9b can be connected to the compensating conductor outside the vacuum space. is there. As a result, these connecting portions can be easily held at the same temperature. The resin insulator 10 can ensure airtightness by covering the bases of the thermocouple wires 9a and 9b over a length that does not cause He leakage in the He leakage test.

すなわち、本発明による熱電対の真空フィードスルーは、熱電対ポート3を封止した無機絶縁体7を貫通して熱電対線9a、9bのリード線側を真空空間からその外部に引き出し、その熱電対線9a、9bの引出部分を含めて熱電対線9a、9bの基部を樹脂絶縁体10で覆って気密に封止し、熱電対線9a、9bのリード線側を真空空間の外部で補償導線15a、15bと接続するものである。   That is, the vacuum feedthrough of the thermocouple according to the present invention penetrates the inorganic insulator 7 sealing the thermocouple port 3 and draws the lead wires of the thermocouple wires 9a and 9b from the vacuum space to the outside. Cover the bases of the thermocouple wires 9a and 9b including the lead-out portions of the pair wires 9a and 9b with the resin insulator 10 and hermetically seal them, and compensate the lead wires of the thermocouple wires 9a and 9b outside the vacuum space. It connects with conducting wire 15a, 15b.

このような熱電対の真空フィードスルーでは、前記樹脂絶縁体10がHeリーク試験においてHeのリークが起こらない程度の長さにわたって熱電対線9a、9bの基部を覆うようにすることで、気密性が確保することが出来る。また、熱電対線9a、9bが真空空間の外に引き出されており、真空空間の外で補償導線と接続することが出来るので、それらの接続部の温度条件を同じにすることは容易である。そのため、補償導線との接続部における温度差に伴う熱電対の測定誤差を無くすことが容易となる。   In such a thermocouple vacuum feedthrough, the resin insulator 10 covers the bases of the thermocouple wires 9a and 9b over a length that does not cause He leakage in the He leak test. Can be secured. In addition, since the thermocouple wires 9a and 9b are drawn out of the vacuum space and can be connected to the compensation lead wire outside the vacuum space, it is easy to make the temperature conditions of the connecting portions the same. . Therefore, it becomes easy to eliminate the measurement error of the thermocouple due to the temperature difference at the connection portion with the compensating lead wire.

前記の樹脂絶縁体10は無機絶縁体7の熱電対線9a、9bの引出部分にモールド成型することで容易に設けることが出来る。また、樹脂絶縁体10が熱電対線9a、9bと補償導線15a、15bとを着脱自在に接続するコネクタ12a、12bのハウジングを兼ねるようにしてもよい。   The resin insulator 10 can be easily provided by molding at the drawn portions of the thermocouple wires 9a and 9b of the inorganic insulator 7. Further, the resin insulator 10 may also serve as a housing for the connectors 12a and 12b that detachably connect the thermocouple wires 9a and 9b and the compensating lead wires 15a and 15b.

本発明では、真空チャンバ等の熱電対ポートから引き出された熱電対線9a、9bの基部を樹脂絶縁体10で覆い、気密性を確保すると共に、真空チャンバ等の外側で熱電対線9a、9bと補償導線15a、15bとの接続を可能にした。
以下、本発明を実施するための最良の形態について、実施例をあげて詳細に説明する。
In the present invention, the base portions of the thermocouple wires 9a and 9b drawn out from the thermocouple ports of the vacuum chamber or the like are covered with the resin insulator 10, ensuring airtightness, and the thermocouple wires 9a and 9b outside the vacuum chamber or the like. And the compensating lead wires 15a and 15b can be connected.
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.

図1は、本発明の一実施例である熱電対の真空フィードスルーを示す真空チャンバの部分縦断側面図である。
真空チャンバの熱電対ポート1にフランジ2が設けられ、このフランジ2にフィードスルー端子のフランジ3が気密に接合されている。これらフランジ2、3の接合は、Oリング等のガスケット5を挟んでボルトとナット4の締め付けによりなされている。
FIG. 1 is a partially longitudinal side view of a vacuum chamber showing a vacuum feedthrough of a thermocouple according to an embodiment of the present invention.
A flange 2 is provided in the thermocouple port 1 of the vacuum chamber, and a flange 3 of a feedthrough terminal is airtightly joined to the flange 2. The flanges 2 and 3 are joined by fastening bolts and nuts 4 with a gasket 5 such as an O-ring interposed therebetween.

