JP7449465B2 - heat pump water heater - Google Patents

heat pump water heater Download PDF

Info

Publication number
JP7449465B2
JP7449465B2 JP2019233197A JP2019233197A JP7449465B2 JP 7449465 B2 JP7449465 B2 JP 7449465B2 JP 2019233197 A JP2019233197 A JP 2019233197A JP 2019233197 A JP2019233197 A JP 2019233197A JP 7449465 B2 JP7449465 B2 JP 7449465B2
Authority
JP
Japan
Prior art keywords
opening degree
expansion valve
heat pump
compressor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019233197A
Other languages
Japanese (ja)
Other versions
JP2021103006A (en
Inventor
正晃 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2019233197A priority Critical patent/JP7449465B2/en
Publication of JP2021103006A publication Critical patent/JP2021103006A/en
Application granted granted Critical
Publication of JP7449465B2 publication Critical patent/JP7449465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ヒートポンプ給湯装置に関し、特に膨張弁の製品バラツキに起因して圧縮機の負荷が過大になるのを防止するようにしたヒートポンプ給湯装置に関する。 The present invention relates to a heat pump water heater, and more particularly to a heat pump water heater that prevents an excessive load on a compressor due to product variations in expansion valves.

ヒートポンプ給湯装置は、圧縮機と凝縮熱交換器と膨張弁と蒸発熱交換器とが冷媒回路により接続されたヒートポンプ回路と、湯水を貯留する貯湯タンクと、この貯湯タンクから取り出した低温水を凝縮熱交換器によって加熱して貯湯タンクに戻す加熱循環回路を備えている。 A heat pump water heater has a heat pump circuit in which a compressor, a condensing heat exchanger, an expansion valve, and an evaporative heat exchanger are connected by a refrigerant circuit, a hot water storage tank that stores hot water, and the low-temperature water extracted from the hot water storage tank that is condensed. It is equipped with a heating circulation circuit that heats the water using a heat exchanger and returns it to the storage tank.

上記のヒートポンプ回路のヒートポンプ運転は、圧縮機の運転開始を円滑にするため膨張弁の開度を開いた状態で運転が開始され、その後圧縮機が所定周波数まで立ち上がってから膨張弁の開度を予め設定された目標値まで絞るように制御している。
そのため、従来は、入水温度と外気温度をパラメータとする膨張弁開度の目標値テーブルが予め設定され、入水温度と外気温度の検出値を上記の目標値テーブルに適用して膨張弁の開度の目標値を設定していた。
Heat pump operation in the heat pump circuit described above starts with the expansion valve open to ensure a smooth start of compressor operation, and then after the compressor has risen to a predetermined frequency, the expansion valve is opened. It is controlled to narrow down to a preset target value.
Therefore, in the past, a target value table for the expansion valve opening degree using the inlet water temperature and outside air temperature as parameters was set in advance, and the detected values of the inlet water temperature and outside air temperature were applied to the above target value table to determine the opening degree of the expansion valve. had set a target value.

ここで、特許文献1には、ヒートポンプ回路において、圧縮機の電流値が制限を越えた場合に膨張弁の開度を開く方向に調整することが開示されている。
特許文献2には、ヒートポンプ式加熱装置において、圧縮機からの吐出温度が高くなった場合に、膨張弁の絞り開度を開くように制御する技術が開示されている。
Here, Patent Document 1 discloses that in a heat pump circuit, when the current value of the compressor exceeds a limit, the opening degree of the expansion valve is adjusted in the direction of opening.
Patent Document 2 discloses a technique of controlling a heat pump type heating device to open the throttle opening of an expansion valve when the discharge temperature from a compressor becomes high.

特開2006-78146号公報Japanese Patent Application Publication No. 2006-78146 特許第4123220号公報Patent No. 4123220

ところで、膨張弁には製品個々の製品バラツキがあり、その僅かの製品バラツキが流量にかなりの影響を及ぼし、同一開度でも流量が異なる場合が少なくない。
しかし、従来では膨張弁の製品バラツキを考慮することなく、共通の目標値テーブルに基づいて膨張弁の開度の目標値を設定していた。
Incidentally, there are product variations in expansion valves, and even slight product variations have a considerable effect on the flow rate, and the flow rate often differs even at the same opening degree.
However, conventionally, the target value for the opening degree of the expansion valve has been set based on a common target value table without considering product variations in the expansion valve.

ここで、標準品よりも少ない流量特性となる下限品の膨張弁が組み付けられている場合、膨張弁の開度が絞り過ぎた状態になっているため、圧縮機からの吐出温度が目標値よりも上がり過ぎてしまい、圧縮機が過負荷の過電流状態になる。そのため、圧縮機の電流値が内線規定で定められている電流値を瞬間的に超過する場合がある。 If a lower limit product expansion valve with flow characteristics lower than the standard product is installed, the opening degree of the expansion valve will be too narrow, and the discharge temperature from the compressor will be lower than the target value. The voltage also rises too much, causing the compressor to overload and become overcurrent. Therefore, the current value of the compressor may momentarily exceed the current value specified by the extension regulations.

本発明の目的は、膨張弁の製品バラツキに起因する運転開始時の圧縮機の過電流を抑制可能なヒートポンプ給湯装置を提供することである。 An object of the present invention is to provide a heat pump water heater that can suppress overcurrent in a compressor at the start of operation due to product variations in expansion valves.

