JP2007192499A - Hot water supply device - Google Patents

Hot water supply device Download PDF

Info

Publication number
JP2007192499A
JP2007192499A JP2006012256A JP2006012256A JP2007192499A JP 2007192499 A JP2007192499 A JP 2007192499A JP 2006012256 A JP2006012256 A JP 2006012256A JP 2006012256 A JP2006012256 A JP 2006012256A JP 2007192499 A JP2007192499 A JP 2007192499A
Authority
JP
Japan
Prior art keywords
temperature
hot water
heat exchanger
water
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006012256A
Other languages
Japanese (ja)
Inventor
Itaru Yamamoto
格 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006012256A priority Critical patent/JP2007192499A/en
Publication of JP2007192499A publication Critical patent/JP2007192499A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water supply device having an improved coefficient of performance (COP) by operating a heat pump in a more optimal condition. <P>SOLUTION: An environment load Qk is computed in accordance with external conditions depending on an outside air temperature Ta and an incoming water temperature Twi, and a target rotating number RN of a compressor 11 is set properly corresponding to a value for the found environment load Qk. Particularly, as the outside air temperature Ta is lower or as the incoming water temperature Twi is higher, the target rotating number RN of the compressor 11 is set to be a higher value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒートポンプを熱源とした給湯装置に関する。   The present invention relates to a hot water supply apparatus using a heat pump as a heat source.

この種の給湯装置は、圧縮機,熱交換器,膨張弁及び蒸発器を有するヒートポンプと、貯湯タンクと、給水ポンプとを備えている。ヒートポンプの熱交換器は冷媒と水(低温度の湯を含む)との間で熱交換を行うためのもので、該熱交換器の入水口は給水ポンプを介して貯湯タンクの下部に接続され、出湯口は貯湯タンクの上部に接続されている。   This type of hot water supply apparatus includes a heat pump having a compressor, a heat exchanger, an expansion valve, and an evaporator, a hot water storage tank, and a water supply pump. The heat exchanger of the heat pump is for exchanging heat between the refrigerant and water (including low temperature hot water), and the water inlet of the heat exchanger is connected to the lower part of the hot water storage tank via the water supply pump. The outlet is connected to the upper part of the hot water storage tank.

最近では、給湯装置を最適状態で運転させるために、外気温度検出センサで検出された外気温度に基づいて、圧縮機の回転数制御と膨張弁の開度制御と給水ポンプの回転数制御を行う給湯装置が提案されている。
特許第3601369号公報
Recently, in order to operate the hot water supply device in an optimum state, the rotation speed control of the compressor, the opening degree control of the expansion valve, and the rotation speed control of the feed water pump are performed based on the outside air temperature detected by the outside air temperature detection sensor. A water heater has been proposed.
Japanese Patent No. 3601369

前記の給湯装置では外気温度のみに基づいて圧縮機,膨張弁及び給水ポンプの制御を行っているが、実際上、ヒートポンプを最適状態で運転させることは難しい。   In the hot water supply apparatus, the compressor, the expansion valve, and the water supply pump are controlled based only on the outside air temperature. However, in practice, it is difficult to operate the heat pump in an optimum state.

即ち、前記の給湯装置は給水ポンプの動作によって貯湯タンク内の水を熱交換器に送り込んで加熱し、加熱後の湯を貯湯タンクに送り込むものであるため、熱交換器への入水温度によってヒートポンプの成績係数(COP)が変動する。つまり、外気温度のみならず少なくとも熱交換器への入水温度を考慮して圧縮機,膨張弁及び給水ポンプの制御を行えば、ヒートポンプをより最適な状態で運転させて成績係数(COP)の向上を図ることが可能となる。   That is, the hot water supply device is configured to send the water in the hot water storage tank to the heat exchanger by the operation of the water supply pump to heat it, and to send the heated hot water to the hot water storage tank. The coefficient of performance (COP) varies. In other words, if the compressor, expansion valve, and feed water pump are controlled in consideration of not only the outside air temperature but also the temperature at which water enters the heat exchanger, the heat pump is operated in a more optimal state and the coefficient of performance (COP) is improved. Can be achieved.

本発明は前記事情に鑑みて創作されたもので、その目的とするところは、ヒートポンプをより最適な状態で運転させて成績係数(COP)の向上を図ることができる給湯装置を提供することにある。   The present invention was created in view of the above circumstances, and the object of the present invention is to provide a hot water supply apparatus capable of operating a heat pump in a more optimal state to improve the coefficient of performance (COP). is there.

前記目的を達成するため、本発明の給湯装置は、回転数制御可能な圧縮機と冷媒と水との間で熱交換を行う熱交換器を少なくとも含むヒートポンプと、下部を熱交換器の入水口に接続され、且つ、上部を熱交換器の出湯口に接続された貯湯タンクと、貯湯タンク内の水を熱交換器に送り込むための給水ポンプと、外気温度を検出するための外気温度センサと、熱交換器への入水温度を検出するための入水温度センサと、ヒートポンプ運転時には、検出された外気温度及び入水温度に基づき、外気温度が低くなるほど、或いは、入水温度が高くなるほど、圧縮機の回転数が高くなるように制御する圧縮機制御手段とを備える、ことをその特徴とする。   In order to achieve the above object, a hot water supply apparatus of the present invention includes a compressor capable of controlling the number of rotations, a heat pump including at least a heat exchanger that performs heat exchange between the refrigerant and water, and a lower portion with a water inlet of the heat exchanger. A hot water storage tank connected to the hot water outlet of the heat exchanger, a water supply pump for feeding water in the hot water storage tank to the heat exchanger, and an outside air temperature sensor for detecting the outside air temperature, The water temperature sensor for detecting the temperature of water entering the heat exchanger and the heat pump operation, the lower the outside air temperature or the higher the incoming water temperature based on the detected outside air temperature and the incoming water temperature, It is characterized by comprising compressor control means for controlling the rotational speed to be high.

この給湯装置によれば、外気温度が低くなるほど、或いは、入水温度が高くなるほど、高値の目標回転数を圧縮機に設定するので、外気温度のみに基づいて圧縮機の制御を行う場合に比べて、ヒートポンプをより最適な状態で運転させて成績係数(COP)の向上を図ることができる。   According to this hot water supply apparatus, as the outside air temperature becomes lower or the incoming water temperature becomes higher, the higher target rotational speed is set in the compressor. Therefore, as compared with the case where the compressor is controlled based only on the outside air temperature. The coefficient of performance (COP) can be improved by operating the heat pump in a more optimal state.