外側のフランジ3の中心軸上には金属スリーブ6の一端が気密に溶接され、この金属スリーブ6の他端はアルミナ等の無機絶縁体7が嵌め込まれて気密に封止されている。この無機絶縁体7には細い2本の金属スリーブ8、8が貫通している。無機絶縁体7の金属スリーブ8、8を通す孔は、Mo−Mn等の金属ペーストを塗布し、これを真空中、不活性ガス雰囲気中或いはHを含む還元雰囲気中で焼き付けることにより、予めメタライズしておく。このメタライズした孔に前記金属スリーブ8、8を嵌め込み、ロー付けする。こられの金属スリーブ8、8にプラス極側の5%Re−W合金の熱電対線9aとマイナス極側の26%Re−W合金の熱電対線9bとがそれぞれ引き通されている。 One end of a metal sleeve 6 is air-tightly welded on the central axis of the outer flange 3, and the other end of the metal sleeve 6 is fitted with an inorganic insulator 7 such as alumina and hermetically sealed. Two thin metal sleeves 8, 8 pass through the inorganic insulator 7. The holes through which the metal sleeves 8 and 8 of the inorganic insulator 7 pass are coated with a metal paste such as Mo-Mn and baked in a vacuum, an inert gas atmosphere or a reducing atmosphere containing H 2 in advance. Metalize. The metal sleeves 8 and 8 are fitted into the metallized holes and brazed. These metal sleeves 8 and 8 are respectively led through a 5% Re-W alloy thermocouple wire 9a on the positive electrode side and a 26% Re-W alloy thermocouple wire 9b on the negative electrode side.

さらに、これら熱電対線9a、9bを引き通した金属スリーブ8、8の先端部を含め、熱電対線9a、9bの引出基部にモールド樹脂成形等の手段で樹脂絶縁体10が設けられ、熱電対線9a、9bを引き通した金属スリーブ8、8の先端部を含む熱電対線9a、9bの引出基部が覆われている。金属スリーブ8、8の先端から引き出された前記熱電対線9a、9bの基部を覆う樹脂絶縁体10の長さは、Heリーク試験においてHeのリークが起こらない十分な長さbとする。その長さは通常は5mm以上である。従って、無機絶縁体7から突出した金属スリーブ38、38の先端部の長さをaとしたとき、金属スリーブ8、8と熱電対線9a、9bとを覆う樹脂絶縁体10の全体の長さLは、L=a+bとなる。このa+bがシールの全長となり、30mm以上必要である。アルミナ等の無機絶縁材7を真空側にして、樹脂絶縁体10を大気側にしたのは、真空チャンバー内に有る高温物体より輻射熱によって真空側の絶縁体表面だけが加熱されるため、真空側の絶縁材は耐熱性の高いアルミナ等の無機絶縁材7でなけれぱならないからである。   Further, a resin insulator 10 is provided on the lead bases of the thermocouple wires 9a and 9b, including the tips of the metal sleeves 8 and 8 through which the thermocouple wires 9a and 9b are passed, by means such as molding resin molding. The lead bases of the thermocouple wires 9a and 9b including the tips of the metal sleeves 8 and 8 through which the pair wires 9a and 9b are passed are covered. The length of the resin insulator 10 covering the base portions of the thermocouple wires 9a and 9b drawn from the tips of the metal sleeves 8 and 8 is set to a length b sufficient to prevent He leakage in the He leak test. Its length is usually 5 mm or more. Therefore, when the length of the tips of the metal sleeves 38, 38 protruding from the inorganic insulator 7 is a, the entire length of the resin insulator 10 covering the metal sleeves 8, 8 and the thermocouple wires 9a, 9b. L is L = a + b. This a + b is the total length of the seal and needs to be 30 mm or more. The reason why the inorganic insulating material 7 such as alumina is set to the vacuum side and the resin insulator 10 is set to the atmosphere side is that only the insulator surface on the vacuum side is heated by the radiant heat from the high temperature object in the vacuum chamber. This is because the insulating material must be an inorganic insulating material 7 such as alumina having high heat resistance.