請求項1に係るヒートポンプ給湯装置は、圧縮機と凝縮熱交換器と膨張弁と蒸発熱交換器とが冷媒回路により接続されたヒートポンプ回路と、湯水を貯留する貯湯タンクと、この貯湯タンクから取り出した低温水を凝縮熱交換器によって加熱して貯湯タンクに戻す加熱循環回路を備えたヒートポンプ給湯装置において、前記ヒートポンプ回路によるヒートポンプ運転の運転開始時に膨張弁の開度が所定の初期開度まで開かれ、その後予め設定された目標値まで絞られるように構成されており、ヒートポンプ運転開始時の所定の運転条件における圧縮機出口の吐出温度上昇率を予め設定された吐出温度上昇率と比較し、前記圧縮機出口の吐出温度上昇率が前記予め設定された吐出温度上昇率よりも一定値以上大きいと判定されたときには膨張弁の開度の目標値を補正値によって開度増大側へ補正してヒートポンプ運転を行うように構成され、入水温度と外気温をパラメータとして前記吐出温度上昇率を予め設定した吐出温度上昇率テーブルと、 入水温度と外気温をパラメータとして前記補正値を予め設定した補正値テーブルと、入水温度と外気温をパラメータとして前記膨張弁の開度の目標値を予め設定した目標値テーブルとを有することを特徴としている。 The heat pump hot water supply device according to claim 1 includes: a heat pump circuit in which a compressor, a condensing heat exchanger, an expansion valve, and an evaporative heat exchanger are connected through a refrigerant circuit; a hot water storage tank for storing hot water; In a heat pump water heater equipped with a heating circulation circuit that heats low-temperature water using a condensing heat exchanger and returns it to a hot water storage tank, the opening degree of the expansion valve is opened to a predetermined initial opening degree when the heat pump operation by the heat pump circuit is started. The temperature is then reduced to a preset target value, and the discharge temperature increase rate at the compressor outlet under predetermined operating conditions at the start of heat pump operation is compared with the preset discharge temperature increase rate, When it is determined that the rate of increase in discharge temperature at the outlet of the compressor is greater than the preset rate of increase in discharge temperature by a certain value or more, the target value of the opening degree of the expansion valve is corrected to the side of increasing the opening degree using a correction value. A discharge temperature increase rate table that is configured to perform heat pump operation and presets the discharge temperature increase rate using inlet water temperature and outside air temperature as parameters; and a correction value that presets the correction value using inlet water temperature and outside air temperature as parameters. The present invention is characterized by comprising a table and a target value table in which a target value of the opening degree of the expansion valve is set in advance using incoming water temperature and outside temperature as parameters .

上記の構成によれば、膨張弁の製品バラツキによってヒートポンプ運転開始時の圧縮機出口の吐出温度上昇率と予め設定された吐出温度上昇率との差が一定値以上になっている場合には、膨張弁の開度の目標値を補正値によって補正してヒートポンプ運転を行う。
例えば、圧縮機出口の吐出温度上昇率が設定された値よりも一定値以上高い場合には、膨張弁の開度の目標値を補正値によって大きく補正するため、膨張弁の製品バラツキに起因する圧縮機の過電流を確実に防ぐことができる。
According to the above configuration, if the difference between the discharge temperature increase rate at the compressor outlet at the start of heat pump operation and the preset discharge temperature increase rate is greater than a certain value due to product variations in the expansion valve, Heat pump operation is performed by correcting the target value of the opening degree of the expansion valve using the correction value.
For example, if the discharge temperature rise rate at the compressor outlet is higher than the set value by more than a certain value, the target value of the expansion valve opening degree is greatly corrected by the correction value, which is caused by product variations in the expansion valve. Compressor overcurrent can be reliably prevented.

そして、実際の吐出温度上昇率と吐出温度上昇率テーブルの吐出温度上昇率と比較し、その差が一定値以上の場合には、補正値テーブルから補正値を求め、その補正値でもって目標値テーブルから読み出した膨張弁開度の目標値を補正する。こうして、高い精度でもって膨張弁開度の目標値を補正することができる。 Then, the actual discharge temperature increase rate is compared with the discharge temperature increase rate in the discharge temperature increase rate table, and if the difference is greater than a certain value, a correction value is obtained from the correction value table, and the correction value is used to set the target value. Correct the target value of the expansion valve opening read from the table. In this way, the target value of the expansion valve opening degree can be corrected with high accuracy.

請求項のヒートポンプ給湯装置は、請求項の発明において、前記圧縮機は段階的に周波数制御を行うように構成されており、上記の圧縮機出口の吐出温度上昇率は、膨張弁の開度が所定の初期開度であって圧縮機の周波数が所定周波数に上昇途中の一定時間の間の温度上昇率から算出されることを特徴としている。 In the heat pump water heater according to claim 2 , in the invention according to claim 1 , the compressor is configured to perform frequency control in stages, and the discharge temperature rise rate at the outlet of the compressor is determined by the opening of the expansion valve. The compressor frequency is calculated from the rate of temperature rise during a certain period of time while the compressor frequency is rising to the predetermined frequency.

上記の構成によれば、膨張弁の開度が所定の初期開度のときの、圧縮機を所定周波数まで立ち上げる時の一定時間の間の温度上昇率を用いるため、圧縮機出口の吐出温度上昇率を一定の条件下に求めることができるから、高い精度でもって膨張弁開度の目標値を補正することができる。 According to the above configuration, since the rate of temperature rise during a certain period of time when the compressor is started up to a predetermined frequency when the opening degree of the expansion valve is a predetermined initial opening degree is used, the discharge temperature at the compressor outlet is Since the rate of increase can be determined under certain conditions, the target value of the expansion valve opening degree can be corrected with high accuracy.

本発明によれば、上記のような種々の効果が得られる。 According to the present invention, various effects as described above can be obtained.

本発明の実施形態に係るヒートポンプ給湯装置の構成図である。1 is a configuration diagram of a heat pump water heater according to an embodiment of the present invention. ヒートポンプ給湯装置の運転開始時の圧縮機の周波数と膨張弁の開度の動作タイムチャートである。It is an operation time chart of the frequency of the compressor and the opening degree of the expansion valve at the time of starting operation of the heat pump water heater. 吐出温度上昇率テーブルの図表である。It is a chart of a discharge temperature increase rate table. 膨張弁開度の補正値テーブルの図表である。It is a chart of the correction value table of expansion valve opening degree. 膨張弁開度の目標値テーブルの図表である。It is a chart of the target value table of expansion valve opening degree. 圧縮機周波数制御のフローチャートである。It is a flowchart of compressor frequency control. 膨張弁の開度制御のフローチャートの一部である。It is a part of a flowchart of opening degree control of an expansion valve. 膨張弁の開度制御のフローチャートの残部である。This is the remainder of the flowchart for controlling the opening degree of the expansion valve. 膨張弁開度の設定処理のフローチャートである。It is a flowchart of the setting process of an expansion valve opening degree.