また、本発明の給湯装置は、圧縮機と冷媒と水との間で熱交換を行う熱交換器と開度制御可能な膨張弁を少なくとも含むヒートポンプと、下部を熱交換器の入水口に接続され、且つ、上部を熱交換器の出湯口に接続された貯湯タンクと、貯湯タンク内の水を熱交換器に送り込むための給水ポンプと、外気温度を検出するための外気温度センサと、熱交換器への入水温度を検出するための入水温度センサと、圧縮機からの冷媒の吐出温度を検出するための吐出温度センサと、出湯温度を設定するための出湯温度設定器と、ヒートポンプ運転時には、検出された外気温度,入水温度及び吐出温度と設定出湯温度に基づき、外気温度が低くなるほど、或いは、入水温度が高くなるほど、或いは、設定出湯温度が高くなるほど、圧縮機の吐出温度が高くなるように膨張弁の開度を制御する膨張弁制御手段とを備える、ことをその特徴とする。   Further, the hot water supply apparatus of the present invention includes a heat pump that exchanges heat between the compressor, the refrigerant, and water, a heat pump that includes at least an expansion valve capable of opening control, and a lower portion connected to a water inlet of the heat exchanger. A hot water storage tank whose upper part is connected to the outlet of the heat exchanger, a water supply pump for sending water in the hot water storage tank to the heat exchanger, an outdoor air temperature sensor for detecting the outdoor air temperature, An incoming water temperature sensor for detecting the incoming water temperature to the exchanger, a discharge temperature sensor for detecting the refrigerant discharge temperature from the compressor, a hot water temperature setting device for setting the hot water temperature, and during heat pump operation Based on the detected outside air temperature, incoming water temperature and discharge temperature, and set hot water temperature, the lower the outdoor air temperature, the higher incoming water temperature, or the higher the set hot water temperature, the higher the discharge temperature of the compressor. And a expansion valve control means for controlling the opening degree of the expansion valve such that, as its characterized in that.

この給湯装置によれば、外気温度が低くなるほど、或いは、入水温度が高くなるほど、或いは、設定出湯温度が高くなるほど、圧縮機の吐出温度が高くなるように膨張弁の開度変化量を設定するので、外気温度のみに基づいて膨張弁の制御を行う場合に比べて、ヒートポンプをより最適な状態で運転させて成績係数(COP)の向上を図ることができる。   According to this hot water supply device, the opening degree change amount of the expansion valve is set so that the discharge temperature of the compressor becomes higher as the outside air temperature becomes lower, the incoming water temperature becomes higher, or the set hot water temperature becomes higher. Therefore, the coefficient of performance (COP) can be improved by operating the heat pump in a more optimal state as compared with the case where the expansion valve is controlled based only on the outside air temperature.

さらに、本発明の給湯装置は、圧縮機と冷媒と水との間で熱交換を行う熱交換器を少なくとも含むヒートポンプと、下部を熱交換器の入水口に接続され、且つ、上部を熱交換器の出湯口に接続された貯湯タンクと、貯湯タンク内の水を熱交換器に送り込むための回転数制御可能な給水ポンプと、外気温度を検出するための外気温度センサと、熱交換器への入水温度を検出するための入水温度センサと、出湯温度を設定するための出湯温度設定器と、ヒートポンプ運転時には、検出された外気温度及び入水温度と設定出湯温度に基づき、外気温度が高くなるほど、或いは、入水温度が高くなるほど、或いは、設定出湯温度が低くなるほど、給水ポンプの回転数が高くなるように制御するポンプ制御手段とを備える、ことをその特徴とする。   Furthermore, the hot water supply apparatus of the present invention includes a heat pump including at least a heat exchanger that performs heat exchange between the compressor, the refrigerant, and water, a lower part connected to a water inlet of the heat exchanger, and an upper part for heat exchange. To the hot water storage tank connected to the hot water outlet of the water heater, the water supply pump capable of controlling the number of revolutions for feeding the water in the hot water storage tank to the heat exchanger, the outside air temperature sensor for detecting the outside air temperature, and the heat exchanger Incoming water temperature sensor for detecting the incoming water temperature, outgoing hot water temperature setting device for setting the outgoing hot water temperature, and during heat pump operation, the higher the outdoor air temperature is based on the detected outdoor air temperature, incoming water temperature and the set outgoing hot water temperature. Alternatively, it is characterized by comprising pump control means for controlling so that the rotation speed of the feed water pump becomes higher as the incoming water temperature becomes higher or the set hot water temperature becomes lower.

この給湯装置によれば、外気温度が高くなるほど、或いは、入水温度が高くなるほど、或いは、設定出湯温度が低くなるほど、高値の回転数を給水ポンプに設定しているので、外気温度のみに基づいて給水ポンプの制御を行う場合に比べて、ヒートポンプをより最適な状態で運転させて成績係数(COP)の向上を図ることができる。   According to this hot water supply apparatus, the higher the outside air temperature, the higher the incoming water temperature, or the lower the set hot water temperature, the higher the rotational speed is set in the water supply pump. Compared with the case of controlling the feed water pump, the coefficient of performance (COP) can be improved by operating the heat pump in a more optimal state.

本発明によれば、外気温度のみに基づいて圧縮機,膨張弁及び給水ポンプの制御を行う場合に比べて、ヒートポンプをより最適な状態で運転させて成績係数(COP)の向上を図ることができる。   According to the present invention, the coefficient of performance (COP) can be improved by operating the heat pump in a more optimal state as compared with the case where the compressor, the expansion valve, and the feed water pump are controlled based only on the outside air temperature. it can.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

図1〜図11は本発明の実施形態を示す。図1は給湯装置の回路構成図、図2は図1に示した給湯装置の制御系図、図3は図1に示した給湯装置で実現される第1の運転方法を示すフローチャート、図4〜図5は第1の運転方法に係るデータテーブル、図7は図1に示した給湯装置で実現される第2の運転方法を示すフローチャート、図8及び図9は第2の運転方法に係るデータテーブル、図10は図1に示した給湯装置で実現される第3の運転方法を示すフローチャート、図11は第3の運転方法に係るデータテーブルである。   1 to 11 show an embodiment of the present invention. 1 is a circuit configuration diagram of a hot water supply apparatus, FIG. 2 is a control system diagram of the hot water supply apparatus shown in FIG. 1, FIG. 3 is a flowchart showing a first operation method realized by the hot water supply apparatus shown in FIG. FIG. 5 is a data table according to the first operation method, FIG. 7 is a flowchart showing a second operation method realized by the hot water supply apparatus shown in FIG. 1, and FIGS. 8 and 9 are data according to the second operation method. FIG. 10 is a flowchart showing a third operation method realized by the hot water supply apparatus shown in FIG. 1, and FIG. 11 is a data table according to the third operation method.

まず、図1を参照して、給湯装置の回路構成について説明する。図1に示した給湯装置は、ヒートポンプユニット10と、タンクユニット20とを備える。   First, the circuit configuration of the hot water supply apparatus will be described with reference to FIG. The hot water supply device shown in FIG. 1 includes a heat pump unit 10 and a tank unit 20.

ヒートポンプユニット10は、回転数制御可能な能力可変型の圧縮機11と、冷媒と水(低温度の湯を含む)との間で熱交換を行う熱交換器12と、開度制御可能な電子式の膨張弁13と、蒸発器14と、蒸発器用の送風機15とを少なくとも有するヒートポンプHPを備えている。このヒートポンプHPには冷媒として二酸化炭素(CO2 )が用いられている。また、蒸発器14またはその近傍には外気温度Taを検出するための外気温度センサ16が設けられ、熱交換器12の出湯口12aまたはその近傍には該熱交換器12からの出湯温度Twoを検出するための出湯温度センサ17が設けられ、熱交換器12の入水口12bまたはその近傍には該熱交換器12への入水温度Twiを検出するための入水温度センサ18が設けられ、圧縮機11の吐出口11aまたはその近傍には該圧縮機11からの冷媒の吐出温度Tdを検出するための吐出温度センサ19が設けられている。 The heat pump unit 10 includes a variable capacity compressor 11 that can control the number of revolutions, a heat exchanger 12 that performs heat exchange between the refrigerant and water (including low-temperature hot water), and an electronic device that can control the opening. A heat pump HP having at least an expansion valve 13, an evaporator 14, and a blower 15 for the evaporator is provided. The heat pump HP uses carbon dioxide (CO 2 ) as a refrigerant. In addition, an outside air temperature sensor 16 for detecting the outside air temperature Ta is provided in the evaporator 14 or the vicinity thereof, and a tapping temperature Two from the heat exchanger 12 is set at or near the outlet 12a of the heat exchanger 12. An outlet hot water temperature sensor 17 is provided for detection, and an incoming water temperature sensor 18 for detecting an incoming water temperature Twi to the heat exchanger 12 is provided at or near the inlet 12b of the heat exchanger 12, and a compressor. A discharge temperature sensor 19 for detecting the discharge temperature Td of the refrigerant from the compressor 11 is provided at or near the 11 discharge ports 11a.