こうして熱電対ポート1から真空チャンバの外側に引き出されたW−Re系熱電対については、冷却しやすい大気側において、そのプラス極側の5%Re−W合金の熱電対線9aにはアロイ405からなる補償導線15aが接続され、マイナス極側の26%Re−W合金の熱電対線9bには、アロイ426からなる補償導線15bがネジ止め等の集団で接続される。熱電対線9a、9bと補償導線15a、15bとの接続部は、同じ温度条件下に置かれる。   The W-Re thermocouple drawn out from the thermocouple port 1 to the outside of the vacuum chamber in this way has an alloy 405 in the 5% Re-W alloy thermocouple wire 9a on the positive electrode side on the air side that is easy to cool. The compensation lead wire 15a made of alloy 426 is connected to the thermocouple wire 9b of the 26% Re-W alloy on the negative pole side by a group of screws or the like. Connections between the thermocouple wires 9a and 9b and the compensating lead wires 15a and 15b are placed under the same temperature condition.

図2は本発明の他の実施例である熱電対の真空フィードスルーを示す真空チャンバの部分縦断側面図である。
この実施例による熱電対の真空フィードスルーでは、樹脂絶縁体10が雄と雌のコネクタ12a、12bを構成しており、これら雄コネクタ12aと雌コネクタ12bとにより前記熱電対線9a、9bと補償導線15a、15bとが接続される。
FIG. 2 is a partially longitudinal side view of a vacuum chamber showing a vacuum feedthrough of a thermocouple according to another embodiment of the present invention.
In the thermocouple vacuum feedthrough according to this embodiment, the resin insulator 10 constitutes male and female connectors 12a and 12b, and the male connector 12a and female connector 12b compensate for the thermocouple wires 9a and 9b. Conductive wires 15a and 15b are connected.

まず外側のフランジ3に溶接した金属スリーブ6には円筒形の金属からなるアダプタ11が嵌め込まれ、このアダプタ11の先端に雄コネクタ12aがネジ止めされている。この雄コネクタ12aの先端からは一対のコネクタピン14a、14bが突設され、雄コネクタ12aの樹脂ハウジングの内部で、前記一対のコネクタピン14a、14bの基端部にプラス極側の熱電対線9aとマイナス極側の熱電対線9bとがネジ止めされている。雄コネクタ12aは、その樹脂ハウジングがアダプタ11の熱電対線9a、9bが引き出された先端部分を気密に封止している。雄コネクタ12aの樹脂ハウジングの内部における熱電対線9a、9bの長さは短く、従って雄コネクタ12aの樹脂ハウジングが熱電対線9a、9bの引出部を覆うことで、同熱電対線9a、9bがW−Re系熱電対のように、細かい気孔を有するものであっても、Heリークは起こらない。すなわち、雄コネクタ12aの樹脂ハウジングが熱電対線9a、9bの引出部を気密封止する絶縁樹脂としての機能を有する。   First, an adapter 11 made of a cylindrical metal is fitted into the metal sleeve 6 welded to the outer flange 3, and a male connector 12 a is screwed to the tip of the adapter 11. A pair of connector pins 14a and 14b are projected from the distal end of the male connector 12a, and a thermocouple wire on the positive electrode side is disposed at the base end of the pair of connector pins 14a and 14b inside the resin housing of the male connector 12a. 9a and the thermocouple wire 9b on the negative electrode side are screwed. In the male connector 12a, the resin housing hermetically seals the tip portion from which the thermocouple wires 9a and 9b of the adapter 11 are drawn. The lengths of the thermocouple wires 9a and 9b inside the resin housing of the male connector 12a are short. Therefore, the resin housing of the male connector 12a covers the lead-out portions of the thermocouple wires 9a and 9b, so that the thermocouple wires 9a and 9b are covered. However, even if it has fine pores like a W-Re thermocouple, no He leak occurs. That is, the resin housing of the male connector 12a functions as an insulating resin that hermetically seals the lead portions of the thermocouple wires 9a and 9b.

