JP2007189000A - Metal plate resistor and resistive body - Google Patents

Metal plate resistor and resistive body Download PDF

Info

Publication number
JP2007189000A
JP2007189000A JP2006004646A JP2006004646A JP2007189000A JP 2007189000 A JP2007189000 A JP 2007189000A JP 2006004646 A JP2006004646 A JP 2006004646A JP 2006004646 A JP2006004646 A JP 2006004646A JP 2007189000 A JP2007189000 A JP 2007189000A
Authority
JP
Japan
Prior art keywords
alloy layer
resistor
metal plate
alloy
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006004646A
Other languages
Japanese (ja)
Other versions
JP4673750B2 (en
Inventor
Tadahiko Yoshioka
忠彦 吉岡
Keiji Nakamura
圭史 仲村
Koichi Hirasawa
浩一 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2006004646A priority Critical patent/JP4673750B2/en
Publication of JP2007189000A publication Critical patent/JP2007189000A/en
Application granted granted Critical
Publication of JP4673750B2 publication Critical patent/JP4673750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resistive body with a proper mounting property with respect to a ceramic board, and a metal plate resistor using the resistive body, wherein when the metal plate resistor is mounted on the ceramic board as a current detecting resistor, as well, the occurrence distortions on an electrode-mounting face, due to a difference in a thermal expansion coefficient between the metal plate resistor and the ceramic board, can be prevented. <P>SOLUTION: The resistive body 10 is obtained, by laminating a resistive alloy layer 11 and a low expansion alloy layer 12, having a lower thermal expansion coefficient than the resistive alloy layer. In the metal plate resistor, electrodes 13, 13 are jointed to both ends of the resistive body 10, obtained by laminating the resistive alloy layer 11 and the low-expansion alloy layer 12. The composite thermal expansion coefficient of the resistive body 10 is close to the thermal expansion coefficient of the ceramic board. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属板抵抗器に係り、特にセラミックス基板に実装される電流検出用抵抗器として、好適に用いることができる金属板抵抗器およびその抵抗体に関する。   The present invention relates to a metal plate resistor, and more particularly to a metal plate resistor that can be suitably used as a current detection resistor mounted on a ceramic substrate and a resistor thereof.

金属板抵抗器は、銅・ニッケル系合金、銅・マンガン系合金、鉄・クロム系合金、ニッケル・クロム系合金等の板体状の抵抗合金からなる抵抗体の両端部に、銅等の高導電性金属板体からなる電極を接合して構成されている(例えば、特許文献1参照)。
特開2002−184601号公報
Metal plate resistors are made of copper or nickel alloy at both ends of a resistor made of a plate-like resistor alloy such as copper / nickel alloy, copper / manganese alloy, iron / chromium alloy, nickel / chromium alloy. An electrode made of a conductive metal plate is joined (for example, see Patent Document 1).
JP 2002-184601 A

ここで、抵抗合金の線熱膨張係数は一般的に8〜20[×10−6/K]であり、セラミックス基板の線熱膨張係数は一般的に5〜7[×10−6/K]であり、大きな差がある。そのため、セラミックス基板に金属板抵抗器が実装されたモジュールに関しては、金属板抵抗器に急な温度変化が生じた場合や、長期間使用した場合には、両者間の熱膨張係数の差によって、最も強度が弱い金属板抵抗器の電極実装面(半田部)にクラックが生じ、オープンになる場合があるという問題がある。 Here, the linear thermal expansion coefficient of the resistance alloy is generally 8 to 20 [× 10 −6 / K], and the linear thermal expansion coefficient of the ceramic substrate is generally 5 to 7 [× 10 −6 / K]. There is a big difference. Therefore, for modules in which a metal plate resistor is mounted on a ceramic substrate, if a sudden temperature change occurs in the metal plate resistor or if it is used for a long time, due to the difference in thermal expansion coefficient between them, There is a problem that a crack may occur on the electrode mounting surface (solder part) of the metal plate resistor having the weakest strength and may become open.