最初に、ヒートポンプ給湯装置1の全体構成について説明する。
図1に示すように、ヒートポンプ給湯装置1は、ヒートポンプユニット2と、貯湯タンク3と、ヒートポンプユニット2と貯湯タンク3の間で湯水を循環させる加熱循環通路 4とを有するものである。
First, the overall configuration of the heat pump water heater 1 will be described.
As shown in FIG. 1, the heat pump water heater 1 includes a heat pump unit 2, a hot water storage tank 3, and a heating circulation passage 4 that circulates hot water between the heat pump unit 2 and the hot water storage tank 3.

貯湯タンク3は断熱材で覆われており、貯湯タンク3には上水を供給する給水系統5 や加熱した湯水をカランや風呂等に供給する給湯系統6が接続されている。
加熱循環通路4は、貯湯タンク4から取り出した低温水をヒートポンプユニット2の凝縮熱交換器8に供給する循環往き通路4aと、凝縮熱交換器8により加熱した湯水をヒートポンプユニット2の凝縮熱交換器8から貯湯タンク3に供給する循環戻り通路4bとを有する。
The hot water storage tank 3 is covered with a heat insulating material, and the hot water storage tank 3 is connected to a water supply system 5 for supplying clean water and a hot water supply system 6 for supplying heated hot water to a sink, bath, etc.
The heating circulation passage 4 includes a circulation passage 4a that supplies low-temperature water taken out from the hot water storage tank 4 to the condensation heat exchanger 8 of the heat pump unit 2, and a circulation passage 4a that supplies the low-temperature water taken out from the hot water storage tank 4 to the condensation heat exchanger 8 of the heat pump unit 2, and a condensation heat exchange of the hot water heated by the condensation heat exchanger 8 of the heat pump unit 2. It has a circulation return passage 4b that supplies hot water from the container 8 to the hot water storage tank 3.

次に、ヒートポンプユニット2について説明する。
ヒートポンプユニット2は、外装ケース2a内に圧縮機7、凝縮熱交換器8、膨張弁9(膨張手段)、蒸発熱交換器10を冷媒通路11(冷媒回路)により接続したヒートポンプ回路を有する。圧縮機7と凝縮熱交換器8の間で冷媒通路11から分岐した冷媒バイパス通路11a(バイパス通路)は、その冷媒バイパス通路11aを開閉可能な除霜用開閉弁 12を備え、膨張弁9と蒸発熱交換器10の間の冷媒通路11に接続されている。
Next, the heat pump unit 2 will be explained.
The heat pump unit 2 has a heat pump circuit in which a compressor 7, a condensing heat exchanger 8, an expansion valve 9 (expansion means), and an evaporative heat exchanger 10 are connected through a refrigerant passage 11 (refrigerant circuit) in an exterior case 2a. A refrigerant bypass passage 11a (bypass passage) branched from the refrigerant passage 11 between the compressor 7 and the condensing heat exchanger 8 includes a defrosting on-off valve 12 that can open and close the refrigerant bypass passage 11a, and an expansion valve 9 and It is connected to the refrigerant passage 11 between the evaporative heat exchangers 10.

圧縮機7と凝縮熱交換器8の間の冷媒通路11には、圧縮機7から吐出された冷媒の温度を検知する吐出温度センサ13が取付けられている。湯水循環通路4に接続された凝縮熱交換器8の熱交換通路部8aには、凝縮熱交換器8の入口側の低温水の温度(入水温度)を検知する入水温度センサ14及び出口側の湯水の温度を検知する出口温度センサ15が取付けられている。 A discharge temperature sensor 13 that detects the temperature of the refrigerant discharged from the compressor 7 is attached to the refrigerant passage 11 between the compressor 7 and the condensing heat exchanger 8 . The heat exchange passage section 8a of the condensing heat exchanger 8 connected to the hot water circulation passage 4 includes an inlet water temperature sensor 14 that detects the temperature of low-temperature water (incoming water temperature) on the inlet side of the condensing heat exchanger 8, and an inlet water temperature sensor 14 on the outlet side. An outlet temperature sensor 15 is attached to detect the temperature of hot water.

ヒートポンプユニット2は、制御ユニット16と電気的に接続された補助制御ユニット 17により加熱運転等を制御する。加熱運転では、除霜用開閉弁12を閉止し、圧縮機7と蒸発熱交換器10に送風する送風機18を夫々駆動し、膨張弁9の開度を調整して冷媒通路11内に封入された冷媒を循環させる。尚、送風機18のケースには外気温を検知する外気温センサ19が取付けられ、蒸発熱交換器10の出口における冷媒温度を検知する圧縮機入り口側温度センサ20が取付けられている。センサ類13,14,15,19,20の検出信号は制御ユニット16及び補助制御ユニット17に供給される。 The heat pump unit 2 controls heating operation and the like by an auxiliary control unit 17 electrically connected to a control unit 16. In the heating operation, the defrosting on-off valve 12 is closed, the blower 18 that blows air to the compressor 7 and the evaporative heat exchanger 10 is driven, and the opening degree of the expansion valve 9 is adjusted to cool the refrigerant sealed in the refrigerant passage 11. circulate the refrigerant. An outside air temperature sensor 19 is attached to the case of the blower 18 to detect the outside air temperature, and a compressor inlet temperature sensor 20 is attached to the case to detect the refrigerant temperature at the outlet of the evaporative heat exchanger 10. Detection signals from the sensors 13, 14, 15, 19, 20 are supplied to a control unit 16 and an auxiliary control unit 17.

加熱運転により圧縮機7において圧縮されて昇温した高温の冷媒が、凝縮熱交換器8 に導入される。凝縮熱交換器8において高温の冷媒と加熱循環通路4に接続された熱交換通路部8aを流れる湯水との間で熱交換が行われて湯水が加熱される。熱交換により降温して一部液化した冷媒は、膨張弁9において膨張してさらに降温し、蒸発熱交換器10に導入される。蒸発熱交換器10において冷媒は外気の熱を吸熱して気化し、再び圧縮機 7に導入される。 The high-temperature refrigerant that has been compressed and heated in the compressor 7 during the heating operation is introduced into the condensing heat exchanger 8 . In the condensing heat exchanger 8, heat exchange is performed between the high-temperature refrigerant and the hot water flowing through the heat exchange passage section 8a connected to the heating circulation passage 4, and the hot water is heated. The refrigerant, whose temperature has been lowered and partially liquefied through heat exchange, expands in the expansion valve 9 to further lower its temperature, and is introduced into the evaporative heat exchanger 10. In the evaporative heat exchanger 10, the refrigerant absorbs heat from the outside air, evaporates, and is introduced into the compressor 7 again.

