JP2007187264A - Bearing device for axle and bearing clearance provision method - Google Patents

Bearing device for axle and bearing clearance provision method Download PDF

Info

Publication number
JP2007187264A
JP2007187264A JP2006006409A JP2006006409A JP2007187264A JP 2007187264 A JP2007187264 A JP 2007187264A JP 2006006409 A JP2006006409 A JP 2006006409A JP 2006006409 A JP2006006409 A JP 2006006409A JP 2007187264 A JP2007187264 A JP 2007187264A
Authority
JP
Japan
Prior art keywords
bearing
inner ring
amount
clearance
axle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006006409A
Other languages
Japanese (ja)
Inventor
Hiroyuki Miura
弘幸 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2006006409A priority Critical patent/JP2007187264A/en
Publication of JP2007187264A publication Critical patent/JP2007187264A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/025Special design or construction with rolling or wobbling dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K25/00Uniting components to form integral members, e.g. turbine wheels and shafts, caulks with inserts, with or without shaping of the components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device for an axle, and its bearing clearance provision method capable of improving assembling workability. <P>SOLUTION: An inner ring 17 is inserted into a step portion 16a from one end portion side of an inner shaft main body 16, and pressed to a position to achieve a state that the bearing device 10 for the axle has a positive bearing clearance, then an outer ring 11 is axially moved, its axial moving quantity is measured, and the inner ring 17 is further pressed in by a value obtained by adding a prescribed bearing clearance quantity to the axial moving quantity, thus a negative bearing clearance is applied to the bearing device 10 for the axle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車などの車輪を支持する車軸用軸受装置およびその軸受隙間付与方法に関する。   The present invention relates to an axle bearing device for supporting a wheel of an automobile or the like and a bearing clearance providing method thereof.

自動車などの車輪を支持するために車軸用軸受装置が用いられている。図6は、従来から用いられている車軸用軸受装置を示す軸方向断面図である。この車軸用軸受装置60は、複列のアンギュラ玉軸受を構成する転がり軸受部を含んでおり、外輪61と、ハブ62と、複数の転動体としての玉63とを備えている。
このうち外輪61は、その内周面に第一および第二の外輪軌道61a,61bが形成され、外周面に車体に取り付けるための取り付け部61cが形成されている。ハブ62は、回転輪であると同時に図示しない車輪が取り付けられる車軸を構成している。ハブ62の外周面には第一および第二の内輪軌道61a,61bに対向する第一および第二の内輪軌道62a,62bが形成されており、またその一端部には車輪取付用のフランジ部62cが設けられている。そして、これら第一および第二の外輪軌道61a,61bと第一および第二の内輪軌道62a,62bとの間には、それぞれ複数の玉63が転動自在に配置されている。すなわち前記転がり軸受部は、各軌道61a,61b,62a,62bと、複数の玉63とを含んで構成されている。
Axle bearing devices are used to support wheels of automobiles and the like. FIG. 6 is an axial cross-sectional view showing a conventionally used axle bearing device. The axle bearing device 60 includes a rolling bearing portion constituting a double row angular ball bearing, and includes an outer ring 61, a hub 62, and balls 63 as a plurality of rolling elements.
Of these, the outer ring 61 has first and second outer ring raceways 61a and 61b formed on the inner peripheral surface thereof, and an attachment portion 61c for mounting to the vehicle body on the outer peripheral surface. The hub 62 constitutes an axle on which a wheel (not shown) is attached at the same time as a rotating wheel. First and second inner ring raceways 62a and 62b facing the first and second inner ring raceways 61a and 61b are formed on the outer peripheral surface of the hub 62, and a wheel mounting flange portion is formed at one end thereof. 62c is provided. A plurality of balls 63 are arranged between the first and second outer ring raceways 61a and 61b and the first and second inner ring raceways 62a and 62b, respectively, so as to roll freely. That is, the rolling bearing portion includes the raceways 61a, 61b, 62a, 62b and a plurality of balls 63.

また、ハブ62は、ハブ本体64と、内輪65とを組合わせて構成されている。ハブ本体64は、上述の第一の内輪軌道62aが外周面に形成されているとともに上述のフランジ部62cを一端部に備えている。そして他端部には内輪軌道62aよりも小径の段部64aが形成されている。
内輪65は、外周面に第二の内輪軌道62bが形成されており、その小径端面を段部64aの起端部に形成された段差面64a1に当接するまで段部64aに圧入状態で挿嵌されている。そして、ハブ本体64の他端面に形成されたかしめ部によって内輪65の大径端面を押さえることで、内輪65をハブ本体64に固定している。
また、前記転がり軸受部には、軸受の寿命、剛性を確保すべく予圧が付与されており、この予圧を付与するために、内輪65を段部64aに押し込んで固定し、前記転がり軸受部に負の軸受隙間を付与している(例えば特許文献1参照)。
The hub 62 is configured by combining a hub body 64 and an inner ring 65. The hub main body 64 includes the first inner ring raceway 62a described above on the outer peripheral surface, and includes the flange portion 62c described above at one end. A stepped portion 64a having a smaller diameter than the inner ring raceway 62a is formed at the other end portion.
The inner ring 65 has a second inner ring raceway 62b formed on the outer peripheral surface, and is inserted into the stepped portion 64a in a press-fit state until the small diameter end surface abuts on the stepped surface 64a1 formed at the starting end portion of the stepped portion 64a. Has been. The inner ring 65 is fixed to the hub main body 64 by pressing the large-diameter end surface of the inner ring 65 with a caulking portion formed on the other end surface of the hub main body 64.
Further, a preload is applied to the rolling bearing portion in order to ensure the life and rigidity of the bearing, and in order to apply this preload, the inner ring 65 is pushed into and fixed to the stepped portion 64a, and the rolling bearing portion is fixed. A negative bearing gap is provided (see, for example, Patent Document 1).

特開平7−127634号公報(第3頁)JP 7-127634 A (page 3)

上記従来の車軸用軸受装置60の転がり軸受部に負の軸受隙間を付与するには、第一の外輪軌道61aの軌道中心と第二の外輪軌道61bの軌道中心との軸方向におけるピッチ寸法、内輪65の小径端面と第二の内輪軌道の軌道中心との軸方向における距離寸法、ハブ本体64の段差面64a1と第一の内輪軌道の軌道中心との軸方向における距離寸法、および玉63の径寸法をそれぞれ部品ごとに管理し、内輪65を段差面64a1に当接するまで挿嵌したときに所定の負の軸受隙間が転がり軸受部に付与されるように、それぞれの部品から適合する寸法のものを選択し組み合わせていた。
このため、各部品を精度よく加工し、これら部品寸法を個々に精密に測定、管理し、その中から最適な部品寸法の組み合わせを選択するといった作業を要するため、過大な労力を必要とし、その作業性を著しく低下させていた。
In order to provide a negative bearing gap in the rolling bearing portion of the conventional axle bearing device 60, the pitch dimension in the axial direction between the track center of the first outer ring track 61a and the track center of the second outer ring track 61b, The distance dimension in the axial direction between the small-diameter end face of the inner ring 65 and the track center of the second inner ring track, the distance dimension in the axial direction between the step surface 64a1 of the hub body 64 and the track center of the first inner ring track, and the ball 63 The diameter dimension is managed for each part, and when the inner ring 65 is inserted until it comes into contact with the stepped surface 64a1, a predetermined negative bearing gap is provided to the rolling bearing part. I chose and combined things.
For this reason, it is necessary to work each part with high accuracy, measure and manage these part dimensions individually, and select an optimal combination of part dimensions from among them. Workability was significantly reduced.