雌コネクタ12b側には、樹脂ハウジングの内部に一対のピン受け金具16a、16bが納められており、樹脂ハウジングの内部でこれらピン受け金具16a、16bの基端部側にプラス極側の補償導線15aとマイナス極側の補償導線15bがそれぞれネジ止めされている。図2は、雄雌のコネクタ12aのコネクタピン14a、14bが雌コネクタ12bのピン受け金具16a、16bに嵌合したした状態であり、これにより、熱電対線9a、9bがそれぞれ補償導線15a、15bに接続される。   On the female connector 12b side, a pair of pin receiving metal fittings 16a and 16b are housed in the resin housing, and the compensating lead wire on the positive pole side is provided on the base end side of the pin receiving metal fittings 16a and 16b inside the resin housing. 15a and a negative lead side compensating lead wire 15b are screwed to each other. FIG. 2 shows a state in which the connector pins 14a and 14b of the male / female connector 12a are fitted to the pin receiving brackets 16a and 16b of the female connector 12b, whereby the thermocouple wires 9a and 9b are respectively connected to the compensating conductor 15a, 15b.

図3は、前記アダプタ11の例を示す分解斜視図である。このアダプタ11は円筒形部材の半割とした一対のハーフ部材16、16からなり、それらハーフ部材16、16を円筒形に組み立てると共に、各ハーフ部材16、16の基部を前記金属スリーブ6に嵌め込む。さらに、各ハーフ部材16、16の基部から側方に突出した締付部17、17をネジ止めし、金属スリーブ6に固定する。さらに、アダプタ11の先端部に雄コネクタ12aを樹脂絶縁体としてこれをモールド成型し、金属スリーブ8、8と熱電線9a、9bを覆い、抜け防止のためねじ止めする。例えば、雄コネクタ12aは、アダプタ11の先端で熱電対線9a、9aにコネクタピン14、14を接続した後、それらを覆うように雄コネクタ12aの樹脂ハウジングとしてモールド成形されることにより作られる。アダプタ11の先端部には、そこに雄コネクタ12aをネジ止めするためのネジ孔18、18が設けられている。   FIG. 3 is an exploded perspective view showing an example of the adapter 11. The adapter 11 includes a pair of half members 16, 16 that are half of a cylindrical member. The half members 16, 16 are assembled into a cylindrical shape, and the bases of the half members 16, 16 are fitted into the metal sleeve 6. Include. Further, the tightening portions 17 and 17 projecting laterally from the base portions of the half members 16 and 16 are screwed and fixed to the metal sleeve 6. Further, the male connector 12a is molded as a resin insulator at the tip of the adapter 11, and the metal sleeves 8 and 8 and the thermal wires 9a and 9b are covered and screwed to prevent them from coming off. For example, the male connector 12a is manufactured by connecting the connector pins 14 and 14 to the thermocouple wires 9a and 9a at the tip of the adapter 11, and then molding the resin connector housing of the male connector 12a so as to cover them. Screw holes 18 and 18 for screwing the male connector 12a are provided at the tip of the adapter 11 there.

本発明の一実施例である熱電対の真空フィードスルーを示す真空チャンバの部分縦断側面図である。It is a partial longitudinal section side view of a vacuum chamber showing vacuum feedthrough of a thermocouple which is one embodiment of the present invention. 本発明の他の実施例である熱電対の真空フィードスルーを示す真空チャンバの部分縦断側面図である。It is a partial vertical side view of the vacuum chamber which shows the vacuum feedthrough of the thermocouple which is the other Example of this invention. 前記図2に示した実施例に使用されたアダプタの例を示す分解斜視図である。It is a disassembled perspective view which shows the example of the adapter used for the Example shown in the said FIG. 従来の一般的なW−Re系熱電対の真空フィードスルーの例を示す真空チャンバの部分縦断面図である。It is a partial longitudinal cross-sectional view of the vacuum chamber which shows the example of the vacuum feedthrough of the conventional general W-Re type thermocouple.