タンクユニット20は、所定量の湯または湯及び水を満水状態で貯留可能な貯湯タンク21と、回転数制御可能な給水ポンプ22とを備えている。ヒートポンプHPの熱交換器12の入水口12bは給水ポンプ22が設けられた管路WP1を介して貯湯タンク21の下部に接続され、出湯口12aは管路WP2を介して貯湯タンク21の上部に接続されている。また、貯湯タンク21の下部には該貯湯タンク21内に水CWを取り込むための管路WP3が接続され、貯湯タンク21の上部には該貯湯タンク21内から湯HWを送出するための管WP4が接続されている。   The tank unit 20 includes a hot water storage tank 21 capable of storing a predetermined amount of hot water or hot water and water in a full state, and a water supply pump 22 capable of controlling the rotation speed. The water inlet 12b of the heat exchanger 12 of the heat pump HP is connected to the lower part of the hot water storage tank 21 via a pipe line WP1 provided with a water supply pump 22, and the hot water outlet 12a is connected to the upper part of the hot water storage tank 21 via a pipe line WP2. It is connected. A pipe WP3 for taking water CW into the hot water storage tank 21 is connected to the lower part of the hot water storage tank 21, and a pipe WP4 for sending hot water HW from the hot water storage tank 21 to the upper part of the hot water storage tank 21. Is connected.

図1に示した給湯装置では、ヒートポンプHPを運転し、且つ、給水ポンプ22を運転させて貯湯タンク21内の水(低温度の湯を含む)をヒートポンプHPの熱交換器12に送り込むことにより、該水を冷媒熱によって加熱して貯湯タンク21に送り込むことができる。   In the hot water supply apparatus shown in FIG. 1, the heat pump HP is operated, and the water supply pump 22 is operated to feed water (including low temperature hot water) in the hot water storage tank 21 to the heat exchanger 12 of the heat pump HP. The water can be heated by the refrigerant heat and fed into the hot water storage tank 21.

次に、図2を参照して、図1に示した給湯装置の制御系について説明する。図2に示した制御系は、主制御回路31と、圧縮機駆動回路32と、膨張弁駆動回路33と、送風機駆動回路34と、ポンプ駆動回路35と、出湯温度設定器36とを備える。   Next, the control system of the hot water supply apparatus shown in FIG. 1 will be described with reference to FIG. The control system shown in FIG. 2 includes a main control circuit 31, a compressor drive circuit 32, an expansion valve drive circuit 33, a blower drive circuit 34, a pump drive circuit 35, and a tapping temperature setting device 36.

主制御回路31はマイクロコンピュータ構成で、後述の圧縮機制御,膨張弁制御及びポンプ制御に係わるプログラムと各制御に必要なデータ等をメモリに格納している。主制御回路31には、外気温度センサ16,出湯温度センサ17,入水温度センサ18及び吐出温度センサ19からの検出信号と、出湯温度設定器36で設定された出湯温度(設定出湯温度)Swoに係わる信号が入力される。   The main control circuit 31 has a microcomputer configuration, and stores programs related to compressor control, expansion valve control, and pump control, which will be described later, data necessary for each control, and the like in a memory. The main control circuit 31 includes detection signals from the outside air temperature sensor 16, the hot water temperature sensor 17, the incoming water temperature sensor 18 and the discharge temperature sensor 19, and the hot water temperature (set hot water temperature) Swo set by the hot water temperature setting device 36. The related signal is input.

圧縮機駆動回路32は、主制御回路31から制御信号に基づいて、設定された目標回転数RN(図3のステップST4,ST6参照)に応じた駆動信号を圧縮機動作用のモータ11aに送出する。膨張弁駆動回路33は、主制御回路31からの信号に基づいて、設定された開度変化量P(図7のステップSE4参照)に応じた駆動信号を膨張弁動作用のモータ13aに送出する。送風機駆動回路34は、主制御回路31からの信号に基づいて、所定の駆動信号を送風機動作用のモータ15aに送出する。ポンプ駆動回路35は、主制御回路31からの信号に基づいて、設定された回転数RP(図10のステップSP3参照)に応じた駆動信号をポンプ動作用のモータ22aに送出する。   Based on the control signal from the main control circuit 31, the compressor drive circuit 32 sends a drive signal corresponding to the set target rotational speed RN (see steps ST4 and ST6 in FIG. 3) to the compressor operation motor 11a. . Based on the signal from the main control circuit 31, the expansion valve drive circuit 33 sends a drive signal corresponding to the set opening change amount P (see step SE4 in FIG. 7) to the expansion valve operating motor 13a. . The blower drive circuit 34 sends a predetermined drive signal to the blower operation motor 15 a based on the signal from the main control circuit 31. Based on the signal from the main control circuit 31, the pump drive circuit 35 sends a drive signal corresponding to the set rotation speed RP (see step SP3 in FIG. 10) to the pump operation motor 22a.

次に、図3〜図6を参照して、図1に示した給湯装置で実現される第1の運転方法について説明する。この第1の運転方法は圧縮機制御に依る運転方法である。   Next, with reference to FIGS. 3-6, the 1st operation method implement | achieved with the hot water supply apparatus shown in FIG. 1 is demonstrated. This first operation method is an operation method based on compressor control.

ヒートポンプHPの運転を開始するときには、外気温度Taと入水温度Twiを検出し、検出された外気温度Taと入水温度Twiに基づいて環境負荷QkをQk=α1×Ta−α2×Twiの基本式により演算する(図3のステップST1,ST2参照)。因みに、式中のα1,α2は係数である。   When the operation of the heat pump HP is started, the outside air temperature Ta and the incoming water temperature Twi are detected, and the environmental load Qk is calculated based on the detected outside air temperature Ta and the incoming water temperature Twi by the basic formula of Qk = α1 × Ta−α2 × Twi. Calculation is performed (see steps ST1 and ST2 in FIG. 3). Incidentally, α1 and α2 in the equation are coefficients.

そして、図4に示すデータテーブルを利用して、求められた環境負荷Qkの値に応じた目標回転数RNを設定する(図3のステップST3,ST4参照)。図4中のA11〜A16は環境負荷Qkのしきい値を示すもので、A11<A12<A13<A14<A15<A16の関係にある。また、図4中のRN1〜RN7は目標回転数RNの値を示すもので、RN1>RN2>RN3>RN4>RN5>RN6>RN7の関係にある。   Then, using the data table shown in FIG. 4, a target rotational speed RN corresponding to the obtained value of the environmental load Qk is set (see steps ST3 and ST4 in FIG. 3). A11 to A16 in FIG. 4 indicate threshold values of the environmental load Qk, and have a relationship of A11 <A12 <A13 <A14 <A15 <A16. Further, RN1 to RN7 in FIG. 4 indicate values of the target rotational speed RN, and have a relationship of RN1> RN2> RN3> RN4> RN5> RN6> RN7.