本発明は、上述した事情に鑑みてなされたもので、金属板抵抗器を電流検出用抵抗器として、セラミックス基板に実装する場合にも、金属板抵抗器とセラミックス基板との熱膨張係数の相違による電極実装面における歪みの発生を防止することができる、セラミックス基板に対する実装性の良好な抵抗体、および該抵抗体を用いた金属板抵抗器を提供することを目的とする。   The present invention has been made in view of the above-described circumstances. Even when a metal plate resistor is mounted on a ceramic substrate as a current detection resistor, the difference in thermal expansion coefficient between the metal plate resistor and the ceramic substrate is different. An object of the present invention is to provide a resistor with good mountability to a ceramic substrate that can prevent the occurrence of distortion on the electrode mounting surface due to the above, and a metal plate resistor using the resistor.

上記課題を解決するために、本発明のセラミックス基板に実装するのに好適な金属板抵抗器は、抵抗合金層と、該抵抗合金層よりも低い熱膨張係数の低膨張合金層とを積層した抵抗体と、前記抵抗体の両端部に接合した電極と、を備えたことを特徴とする。ここで、前記低膨張合金層の熱膨張係数は7×10−6/K以下であることが好ましい。 In order to solve the above problems, a metal plate resistor suitable for mounting on a ceramic substrate of the present invention is formed by laminating a resistance alloy layer and a low expansion alloy layer having a lower thermal expansion coefficient than the resistance alloy layer. A resistor and an electrode joined to both ends of the resistor are provided. Here, the coefficient of thermal expansion of the low expansion alloy layer is preferably 7 × 10 −6 / K or less.

抵抗合金層と、該抵抗合金層よりも低い熱膨張係数の低膨張合金層とを積層した抵抗体とすることで、抵抗合金層だけでは実現できない、抵抗体としての低い熱膨張係数が得られる。これにより、金属板抵抗器の抵抗体の熱膨張係数を、セラミックス基板のそれに近づけることが可能となり、上記の問題が解決される。一方、抵抗合金層よりも低い熱膨張係数の低膨張合金層だけを抵抗体として使用した場合に比べて、抵抗体としての抵抗温度係数(TCR)を低くすることができる。このため、より抵抗体として適した特性を得ることができる。また、本発明の抵抗体によれば、使用するセラミックス基板の熱膨張係数にあわせて、金属板抵抗器の抵抗体の熱膨張係数を合成する設計が可能になる。   By forming a resistance body in which a resistance alloy layer and a low expansion alloy layer having a lower thermal expansion coefficient than the resistance alloy layer are laminated, a low thermal expansion coefficient as a resistance body that cannot be realized only by the resistance alloy layer is obtained. . As a result, the thermal expansion coefficient of the resistor of the metal plate resistor can be made close to that of the ceramic substrate, and the above problem is solved. On the other hand, the resistance temperature coefficient (TCR) as a resistor can be made lower than when only a low expansion alloy layer having a lower thermal expansion coefficient than that of the resistance alloy layer is used as the resistor. For this reason, the characteristic more suitable as a resistor can be acquired. Moreover, according to the resistor of this invention, the design which synthesize | combines the thermal expansion coefficient of the resistor of a metal plate resistor according to the thermal expansion coefficient of the ceramic substrate to be used is attained.

以下、本発明の実施形態について、添付図面を参照して説明する。なお、各図中、同一の機能を有する部材または要素には同一の符号を付して、その重複した説明を省略する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the member or element which has the same function, and the duplicate description is abbreviate | omitted.

図1は、本発明の一実施形態の金属板抵抗器を示す。銅・ニッケル系合金、銅・マンガン系合金、鉄・クロム系合金、ニッケル・クロム系合金等の板体状の抵抗合金からなる抵抗合金層11と、ニッケル・鉄系合金、または、ニッケル・コバルト・鉄系合金からなる板体状の低い熱膨張係数の低膨張合金層12とが積層して抵抗体10が形成されている。抵抗体10の両端部下面に、銅等の高導電性金属からなる電極13が接合され、金属板抵抗器が構成されている。電極13の下面には、はんだメッキ等のメッキ層が形成され、セラミックス基板等の実装基板に、はんだ接合により実装される。   FIG. 1 shows a metal plate resistor according to an embodiment of the present invention. Resistance alloy layer 11 composed of a plate-like resistance alloy such as copper / nickel alloy, copper / manganese alloy, iron / chromium alloy, nickel / chromium alloy, and nickel / iron alloy or nickel / cobalt The resistor 10 is formed by laminating a low-expansion alloy layer 12 having a low thermal expansion coefficient that is made of an iron-based alloy. Electrodes 13 made of a highly conductive metal such as copper are joined to the lower surfaces of both ends of the resistor 10 to form a metal plate resistor. A plating layer such as solder plating is formed on the lower surface of the electrode 13 and is mounted on a mounting substrate such as a ceramic substrate by solder bonding.