符号の説明Explanation of symbols

3 熱電対ポート
7 無機絶縁体
9a 熱電対線
9b 熱電対線
10 樹脂絶縁体
12a コネクタ
12b コネクタ
15a 補償導線
15b 補償導線
3 thermocouple port 7 inorganic insulator 9a thermocouple wire 9b thermocouple wire 10 resin insulator 12a connector 12b connector 15a compensating lead wire 15b compensating lead wire

Claims (3)

測温接点が真空空間内に設置された熱電対線(9a)、(9b)を封止部から真空空間の外部に引き出す熱電対の真空フィードスルーであって、熱電対ポート(3)を封止した無機絶縁体(7)を貫通して熱電対線(9a)、(9b)のリード線側を真空空間からその外部に引き出し、その熱電対線(9a)、(9b)の引出部分を含めて熱電対線(9a)、(9b)の基部を樹脂絶縁体(10)で覆って気密に封止し、熱電対線(9a)、(9b)のリード線側を真空空間の外部で補償導線(15a)、(15b)と接続することを特徴とする熱電対の真空フィードスルー。 A thermocouple vacuum feedthrough that draws the thermocouple wires (9a) and (9b) with temperature measuring contacts installed in the vacuum space to the outside of the vacuum space, and seals the thermocouple port (3). The lead wire side of the thermocouple wires (9a) and (9b) is drawn out from the vacuum space through the stopped inorganic insulator (7), and the lead portions of the thermocouple wires (9a) and (9b) are In addition, the base of the thermocouple wires (9a) and (9b) is covered with a resin insulator (10) and hermetically sealed, and the lead wires of the thermocouple wires (9a) and (9b) are outside the vacuum space. Thermocouple vacuum feedthrough, characterized in that it is connected to compensating conductors (15a), (15b). 樹脂絶縁体(10)は無機絶縁体(7)の熱電対線(9a)、(9b)の引出部分にモールド成型されたことを特徴とする請求項1に記載の熱電対の真空フィードスルー。 The thermocouple vacuum feedthrough according to claim 1, characterized in that the resin insulator (10) is molded in the lead portion of the thermocouple wire (9a), (9b) of the inorganic insulator (7). 樹脂絶縁体(10)は熱電対線(9a)、(9b)と補償導線(15a)、(15b)とを着脱自在に接続するコネクタ(12a)、(12b)のハウジングを兼ねていることを特徴とする請求項1に記載の熱電対の真空フィードスルー。 The resin insulator (10) also serves as a housing for the connectors (12a) and (12b) for detachably connecting the thermocouple wires (9a) and (9b) and the compensating lead wires (15a) and (15b). The thermocouple vacuum feedthrough according to claim 1.
JP2006013476A 2006-01-23 2006-01-23 Thermocouple vacuum feedthrough Active JP4866616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006013476A JP4866616B2 (en) 2006-01-23 2006-01-23 Thermocouple vacuum feedthrough

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006013476A JP4866616B2 (en) 2006-01-23 2006-01-23 Thermocouple vacuum feedthrough

Publications (2)

Publication Number Publication Date
JP2007192770A true JP2007192770A (en) 2007-08-02
JP4866616B2 JP4866616B2 (en) 2012-02-01

Family

ID=38448578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006013476A Active JP4866616B2 (en) 2006-01-23 2006-01-23 Thermocouple vacuum feedthrough

Country Status (1)

Country Link
JP (1) JP4866616B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110035070A (en) * 2009-09-29 2011-04-06 주식회사 포스코 Feedthrought
CN110767330A (en) * 2018-07-27 2020-02-07 核工业西南物理研究院 Double-layer vacuum-sealed thermocouple cable penetrating piece
CN113739945A (en) * 2021-07-22 2021-12-03 西安交通大学 Gas film composite tungsten-rhenium alloy film thermocouple based on surface micro-column array