本発明はこのような事情に鑑みなされたものであり、所定の負の軸受隙間を容易に付与することができる車軸用軸受装置およびその軸受隙間付与方法の提供をその目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an axle bearing device and a bearing clearance applying method capable of easily providing a predetermined negative bearing clearance.

上記目的を達成するための第一の発明は、第一および第二の外輪軌道が内周面に形成された外輪と、前記第一および第二の外輪軌道に対向する第一および第二の内輪軌道が外周面に形成された内軸と、前記第一および第二の外輪軌道と前記第一および第二の内輪軌道との間にそれぞれ転動自在に配置された複数の転動体とを有する転がり軸受部を備え、前記内軸は、外周面に前記第一の内輪軌道が形成されているとともに、前記外周面より小径の段部が一端部に形成されている内軸本体と、外周面に前記第二の内輪軌道が形成されているとともに、前記内軸本体の一端部側から前記段部に押し込み固定されることで前記転がり軸受部に所定の負の軸受隙間を付与している円環状の内輪と、を備えている車軸用軸受装置において、前記内軸本体の外周面と前記段部の外周面とを繋ぐ段差面と、この段差面に対向する前記内輪の側端面とが、前記負の軸受隙間に応じて離間していることを特徴としている。   A first invention for achieving the above object includes an outer ring having first and second outer ring raceways formed on an inner peripheral surface, and first and second opposing the first and second outer ring raceways. An inner shaft having an inner ring raceway formed on the outer peripheral surface, and a plurality of rolling elements arranged in a freely rollable manner between the first and second outer ring raceways and the first and second inner ring raceways. An inner shaft main body in which the first inner ring raceway is formed on an outer peripheral surface and a step portion having a smaller diameter than the outer peripheral surface is formed on one end portion; The second inner ring raceway is formed on the surface, and a predetermined negative bearing gap is given to the rolling bearing portion by being pushed and fixed to the step portion from one end portion side of the inner shaft main body. An axle bearing device comprising an annular inner ring, wherein the inner shaft body A stepped surface connecting the outer circumferential surface and an outer peripheral surface of the stepped portion, and the side end surface of the inner ring facing the stepped surface, and characterized in that spaced in accordance with the negative bearing clearance.

上記のように構成された車軸用軸受装置によれば、前記段差面と、前記内輪の端面とが、前記負の軸受隙間に応じて離間しているので、所定の負の軸受隙間を付与すべく前記内輪を押し込み、固定したとしても、個々の部品誤差等により生ずる前記内輪における軸方向の固定位置のばらつきを許容することができる。
従って、前記転がり軸受部に所定の負の軸受隙間を付与する場合にも、前記外輪、前記内軸本体、前記内輪、および前記転動体等の個々部品寸法を高い精度で管理する必要がない。
According to the axle bearing device configured as described above, since the step surface and the end surface of the inner ring are separated according to the negative bearing gap, a predetermined negative bearing gap is provided. Therefore, even if the inner ring is pushed in and fixed, variations in the axial fixed position in the inner ring caused by individual component errors or the like can be allowed.
Therefore, even when a predetermined negative bearing gap is provided to the rolling bearing portion, it is not necessary to manage the individual component dimensions of the outer ring, the inner shaft main body, the inner ring, the rolling element and the like with high accuracy.

上記目的を達成するための第二の発明は、上記車軸用軸受装置に軸受隙間を付与するための軸受隙間付与方法であって、内軸本体の段部に対して、内輪を前記内軸本体の一端部側から押し込む際に、当該内輪の押し込み量を調整することで、転がり軸受部に所定の負の軸受隙間を付与することを特徴としている。   A second invention for achieving the above object is a bearing clearance applying method for providing a bearing clearance to the axle bearing device, wherein an inner ring is connected to a step portion of the inner shaft main body. When pushing from the one end side, a predetermined negative bearing gap is provided to the rolling bearing portion by adjusting the pushing amount of the inner ring.

上記のように構成された車軸用軸受装置の軸受隙間付与方法によれば、前記転がり軸受部に所定の負の軸受隙間を付与した際に、前記段差面と前記内輪の側端面とが前記負の隙間に応じて離間しているので、上述したように、個々の部品精度等に起因する前記内輪の軸方向の固定位置のばらつきを許容することができる。従って、前記外輪、前記内軸本体、前記内輪、および前記転動体等の個々部品寸法を高い精度で管理することなく、前記内輪の押し込み量を調整することによって、前記転がり軸受部に所定の負の軸受隙間を付与することができる。   According to the bearing clearance applying method for an axle bearing device configured as described above, when the predetermined negative bearing clearance is applied to the rolling bearing portion, the step surface and the side end surface of the inner ring are As described above, it is possible to allow variation in the axial fixed position of the inner ring due to individual component accuracy and the like. Accordingly, by adjusting the pushing amount of the inner ring without managing the individual part dimensions such as the outer ring, the inner shaft main body, the inner ring, and the rolling element with high accuracy, a predetermined negative load is applied to the rolling bearing portion. The bearing gap can be provided.

上記車軸用軸受装置の軸受隙間方法において、 前記内輪を、前記転がり軸受部が正の軸受隙間を有する状態となる位置まで、前記内軸本体の一端部側から前記段部に押し込み、前記外輪を軸方向に動かしてその軸方向移動量を測定し、この軸方向移動量に所定の軸受隙間量を加えた値を前記内輪の押し込み量として調整してもよい。
この場合、前記外輪の軸方向移動量を測定することにより、前記転がり軸受部に所定の負の軸受隙間を付与するための基準となる前記転がり軸受部の現状の軸受隙間量を把握することができる。よって、この軸方向移動量に所定の軸受隙間量を加えることで、前記転がり軸受部に所定の負の軸受隙間を付与するための前記内輪の押し込み量を得ることができる。
In the bearing clearance method of the axle bearing device, the inner ring is pushed into the step portion from one end side of the inner shaft main body to a position where the rolling bearing portion has a positive bearing clearance, and the outer ring is The axial movement amount may be measured by moving in the axial direction, and a value obtained by adding a predetermined bearing clearance amount to the axial movement amount may be adjusted as the pushing amount of the inner ring.
In this case, by measuring the amount of axial movement of the outer ring, it is possible to grasp the current amount of bearing clearance of the rolling bearing portion that serves as a reference for providing a predetermined negative bearing clearance to the rolling bearing portion. it can. Therefore, by adding a predetermined bearing clearance amount to this axial movement amount, it is possible to obtain the amount of pushing of the inner ring for providing a predetermined negative bearing clearance to the rolling bearing portion.