低膨張合金層の材料の選択としては、セラミックス基板の線熱膨張係数は一般的に5〜7[×10−6/K]であり、抵抗合金の線熱膨張係数は一般的に8〜20[×10−6/K]であるので、抵抗合金層と低膨張合金層と合成熱膨張係数が上記セラミックスの熱膨張係数に近くなる熱膨張係数を有する合金を選択する。低膨張合金層12は、上述のように、ニッケル・鉄系合金、または、ニッケル・コバルト・鉄系合金からなる熱膨張係数の低い材料により構成される。 As a selection of the material of the low expansion alloy layer, the linear thermal expansion coefficient of the ceramic substrate is generally 5 to 7 [× 10 −6 / K], and the linear thermal expansion coefficient of the resistance alloy is generally 8 to 20 Since [× 10 −6 / K], the resistance alloy layer, the low expansion alloy layer, and an alloy having a thermal expansion coefficient close to the thermal expansion coefficient of the ceramic are selected. As described above, the low expansion alloy layer 12 is made of a material having a low thermal expansion coefficient, which is made of nickel / iron-based alloy or nickel / cobalt / iron-based alloy.

より具体的には、ニッケル・鉄系合金としては、42Ni−Fe(42アロイ)や、36Ni−Fe(インバー)が選択できる。ニッケル・コバルト・鉄系合金としては、29Ni−17Co−Fe(コバール)や、32Ni−4Co−Fe(スーパーインバー)が選択できる。また、Ni−Coが41−43%であり、Mnが0.7−1.25%であり、Siが0.3%以下であり、残余がFeである合金(42インバー)が選択できる。なお、以上の合金には、他の添加物や不純物が含まれる場合がある。これらの合金は、熱膨張係数が7×10−6/K以下の材料である。例えば、スーパーインバー(商品名)は、その熱膨張係数が0.7×10−6/K程度である。 More specifically, 42Ni—Fe (42 alloy) or 36Ni—Fe (invar) can be selected as the nickel / iron-based alloy. As the nickel-cobalt-iron-based alloy, 29Ni-17Co-Fe (Kovar) or 32Ni-4Co-Fe (Super Invar) can be selected. Further, an alloy (42 Invar) in which Ni—Co is 41 to 43%, Mn is 0.7 to 1.25%, Si is 0.3% or less, and the balance is Fe can be selected. Note that the above alloys may contain other additives and impurities. These alloys are materials having a thermal expansion coefficient of 7 × 10 −6 / K or less. For example, Super Invar (trade name) has a coefficient of thermal expansion of about 0.7 × 10 −6 / K.

この実施形態においては、抵抗体10は、抵抗合金層11を低膨張合金層12,12で上下からサンドイッチ状に挟んだものである。抵抗体10の厚みは0.4mmであり、電極13の厚みは0.2mmである。   In this embodiment, the resistor 10 has a resistance alloy layer 11 sandwiched between low expansion alloy layers 12 and 12 from above and below. The resistor 10 has a thickness of 0.4 mm, and the electrode 13 has a thickness of 0.2 mm.

熱膨張係数を低減させるとともにTCR値に影響が大きくないようにするため、抵抗合金層11の電気抵抗率が、低熱膨張合金層12の電気抵抗率より小さいことが望ましく、更にこれらの電気抵抗率の差が大きい方がより望ましい。なお、抵抗合金層11の電気抵抗率が、低熱膨張合金層12の電気抵抗率より大きい場合でも、各層厚を変えることで、TCR特性への対応が可能である。   In order to reduce the thermal expansion coefficient and prevent the TCR value from being greatly affected, it is desirable that the electrical resistivity of the resistance alloy layer 11 is smaller than the electrical resistivity of the low thermal expansion alloy layer 12, and further, these electrical resistivity A larger difference is more desirable. Even when the electrical resistivity of the resistance alloy layer 11 is larger than the electrical resistivity of the low thermal expansion alloy layer 12, it is possible to cope with the TCR characteristics by changing the thickness of each layer.