ヒートポンプHPの運転が開始された後(運転中)も外気温度Taと入水温度Twiを検出し、検出された外気温度Taと入水温度Twiに基づいて環境負荷QkをQk=α1×Ta−α2×Twiの基本式により演算する(図3のステップST1,ST2参照)。   After the operation of the heat pump HP is started (during operation), the outside air temperature Ta and the incoming water temperature Twi are detected, and the environmental load Qk is calculated based on the detected outdoor air temperature Ta and the incoming water temperature Twi as Qk = α1 × Ta−α2 ×. Calculation is performed using the basic formula of Twi (see steps ST1 and ST2 in FIG. 3).

そして、求められた環境負荷Qkが先に求めた運転開始時の環境負荷Qkと異なるか否かを判断すると共に、異なる場合には求められた環境負荷Qkが先に求めた運転開始時の環境負荷Qkよりも上昇しているか下降しているかを判断する(図3のステップST3,ST5参照)。判断の結果、環境負荷Qkに変化が無いときにはステップST1に移行する。   Then, it is determined whether or not the obtained environmental load Qk is different from the previously obtained environmental load Qk at the start of operation. If the obtained environmental load Qk is different, the obtained environmental load Qk is the previously obtained environmental environment at the start of operation. It is determined whether the load is higher or lower than the load Qk (see steps ST3 and ST5 in FIG. 3). As a result of the determination, when there is no change in the environmental load Qk, the process proceeds to step ST1.

一方、求められた環境負荷Qkが先に求めた運転開始時の環境負荷Qkよりも上昇しているときには、図5に示すデータテーブルを利用して、求められた環境負荷Qkの値に応じた目標回転数RNを設定する(図3のステップST6参照)。図5中のA21〜A26は環境負荷Qkのしきい値を示すもので、A21<A22<A23<A24<A25<A26の関係にあり、A21〜A26の各値は図4に示したA11〜A16の値よりもそれぞれ大きい。また、図5中のRN1〜RN7は目標回転数RNの値を示すもので、RN1〜RN7の各値は図4に示したRN1〜RN7と同じである。   On the other hand, when the obtained environmental load Qk is higher than the obtained environmental load Qk at the start of operation, the data table shown in FIG. 5 is used to respond to the obtained value of the environmental load Qk. A target rotational speed RN is set (see step ST6 in FIG. 3). A21 to A26 in FIG. 5 indicate threshold values of the environmental load Qk, which are in a relationship of A21 <A22 <A23 <A24 <A25 <A26, and each value of A21 to A26 is A11 to A11 shown in FIG. Each is larger than the value of A16. Further, RN1 to RN7 in FIG. 5 indicate values of the target rotational speed RN, and each value of RN1 to RN7 is the same as RN1 to RN7 shown in FIG.

また、求められた環境負荷Qkが先に求めた運転開始時の環境負荷Qkよりも下降しているときには、図6に示すデータテーブルを利用して、求められた環境負荷Qkの値に応じた目標回転数RNを設定する(図3のステップST6参照)。図6中のA31〜A36は環境負荷Qkのしきい値を示すもので、A31<A32<A33<A34<A35<A36の関係にあり、A31〜A36の各値は図4に示したA11〜A16の値よりもそれぞれ小さい。また、図6中のRN1〜RN7は目標回転数RNの値を示すもので、RN1〜RN7の各値は図4に示したRN1〜RN7と同じである。   Further, when the obtained environmental load Qk is lower than the previously obtained environmental load Qk at the start of operation, the data table shown in FIG. 6 is used to respond to the obtained value of the environmental load Qk. A target rotational speed RN is set (see step ST6 in FIG. 3). A31 to A36 in FIG. 6 indicate threshold values of the environmental load Qk, and have a relationship of A31 <A32 <A33 <A34 <A35 <A36, and each value of A31 to A36 is A11 to A11 shown in FIG. Each is smaller than the value of A16. Further, RN1 to RN7 in FIG. 6 indicate values of the target rotational speed RN, and each value of RN1 to RN7 is the same as RN1 to RN7 shown in FIG.

以上の手順はヒートポンプHPの運転が停止されるまで継続して行われる。先の説明から分かるように、ヒートポンプHPの運転時には、外気温度Taが低くなるほど、或いは、入水温度Twiが高くなるほど、高値の目標回転数RNが設定されることになり、圧縮機11はこのようにして設定された目標回転数RNとなるように制御される。   The above procedure is continuously performed until the operation of the heat pump HP is stopped. As can be seen from the above description, during operation of the heat pump HP, the lower the outside air temperature Ta or the higher the incoming water temperature Twi, the higher the target rotational speed RN is set. Thus, control is performed so that the target rotational speed RN is set.

第1の運転方法によれば、外気温度Ta及び入水温度Twiに依る外的条件に基づいて環境負荷Qkを演算し、求められた環境負荷Qkの値に応じて適切な圧縮機11の目標回転数RNを設定、詳しくは、外気温度Taが低くなるほど、或いは、入水温度Twiが高くなるほど、高値の目標回転数RNを圧縮機11に設定しているので、外気温度のみに基づいて圧縮機11の制御を行う場合に比べて、ヒートポンプHPをより最適な状態で運転させて成績係数(COP)の向上を図ることができる。   According to the first operation method, the environmental load Qk is calculated based on the external conditions depending on the outside air temperature Ta and the incoming water temperature Twi, and an appropriate target rotation of the compressor 11 is determined according to the obtained value of the environmental load Qk. The number RN is set. Specifically, the higher the target rotational speed RN is set in the compressor 11 as the outside air temperature Ta becomes lower or the incoming water temperature Twi becomes higher, the compressor 11 is based only on the outside air temperature. Compared with the case where the control is performed, it is possible to operate the heat pump HP in a more optimal state to improve the coefficient of performance (COP).

また、第1の運転方法によれば、ヒートポンプHPを運転を開始するときと、運転運転開始後で環境負荷Qkが上昇したときと、運転開始後で環境負荷Qkが下降したときとで異なるデータテーブルを用いて目標回転数RNを設定しているので、より適切な目標回転数RNを運転状態に応じて設定して成績係数(COP)のさらなる向上を図ることができる。   Further, according to the first operation method, different data are obtained when the operation of the heat pump HP is started, when the environmental load Qk increases after the start of the operation, and when the environmental load Qk decreases after the start of the operation. Since the target rotational speed RN is set using the table, it is possible to further improve the coefficient of performance (COP) by setting a more appropriate target rotational speed RN according to the operating state.

次に、図7〜図9を参照して、図1に示した給湯装置で実現される第2の運転方法について説明する。この第2の運転方法は膨張弁制御に依る運転方法である。   Next, a second operation method realized by the hot water supply apparatus shown in FIG. 1 will be described with reference to FIGS. This second operation method is an operation method based on expansion valve control.