このヒートポンプ給湯装置1においては、膨張弁9の製品バラツキにより、圧縮機出口側の冷媒の吐出圧にバラツキが発生し、圧縮機7が過負荷になって過電流が流れ、ヒートポンプユニット2に給電する電気系統が故障する場合があるので、それを防ぐために、ヒートポンプ運転は次のように行う。
ヒートポンプ回路によるヒートポンプ運転が開始されると、膨張弁9の開度が待機開度(例えば、70step)から初期開度(例えば、500step)まで開き、その開度を暫く保持した後予め設定された初期目標値まで絞られ、ヒートポンプ運転開始時の所定の運転条件における圧縮機出口の吐出温度上昇率を予め設定された吐出温度上昇率と比較し、前記圧縮機出口の吐出温度上昇率が前記予め設定された吐出温度上昇率よりも一定値以上大きいと判定されたときには膨張弁9の開度の目標値を補正値によって開度増大側へ補正してヒートポンプ運転を行う。
In this heat pump water heater 1, due to product variations in the expansion valve 9, variations occur in the discharge pressure of the refrigerant at the outlet of the compressor, the compressor 7 becomes overloaded, an overcurrent flows, and power is supplied to the heat pump unit 2. To prevent this, the heat pump should be operated as follows:
When the heat pump operation by the heat pump circuit is started, the opening degree of the expansion valve 9 opens from the standby opening degree (for example, 70 steps) to the initial opening degree (for example, 500 steps), and after holding this opening degree for a while, the opening degree is changed to the preset opening degree. The discharge temperature increase rate at the compressor outlet under predetermined operating conditions at the start of heat pump operation is compared with a preset discharge temperature increase rate, and the discharge temperature increase rate at the compressor outlet is determined to be When it is determined that the rate of increase in the discharge temperature is higher than the set discharge temperature increase rate by a certain value or more, the target value of the opening degree of the expansion valve 9 is corrected to the side of increasing the opening degree using the correction value, and the heat pump operation is performed.

図2は、ヒートポンプ給湯装置1の運転開始時における圧縮機7の周波数と、膨張弁9の開度の動作タイムチャートを示すものである。
運転開始後、圧縮機7の周波数は、所定周波数(例えば、50Hz)まで0.1Hz/secの上昇率で増加され、その後240秒間所定周波数に保持され、その後0.1Hz/secの上昇率で目標周波数(例えば、70Hz)まで周波数を増加させ、目標周波数で90秒間経過後には0.1Hz/secの上昇率で設定周波数(例えば、100Hz)まで周波数を増加させ、その後その周波数で定常運転を行う。
FIG. 2 shows an operation time chart of the frequency of the compressor 7 and the opening degree of the expansion valve 9 when the heat pump water heater 1 starts operating.
After the start of operation, the frequency of the compressor 7 is increased to a predetermined frequency (for example, 50 Hz) at a rate of increase of 0.1 Hz/sec, then maintained at the predetermined frequency for 240 seconds, and then increased at a rate of increase of 0.1 Hz/sec. Increase the frequency to the target frequency (e.g., 70 Hz), and after 90 seconds at the target frequency, increase the frequency to the set frequency (e.g., 100 Hz) at a rate of increase of 0.1 Hz/sec, and then perform steady operation at that frequency. conduct.

運転開始後、膨張弁9は待機位置から、50パルス/sec(pps)の上昇率で初期開度(例えば、500step)まで開度を増加させ、この大きな初期開度を一定時間の間保持して圧縮機7の周波数立ち上がりを円滑にすると共に、圧縮機7を過負荷でない状態に保持した状態で、タイミングt1,t2の間の圧縮機吐出側における冷媒温度の上昇率を検知し、その後、圧縮機7が所定周波数にまで立ち上がってから90秒経過後には、膨張弁9の開度を50ppsの減少率で減少させ、初期目標開度(例えば、300step)まで減少後にはその初期目標開度を暫くの間保持し、圧縮機7の周波数が設定周波数に達した時点から90秒経過してから、0.1ppsの減少率で膨張弁9の開度を開度設定値まで減少させる。 After the start of operation, the expansion valve 9 increases the opening degree from the standby position at a rate of increase of 50 pulses/sec (pps) to the initial opening degree (for example, 500 steps), and maintains this large initial opening degree for a certain period of time. to smooth the frequency rise of the compressor 7 and to maintain the compressor 7 in a non-overloaded state, detect the rate of increase in refrigerant temperature on the compressor discharge side between timings t1 and t2, and then, After 90 seconds have passed since the compressor 7 has risen to a predetermined frequency, the opening degree of the expansion valve 9 is decreased at a rate of 50 pps, and after decreasing to the initial target opening degree (for example, 300 steps), the opening degree is reduced to the initial target opening degree. is maintained for a while, and after 90 seconds have elapsed since the frequency of the compressor 7 reached the set frequency, the opening degree of the expansion valve 9 is decreased to the opening degree set value at a reduction rate of 0.1 pps.

上記のヒートポンプ運転を行うため、入水温度と外気温をパラメータとして吐出温度上昇率を予め設定した吐出温度上昇率テーブル(図3参照)と、入水温度と外気温をパラメータとして膨張弁開度の補正値を予め設定した補正値テーブル(図4参照)と、入水温度と外気温をパラメータとして膨張弁開度の目標値を予め設定した目標値テーブル(図5参照)とを有する。 In order to perform the heat pump operation described above, a discharge temperature increase rate table (see Figure 3) in which the discharge temperature increase rate is preset using the inlet water temperature and outside temperature as parameters, and correction of the expansion valve opening degree using the inlet water temperature and outside temperature as parameters. It has a correction value table (see FIG. 4) in which values are set in advance, and a target value table (see FIG. 5) in which target values for the expansion valve opening degree are set in advance using inlet water temperature and outside air temperature as parameters.