上記車軸用軸受装置の軸受隙間方法において、前記内輪を前記段部に押し込みながら前記転がり軸受部の回転抵抗を測定することによって、予め求めておいた前記転がり軸受部の回転抵抗と軸受隙間量との相関関係から押し込まれる際の軸受隙間量を算出し、この算出した軸受隙間量に基づいて前記内輪の押し込み量を調整してもよい。
この場合、前記内輪を押し込みながら前記転がり軸受部の回転抵抗を測定することによって、軸受隙間量を確認しながら前記内輪の押し込み量を調整することができる。従って、所定の負の軸受隙間が付与される位置まで、軸受隙間量を測定、確認でき、確実に所定の負の軸受隙間を前記転がり軸受部に付与することができる。
In the bearing clearance method for the axle bearing device, the rotational resistance of the rolling bearing portion and the bearing clearance amount obtained in advance by measuring the rotational resistance of the rolling bearing portion while pushing the inner ring into the stepped portion. The amount of bearing clearance at the time of being pushed in may be calculated from the above correlation, and the amount of pushing of the inner ring may be adjusted based on the calculated amount of bearing clearance.
In this case, by measuring the rotational resistance of the rolling bearing portion while pushing the inner ring, the pushing amount of the inner ring can be adjusted while confirming the bearing clearance amount. Therefore, the amount of bearing clearance can be measured and confirmed up to a position where a predetermined negative bearing clearance is provided, and a predetermined negative bearing clearance can be reliably applied to the rolling bearing portion.

上記車軸用軸受装置の軸受隙間方法において、前記内輪を前記段部に押し込みながら前記転がり軸受部に所定の回転もしくは所定の振動を加えてその固有振動数を測定することによって、予め求めておいた前記転がり軸受部を回転もしくは加振させた時の固有振動数と軸受隙間量との相関関係から、押し込まれる際の軸受隙間量を算出し、この算出した軸受隙間量に基づいて前記内輪の押し込み量を調整してもよい。
この場合、前記内輪を押し込みながら前記転がり軸受部の固有振動数を測定することによって、軸受隙間量を確認しながら前記内輪の押し込み量を調整することができる。従って、所定の負の軸受隙間が付与される位置まで、軸受隙間量を測定、確認でき、確実に所定の負の軸受隙間を前記転がり軸受部に付与することができる。
In the bearing clearance method of the axle bearing device, the natural frequency is measured in advance by applying a predetermined rotation or a predetermined vibration to the rolling bearing portion while pushing the inner ring into the stepped portion. From the correlation between the natural frequency when the rolling bearing portion is rotated or vibrated and the bearing gap amount, the bearing gap amount when being pushed in is calculated, and the inner ring is pushed in based on the calculated bearing gap amount. The amount may be adjusted.
In this case, by measuring the natural frequency of the rolling bearing portion while pushing the inner ring, the pushing amount of the inner ring can be adjusted while confirming the bearing clearance amount. Therefore, the amount of bearing clearance can be measured and confirmed up to a position where a predetermined negative bearing clearance is provided, and a predetermined negative bearing clearance can be reliably applied to the rolling bearing portion.

以上のように、本発明に係る車軸用軸受装置およびその軸受隙間付与方法によれば、各部品の寸法を高い精度で管理、選択する必要がないので、所定の負の軸受隙間を容易に付与することができる。   As described above, according to the axle bearing device and the bearing gap imparting method thereof according to the present invention, it is not necessary to manage and select the dimensions of each component with high accuracy, and thus a predetermined negative bearing gap is easily imparted. can do.

次に、本発明の好ましい実施形態について添付図面を参照しながら説明する。図1は本発明の第一の実施形態である車軸用軸受装置の要部構成を示す軸方向断面図である。この車軸用軸受装置10は、自動車などの車両の車輪を懸架装置に対して回転自在に支持する装置として用いられるものである。   Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is an axial cross-sectional view showing a configuration of a main part of an axle bearing device according to a first embodiment of the present invention. The axle bearing device 10 is used as a device that rotatably supports a wheel of a vehicle such as an automobile with respect to a suspension device.

車軸用軸受装置10は、複列のアンギュラ玉軸受を構成する転がり軸受部を含んでおり、外輪11と、内軸(ハブ)12と、外輪11と内軸12間に配置された複数の玉からなる転動体13と、これらの転動体13をそれぞれ保持する保持器14と、外輪11と内軸12との間の環状の隙間に設けられた環状のシール15,15と、を備えている。
外輪11は、車体側の固定される固定輪であり、その内周面に第一および第二の外輪軌道11a,11bが形成され、外周面には車体に取り付けるための取り付け部11cが形成されている。
内軸12は、回転輪であると同時に図示しない車輪が取り付けられる車軸を構成しており、外輪11の内周側に同心に配置されている。内軸12は、その外周面には第一および第二の外輪軌道11a,11bに対向する第一および第二の内輪軌道12a,12bが形成されており、またその一端部には車輪取付用のインロー部12c及びフランジ部12dを備えており、このフランジ部12dには車輪等を固定するための複数本のハブボルト12eが固定されている。
上記第一および第二の外輪軌道11a,11bと第一および第二の内輪軌道12a,12bとの間にはそれぞれ複数の転動体13が転動自在に配置されている。すなわち前記転がり軸受部は、各軌道11a,11b,12a,12bと、複数の転動体13とを含んで構成されている。
The axle bearing device 10 includes a rolling bearing portion that constitutes a double-row angular ball bearing, and includes an outer ring 11, an inner shaft (hub) 12, and a plurality of balls disposed between the outer ring 11 and the inner shaft 12. Rolling elements 13, retainers 14 for holding the respective rolling elements 13, and annular seals 15 and 15 provided in an annular gap between the outer ring 11 and the inner shaft 12. .
The outer ring 11 is a fixed ring fixed on the vehicle body side, and first and second outer ring raceways 11a and 11b are formed on the inner peripheral surface thereof, and an attachment portion 11c for attaching to the vehicle body is formed on the outer peripheral surface. ing.
The inner shaft 12 is a rotating wheel and constitutes an axle to which a wheel (not shown) is attached, and is disposed concentrically on the inner peripheral side of the outer ring 11. The inner shaft 12 is formed with first and second inner ring raceways 12a and 12b facing the first and second outer ring raceways 11a and 11b on the outer peripheral surface thereof, and at one end thereof for attaching a wheel. The inlay portion 12c and the flange portion 12d are provided, and a plurality of hub bolts 12e for fixing wheels and the like are fixed to the flange portion 12d.
A plurality of rolling elements 13 are rotatably arranged between the first and second outer ring raceways 11a and 11b and the first and second inner ring raceways 12a and 12b. That is, the rolling bearing portion includes the raceways 11a, 11b, 12a, 12b and a plurality of rolling elements 13.

また、内軸12は、内軸本体16と、内輪17とを組合わせて構成されている。内軸本体16は、上述の第一の内輪軌道12aが外周面に形成されるとともに上述のフランジ部12dを一端部に備えている。そして他端部には内輪軌道12aよりも小径の段部16aが形成されている。この段部16aの外周面と内軸本体16の外周面16cとは、段差面16a1によって繋がれている。
内輪17は、円環状に成形されており、その外周面に第二の内輪軌道12bが形成されている。この内輪17は、その軸方向内側端面としての小径側端面17aと段差面16a1との間が隙間Pを有するように離間して段部16aに圧入状態で挿入されている。そして、内軸本体16の他端面に形成されたかしめ部16bによって内輪17の大径側端面17bを押さえることで、内輪17を内軸本体16に固定している。
また、この内輪17は、転がり軸受部が所定の軸受隙間量h1を有する負の軸受隙間が付与されるように押し込まれて固定されている。
The inner shaft 12 is configured by combining an inner shaft main body 16 and an inner ring 17. The inner shaft main body 16 has the first inner ring raceway 12a described above formed on the outer peripheral surface and the flange portion 12d described above at one end. A step 16a having a smaller diameter than the inner ring raceway 12a is formed at the other end. The outer peripheral surface of the step portion 16a and the outer peripheral surface 16c of the inner shaft main body 16 are connected by a step surface 16a1.
The inner ring 17 is formed in an annular shape, and a second inner ring raceway 12b is formed on the outer peripheral surface thereof. The inner ring 17 is inserted into the stepped portion 16a in a press-fitted state with a space P between the small-diameter side end surface 17a as the axially inner end surface and the step surface 16a1. The inner ring 17 is fixed to the inner shaft main body 16 by pressing the large-diameter side end surface 17b of the inner ring 17 with a caulking portion 16b formed on the other end surface of the inner shaft main body 16.
In addition, the inner ring 17 is fixed by being pushed so that the rolling bearing portion is provided with a negative bearing gap having a predetermined bearing gap amount h1.