ヒートポンプHPが運転しているときには外気温度Taと入水温度Twiと吐出温度Tdを検出すると共に、設定出湯温度Swoを読み込む(図7のステップSE1,SE2参照)。設定出湯温度Swoは図8に示すように65℃から90℃の範囲で5℃単位で予め設定されている。   When the heat pump HP is operating, the outside air temperature Ta, the incoming water temperature Twi, and the discharge temperature Td are detected, and the set hot water temperature Swo is read (see steps SE1 and SE2 in FIG. 7). The set hot water temperature Swo is preset in units of 5 ° C. in the range of 65 ° C. to 90 ° C. as shown in FIG.

そして、検出された外気温度Taと入水温度Twiに基づき、各設定出湯温度Swo毎に定められた式によって目標吐出温度Tdtを演算する(図7のステップSE3参照)。目標吐出温度Tdtを演算する基本式はTdt=−β1×Ta+β2+β3×(Twi−β4)であるが、係数β1,β3と定数β2の値は各設定出湯温度Swo毎に異なる。詳しくは、係数β3は設定出湯温度Swoが高くなるほど低値となり、係数β1と定数β2は設定出湯温度Swoが高くなるほど高値となる。定数β4は設定出湯温度Swoに拘わらず一定である。図8中のTdt1〜Tdt6は演算により求められた各設定出湯温度Swo毎の目標吐出温度Tdtの値を示すもので、TaとTwiの値が同じときはTdt1<Tdt2<Tdt3<Tdt4<Tdt5<Tdt6となる。   Then, based on the detected outside air temperature Ta and incoming water temperature Twi, the target discharge temperature Tdt is calculated by an expression determined for each set hot water temperature Swo (see step SE3 in FIG. 7). The basic formula for calculating the target discharge temperature Tdt is Tdt = −β1 × Ta + β2 + β3 × (Twi−β4), but the values of the coefficients β1, β3 and the constant β2 are different for each set hot water temperature Swo. Specifically, the coefficient β3 becomes lower as the set hot water temperature Swo becomes higher, and the coefficient β1 and the constant β2 become higher as the set hot water temperature Swo becomes higher. The constant β4 is constant regardless of the set hot water temperature Swo. In FIG. 8, Tdt1 to Tdt6 indicate values of the target discharge temperature Tdt for each set hot water temperature Swo obtained by calculation, and when the values of Ta and Twi are the same, Tdt1 <Tdt2 <Tdt3 <Tdt4 <Tdt5 < Tdt6.

そして、求められた目標吐出温度Tdtと先に検出された吐出温度Tdとの温度偏差ΔTdをΔTd=Tdt−Tdの式により演算し、且つ、先に検出された吐出温度Tdと30秒前の吐出温度Tdとの経時的な温度変化量ΔTkをΔTk=Td−30秒前のTdの式により演算する(図7のステップSE4参照)。   Then, a temperature deviation ΔTd between the obtained target discharge temperature Tdt and the previously detected discharge temperature Td is calculated by the equation ΔTd = Tdt−Td, and the previously detected discharge temperature Td and 30 seconds before A change in temperature ΔTk with time with respect to the discharge temperature Td is calculated by the equation of Td ΔTk = Td−30 seconds before (see step SE4 in FIG. 7).

そして、図9に示すデータテーブルを利用して、求められた温度偏差ΔTd及び温度変化量ΔTkに応じた開度変化量Pを設定する(図7のステップSE5参照)。図9中のB1〜B6は温度偏差ΔTdのしきい値を示すもので、B1>B2>B3>B4>B5>B6の関係にある。また、図9中のC1〜C4は温度変化量ΔTkのしきい値を示すもので、C1>C2>C3>C4の関係にある。さらに、図9中の−P1〜−P5と±0と+P1〜+P5は開度変化量Pの値を示すもので、−P1〜−P5は−P1>−P2>−P3>−P4>−P5の関係にあり、+P1〜+P5は+P1<+P2<+P3<+P4<+P5の関係にある。   Then, using the data table shown in FIG. 9, an opening change amount P corresponding to the obtained temperature deviation ΔTd and temperature change amount ΔTk is set (see step SE5 in FIG. 7). B1 to B6 in FIG. 9 indicate threshold values of the temperature deviation ΔTd, and have a relationship of B1> B2> B3> B4> B5> B6. Further, C1 to C4 in FIG. 9 indicate threshold values of the temperature change amount ΔTk, and have a relationship of C1> C2> C3> C4. Furthermore, −P1 to −P5, ± 0, + P1 to + P5 in FIG. 9 indicate values of the opening change amount P, and −P1 to −P5 are −P1> −P2> −P3> −P4> −. There is a relationship of P5, and + P1 to + P5 have a relationship of + P1 <+ P2 <+ P3 <+ P4 <+ P5.

以上の手順はヒートポンプHPの運転が停止されるまで継続して行われる。先の説明から分かるように、ヒートポンプHPの運転時には、外気温度Taが低くなるほど、或いは、入水温度Twiが高くなるほど、或いは、設定出湯温度Swoが高くなるほど、圧縮機11の吐出温度Tdが高くなるように膨張弁13の開度変化量Pが設定されることになり、膨張弁13はこのようにして設定された開度変化量Pとなるように制御される。   The above procedure is continuously performed until the operation of the heat pump HP is stopped. As can be seen from the above description, during the operation of the heat pump HP, the lower the outside air temperature Ta, the higher the incoming water temperature Twi, or the higher the set hot water temperature Swo, the higher the discharge temperature Td of the compressor 11. Thus, the opening degree change amount P of the expansion valve 13 is set, and the expansion valve 13 is controlled to have the opening degree change amount P set in this way.

第2の運転方法によれば、外気温度Ta及び入水温度Twiに依る外的条件と設定出湯温度Swoに依る内的条件に基づいて目標吐出温度Tdtを演算し、求められた目標吐出温度Tdtと吐出温度Tdとの温度偏差ΔTdと吐出温度Tdの経時的な温度変化量ΔTkを演算し、求められた温度偏差ΔTd及び温度変化量ΔTkの値に応じて適切な開度変化量Pを設定、詳しくは、外気温度Taが低くなるほど、或いは、入水温度Twiが高くなるほど、或いは、設定出湯温度Swoが高くなるほど、圧縮機11の吐出温度Tdが高くなるように膨張弁13の開度変化量Pを設定しているので、外気温度のみに基づいて膨張弁13の制御を行う場合に比べて、ヒートポンプHPをより最適な状態で運転させて成績係数(COP)の向上を図ることができる。   According to the second operation method, the target discharge temperature Tdt is calculated based on the external conditions depending on the outside air temperature Ta and the incoming water temperature Twi and the internal conditions depending on the set hot water temperature Swo, and the obtained target discharge temperature Tdt A temperature deviation ΔTd with respect to the discharge temperature Td and a temperature change amount ΔTk over time of the discharge temperature Td are calculated, and an appropriate opening degree change amount P is set according to the obtained values of the temperature deviation ΔTd and the temperature change amount ΔTk. Specifically, the opening degree change amount P of the expansion valve 13 is set such that the discharge temperature Td of the compressor 11 increases as the outside air temperature Ta decreases, the incoming water temperature Twi increases, or the set hot water temperature Swo increases. Therefore, the coefficient of performance (COP) can be improved by operating the heat pump HP in a more optimal state as compared with the case where the expansion valve 13 is controlled based only on the outside air temperature. Can.