圧縮機7は段階的に周波数制御を行うように構成されており、上記の圧縮機7出口の吐出温度上昇率は、膨張弁9の開度が所定の初期開度の状態で、圧縮機7の周波数が所定周波数に上昇途中のタイミングt1,t2の一定時間(60秒)の間の温度上昇率から算出される。 The compressor 7 is configured to perform frequency control in stages, and the rate of increase in the discharge temperature at the outlet of the compressor 7 described above is the same as that of the compressor 7 when the opening degree of the expansion valve 9 is at a predetermined initial opening degree. It is calculated from the rate of temperature rise during a certain period of time (60 seconds) at timings t1 and t2 when the frequency is rising to a predetermined frequency.

以下、補助制御ユニット17により実行される圧縮機周波数制御及び膨張弁9の開度制御について、図6~図9のフローチャートに基づいて説明する。尚、膨張弁9の開度制御は、圧縮機周波数制御に対するインターバル割り込み(例えば、100ms間隔)にて実行される。
尚、これら制御のフローチャート及び前記のテーブル類は、補助制御ユニット17のマイクロコンピュータに予め格納されている。尚、フローチャートにおける符号Si(i=1,2,・・・は各ステップを示すものである。
Hereinafter, the compressor frequency control and the opening degree control of the expansion valve 9 executed by the auxiliary control unit 17 will be explained based on the flowcharts of FIGS. 6 to 9. Note that the opening degree control of the expansion valve 9 is executed at interval interruptions (for example, at 100 ms intervals) to the compressor frequency control.
Note that these control flowcharts and the above-mentioned tables are stored in the microcomputer of the auxiliary control unit 17 in advance. Note that the symbols Si (i=1, 2, . . . ) in the flowchart indicate each step.

最初に、圧縮機周波数制御について図6に基づいて説明する。
ヒートポンプユニット2の運転(尚、この運転には試運転も含む)が開始されると初期設定がなされた後、圧縮機の運転が開始され(S1)、0.1Hz/secの増加率で圧縮機7の周波数Nが増加される(S2)。次に周波数N=30Hzか否か判定され、その判定がNoのうちはS2,S3を繰り返し、S3の判定がYesになると、吐出温度センサ13の検出温度Th1が読み込まれてメモリに記憶され、これと同時にタイマーTM1をスタートさせる(S4)。尚、上記の30Hzは一例であり、これに限るものではない。
First, compressor frequency control will be explained based on FIG. 6.
When the operation of the heat pump unit 2 (this operation also includes a test run) is started, initial settings are made, and then the compressor starts operating (S1), and the compressor speed increases at an increase rate of 0.1 Hz/sec. 7 frequency N is increased (S2). Next, it is determined whether the frequency N=30Hz or not, and if the determination is No, S2 and S3 are repeated, and when the determination in S3 is Yes, the detected temperature Th1 of the discharge temperature sensor 13 is read and stored in the memory, At the same time, timer TM1 is started (S4). Note that the above-mentioned 30 Hz is an example, and the frequency is not limited to this.

S5では、タイマーTM1の計時時間TM1が60sec以上になった否か判定し、その判定がNoのうちはS5を繰り返し、S5の判定がYesになると、吐出温度センサ13の検出温度Th2が読み込まれてメモリに記憶される。このように、圧縮機7の周波数Nが所定周波数(例えば、50Hz)へ上昇中に30Hzになったタイミングt1とそれから60秒経過後のタイミングt2における吐出温度Th1,Th2が検出されてメモリに記憶される。 In S5, it is determined whether or not the measured time TM1 of the timer TM1 has become 60 seconds or more, and if the determination is No, S5 is repeated, and if the determination in S5 is Yes, the detected temperature Th2 of the discharge temperature sensor 13 is read. and stored in memory. In this way, the discharge temperatures Th1 and Th2 at the timing t1 when the frequency N of the compressor 7 becomes 30Hz while rising to a predetermined frequency (for example, 50Hz) and at the timing t2 60 seconds after that are detected and stored in the memory. be done.

その後圧縮機7の周波数が所定周波数(例えば、50Hz)になったらその所定周波数が240秒間保持され(S7,S8)、その後0.1Hz/secで周波数を70Hzまで増加させ(S9,S10)、その後90秒間70Hzに保持し(S11)、その後0.1Hz/secの増加率で設定周波数(例えば、100Hz)まで周波数Nを増加させ(S12,S13)、その後周波数Nを設定周波数に保持しながら(S14)、ヒートポンプ運転を続行する。 Thereafter, when the frequency of the compressor 7 reaches a predetermined frequency (for example, 50 Hz), the predetermined frequency is maintained for 240 seconds (S7, S8), and then the frequency is increased to 70 Hz at a rate of 0.1 Hz/sec (S9, S10). After that, the frequency N is held at 70 Hz for 90 seconds (S11), and then the frequency N is increased to the set frequency (for example, 100 Hz) at an increase rate of 0.1 Hz/sec (S12, S13), and then the frequency N is held at the set frequency. (S14), the heat pump operation continues.

次に、膨張弁9の開度制御について、図7,図8に基づいて説明する。
ヒートポンプユニット2の運転開始後、膨張弁9の開度Kを待機開度(待機位置)(例えば、70step)に設定し(S20)、その後、膨張弁開度Kが500stepになるまで50ppsの増加率で増加させ(S21,S22)、膨張弁開度Kが500stepになったら500stepに暫く保持する。
Next, the opening degree control of the expansion valve 9 will be explained based on FIGS. 7 and 8.
After the heat pump unit 2 starts operating, the opening degree K of the expansion valve 9 is set to the standby opening degree (standby position) (for example, 70 steps) (S20), and then the expansion valve opening degree K is increased by 50 pps until it reaches 500 steps. When the expansion valve opening degree K reaches 500 steps, it is held at 500 steps for a while.