実施例1として、抵抗合金層11に銅・ニッケル系合金(CN49)を用い、低膨張合金層12にスーパーインバー(商品名)(商標「INVAR」国際登録0323755)を用い、各層の厚みの比を、
上層低膨張合金層:抵抗合金層:下層低膨張合金層=3.1:3.8:3.1
とした。
As Example 1, a copper / nickel alloy (CN49) was used for the resistance alloy layer 11 and Super Invar (trade name) (trademark “INVAR” international registration 0323755) was used for the low expansion alloy layer 12. The
Upper layer low expansion alloy layer: Resistance alloy layer: Lower layer low expansion alloy layer = 3.1: 3.8: 3.1
It was.

この場合、抵抗体10の合成熱膨張係数αCompoundは、下記式により求められる。

Figure 2007189000
ここで、
α:熱膨張係数
E:ヤング率
V:体積率
すなわち、抵抗体10の熱膨張係数は、抵抗合金層11と低膨張合金層12の性質(熱膨張係数、ヤング率、体積率)から算出することができる。 In this case, the combined thermal expansion coefficient α Compound of the resistor 10 is obtained by the following equation.
Figure 2007189000
here,
α: Thermal expansion coefficient E: Young's modulus V: Volume ratio That is, the thermal expansion coefficient of the resistor 10 is calculated from the properties (thermal expansion coefficient, Young's modulus, volume ratio) of the resistance alloy layer 11 and the low expansion alloy layer 12. be able to.

そして、抵抗体10の合成TCRCompoundは、下記式により求められる。

Figure 2007189000
And the synthetic | combination TCR compound of the resistor 10 is calculated | required by a following formula.
Figure 2007189000

実施例2として、抵抗合金層11に鉄・クロム系合金を用い、低膨張合金層12にスーパーインバー(商品名)を用い、各層の厚みの比を、
上層低膨張合金層:抵抗合金層:下層低膨張合金層=2.5:5.0:2.5
とした。
As Example 2, the resistance alloy layer 11 is made of an iron / chromium alloy, the low expansion alloy layer 12 is made of super invar (trade name), and the thickness ratio of each layer is
Upper layer low expansion alloy layer: Resistance alloy layer: Lower layer low expansion alloy layer = 2.5: 5.0: 2.5
It was.

実施例3として、抵抗合金層11に銅・マンガニン系合金を用い、低膨張合金層12にスーパーインバー(商品名)を用い、各層の厚みの比を、
上層低膨張合金層:抵抗合金層:下層低膨張合金層=2.5:5.0:2.5
とした。
As Example 3, the resistance alloy layer 11 is made of copper / manganin-based alloy, the low expansion alloy layer 12 is made of super invar (trade name), and the thickness ratio of each layer is
Upper layer low expansion alloy layer: Resistance alloy layer: Lower layer low expansion alloy layer = 2.5: 5.0: 2.5
It was.

上記各実施例における抵抗材料及び低膨張合金材料の電気抵抗率、抵抗温度係数(TCR)、熱膨張係数は下表に示すとおりとなる。

Figure 2007189000
The electrical resistivity, resistance temperature coefficient (TCR), and thermal expansion coefficient of the resistance material and the low expansion alloy material in each of the above examples are as shown in the following table.
Figure 2007189000

実施例1,2,3について、シミュレーションにより、合成電気抵抗率、合成抵抗温度係数TCRCompound、合成熱膨張係数αCompoundを求めた結果は、下記に示すとおりである。

Figure 2007189000
About Example 1,2,3, the result of having calculated | required synthetic | combination electrical resistivity, synthetic | combination resistance temperature coefficient TCR Compound , and synthetic | combination thermal expansion coefficient (alpha) Compound was shown as follows by simulation.
Figure 2007189000

以上の通り、いずれも抵抗合金のみの場合と比較して熱膨張係数が大きく改善され、セラミックス基板の熱膨張係数である5〜7×10−6/Kに近い特性が得られることが分かる。 As described above, it can be seen that the thermal expansion coefficient is greatly improved as compared with the case of only the resistance alloy, and the characteristics close to 5-7 × 10 −6 / K which is the thermal expansion coefficient of the ceramic substrate can be obtained.