次に、図10〜図11を参照して、図1に示した給湯装置で実現される第3の運転方法について説明する。この第3の運転方法はポンプ制御に依る運転方法である。   Next, with reference to FIGS. 10-11, the 3rd driving | running method implement | achieved with the hot water supply apparatus shown in FIG. 1 is demonstrated. This third operation method is an operation method based on pump control.

ヒートポンプHPが運転しているときには外気温度Taと入水温度Twiを検出すると共に、設定出湯温度Swoを読み込む(図10のステップSEP,SP2参照)。設定出湯温度Swoは図11に示すように65℃から90℃の範囲で5℃単位で予め設定されている。   When the heat pump HP is operating, the outside air temperature Ta and the incoming water temperature Twi are detected, and the set hot water temperature Swo is read (see steps SEP and SP2 in FIG. 10). As shown in FIG. 11, the set hot water temperature Swo is preset in units of 5 ° C. in the range of 65 ° C. to 90 ° C.

そして、検出された外気温度Taと入水温度Twiに基づき、各設定出湯温度Swo毎に定められた式によって必要出湯能力Qを演算する(図10のステップSP3参照)。必要出湯能力Qを演算する基本式はQ=γ1×Ta+γ2+γ3×(γ4−Twi)であるが、定数γ2の値は各設定出湯温度Swo毎に異なる。詳しくは、定数γ2は設定出湯温度Swoが高くなるほど低値となる。係数γ1,γ3と定数γ4は設定出湯温度Swoに拘わらず一定である。図11中のQ1〜Q6は演算により求められた各設定出湯温度Swo毎の必要出湯能力Qの値を示すもので、Twiの値が同じときはQ1>Q2>Q3>Q4>Q5>Q6となる。   Then, based on the detected outside air temperature Ta and the incoming water temperature Twi, the required hot water discharge capacity Q is calculated by an equation determined for each set hot water temperature Swo (see step SP3 in FIG. 10). The basic formula for calculating the required hot water capacity Q is Q = γ1 × Ta + γ2 + γ3 × (γ4-Twi), but the value of the constant γ2 is different for each set hot water temperature Swo. Specifically, the constant γ2 becomes lower as the set hot water temperature Swo becomes higher. The coefficients γ1, γ3 and the constant γ4 are constant regardless of the set hot water temperature Swo. Q1 to Q6 in FIG. 11 indicate values of necessary hot water discharge capacity Q for each set hot water temperature Swo obtained by calculation. When the values of Twi are the same, Q1> Q2> Q3> Q4> Q5> Q6 Become.

そして、求められた必要出湯能力Qと先に検出された入水温度Twiと設定出湯温度Swoに基づいて回転数RPをRP=δ1×〔δ2+{δ3+δ4×Q/(Swo−Twi)}/δ5〕の基本式により演算して設定する(図10のステップSP4参照)。因みに、式中のδ1,δ4,δ5は係数であり、δ2,δ3は定数である。   Then, based on the required required hot water capacity Q, the previously detected incoming water temperature Twi and the preset hot water temperature Swo, the rotational speed RP is changed to RP = δ1 × [δ2 + {δ3 + δ4 × Q / (Swo−Twi)} / δ5]. Is calculated and set by the basic formula (see step SP4 in FIG. 10). Incidentally, δ1, δ4, δ5 in the equation are coefficients, and δ2, δ3 are constants.

以上の手順はヒートポンプHPの運転が停止されるまで継続して行われる。先の説明から分かるように、ヒートポンプHPの運転時には、外気温度Taが高くなるほど、或いは、入水温度Twiが高くなるほど、或いは、設定出湯温度Swoが低くなるほど、高値の回転数RPが設定されることになり、給水ポンプ22はこのように設定された回転数RPとなるように制御される。   The above procedure is continuously performed until the operation of the heat pump HP is stopped. As can be seen from the above description, when the heat pump HP is operated, the higher the outside air temperature Ta, the higher the incoming water temperature Twi, or the lower the set hot water temperature Swo, the higher the rotational speed RP is set. Thus, the feed water pump 22 is controlled to have the rotation speed RP set in this way.

第3の運転方法によれば、外気温度Ta及び入水温度Twiに依る外的条件と設定出湯温度Swoに依る内的条件に基づいて必要出湯能力Qを演算し、求められた必要出湯能力Qと設定出湯温度Swo及び入水温度Twiに基づいて適切な回転数RPを設定、詳しくは、外気温度Taが高くなるほど、或いは、入水温度Twiが高くなるほど、或いは、設定出湯温度Swoが低くなるほど、高値の回転数RPを給水ポンプ22に設定しているので、外気温度のみに基づいて給水ポンプ22の制御を行う場合に比べて、ヒートポンプHPをより最適な状態で運転させて成績係数(COP)の向上を図ることができる。   According to the third operation method, the required hot water discharge capacity Q is calculated based on the external conditions depending on the outside air temperature Ta and the incoming water temperature Twi and the internal conditions depending on the set hot water temperature Swo, An appropriate rotation speed RP is set based on the set hot water temperature Swo and the incoming water temperature Twi. Specifically, the higher the outside air temperature Ta, the higher the incoming water temperature Twi, or the lower the preset hot water temperature Swo, the higher the value. Since the rotation speed RP is set in the feed water pump 22, the coefficient of performance (COP) is improved by operating the heat pump HP in a more optimal state as compared with the case where the feed water pump 22 is controlled based only on the outside air temperature. Can be achieved.

尚、前述の説明では、制御内容の理解促進を図るために、第1の運転方法(圧縮機制御)と第2の運転方法(膨張弁制御)と第3の運転方法(ポンプ制御)とを分けて説明したが、第1の運転方法と第2の運転方法を併用すれば、また、第1の運転方法と第3の運転方法を併用すれば、さらに、第2の運転方法と第3の運転方法を併用すれば、さらに、第1の運転方法と第2の運転方法と第3の運転方法を併用すれば、各運転方法を単独で実行する場合に比べてヒートポンプHPをより一層最適な状態で運転させて成績係数(COP)の向上できることは言うまでもない。   In the above description, in order to promote understanding of the control contents, the first operation method (compressor control), the second operation method (expansion valve control), and the third operation method (pump control) are described. Although described separately, if the first operation method and the second operation method are used together, or if the first operation method and the third operation method are used together, then the second operation method and the third operation method are further performed. If the operation method is used in combination, the heat pump HP is further optimized by combining the first operation method, the second operation method, and the third operation method as compared with the case where each operation method is executed alone. It goes without saying that the coefficient of performance (COP) can be improved by operating in a stable state.