ここで転がり軸受部の軸方向の軸受隙間について説明する。図2(a)は、車軸用軸受装置10を組み立てるべく、内軸本体16に転動体13および外輪11を組み込み、段部16aに内輪17を挿入した状態を模式的に示している。図中、第一の内輪軌道12aと第二の内輪軌道12bとの軸方向における内輪軌道ピッチ寸法Qは、内輪17の小径側端面17aと第二の内輪軌道12bの軌道中心との軸方向における距離寸法Rと、内軸本体16の段差面16a1と第一の内輪軌道12aの軌道中心との軸方向における距離寸法Sと、段差面16a1と小径側端面17aとの隙間Pと、の和によって求められる。
そして転がり軸受部の軸方向の軸受隙間は、外輪11の第一の外輪軌道11aの軌道中心と第二の外輪軌道11bの軌道中心との軸方向における外輪軌道ピッチ寸法Tと内輪軌道ピッチ寸法Qとの差によって求められる。この差が正の場合、転がり軸受部は正の軸受隙間を有しており、外輪11は内軸12に対してこのときの軸受隙間量だけ軸方向に移動可能な状態となる。前記差が0の場合、転がり軸受部の軸受隙間量は0である。そして、前記差が負の場合、転がり軸受部は負の軸受隙間を有する状態である。すなわち、軸受隙間量0である状態からさらに内輪17を段部16aに沿って押し込んだ状態であって、これによって転がり軸受部には予圧が付与される。
Here, the bearing clearance in the axial direction of the rolling bearing portion will be described. FIG. 2A schematically shows a state in which the rolling element 13 and the outer ring 11 are assembled in the inner shaft main body 16 and the inner ring 17 is inserted in the step portion 16a in order to assemble the axle bearing device 10. In the drawing, the inner ring raceway pitch dimension Q in the axial direction of the first inner ring raceway 12a and the second inner ring raceway 12b is in the axial direction between the small-diameter side end face 17a of the inner ring 17 and the track center of the second inner ring raceway 12b. The sum of the distance dimension R, the distance dimension S in the axial direction between the step surface 16a1 of the inner shaft main body 16 and the track center of the first inner ring track 12a, and the gap P between the step surface 16a1 and the small-diameter side end surface 17a. Desired.
The axial bearing clearances of the rolling bearing portions are the outer ring raceway pitch dimension T and the inner ring raceway pitch dimension Q in the axial direction between the center of the first outer ring raceway 11a and the center of the second outer ring raceway 11b. It is calculated by the difference between When this difference is positive, the rolling bearing portion has a positive bearing gap, and the outer ring 11 is movable in the axial direction relative to the inner shaft 12 by the amount of the bearing gap at this time. When the difference is 0, the bearing clearance amount of the rolling bearing portion is 0. When the difference is negative, the rolling bearing portion has a negative bearing gap. That is, the inner ring 17 is further pushed in along the step portion 16a from the state where the bearing clearance amount is 0, and preload is applied to the rolling bearing portion.

この車軸用軸受装置10の内輪17は、上述したように、転がり軸受部が所定の軸受隙間量h1を有する負の軸受隙間となるように押し込まれて固定されている。すなわち、軸受隙間量が0である状態からさらに所定の軸受隙間量h1だけ内輪17が押し込まれており、これによって、転がり軸受部には予圧が付与されている。この予圧の値は、当該転がり軸受部として最適な値を予め把握しておき、転がり軸受部を負の軸受隙間としたときにその予圧の値を付与できる軸受隙間量を求めておく。そしてこの軸受隙間量を所定の軸受隙間量h1としている。   As described above, the inner ring 17 of the axle bearing device 10 is pressed and fixed so that the rolling bearing portion becomes a negative bearing gap having a predetermined bearing gap amount h1. That is, the inner ring 17 is further pushed in by a predetermined bearing gap amount h1 from the state where the bearing gap amount is 0, and thereby preload is applied to the rolling bearing portion. As the preload value, an optimum value for the rolling bearing portion is grasped in advance, and a bearing gap amount that can be given the preload value when the rolling bearing portion is a negative bearing gap is obtained. The bearing gap amount is set to a predetermined bearing gap amount h1.

このように構成された本実施形態に係る車軸用軸受装置10によれば、転がり軸受部の所定の負の軸受隙間量を付与した状態で、段差面16a1と、小径側端面17aとの間に隙間Pを有するように形成されている。これによって、所定の負の軸受隙間を付与すべく内輪17を押し込み固定したとしても、段差面16a1と、小径側端面17aとは、軸受隙間に応じて離間させることができ、個々の部品誤差等により生ずる内輪17の軸方向の固定位置のばらつきを許容することができる。
従って、前記転がり軸受部に所定の負の軸受隙間を付与する場合にも、外輪11、内軸本体16、内輪17、および転動体13等の個々部品寸法を高い精度で管理する必要がない
According to the axle bearing device 10 according to the present embodiment configured as described above, a predetermined negative bearing clearance amount of the rolling bearing portion is provided between the step surface 16a1 and the small-diameter side end surface 17a. The gap P is formed. Thereby, even if the inner ring 17 is pushed and fixed to give a predetermined negative bearing gap, the step surface 16a1 and the small diameter side end face 17a can be separated according to the bearing gap, and individual component errors, etc. The variation in the axial fixed position of the inner ring 17 caused by the above can be allowed.
Therefore, even when a predetermined negative bearing gap is provided to the rolling bearing portion, it is not necessary to manage the individual component dimensions of the outer ring 11, the inner shaft main body 16, the inner ring 17, the rolling element 13, and the like with high accuracy.