次に、圧縮機7の周波数が50Hzになったか否か判定し(S24)、その判定がYesになると、S25において膨張弁開度Kの設定処理が実行される。
ここで、上記の膨張弁開度Kの設定処理について図9に基づいて説明する。
最初に、入水温度センサ14から入水温度を読み込み、外気温センサ19から外気温を読み込んでメモリに記憶し(S50)、次に上記の入水温度と外気温と図3に示す吐出温度上昇率テーブルから吐出温度上昇率ΔToが演算される(S51)。
Next, it is determined whether the frequency of the compressor 7 has become 50 Hz (S24), and if the determination is Yes, a process for setting the expansion valve opening K is executed in S25.
Here, the above-mentioned process for setting the expansion valve opening degree K will be explained based on FIG. 9.
First, the inlet water temperature is read from the inlet water temperature sensor 14, the outside temperature is read from the outside air temperature sensor 19, and stored in the memory (S50), and then the above-mentioned inlet water temperature and outside air temperature are combined with the discharge temperature increase rate table shown in FIG. The discharge temperature increase rate ΔTo is calculated from (S51).

次に、実際の吐出温度上昇率ΔTがΔT=(Th2-Th1)の演算式により演算されて記憶される(S52)。次に、実際の吐出温度上昇率ΔTと、吐出温度上昇率テーブルに設定された吐出温度上昇率ΔToの差(ΔT-ΔTo)が所定値C(例えば、C=1℃/min)以上か否か判定され(S53)、その判定がYesのときはS54~S56が実行され、その判定がNoのときはS57,S58が実行される。尚、吐出温度上昇率テーブルの値は60秒間の温度上昇率を示すものである。 Next, the actual discharge temperature increase rate ΔT is calculated using the formula ΔT=(Th2−Th1) and stored (S52). Next, determine whether the difference (ΔT - ΔTo) between the actual discharge temperature increase rate ΔT and the discharge temperature increase rate ΔTo set in the discharge temperature increase rate table is greater than or equal to a predetermined value C (for example, C=1°C/min). (S53), and when the determination is Yes, S54 to S56 are executed, and when the determination is No, S57 and S58 are executed. Note that the values in the discharge temperature increase rate table indicate the temperature increase rate for 60 seconds.

S53の判定がYesの場合、S54において入水温度と外気温と図4に示す膨張弁開度補正値テーブルから開度補正値ΔKが演算される。次に、S55において入水温度と外気温と図5に示す膨張弁開度目標値テーブルから開度目標値Koが演算される。
次に、S56において、開度補正値ΔKと開度目標値Koから開度設定値Ksが、Ks=(開度目標値Ko+開度補正値ΔK)の演算式で演算され、その後リターンする。
S53の判定がNoの場合、S57において入水温度と外気温と膨張弁開度目標値テーブルから開度目標値Koが演算される。
次に、S58において開度設定値Kso が開度設定値Kso=開度目標値Koの演算式により演算され、その後リターンする。
If the determination in S53 is Yes, an opening correction value ΔK is calculated in S54 from the inlet water temperature, the outside air temperature, and the expansion valve opening correction value table shown in FIG. Next, in S55, a target opening value Ko is calculated from the inlet water temperature, the outside air temperature, and the expansion valve opening target value table shown in FIG.
Next, in S56, the opening set value Ks is calculated from the opening correction value ΔK and the opening target value Ko using the formula Ks=(opening target value Ko+opening correction value ΔK), and then the process returns.
If the determination in S53 is No, a target opening value Ko is calculated in S57 from the inlet water temperature, the outside air temperature, and the expansion valve opening target value table.
Next, in S58, the opening degree setting value Kso is calculated using the formula: opening degree setting value Kso=opening degree target value Ko, and then the process returns.

次に、図7,図8のフローチャートに戻り、S26においては、タイマーTM2がスタートされ、その値タイマーTM2の計時時間が90秒経過すると(S27)、膨張弁開度Kが50ppsの減少率で減少され、次のS29においては吐出温度上昇率の差(ΔT-ΔTo)が前記の所定値C以上か否か判定され、その判定がYesのときはS30において、膨張弁開度Kが、膨張弁開度K=(初期目標開度Ko1 +開度補正値ΔK)(尚、初期目標開度Ko1は例えば300step)の演算式で演算される。 Next, returning to the flowcharts of FIGS. 7 and 8, in S26, the timer TM2 is started, and when the timer TM2 has elapsed for 90 seconds (S27), the expansion valve opening K is reduced at a rate of 50 pps. In the next S29, it is determined whether the difference in the discharge temperature increase rate (ΔT - ΔTo) is equal to or greater than the predetermined value C, and if the determination is Yes, in S30, the expansion valve opening degree K is Valve opening degree K=(initial target opening degree Ko1 + opening degree correction value ΔK) (initial target opening degree Ko1 is calculated in 300 steps, for example).

その後、膨張弁開度Kを上記の値に保持したまま、圧縮機7が設定周波数になってから90秒経過したか否か判定し(S31)、その判定がYesになると、膨張弁開度Kを0.1ppsの減少率で減少させ(S32)、次にS33において膨張弁開度Kが補正後の開度設定値Ksになったか否か判定し、その判定がYesになるとその開度設定値Ksを保持しながら、ヒートポンプ運転を続行する。 Thereafter, while maintaining the expansion valve opening degree K at the above value, it is determined whether 90 seconds have passed since the compressor 7 reaches the set frequency (S31), and if the determination is Yes, the expansion valve opening degree K is decreased at a rate of 0.1 pps (S32), and then in S33 it is determined whether the expansion valve opening K has reached the corrected opening set value Ks, and if the determination is Yes, the opening is The heat pump operation continues while maintaining the set value Ks.

S29の判定がNoの場合は、S35において膨張弁開度Kが膨張弁開度K=初期目標開度Ko1に設定され、次にS36において圧縮機7が設定周波数になってから90秒経過したか否か判定し(S36)、その判定がYesになると、膨張弁開度Kを0.1ppsの減少率で減少させ(S37)、次にS38において膨張弁開度Kが開度設定値Ksoになったか否か判定し、その判定がYesになるとその開度設定値Ksoを保持しながら、ヒートポンプ運転を続行する(S39)。 If the determination in S29 is No, the expansion valve opening degree K is set to the initial target opening degree Ko1 in S35, and then in S36, 90 seconds have elapsed since the compressor 7 reached the set frequency. It is determined whether or not (S36), and when the determination is Yes, the expansion valve opening degree K is decreased at a decreasing rate of 0.1 pps (S37), and then in S38, the expansion valve opening degree K is set to the opening degree setting value Kso. If the determination is YES, the heat pump operation is continued while maintaining the opening degree setting value Kso (S39).