また、前述の説明では、回転数制御可能な能力可変型の圧縮機11と、開度制御可能な電子式の膨張弁13と、回転数制御可能な給水ポンプ22を用いた回路構成を示したが、圧縮機制御による第1の運転方法のみを実行する場合には、電子式の膨張弁13の代わりに一般的な温度式膨張弁を用い、且つ、回転数制御可能な給水ポンプ22の代わりに定速回転の給水ポンプを用いても前記同様の作用効果が得られる。一方、膨張弁制御による第2の運転方法のみを実行する場合には、回転数制御可能な圧縮機11の代わりに定速回転の圧縮機を用い、且つ、回転数制御可能な給水ポンプ22の代わりに定速回転の給水ポンプを用いても前記同様の作用効果が得られる。他方、ポンプ制御による第3の運転方法のみを実行する場合には、回転数制御可能な圧縮機11の代わりに定速回転の圧縮機を用い、且つ、電子式の膨張弁13の代わりに一般的な温度式膨張弁を用いても前記同様の作用効果が得られる。   In the above description, the circuit configuration using the variable capacity compressor 11 capable of controlling the rotational speed, the electronic expansion valve 13 capable of controlling the opening degree, and the water supply pump 22 capable of controlling the rotational speed is shown. However, when only the first operation method by the compressor control is executed, a general temperature type expansion valve is used instead of the electronic type expansion valve 13 and the rotation speed controllable water supply pump 22 is replaced. Even if a constant speed rotation water supply pump is used, the same effect as described above can be obtained. On the other hand, when only the second operation method based on the expansion valve control is executed, a constant speed rotating compressor is used instead of the compressor 11 capable of controlling the rotational speed, and the feed water pump 22 capable of controlling the rotational speed is used. Alternatively, the same effect as described above can be obtained by using a constant speed rotating water supply pump. On the other hand, when only the third operation method by the pump control is executed, a constant speed rotating compressor is used instead of the compressor 11 capable of controlling the rotation speed, and the electronic expansion valve 13 is generally used instead. Even if a typical temperature type expansion valve is used, the same effect as described above can be obtained.

給湯装置の回路構成図である。It is a circuit block diagram of a hot-water supply apparatus. 図1に示した給湯装置の制御系図である。FIG. 2 is a control system diagram of the hot water supply device shown in FIG. 1. 図1に示した給湯装置で実現される第1の運転方法を示すフローチャートである。It is a flowchart which shows the 1st driving | running method implement | achieved with the hot water supply apparatus shown in FIG. 第1の運転方法に係るデータテーブルである。It is a data table which concerns on a 1st driving | operation method. 第1の運転方法に係るデータテーブルである。It is a data table which concerns on a 1st driving | running method. 第1の運転方法に係るデータテーブルである。It is a data table which concerns on a 1st driving | running method. 図1に示した給湯装置で実現される第2の運転方法を示すフローチャートである。It is a flowchart which shows the 2nd operating method implement | achieved with the hot water supply apparatus shown in FIG. 第2の運転方法に係るデータテーブルである。It is a data table which concerns on a 2nd driving | running method. 第2の運転方法に係るデータテーブルである。It is a data table which concerns on a 2nd driving | running method. 図1に示した給湯装置で実現される第3の運転方法を示すフローチャートである。It is a flowchart which shows the 3rd operating method implement | achieved with the hot-water supply apparatus shown in FIG. 第3の運転方法に係るデータテーブルである。It is a data table which concerns on a 3rd driving | running method.

符号の説明Explanation of symbols

10…ヒートポンプユニット、HP…ヒートポンプ、11…圧縮機、12…熱交換器、12a…出湯口、12b…入水口、13…膨張弁、14…蒸発器、16…外気温度センサ、Ta…外気温度、17…出湯温度センサ、Two…出湯温度、18…入水温度センサ、Twi…入水温度、19…吐出温度センサ、Td…吐出温度、20…タンクユニット、21…貯湯タンク、21…給水ポンプ、31…主制御回路、32…圧縮機駆動回路、33…膨張弁駆動回路、35…ポンプ駆動回路、36…出湯温度設定器、Qk…環境負荷、RN…圧縮機の目標回転数、Swo…設定出湯温度、Tdt…目標吐出温度、ΔTd…温度偏差、ΔTk…温度変化量、Q…必要出湯能力、P…膨張弁の開度変化量、RP…給水ポンプの回転数。   DESCRIPTION OF SYMBOLS 10 ... Heat pump unit, HP ... Heat pump, 11 ... Compressor, 12 ... Heat exchanger, 12a ... Outlet, 12b ... Inlet, 13 ... Expansion valve, 14 ... Evaporator, 16 ... Outside temperature sensor, Ta ... Outside temperature 17 ... Hot water temperature sensor, Two ... Hot water temperature, 18 ... Incoming water temperature sensor, Twi ... Incoming water temperature, 19 ... Discharge temperature sensor, Td ... Discharge temperature, 20 ... Tank unit, 21 ... Hot water storage tank, 21 ... Feed water pump, 31 DESCRIPTION OF SYMBOLS ... Main control circuit, 32 ... Compressor drive circuit, 33 ... Expansion valve drive circuit, 35 ... Pump drive circuit, 36 ... Hot water temperature setting device, Qk ... Environmental load, RN ... Target speed of compressor, Swo ... Set hot water Temperature, Tdt: Target discharge temperature, ΔTd: Temperature deviation, ΔTk: Temperature change amount, Q: Necessary hot-water supply capacity, P: Change amount of expansion valve opening, RP: Number of rotations of water supply pump.

Claims (6)