次に、本発明の第二の実施形態に係る車軸用軸受装置10の軸受隙間付与方法について説明する。車軸用軸受装置10に軸受隙間を付与するには、まず、図2(a)のように固定治具Kに固定された内軸本体16に、転動体13および外輪11を組み込み、段部16aに内輪17を挿入する。
そして図2(b)に示すように、ポンチYを図中矢印のように回転させることでかしめ部16bをかしめるとともに、ポンチYを下方に下げていき、内輪17を押し込んでいく。このポンチYは例えば、超硬合金などを用いて滑らかな曲線からなる突起状に成形されており、図示しない油圧サーボ等によって制御される直動シリンダ等に取り付けられており、ポンチYの鉛直方向の位置(移動量)を正確に制御することができる。
ここで、転がり軸受部が正の軸受隙間を有する状態となる位置まで、内輪17を押し込む。なお、この位置まではポンチYによる押し込みでなくてもよく、(内輪大端面を治具で押し込む等)通常の圧入でもよい。そして、外輪11を軸方向に上下動させることで、この外輪11が軸方向に移動可能な軸方向移動量h2をダイヤルゲージ等を用いて測定する。
Next, a bearing clearance applying method for the axle bearing device 10 according to the second embodiment of the present invention will be described. In order to provide the bearing clearance to the axle bearing device 10, first, the rolling element 13 and the outer ring 11 are assembled into the inner shaft main body 16 fixed to the fixing jig K as shown in FIG. The inner ring 17 is inserted into.
Then, as shown in FIG. 2B, the punch Y is rotated as shown by the arrow in the drawing to caulk the caulking portion 16b, lower the punch Y downward, and push the inner ring 17 in. For example, the punch Y is formed into a projection having a smooth curve using a cemented carbide or the like, and is attached to a linear cylinder or the like controlled by a hydraulic servo (not shown). Can be accurately controlled.
Here, the inner ring 17 is pushed to a position where the rolling bearing portion has a positive bearing gap. In addition, it is not necessary to push in with the punch Y up to this position, and normal press-fitting (such as pushing the large end surface of the inner ring with a jig) may be used. Then, by moving the outer ring 11 up and down in the axial direction, an axial movement amount h2 that the outer ring 11 can move in the axial direction is measured using a dial gauge or the like.

次に、この軸方向移動量h2に所定の軸受隙間量h1を加えることで押し込み量を算出し、この押し込み量をもって、さらにかしめ部16bをかしめながら内輪17は押し込められ、車軸用軸受装置10に所定の(軸受隙間量h1を有する)負の軸受隙間が付与される。   Next, a pushing amount is calculated by adding a predetermined bearing gap amount h1 to the axial movement amount h2, and with this pushing amount, the inner ring 17 is pushed in while the caulking portion 16b is further caulked, and the axle bearing device 10 is pushed in. A predetermined negative bearing gap (having a bearing gap amount h1) is provided.

このように構成された本実施形態に係る車軸用軸受装置の軸受隙間付与方法において、転がり軸受部が正の軸受隙間を有する状態とされた時の軸方向移動量h2は、外輪軌道ピッチ寸法Tと内輪軌道ピッチ寸法Qとの差であり、この段階における転がり軸受部の軸受隙間量である。このように、現状の軸受隙間量(軸方向移動量h2)を把握し、これを基準とすることで、所定の軸受隙間量h1を有する負の軸受隙間を転がり軸受部に付与するための内輪17の押し込み量を得ることができる。   In the bearing clearance imparting method for an axle bearing device according to the present embodiment configured as described above, the axial movement amount h2 when the rolling bearing portion has a positive bearing clearance is expressed by the outer ring raceway pitch dimension T. And the inner ring raceway pitch dimension Q, which is the bearing clearance amount of the rolling bearing portion at this stage. Thus, an inner ring for giving a negative bearing clearance having a predetermined bearing clearance amount h1 to the rolling bearing portion by grasping the current bearing clearance amount (axial movement amount h2) and using this as a reference. A pushing amount of 17 can be obtained.

また、上述したように、段部16aの段差面16a1と、内輪17の小径側端面17aとは、負の軸受隙間量に応じて離間しているので、内輪17を前記押し込み量をもって内輪17を押し込んだとしても、転動体13の径寸法やその他の部品誤差により生ずる内輪17の軸方向の固定位置のばらつきを許容することができる。
従って、各部品における距離寸法R,S,外輪軌道ピッチ寸法T、および転動体13の径寸法を高い精度で管理せずとも、現状の軸受隙間量に基づいて内輪17の押し込み量を調整することで、車軸用軸受装置10に所定の負の軸受隙間を容易に付与することができる。
Further, as described above, the step surface 16a1 of the step portion 16a and the small-diameter side end surface 17a of the inner ring 17 are separated according to the negative bearing gap amount. Even if it is pushed in, it is possible to allow variations in the axial fixed position of the inner ring 17 caused by the diameter of the rolling element 13 and other component errors.
Accordingly, the push amount of the inner ring 17 is adjusted based on the current bearing clearance amount without managing the distance dimensions R and S, the outer ring raceway pitch dimension T, and the diameter dimension of the rolling element 13 with high accuracy. Thus, a predetermined negative bearing gap can be easily provided to the axle bearing device 10.

また、上記従来例では内輪17は、内輪17単体で測定した寸法Rに基づいて組み立てられるので、内輪17が段部16aに圧入状態で挿入されたときの寸法Rと一致しない場合があり、部品単体で測定した寸法に基づいた軸受隙間量と、車軸用軸受装置10として組み立てられた後の軸受隙間量とが一致せず、その値にばらつきが生じる原因となっていた。加えて軸受隙間量は、内輪17を段差面16a1に当接するまで押し込んだ状態で決まるので、軸受隙間量を調整することはできず、軸受隙間量にばらつきが生じることは不可避であった。
一方、本実施形態ではそれぞれの部品が軸受装置として組み立てられる過程において、所定の負の軸受隙間を付与するので、上記原因による転がり軸受部の軸受隙間量に生じるばらつきを抑えることができ、安定した品質の車軸用軸受装置10を得ることができる。
In the above conventional example, since the inner ring 17 is assembled based on the dimension R measured by the inner ring 17 alone, the inner ring 17 may not match the dimension R when the inner ring 17 is inserted into the stepped portion 16a. The bearing gap amount based on the dimension measured as a single unit and the bearing gap amount after being assembled as the axle bearing device 10 do not coincide with each other, causing variations in the values. In addition, since the bearing gap amount is determined in a state where the inner ring 17 is pushed in until it comes into contact with the step surface 16a1, the bearing gap amount cannot be adjusted, and it is inevitable that the bearing gap amount varies.
On the other hand, in the present embodiment, in the process in which each component is assembled as a bearing device, a predetermined negative bearing clearance is provided, so that variations caused in the bearing clearance amount of the rolling bearing portion due to the above cause can be suppressed and stable. A quality axle bearing device 10 can be obtained.

図3は、本発明の第三の実施形態に係る車軸用軸受装置の軸受隙間付与方法を説明するための模式図である。本実施形態と第一の実施形態との主な相違点は、外輪11の外周面に脱着自在に固定されるとともに外周面に歯車が形成された円環状の外輪駆動治具20と、この外輪駆動治具20に形成された歯車と噛合するギヤ21が取り付けられた図示しないトルク計を備えるモータと、を用いる点である。その他の点については、第二の実施形態と同様なので説明を省略する。   FIG. 3 is a schematic diagram for explaining a bearing clearance applying method for an axle bearing device according to a third embodiment of the present invention. The main difference between the present embodiment and the first embodiment is that an annular outer ring driving jig 20 that is detachably fixed to the outer circumferential surface of the outer ring 11 and has a gear formed on the outer circumferential surface, and the outer ring. A motor including a torque meter (not shown) to which a gear 21 that meshes with a gear formed on the driving jig 20 is attached is used. Since other points are the same as those of the second embodiment, description thereof is omitted.