図2は、図1に示す実施形態の変形例を示す。(a)は、上下層を抵抗合金層11とし、中間層を低膨張合金層12として、サンドイッチ状に挟み込んで抵抗体10を形成した例を示す。(b)は、上層を抵抗合金層11とし、下層を低膨張合金層12とした例である。(c)は、上層を低膨張合金層12とし、下層を抵抗合金層11とした例である。(d)は、抵抗合金層11と低膨張合金層12をそれぞれ交互に複数積層した例である。図示の場合は、4層の抵抗合金層11と、各抵抗合金層間に3層の低膨張合金層層12を形成している。この逆でも勿論よい。   FIG. 2 shows a modification of the embodiment shown in FIG. (A) shows an example in which the resistor 10 is formed by sandwiching the upper and lower layers as a resistance alloy layer 11 and the intermediate layer as a low expansion alloy layer 12 so as to be sandwiched. (B) is an example in which the upper layer is the resistance alloy layer 11 and the lower layer is the low expansion alloy layer 12. (C) is an example in which the upper layer is the low expansion alloy layer 12 and the lower layer is the resistance alloy layer 11. (D) is an example in which a plurality of resistance alloy layers 11 and low expansion alloy layers 12 are alternately laminated. In the illustrated case, four resistance alloy layers 11 and three low expansion alloy layer layers 12 are formed between the resistance alloy layers. Of course, the reverse is also possible.

次に、上記抵抗体10を備えた金属板抵抗器の製造方法について説明する。まず、抵抗合金層を形成するための抵抗合金からなる薄板と低膨張合金層を形成するための熱膨張係数の低い低膨張合金からなる薄板を重ねて、加圧(0.01〜500t)、及び加熱(600℃〜1200℃)を行って接合する。これにより、抵抗合金層と低膨張合金層とが積層され、その接合は、拡散接合または固相接合によるものである。   Next, the manufacturing method of the metal plate resistor provided with the said resistor 10 is demonstrated. First, a thin plate made of a resistance alloy for forming a resistance alloy layer and a thin plate made of a low expansion alloy having a low thermal expansion coefficient for forming a low expansion alloy layer are stacked, and pressurization (0.01 to 500 t), And heating (600 ° C. to 1200 ° C.) for bonding. As a result, the resistance alloy layer and the low expansion alloy layer are laminated, and the bonding is performed by diffusion bonding or solid phase bonding.

上記実施例1に示す構造の抵抗体10を形成するためには、銅・ニッケル系合金の薄板をインバーの薄板で挟み込み、加圧及び加熱して、抵抗体(積層体)を形成する。さらに、抵抗体(積層体)の薄板と、電極用材料(例えば銅)の薄板とを重ねて圧延し、クラッド材を得る。そして、化学的エッチングにより電極用材料の不要部分を除去し、抵抗体10の両端部に電極13,13を分離する。   In order to form the resistor 10 having the structure shown in the first embodiment, a copper / nickel alloy thin plate is sandwiched between invar thin plates, and pressed and heated to form a resistor (laminated body). Further, a thin plate of a resistor (laminated body) and a thin plate of an electrode material (for example, copper) are stacked and rolled to obtain a clad material. Then, unnecessary portions of the electrode material are removed by chemical etching, and the electrodes 13 and 13 are separated from both ends of the resistor 10.

その他の方法としては、抵抗体材料に2列の電極用材料を接合して、電極13,13を形成してもよく、また、フライス盤などを使った切削により電極13,13を分離してもよい。このとき、電極13,13は分離させるが、低膨張合金層12は全部を切削しないで一部を残すようにする(つまり、抵抗合金層が切削により露出しないようにする)。下側の低膨張合金層を切削してしまうと、上側の低膨張合金層とのバランスが崩れて、部品全体に反りが生じる可能性があるからである。   As other methods, the electrodes 13 and 13 may be formed by bonding two rows of electrode materials to the resistor material, or the electrodes 13 and 13 may be separated by cutting using a milling machine or the like. Good. At this time, the electrodes 13 and 13 are separated, but the low expansion alloy layer 12 is not cut entirely but left in part (that is, the resistance alloy layer is not exposed by cutting). This is because if the lower low expansion alloy layer is cut, the balance with the upper low expansion alloy layer is lost, and the entire component may be warped.