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910029A (en) * 1982-07-08 1984-01-19 Kubota Ltd Analog-digital convertion method
JPS6017430A (en) * 1984-06-12 1985-01-29 Matsushita Electric Ind Co Ltd Photographed object card for image synthesizing
JPS61123947A (en) * 1984-11-20 1986-06-11 Fujitsu Ltd Intelligence editing method
JPH03834U (en) * 1989-05-26 1991-01-08
JPH0411445A (en) * 1990-04-28 1992-01-16 Sony Corp Picture reader
JPH0432133A (en) * 1990-05-25 1992-02-04 Hitachi Ltd Cathode support body structure of magnetron
JPH06196362A (en) * 1992-12-24 1994-07-15 Hitachi Ltd Coaxial capacitor for magnetron
JPH07273050A (en) * 1994-03-29 1995-10-20 Tokyo Electron Ltd Temperature measuring apparatus for vacuum heat treatment device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910029A (en) * 1982-07-08 1984-01-19 Kubota Ltd Analog-digital convertion method
JPS6017430A (en) * 1984-06-12 1985-01-29 Matsushita Electric Ind Co Ltd Photographed object card for image synthesizing
JPS61123947A (en) * 1984-11-20 1986-06-11 Fujitsu Ltd Intelligence editing method
JPH03834U (en) * 1989-05-26 1991-01-08
JPH0411445A (en) * 1990-04-28 1992-01-16 Sony Corp Picture reader
JPH0432133A (en) * 1990-05-25 1992-02-04 Hitachi Ltd Cathode support body structure of magnetron
JPH06196362A (en) * 1992-12-24 1994-07-15 Hitachi Ltd Coaxial capacitor for magnetron
JPH07273050A (en) * 1994-03-29 1995-10-20 Tokyo Electron Ltd Temperature measuring apparatus for vacuum heat treatment device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110035070A (en) * 2009-09-29 2011-04-06 주식회사 포스코 Feedthrought
KR101585689B1 (en) 2009-09-29 2016-01-15 주식회사 포스코 Feedthrought
CN110767330A (en) * 2018-07-27 2020-02-07 核工业西南物理研究院 Double-layer vacuum-sealed thermocouple cable penetrating piece
CN113739945A (en) * 2021-07-22 2021-12-03 西安交通大学 Gas film composite tungsten-rhenium alloy film thermocouple based on surface micro-column array
US11598676B2 (en) 2021-07-22 2023-03-07 Xi'an Jiaotong University Tungsten-rhenium composite thin film thermocouple based on surface micropillar array with gas holes

Also Published As

Publication number Publication date
JP4866616B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
US6880969B2 (en) Temperature sensor and production method thereof
JP5583905B2 (en) Method for manufacturing electrical leadthrough and electrical leadthrough manufactured by the method
US20120138361A1 (en) Cable Terminator Assemblies
JP4866616B2 (en) Thermocouple vacuum feedthrough
JP5155133B2 (en) Electrical lead-through module and method of manufacturing the same
JP2006059794A (en) Ceramic heater
US20210292246A1 (en) Termination feedthrough unit with ceramic insulator for vacuum and corrosive applications
JP6946274B2 (en) High temperature tubular heater
US7683264B2 (en) High pressure, high current, low inductance, high reliability sealed terminals
JP2601558Y2 (en) Connector set for measuring temperature inside vacuum vessel
JP2017142988A (en) Fitting part structure of bipolar connector
KR101939018B1 (en) Thermocouple connector
KR102211285B1 (en) Thermocouple connector product method
JP2018080948A (en) Thermistor
CN220187866U (en) Temperature measuring device and sintering furnace
JP4274662B2 (en) Ceramic gas sensor tube
RU2356126C1 (en) Hermetic housing for high-vacuum precise instrument and method for its manufacturing
JPH0256784B2 (en)
US3344386A (en) Contact connection for wire-shaped heating elements
JP2936463B2 (en) Double seal connection terminal device
JP2010085102A (en) Electronic component measuring instrument
EP1717515A1 (en) Lead arrangement for a combustor unit
JP4591513B2 (en) Electrical connector for vacuum
JP2009134908A (en) Connector structure for vacuum chamber, and vacuum apparatus using the same
JPH0679072U (en) Vacuum connection plug and vacuum electrical connector using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4866616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250