図中、外輪駆動治具20は、図示しないモータによってギヤ21を介して外輪11を回転させる。そして前記モータによって所定の回転を与えた際の外輪11の回転抵抗を前記モータに備えられたトルク計によって測定できるようにされている。
この外輪11の回転抵抗の値は転がり軸受部の軸受隙間量に対して一定の相関を有しており、この相関関係を予め把握しておくことで、外輪11の回転抵抗から転がり軸受部の軸受隙間量を算出することができる。
In the figure, the outer ring driving jig 20 rotates the outer ring 11 via a gear 21 by a motor (not shown). The rotational resistance of the outer ring 11 when a predetermined rotation is given by the motor can be measured by a torque meter provided in the motor.
The value of the rotational resistance of the outer ring 11 has a certain correlation with the bearing clearance amount of the rolling bearing portion. By grasping this correlation in advance, the rotational resistance of the rolling bearing portion is determined from the rotational resistance of the outer ring 11. The amount of bearing clearance can be calculated.

本実施形態の車軸用軸受装置の軸受隙間付与方法は、まず、第二の実施形態と同様に、内軸本体16に転動体13および外輪11を組み込み、段部16aに内輪17を挿入する。そして、ポンチYによってかしめ部16bをかしめつつ内輪17を下方に押し込んでいく。
そして、転がり軸受部が所定の負の軸受隙間が付与される手前の位置まで、内輪17を押し込む。
次に、内輪17をさらに押し込みながら、前記モータにより外輪11を回転させて、その回転抵抗の値を測定する。このとき得られる回転抵抗の値から転がり軸受部の軸受隙間量を算出することで、軸受隙間量を確認しながら、転がり軸受部に所定の軸受隙間量h1を有する負の軸受隙間が付与される位置まで、内輪17を押し込む。
In the bearing clearance imparting method for the axle bearing device of the present embodiment, first, the rolling element 13 and the outer ring 11 are assembled into the inner shaft main body 16 and the inner ring 17 is inserted into the step portion 16a, as in the second embodiment. Then, the inner ring 17 is pushed downward while the caulking portion 16b is caulked by the punch Y.
And the inner ring | wheel 17 is pushed in to the position before the rolling bearing part provides a predetermined negative bearing clearance.
Next, while further pushing the inner ring 17, the outer ring 11 is rotated by the motor, and the value of the rotational resistance is measured. By calculating the bearing clearance amount of the rolling bearing portion from the rotation resistance value obtained at this time, a negative bearing clearance having a predetermined bearing clearance amount h1 is given to the rolling bearing portion while checking the bearing clearance amount. Push the inner ring 17 to the position.

このように構成された本実施形態の車軸用軸受装置の軸受隙間付与方法によれば、内輪17を押し込みながら転がり軸受部の回転抵抗を測定することによって、軸受隙間量を確認しながら内輪17の押し込み量を調整することができる。従って、所定の負の軸受隙間が付与される位置まで、軸受隙間量を測定、確認でき、確実に所定の負の軸受隙間を転がり軸受部に付与することができる。
また、本実施形態では、実測した軸受隙間量に基づいて内輪17の押し込み量を決めるので、任意の軸受隙間量で負の軸受隙間を付与することもできる。
According to the bearing clearance imparting method of the axle bearing device of the present embodiment configured as described above, the rotational resistance of the rolling bearing portion is measured while pushing the inner ring 17, thereby confirming the bearing clearance amount and the inner ring 17. The pushing amount can be adjusted. Accordingly, the amount of bearing clearance can be measured and confirmed up to a position where a predetermined negative bearing clearance is provided, and a predetermined negative bearing clearance can be reliably applied to the rolling bearing portion.
Further, in the present embodiment, since the pushing amount of the inner ring 17 is determined based on the actually measured bearing gap amount, a negative bearing gap can be provided with an arbitrary bearing gap amount.

図4は、本発明の第四の実施形態に係る車軸用軸受装置の軸受隙間付与方法を説明するための模式図である。本実施形態と第三の実施形態との主な相違点は、モータや外輪駆動治具20等を用いず、外輪11の外周面に振動センサ30を取り付けるとともに、内軸本体16が固定されている固定治具Kの上面K1に加振装置32を取り付けた点である。その他の点については、第二の実施形態と同様なので説明を省略する。   FIG. 4 is a schematic diagram for explaining a bearing clearance providing method for an axle bearing device according to a fourth embodiment of the present invention. The main difference between this embodiment and the third embodiment is that the vibration sensor 30 is attached to the outer peripheral surface of the outer ring 11 and the inner shaft main body 16 is fixed without using the motor or the outer ring driving jig 20 or the like. The vibration device 32 is attached to the upper surface K1 of the fixing jig K. Since other points are the same as those of the second embodiment, description thereof is omitted.

図中、加振装置32は、固定治具Kを介して車軸用軸受装置10に所定の振動を加えるためのものであり油圧もしくは空気圧等を用いた公知の加振機構を備えている。
外輪11に取り付けられた振動センサ30は、公知の振動ピックアップ等を用いており、加振装置22からの振動により共振する車軸用軸受装置10の振動を測定できるようにされている。そして、取得した振動データはハーネス31より図示しない記録装置等に送り、測定された振動から車軸用軸受装置10の固有振動数を得ることができるようにされている。
この振動センサ30により得られる固有振動数の値は転がり軸受部の軸受隙間量に対して一定の相関を有しており、この相関関係を予め把握しておくことで、測定される固有振動数の値から転がり軸受部の軸受隙間量を算出することができる。
In the figure, the vibration device 32 is for applying a predetermined vibration to the axle bearing device 10 via the fixing jig K, and includes a known vibration mechanism using hydraulic pressure or air pressure.
The vibration sensor 30 attached to the outer ring 11 uses a known vibration pickup or the like, and can measure the vibration of the axle bearing device 10 that resonates due to vibration from the vibration device 22. The acquired vibration data is sent from the harness 31 to a recording device (not shown), and the natural frequency of the axle bearing device 10 can be obtained from the measured vibration.
The value of the natural frequency obtained by the vibration sensor 30 has a certain correlation with the bearing clearance amount of the rolling bearing portion, and the natural frequency to be measured can be measured by grasping this correlation in advance. From this value, the bearing clearance amount of the rolling bearing portion can be calculated.

本実施形態の車軸用軸受装置の軸受隙間付与方法は、まず、第三の実施形態と同様に、内軸本体16に転動体13および外輪11を組み込み、段部16aに内輪17を挿入する。そして、ポンチYによってかしめ部16bをかしめつつ内輪17を下方に押し込んでいく。
そして、転がり軸受部が所定の負の軸受隙間が付与される手前の位置まで、内輪17を押し込む。
次に、内輪17をさらに押し込みながら、加振装置32により車軸用軸受装置10に所定の振動を加え、その固有振動数を測定する。このとき得られる固有振動数の値から転がり軸受部の軸受隙間量を算出することで、軸受隙間量を確認しながら、転がり軸受部に所定の軸受隙間量h1を有する負の軸受隙間が付与される位置まで、内輪17を押し込む。
In the bearing clearance imparting method for the axle bearing device of the present embodiment, first, as in the third embodiment, the rolling element 13 and the outer ring 11 are assembled into the inner shaft main body 16, and the inner ring 17 is inserted into the step portion 16a. Then, the inner ring 17 is pushed downward while the caulking portion 16b is caulked by the punch Y.
And the inner ring | wheel 17 is pushed in to the position before the rolling bearing part provides a predetermined negative bearing clearance.
Next, while pushing the inner ring 17 further, a predetermined vibration is applied to the axle bearing device 10 by the vibration device 32, and its natural frequency is measured. By calculating the bearing clearance amount of the rolling bearing portion from the natural frequency value obtained at this time, a negative bearing clearance having a predetermined bearing clearance amount h1 is applied to the rolling bearing portion while checking the bearing clearance amount. The inner ring 17 is pushed in to the position.