そして、電極13,13部分の下面に、はんだメッキ層が形成され、金属板抵抗器として完成する。このようにして製造された金属板抵抗器は、熱膨張係数が通常の金属板抵抗器とかなり異なるセラミックス基板に実装しても、上述したように合成熱膨張係数がセラミックス基板のそれに近いため、熱歪みの生じる量が少なく、高信頼性の金属板抵抗器として動作する。   And a solder plating layer is formed in the lower surface of the electrodes 13 and 13 part, and it completes as a metal plate resistor. Even if the metal plate resistor manufactured in this way is mounted on a ceramic substrate whose thermal expansion coefficient is considerably different from that of a normal metal plate resistor, the composite thermal expansion coefficient is close to that of the ceramic substrate as described above. It operates as a highly reliable metal plate resistor with less thermal distortion.

なお、上記実施形態では、板体状の抵抗体の両端部下面に板体状の電極を接合し、その下面にはんだメッキ層を形成する例について説明したが、その他の形式の金属板抵抗器についても、同様に上記本発明の抵抗体を用いることができることは勿論である。   In the above embodiment, the example in which the plate-like electrodes are joined to the lower surfaces of both ends of the plate-like resistor and the solder plating layer is formed on the lower surface has been described. However, other types of metal plate resistors Of course, the resistor of the present invention can be used as well.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

本発明の一実施形態の金属板抵抗器を示す斜視図である。It is a perspective view which shows the metal plate resistor of one Embodiment of this invention. 上記金属板抵抗器の各種の変形例を示す斜視図である。It is a perspective view which shows the various modifications of the said metal plate resistor.

符号の説明Explanation of symbols

10 抵抗体
11 抵抗合金層
12 低膨張合金層
13 電極
DESCRIPTION OF SYMBOLS 10 Resistor 11 Resistance alloy layer 12 Low expansion alloy layer 13 Electrode

Claims (9)

抵抗合金層と、該抵抗合金層よりも低い熱膨張係数の低膨張合金層とを積層した抵抗体と、
前記抵抗体の両端部に接合した電極と、を備えたことを特徴とする金属板抵抗器。
A resistor in which a resistance alloy layer and a low expansion alloy layer having a lower thermal expansion coefficient than the resistance alloy layer are laminated;
An electrode joined to both ends of the resistor, and a metal plate resistor.
前記低膨張合金層の熱膨張係数は7×10−6/K以下であることを特徴とする請求項1記載の金属板抵抗器。 The metal plate resistor according to claim 1, wherein the low expansion alloy layer has a thermal expansion coefficient of 7 × 10 −6 / K or less. 前記抵抗体は、前記抵抗合金層を前記低膨張合金層でサンドイッチ状に挟んだものであることを特徴とする請求項1または2記載の金属板抵抗器。   3. The metal plate resistor according to claim 1, wherein the resistor is formed by sandwiching the resistance alloy layer between the low expansion alloy layers. 前記抵抗合金層は、銅・ニッケル系合金、銅・マンガン系合金、鉄・クロム系合金、ニッケル・クロム系合金のいずれかからなることを特徴とする請求項1乃至3のいずれかに記載の金属板抵抗器。   4. The resistance alloy layer according to claim 1, wherein the resistance alloy layer is made of any one of a copper / nickel alloy, a copper / manganese alloy, an iron / chromium alloy, and a nickel / chromium alloy. Metal plate resistor. 前記低膨張合金層は、ニッケル・鉄系合金、または、ニッケル・コバルト・鉄系合金のいずれかからなることを特徴とする請求項1乃至4のいずれかに記載の金属板抵抗器。   5. The metal plate resistor according to claim 1, wherein the low expansion alloy layer is made of any one of a nickel / iron-based alloy and a nickel / cobalt / iron-based alloy. 前記抵抗合金層と、前記低膨張合金層との接合は、拡散接合または固相接合によるものであることを特徴とする請求項1乃至5のいずれかに記載の金属板抵抗器。   6. The metal plate resistor according to claim 1, wherein the bonding between the resistance alloy layer and the low expansion alloy layer is performed by diffusion bonding or solid phase bonding. 抵抗合金層と、該抵抗合金層よりも低い熱膨張係数の低膨張合金層とを積層したことを特徴とする抵抗体。   A resistor comprising a resistance alloy layer and a low expansion alloy layer having a thermal expansion coefficient lower than that of the resistance alloy layer. 前記低膨張合金層の熱膨張係数は7×10−6/K以下であることを特徴とする請求項7記載の抵抗体。 The resistor according to claim 7, wherein the low expansion alloy layer has a thermal expansion coefficient of 7 × 10 −6 / K or less. 前記抵抗合金層を前記低膨張合金層でサンドイッチ状に挟んだことを特徴とする請求項7または8記載の抵抗体。   9. The resistor according to claim 7, wherein the resistance alloy layer is sandwiched between the low expansion alloy layers.
JP2006004646A 2006-01-12 2006-01-12 Metal plate resistors and resistors Active JP4673750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004646A JP4673750B2 (en) 2006-01-12 2006-01-12 Metal plate resistors and resistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004646A JP4673750B2 (en) 2006-01-12 2006-01-12 Metal plate resistors and resistors