以上説明したヒートポンプ給湯装置1の作用、効果について説明する。
膨張弁9の製品バラツキによってヒートポンプ運転開始時の圧縮機出口の実際の吐出温度上昇率と予め図3に示す吐出温度上昇率テーブルに設定された吐出温度上昇率との差が一定値以上になっている場合には、図4の補正値テーブルから膨張弁開度の補正値を読み出し、図5の目標値テーブルに設定された膨張弁9の開度の目標値を補正値によって補正してヒートポンプ運転を行う。こうして、高い精度でもって膨張弁開度の目標値を補正することができる。
The functions and effects of the heat pump water heater 1 explained above will be explained.
Due to product variations in the expansion valve 9, the difference between the actual discharge temperature increase rate at the compressor outlet at the start of heat pump operation and the discharge temperature increase rate set in advance in the discharge temperature increase rate table shown in FIG. 3 exceeds a certain value. If the correction value for the expansion valve opening is read from the correction value table in FIG. 4, and the target value for the opening of the expansion valve 9 set in the target value table in FIG. 5 is corrected by the correction value, the heat pump is Drive. In this way, the target value of the expansion valve opening degree can be corrected with high accuracy.

このように、圧縮機出口の吐出温度上昇率が設定された値よりも一定値以上高い場合には、膨張弁9の開度の目標値を補正値によって大きく補正するため、膨張弁9の製品バラツキに起因する圧縮機7の過電流を確実に防ぐことができる。 In this way, when the discharge temperature increase rate at the compressor outlet is higher than the set value by a certain value or more, the target value of the opening degree of the expansion valve 9 is greatly corrected by the correction value. Overcurrent in the compressor 7 due to variations can be reliably prevented.

膨張弁9の開度が所定の初期開度のときの、圧縮機7を所定周波数まで立ち上げる時の一定時間の間の温度上昇率を用いるため、圧縮機出口の吐出温度上昇率を一定の条件下に求めることができるから、高い精度でもって膨張弁開度の目標値を補正することができる。 Since the rate of temperature rise during a certain period of time when the compressor 7 is started up to a predetermined frequency when the opening degree of the expansion valve 9 is a predetermined initial opening degree is used, the discharge temperature rise rate at the compressor outlet is set to a constant rate. Since the target value of the expansion valve opening can be determined with high accuracy, it is possible to correct the target value of the expansion valve opening degree with high accuracy.

前記実施形態を変更する例について説明する。
1)前記実施形態では、図4に示すように補正値テーブルを1つ設け、実際の吐出温度上昇率ΔTと、吐出温度上昇率テーブルに設定された吐出温度上昇率ΔToの差(ΔT-ΔTo)が所定値C以上か否か判定するようにしたが、前記所定値Cに代えて所定値C1,C2(但し、C1>C2)を設定し、1つの補正値テーブルに代えて、所定値C1に対応する補正値テーブルと、所定値C2に対応する補正値テーブルとを設け、吐出温度上昇率ΔToの差(ΔT-ΔTo)の大きさに応じて、補正値テーブルを使い分けるように構成してもよい。
An example of modifying the embodiment will be described.
1) In the embodiment, one correction value table is provided as shown in FIG. 4, and the difference between the actual discharge temperature increase rate ΔT and the discharge temperature increase rate ΔTo set in the discharge temperature increase rate table (ΔT−ΔTo ) is greater than or equal to the predetermined value C.However, instead of the predetermined value C, predetermined values C1 and C2 (however, C1>C2) are set, and instead of one correction value table, the predetermined value A correction value table corresponding to C1 and a correction value table corresponding to predetermined value C2 are provided, and the correction value table is configured to be used differently depending on the magnitude of the difference (ΔT - ΔTo) in the discharge temperature increase rate ΔTo. It's okay.

2)前記実施形態では、吐出温度上昇率の差(ΔT-ΔTo)が所定値C以上の場合には、図7のS30に示すように、初期目標開度Ko1も開度補正値ΔKで補正するようにしたが、初期目標開度Ko1では圧縮機が過負荷になる可能性が低いため、初期目標開度Ko1は開度補正値ΔKで補正しないように構成してもよい。 2) In the embodiment, if the difference in discharge temperature increase rate (ΔT - ΔTo) is equal to or greater than the predetermined value C, the initial target opening Ko1 is also corrected by the opening correction value ΔK, as shown in S30 in FIG. However, since there is a low possibility that the compressor will be overloaded at the initial target opening Ko1, the initial target opening Ko1 may be configured not to be corrected by the opening correction value ΔK.

3)圧縮機の周波数を段階的に増加させる図2に示すパターンは一例を示すものであってこれに限るものではない。その他、当業者ならば、本発明の趣旨を逸脱しない範囲で前記実施形態に種々の変更を付加した形態で実施可能である。 3) The pattern shown in FIG. 2 in which the frequency of the compressor is increased stepwise is an example and is not limited to this. In addition, those skilled in the art can implement the embodiments with various modifications without departing from the spirit of the present invention.

1 ヒートポンプ給湯装置
2 ヒートポンプユニット
3 貯湯タンク
4 加熱循環通路
7 圧縮機
8 凝縮熱交換器
9 膨張弁
10 蒸発熱交換器
11 冷媒通路
1 Heat pump water heater 2 Heat pump unit 3 Hot water storage tank 4 Heating circulation passage 7 Compressor 8 Condensing heat exchanger 9 Expansion valve 10 Evaporative heat exchanger 11 Refrigerant passage

Claims (2)