このように構成された本実施形態の車軸用軸受装置の軸受隙間付与方法によれば、内輪17を押し込みながら転がり軸受部の固有振動数を測定することによって、軸受隙間量を確認しながら内輪17の押し込み量を調整することができる。従って、所定の負の軸受隙間が付与される位置まで、軸受隙間量を測定、確認でき、確実に所定の負の軸受隙間を転がり軸受部に付与することができる。
また、本実施形態では、第三の実施形態のようにモータや治具等を設置、固定せずとも、固定治具Kと外輪11に加振装置32と振動センサ30をそれぞれ取り付けるだけで、容易に転がり軸受部の軸受隙間量を測定することができるので、車軸用軸受装置10の組み立て作業性をより向上させることができる。
According to the bearing clearance imparting method of the axle bearing device of the present embodiment configured as described above, the inner ring 17 is checked while checking the bearing clearance amount by measuring the natural frequency of the rolling bearing portion while pushing the inner ring 17. The amount of pushing can be adjusted. Accordingly, the amount of bearing clearance can be measured and confirmed up to a position where a predetermined negative bearing clearance is provided, and a predetermined negative bearing clearance can be reliably applied to the rolling bearing portion.
In the present embodiment, the motor and jigs are not installed and fixed as in the third embodiment, but only the vibration device 32 and the vibration sensor 30 are attached to the fixing jig K and the outer ring 11, respectively. Since the bearing clearance amount of the rolling bearing portion can be easily measured, the assembly workability of the axle bearing device 10 can be further improved.

また、本実施形態では加振装置32は固定治具Kに取り付けたが、車軸用軸受装置10の一部に直接取り付けても良い。また、振動を測定する際に、加振せずに、外輪11又は内軸12を所定の回転数で回転させた時の固有振動数を測定してもよい。また、振動センサ30は外輪11の外周面に取り付けたが、固有振動数が測定可能であれば内軸本体16等、車軸用軸受装置10の他の部分に取り付けてもよい。   Further, in this embodiment, the vibration device 32 is attached to the fixing jig K, but may be directly attached to a part of the axle bearing device 10. Further, when measuring the vibration, the natural frequency may be measured when the outer ring 11 or the inner shaft 12 is rotated at a predetermined rotational speed without being vibrated. Further, although the vibration sensor 30 is attached to the outer peripheral surface of the outer ring 11, it may be attached to other parts of the axle bearing device 10 such as the inner shaft main body 16 as long as the natural frequency can be measured.

なお、本発明は、上記実施形態に限定されるものではない。上記各実施形態ではポンチYを用いてかしめ部16bをかしめつつ内輪17を段部16aに圧入状態で挿入して固定する態様を示したが、内輪17の固定には、接着や溶接、ねじ止め等、特に限定されることはない。例えば、段部16aの外周面および内輪17の内周面にねじ部が設けられており、内輪17は段部16aに螺合しつつ挿入されて段部16aに沿って押し込まれるように構成された車軸用軸受装置にも、図5に示すような内輪挿入装置を用いることで適用できる。   The present invention is not limited to the above embodiment. In each of the above embodiments, the inner ring 17 is inserted and fixed to the stepped portion 16a in a press-fitted state while the caulking portion 16b is caulked using the punch Y. Etc. There is no particular limitation. For example, a thread portion is provided on the outer peripheral surface of the step portion 16a and the inner peripheral surface of the inner ring 17, and the inner ring 17 is inserted while being screwed into the step portion 16a and is pushed along the step portion 16a. The present invention can also be applied to an axle bearing device using an inner ring insertion device as shown in FIG.

図5中、内輪挿入装置40は、車両用軸受装置10を固定するための固定台41と、内輪17の外周面に外嵌固定されるとともに外周面に歯車が形成された鍔部42aを有する円筒状の内輪保持具42と、この鍔部42aの歯車と噛合するギヤ43aを回転させるためのモータ43と、このモータ43を固定しているフレーム44と、このフレーム44に取り付けられたセンサ支持部45aに取り付けられた変位センサ45と、フレーム44に取り付けられてフレーム44を固定台41に対して上下動させるための直動シリンダ46と、を備えている。   In FIG. 5, the inner ring insertion device 40 includes a fixing base 41 for fixing the vehicle bearing device 10, and a flange 42 a that is fitted and fixed to the outer peripheral surface of the inner ring 17 and has a gear formed on the outer peripheral surface. A cylindrical inner ring holder 42, a motor 43 for rotating a gear 43a that meshes with the gear of the flange 42a, a frame 44 that fixes the motor 43, and a sensor support attached to the frame 44 A displacement sensor 45 attached to the part 45a and a linear cylinder 46 attached to the frame 44 for moving the frame 44 up and down relative to the fixed base 41 are provided.

内輪保持具42は、一体回転可能に内輪17を保持しており、センサ支持部45aに固定されたボス47に転がり軸受48を介して回転可能に取り付けられている。この内輪保持具42には外周面に歯車が形成された鍔部42aが形成されており、前記歯車にはモータ43によって駆動されるギヤ43aが噛合している。フレーム44に取り付けられたセンサ支持部45aには、内軸本体16の端面と内輪17の端面の上下方向の相対位置を検出するための変位センサ45が、前記ボス47および内輪保持具42を貫通し内軸本体16の端面に当接して配置されている。
これらはフレーム44に取り付けられて、直動シリンダ46によって一体に上下動可能にされている。そして、フレーム44を上下動させることで、内輪17のみに荷重を掛けつつ、内輪保持具42を回転させることで、内輪17を段部16aに螺合させつつ挿入し押し込むことができるようにされている。また、内輪17の押し込み量は、変位センサ45によって測定することができるようにされている。
The inner ring holder 42 holds the inner ring 17 so as to be integrally rotatable, and is rotatably attached to a boss 47 fixed to the sensor support portion 45a via a rolling bearing 48. The inner ring holder 42 is formed with a flange 42a having a gear formed on the outer peripheral surface thereof, and a gear 43a driven by a motor 43 is engaged with the gear. A displacement sensor 45 for detecting the relative position in the vertical direction between the end surface of the inner shaft body 16 and the end surface of the inner ring 17 passes through the boss 47 and the inner ring holder 42 in the sensor support portion 45a attached to the frame 44. The inner shaft body 16 is disposed in contact with the end surface.
These are attached to the frame 44 and can be moved up and down integrally by a linear cylinder 46. Then, by moving the frame 44 up and down, the inner ring 17 can be inserted and pushed in while being screwed into the step portion 16a by rotating the inner ring holder 42 while applying a load only to the inner ring 17. ing. Further, the pushing amount of the inner ring 17 can be measured by the displacement sensor 45.

上記のような内輪挿入装置40を用いることで、内輪17が段部16aに螺合しつつ挿入されて押し込まれるように構成された車軸用軸受装置にも、本発明を適用することができる。   By using the inner ring insertion device 40 as described above, the present invention can also be applied to an axle bearing device in which the inner ring 17 is inserted and pushed in while being screwed into the stepped portion 16a.