回転数制御可能な圧縮機と冷媒と水との間で熱交換を行う熱交換器を少なくとも含むヒートポンプと、
下部を熱交換器の入水口に接続され、且つ、上部を熱交換器の出湯口に接続された貯湯タンクと、
貯湯タンク内の水を熱交換器に送り込むための給水ポンプと、
外気温度を検出するための外気温度センサと、
熱交換器への入水温度を検出するための入水温度センサと、
ヒートポンプ運転時には、検出された外気温度及び入水温度に基づき、外気温度が低くなるほど、或いは、入水温度が高くなるほど、圧縮機の回転数が高くなるように制御する圧縮機制御手段とを備える、
ことを特徴とする給湯装置。
A heat pump including at least a heat exchanger that exchanges heat between a compressor capable of controlling the rotation speed, a refrigerant, and water;
A hot water storage tank whose lower part is connected to the water inlet of the heat exchanger and whose upper part is connected to the outlet of the heat exchanger;
A water supply pump for feeding the water in the hot water storage tank to the heat exchanger;
An outside temperature sensor for detecting the outside temperature;
An incoming water temperature sensor for detecting the incoming water temperature to the heat exchanger;
At the time of heat pump operation, based on the detected outside air temperature and incoming water temperature, it is provided with a compressor control means for controlling so that the lower the outside air temperature, or the higher the incoming water temperature, the higher the rotational speed of the compressor.
A water heater characterized by that.
圧縮機制御手段は、外気温度及び入水温度に基づいて環境負荷を演算し、求められた環境負荷の値に応じて圧縮機の目標回転数を設定する手段を含む、
ことを特徴とする請求項1に記載の給湯装置。
The compressor control means includes means for calculating an environmental load based on the outside air temperature and the incoming water temperature, and setting a target rotational speed of the compressor according to the obtained value of the environmental load.
The hot water supply apparatus according to claim 1.
圧縮機と冷媒と水との間で熱交換を行う熱交換器と開度制御可能な膨張弁を少なくとも含むヒートポンプと、
下部を熱交換器の入水口に接続され、且つ、上部を熱交換器の出湯口に接続された貯湯タンクと、
貯湯タンク内の水を熱交換器に送り込むための給水ポンプと、
外気温度を検出するための外気温度センサと、
熱交換器への入水温度を検出するための入水温度センサと、
圧縮機からの冷媒の吐出温度を検出するための吐出温度センサと、
出湯温度を設定するための出湯温度設定器と、
ヒートポンプ運転時には、検出された外気温度,入水温度及び吐出温度と設定出湯温度に基づき、外気温度が低くなるほど、或いは、入水温度が高くなるほど、或いは、設定出湯温度が高くなるほど、圧縮機の吐出温度が高くなるように膨張弁の開度を制御する膨張弁制御手段とを備える、
ことを特徴とする給湯装置。
A heat pump that exchanges heat between the compressor, the refrigerant, and water, and a heat pump that includes at least an expansion valve capable of opening control;
A hot water storage tank whose lower part is connected to the water inlet of the heat exchanger and whose upper part is connected to the outlet of the heat exchanger;
A water supply pump for feeding the water in the hot water storage tank to the heat exchanger;
An outside temperature sensor for detecting the outside temperature;
An incoming water temperature sensor for detecting the incoming water temperature to the heat exchanger;
A discharge temperature sensor for detecting the discharge temperature of the refrigerant from the compressor;
A tapping temperature setting device for setting the tapping temperature;
During the heat pump operation, based on the detected outside air temperature, incoming water temperature and discharge temperature, and set hot water temperature, the lower the outdoor air temperature, the higher incoming water temperature, or the higher set hot water temperature, the discharge temperature of the compressor. An expansion valve control means for controlling the opening of the expansion valve so as to be high,
A water heater characterized by that.
膨張弁制御手段は、外気温度,入水温度及び設定出湯温度に基づいて目標吐出温度を演算し、求められた目標吐出温度と吐出温度との温度偏差と吐出温度の経時的な温度変化量を演算し、求められた温度偏差及び温度変化量の値に応じて膨張弁の開度変化量を設定する手段を含む、
ことを特徴とする請求項3に記載の給湯装置。
The expansion valve control means calculates the target discharge temperature based on the outside air temperature, the incoming water temperature, and the set hot water temperature, and calculates the temperature deviation between the obtained target discharge temperature and the discharge temperature and the temperature change over time of the discharge temperature. And a means for setting the opening change amount of the expansion valve according to the obtained temperature deviation and the value of the temperature change amount,
The hot water supply apparatus according to claim 3.
圧縮機と冷媒と水との間で熱交換を行う熱交換器を少なくとも含むヒートポンプと、
下部を熱交換器の入水口に接続され、且つ、上部を熱交換器の出湯口に接続された貯湯タンクと、
貯湯タンク内の水を熱交換器に送り込むための回転数制御可能な給水ポンプと、
外気温度を検出するための外気温度センサと、
熱交換器への入水温度を検出するための入水温度センサと、
出湯温度を設定するための出湯温度設定器と、
ヒートポンプ運転時には、検出された外気温度及び入水温度と設定出湯温度に基づき、外気温度が高くなるほど、或いは、入水温度が高くなるほど、或いは、設定出湯温度が低くなるほど、給水ポンプの回転数が高くなるように制御するポンプ制御手段とを備える、
ことを特徴とする給湯装置。
A heat pump including at least a heat exchanger that exchanges heat between the compressor, the refrigerant, and water;
A hot water storage tank whose lower part is connected to the water inlet of the heat exchanger and whose upper part is connected to the outlet of the heat exchanger;
A feed water pump capable of controlling the number of revolutions for feeding water in the hot water storage tank to the heat exchanger;
An outside temperature sensor for detecting the outside temperature;
An incoming water temperature sensor for detecting the incoming water temperature to the heat exchanger;
A tapping temperature setting device for setting the tapping temperature;
During the heat pump operation, based on the detected outside air temperature, incoming water temperature and set hot water temperature, the higher the outdoor air temperature, the higher incoming water temperature, or the lower the set hot water temperature, the higher the rotation speed of the water supply pump. A pump control means for controlling
A water heater characterized by that.
ポンプ制御手段は、外気温度,入水温度件及び設定出湯温度に基づいて必要出湯能力を演算し、求められた必要出湯能力と設定出湯温度及び入水温度に基づいて給水ポンプの回転数を設定する手段を含む、
ことを特徴とする請求項5に記載の給湯装置。
The pump control means is a means for calculating the required hot water capacity based on the outside air temperature, the incoming water temperature and the set hot water temperature, and setting the number of rotations of the feed pump based on the required required hot water capacity, the set hot water temperature and the incoming water temperature. including,
The hot water supply device according to claim 5.
JP2006012256A 2006-01-20 2006-01-20 Hot water supply device Pending JP2007192499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006012256A JP2007192499A (en) 2006-01-20 2006-01-20 Hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006012256A JP2007192499A (en) 2006-01-20 2006-01-20 Hot water supply device

Publications (1)

Publication Number Publication Date
JP2007192499A true JP2007192499A (en) 2007-08-02

Family

ID=38448344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012256A Pending JP2007192499A (en) 2006-01-20 2006-01-20 Hot water supply device

Country Status (1)

Country Link
JP (1) JP2007192499A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109101A (en) * 2007-10-31 2009-05-21 Panasonic Corp Heat pump hot water supply system
WO2009093350A1 (en) 2008-01-25 2009-07-30 Sanden Corporation Heat-pump type water heater
WO2009093351A1 (en) 2008-01-24 2009-07-30 Sanden Corporation Heat pump type hot water supply device
JP2010060236A (en) * 2008-09-05 2010-03-18 Corona Corp Heat pump type hot water supply device
JP7449465B2 (en) 2019-12-24 2024-03-14 株式会社ノーリツ heat pump water heater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222396A (en) * 2002-01-30 2003-08-08 Daikin Ind Ltd Heat pump type water heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222396A (en) * 2002-01-30 2003-08-08 Daikin Ind Ltd Heat pump type water heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109101A (en) * 2007-10-31 2009-05-21 Panasonic Corp Heat pump hot water supply system
WO2009093351A1 (en) 2008-01-24 2009-07-30 Sanden Corporation Heat pump type hot water supply device
WO2009093350A1 (en) 2008-01-25 2009-07-30 Sanden Corporation Heat-pump type water heater
JP2010060236A (en) * 2008-09-05 2010-03-18 Corona Corp Heat pump type hot water supply device
JP7449465B2 (en) 2019-12-24 2024-03-14 株式会社ノーリツ heat pump water heater

Similar Documents

Publication Publication Date Title
JP2007192499A (en) Hot water supply device
JP4698697B2 (en) Heat pump water heater
JP4120683B2 (en) Water heater abnormality detection device
JP2014196849A (en) Heat pump water heater
JP2013119954A (en) Heat pump hot water heater
JP6703468B2 (en) Air conditioner with hot water supply function
JP2006292329A (en) Heat source system, and control device and control method thereof
JP2017133775A (en) Heat pump device
JP6952864B2 (en) Water heater
JP2009222314A (en) Refrigerating cycle device
JP2009264715A (en) Heat pump hot water system
JP2005147584A (en) Start-up controller and start-up control method for heat pump hot water supply apparatus
JP5573370B2 (en) Refrigeration cycle apparatus and control method thereof
JP2011144951A (en) Air conditioner
JP2009264718A (en) Heat pump hot water system
JP2011075200A (en) Heat pump hot water supply apparatus
JP2008116155A (en) Operation control method for air conditioner
JP4950004B2 (en) Heat pump type water heater
JP2005337550A (en) Heat pump water heater
JP6004177B2 (en) Hot water storage hot water supply system
WO2017050072A1 (en) Water chiller-heater unit of air cooled heat pump and defrosting control method therefor
JP6326446B2 (en) Hot water supply system and power limiting system provided with the same
JP2007198671A (en) Water heater
JP2005121283A (en) Heat pump water heater
JP2007292419A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316