Publications (2)

Publication Number Publication Date
JP2007189000A true JP2007189000A (en) 2007-07-26
JP4673750B2 JP4673750B2 (en) 2011-04-20

Family

ID=38343969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004646A Active JP4673750B2 (en) 2006-01-12 2006-01-12 Metal plate resistors and resistors

Country Status (1)

Country Link
JP (1) JP4673750B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228669A (en) * 2010-03-29 2011-11-10 Koa Corp Resistive element, resistor, and methods of manufacturing the same
JP2015521802A (en) * 2012-06-29 2015-07-30 イザベレンヒュッテ ホイスラー ゲー・エム・ベー・ハー ウント コンパニー コマンデイトゲゼルシャフト Resistors, especially low resistance current measuring resistors
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
CN114889245A (en) * 2022-04-16 2022-08-12 上海殷菲合金材料有限公司 Composite metal sheet and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019694A (en) * 2003-06-26 2005-01-20 Mitsubishi Materials Corp Power module
JP2005286167A (en) * 2004-03-30 2005-10-13 Koa Corp Laminated alloy for resistance, and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019694A (en) * 2003-06-26 2005-01-20 Mitsubishi Materials Corp Power module
JP2005286167A (en) * 2004-03-30 2005-10-13 Koa Corp Laminated alloy for resistance, and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228669A (en) * 2010-03-29 2011-11-10 Koa Corp Resistive element, resistor, and methods of manufacturing the same
JP2015521802A (en) * 2012-06-29 2015-07-30 イザベレンヒュッテ ホイスラー ゲー・エム・ベー・ハー ウント コンパニー コマンデイトゲゼルシャフト Resistors, especially low resistance current measuring resistors
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10418157B2 (en) 2015-10-30 2019-09-17 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
CN114889245A (en) * 2022-04-16 2022-08-12 上海殷菲合金材料有限公司 Composite metal sheet and preparation method and application thereof

Also Published As

Publication number Publication date
JP4673750B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4971693B2 (en) Metal plate resistor
USRE44911E1 (en) Electronic component
US7782173B2 (en) Chip resistor
JP4673750B2 (en) Metal plate resistors and resistors
JP2007096926A (en) Multilayered filter
KR101681409B1 (en) Coil electronic component
JP2007096032A (en) Insulating board, method of manufacturing the same and semiconductor device
WO2021200326A1 (en) Alloy for resistor, and usage of resistor alloy in resistor
JP2008277584A (en) Thermoelectric substrate member, thermoelectric module, and manufacturing method of them
WO1999003113A1 (en) Ptc thermistor chip and method for manufacturing the same
WO2007074580A1 (en) Laminated coil part
JP2015002212A (en) Chip resistor and packaging structure for chip resistor
JP2018133554A (en) Resistor element, method of manufacturing the same, and resistor element assembly
JP6227877B2 (en) Chip resistor and manufacturing method of chip resistor
JP2018074143A (en) Resistive element and resistive element assembly
US20130021704A1 (en) Over-current and over-temperature protection device
JP2007085880A (en) Thin thermocouple and manufacturing method therefor
JP4537103B2 (en) Laminated alloy for resistance and method for producing the same
JP2010192643A (en) Common mode noise filter
JP2009252828A (en) Metal plate resistor, and its manufacturing method
JP4727638B2 (en) Method of manufacturing a chip resistor having a low resistance value
TWI496172B (en) Low resistance sheet resistors and methods of manufacturing the same
JP2005197394A (en) Metallic resistor
JP4589083B2 (en) Electronic component manufacturing method and electronic component
JP2006019323A (en) Resistance composition, chip resistor and their manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R150 Certificate of patent or registration of utility model

Ref document number: 4673750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250