圧縮機と凝縮熱交換器と膨張弁と蒸発熱交換器とが冷媒回路により接続されたヒートポンプ回路と、湯水を貯留する貯湯タンクと、この貯湯タンクから取り出した低温水を凝縮熱交換器によって加熱して貯湯タンクに戻す加熱循環回路を備えたヒートポンプ給湯装置において、
前記ヒートポンプ回路によるヒートポンプ運転の運転開始時に膨張弁の開度が所定の初期開度まで開かれ、その後予め設定された目標値まで絞られるように構成されており、ヒートポンプ運転開始時の所定の運転条件における圧縮機出口の吐出温度上昇率を予め設定された吐出温度上昇率と比較し、前記圧縮機出口の吐出温度上昇率が前記予め設定された吐出温度上昇率よりも一定値以上大きいと判定されたときには膨張弁の開度の目標値を補正値によって開度増大側へ補正してヒートポンプ運転を行うように構成され、
入水温度と外気温をパラメータとして前記吐出温度上昇率を予め設定した吐出温度上昇率テーブルと、 入水温度と外気温をパラメータとして前記補正値を予め設定した補正値テーブルと、 入水温度と外気温をパラメータとして前記膨張弁の開度の目標値を予め設定した目標値テーブルとを有することを特徴とするヒートポンプ給湯装置。
A heat pump circuit in which a compressor, a condensing heat exchanger, an expansion valve, and an evaporative heat exchanger are connected by a refrigerant circuit, a hot water storage tank that stores hot water, and the low temperature water taken out from this hot water storage tank is heated by the condensing heat exchanger. In a heat pump water heater equipped with a heating circulation circuit that heats hot water and returns it to a storage tank,
When the heat pump operation by the heat pump circuit starts, the opening degree of the expansion valve is opened to a predetermined initial opening degree, and is then narrowed down to a preset target value, so that the opening degree of the expansion valve is opened to a predetermined initial opening degree, and is then narrowed down to a preset target value. Comparing the discharge temperature increase rate at the compressor outlet under the conditions with a preset discharge temperature increase rate, and determining that the discharge temperature increase rate at the compressor outlet is greater than the preset discharge temperature increase rate by a certain value or more. When the expansion valve is opened, the target value of the opening of the expansion valve is corrected to increase the opening by the correction value , and the heat pump is operated.
A discharge temperature increase rate table in which the discharge temperature increase rate is preset using inlet water temperature and outside air temperature as parameters, a correction value table in which the correction value is preset in advance using inlet water temperature and outside air temperature as parameters, and inlet water temperature and outside air temperature. A heat pump water heater characterized by having a target value table in which target values for the opening degree of the expansion valve are set in advance as parameters .
前記圧縮機は段階的に周波数制御を行うように構成されており、上記の圧縮機出口の吐出温度上昇率は、膨張弁の開度が所定の初期開度であって圧縮機の周波数が所定周波数に上昇途中の一定時間の間の温度上昇率から算出されることを特徴とする請求項1に記載のヒートポンプ給湯装置。 The compressor is configured to perform frequency control in stages, and the discharge temperature rise rate at the outlet of the compressor is determined when the opening degree of the expansion valve is a predetermined initial opening degree and the frequency of the compressor is a predetermined opening degree. The heat pump water heater according to claim 1, wherein the temperature is calculated from the rate of temperature increase during a certain period of time while the frequency is increasing .
JP2019233197A 2019-12-24 2019-12-24 heat pump water heater Active JP7449465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019233197A JP7449465B2 (en) 2019-12-24 2019-12-24 heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019233197A JP7449465B2 (en) 2019-12-24 2019-12-24 heat pump water heater

Publications (2)

Publication Number Publication Date
JP2021103006A JP2021103006A (en) 2021-07-15
JP7449465B2 true JP7449465B2 (en) 2024-03-14

Family

ID=76755001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019233197A Active JP7449465B2 (en) 2019-12-24 2019-12-24 heat pump water heater

Country Status (1)

Country Link
JP (1) JP7449465B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115077118B (en) * 2022-06-10 2023-08-08 广东开利暖通空调股份有限公司 Heat recovery multi-split air conditioning system and control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054249A (en) 2001-08-10 2003-02-26 Japan Climate Systems Corp Vehicular air conditioner
JP2007192499A (en) 2006-01-20 2007-08-02 Sanden Corp Hot water supply device
JP2009092258A (en) 2007-10-04 2009-04-30 Panasonic Corp Refrigerating cycle device
JP2012082988A (en) 2010-10-07 2012-04-26 Sharp Corp Heat pump water heater
JP2014145572A (en) 2013-01-30 2014-08-14 Denso Corp Heat pump device
JP2015222136A (en) 2014-05-22 2015-12-10 株式会社富士通ゼネラル Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054249A (en) 2001-08-10 2003-02-26 Japan Climate Systems Corp Vehicular air conditioner
JP2007192499A (en) 2006-01-20 2007-08-02 Sanden Corp Hot water supply device
JP2009092258A (en) 2007-10-04 2009-04-30 Panasonic Corp Refrigerating cycle device
JP2012082988A (en) 2010-10-07 2012-04-26 Sharp Corp Heat pump water heater
JP2014145572A (en) 2013-01-30 2014-08-14 Denso Corp Heat pump device
JP2015222136A (en) 2014-05-22 2015-12-10 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
JP2021103006A (en) 2021-07-15

Similar Documents

Publication Publication Date Title
WO2011077720A1 (en) Refrigeration device
JP2007522430A (en) Defrosting mode of HVAC heat pump system
EP2811064B1 (en) Laundry treatment apparatus with temperature dependent control
US11057965B2 (en) Control device of water purifier, water purifier, and control method thereof
JP7449465B2 (en) heat pump water heater
JP2007050155A (en) Bathroom laundry drier
JP4290480B2 (en) Temperature control method
JP3843963B2 (en) Heat pump water heater
JP3740380B2 (en) Heat pump water heater
JP3937715B2 (en) Heat pump water heater
JP2000346449A (en) Heat pump hot-water supplier
JP3690229B2 (en) Heat pump water heater
JP3495486B2 (en) Air conditioner
JP4784288B2 (en) Heat pump type hot water supply apparatus and control device for heat pump type hot water supply apparatus
JP4071509B2 (en) Toilet equipment
JP2013160485A (en) Heat pump type liquid heating device
JP6247133B2 (en) Heat pump water heater
JP4071508B2 (en) Toilet equipment
JP4090179B2 (en) Heat pump water heater
KR100868344B1 (en) A driving control method of inverter air- conditioner
JP6969223B2 (en) Heat pump heat source machine
JP2020165541A (en) Heat pump cycle device
GB2222006A (en) Space heating control
JP2504424B2 (en) Refrigeration cycle
JP2013217563A (en) Heat pump type liquid heating device and heat pump type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240213

R150 Certificate of patent or registration of utility model

Ref document number: 7449465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150