また、上記各実施形態では、内軸が回転輪となる構成を有する車軸用軸受装置について示したが、外輪が回転輪となる構成を有する車軸用軸受装置にも適用することができる。また、上記各実施形態では、車軸用軸受装置に複列のアンギュラ玉軸受を用いたが、例えば、複列の円錐ころ軸受を用いてもよい。   In each of the above embodiments, an axle bearing device having a configuration in which the inner shaft is a rotating wheel is shown, but the present invention can also be applied to an axle bearing device having a configuration in which the outer ring is a rotating wheel. Moreover, in each said embodiment, although the double row angular contact ball bearing was used for the axle bearing apparatus, you may use a double row tapered roller bearing, for example.

本発明の第一の実施形態に係る車軸用軸受装置の要部構成を示す軸方向断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an axial cross-sectional view showing a main configuration of an axle bearing device according to a first embodiment of the present invention. 本発明の第二の実施形態に係る車軸用軸受装置の軸受隙間付与方法を説明するための図であり、(a)は、車軸用軸受装置を組み立てるべく、段部に内輪を挿入した状態を模式的に示しており、(b)は、かしめ部をかしめつつ内輪を押し込んだ状態を模式的に示している。It is a figure for demonstrating the bearing clearance provision method of the axle bearing device which concerns on 2nd embodiment of this invention, (a) is the state which inserted the inner ring | wheel into the step part in order to assemble an axle bearing device. FIG. 5B schematically shows a state in which the inner ring is pushed in while caulking the caulking portion. 本発明の第三の実施形態に係る車軸用軸受装置の軸受隙間付与方法を説明するための模式図である。It is a schematic diagram for demonstrating the bearing clearance provision method of the axle bearing apparatus which concerns on 3rd embodiment of this invention. 本発明の第四の実施形態に係る車軸用軸受装置の軸受隙間付与方法を説明するための模式図である。It is a schematic diagram for demonstrating the bearing clearance provision method of the axle shaft bearing apparatus which concerns on 4th embodiment of this invention. 内輪挿入装置の構成を示す概略図である。It is the schematic which shows the structure of an inner ring insertion apparatus. 従来の車軸用軸受装置の構成を示す軸方向断面図である。It is an axial sectional view showing the configuration of a conventional axle bearing device.

符号の説明Explanation of symbols

10 車軸用軸受装置
11 外輪
11a,11b 第一および第二の外輪軌道
12 内軸
12a,12b 第一および第二の内輪軌道
13 転動体
16 内軸本体
16a 段部
16a1 段差面
17 内輪
17a 小径側端面
DESCRIPTION OF SYMBOLS 10 Axle bearing apparatus 11 Outer ring 11a, 11b First and second outer ring raceway 12 Inner shaft 12a, 12b First and second inner ring raceway 13 Rolling element 16 Inner shaft main body 16a Step part 16a1 Step surface 17 Inner ring 17a Smaller diameter side End face

Claims (5)

第一および第二の外輪軌道が内周面に形成された外輪と、前記第一および第二の外輪軌道に対向する第一および第二の内輪軌道が外周面に形成された内軸と、前記第一および第二の外輪軌道と前記第一および第二の内輪軌道との間にそれぞれ転動自在に配置された複数の転動体とを有する転がり軸受部を備え、
前記内軸は、外周面に前記第一の内輪軌道が形成されているとともに、前記外周面より小径の段部が一端部に形成されている内軸本体と、
外周面に前記第二の内輪軌道が形成されているとともに、前記内軸本体の一端部側から前記段部に押し込み固定されることで前記転がり軸受部に所定の負の軸受隙間を付与している円環状の内輪と、を備えている車軸用軸受装置において、
前記内軸本体の外周面と前記段部の外周面とを繋ぐ段差面と、この段差面に対向する前記内輪の側端面とが、前記負の軸受隙間に応じて離間していることを特徴とする車軸用軸受装置。
An outer ring having first and second outer ring raceways formed on an inner peripheral surface, and an inner shaft having first and second inner ring raceways opposed to the first and second outer ring raceways formed on an outer peripheral surface; A rolling bearing portion having a plurality of rolling elements arranged to be freely rollable between the first and second outer ring raceways and the first and second inner ring raceways,
The inner shaft has an inner shaft body in which the first inner ring raceway is formed on an outer peripheral surface, and a step portion having a smaller diameter than the outer peripheral surface is formed at one end portion;
The second inner ring raceway is formed on the outer peripheral surface, and a predetermined negative bearing gap is given to the rolling bearing portion by being pushed into and fixed to the step portion from one end side of the inner shaft main body. An axle bearing device having an annular inner ring,
A stepped surface connecting the outer peripheral surface of the inner shaft main body and the outer peripheral surface of the stepped portion and a side end surface of the inner ring facing the stepped surface are separated according to the negative bearing gap. Axle bearing device.
請求項1記載の車軸用軸受装置に軸受隙間を付与するための軸受隙間付与方法であって、
内軸本体の段部に対して、内輪を前記内軸本体の一端部側から押し込む際に、当該内輪の押し込み量を調整することで、転がり軸受部に所定の負の軸受隙間を付与することを特徴とする車軸用軸受装置の軸受隙間付与方法。
A bearing clearance applying method for providing a bearing clearance to the axle bearing device according to claim 1,
When the inner ring is pushed into the step portion of the inner shaft main body from one end side of the inner shaft main body, a predetermined negative bearing clearance is provided to the rolling bearing portion by adjusting the pushing amount of the inner ring. A bearing clearance applying method for an axle bearing device.
前記内輪を、前記転がり軸受部の軸受隙間が負となる手前の位置まで、前記内軸本体の一端部側から前記段部に押し込み、前記外輪を軸方向に動かしてその軸方向移動量を測定し、この軸方向移動量に所定の軸受隙間量を加えた値を前記内輪の押し込み量とする請求項2記載の車軸用軸受装置の軸受隙間付与方法。   The inner ring is pushed into the step part from one end side of the inner shaft main body to a position just before the bearing clearance of the rolling bearing part becomes negative, and the outer ring is moved in the axial direction to measure the axial movement amount. 3. A bearing gap imparting method for an axle bearing device according to claim 2, wherein a value obtained by adding a predetermined bearing gap amount to the axial movement amount is used as the pushing amount of the inner ring. 前記内輪を前記段部に押し込みながら前記転がり軸受部の回転抵抗を測定することによって、予め求めておいた前記転がり軸受部の回転抵抗と軸受隙間量との相関関係から押し込まれる際の軸受隙間量を算出し、この算出した軸受隙間量に基づいて前記内輪の押し込み量を調整する請求項2記載の車軸用軸受装置の軸受隙間付与方法。   The amount of bearing clearance when the inner ring is pushed in from the correlation between the rotation resistance of the rolling bearing portion and the amount of bearing clearance determined in advance by measuring the rotational resistance of the rolling bearing portion while pushing the inner ring into the stepped portion. The bearing clearance imparting method for an axle bearing device according to claim 2, wherein the amount of pushing of the inner ring is adjusted based on the calculated bearing clearance amount. 前記内輪を前記段部に押し込みながら前記転がり軸受部に所定の回転もしくは所定の振動を加えてその固有振動数を測定することによって、予め求めておいた前記転がり軸受部を回転もしくは加振させた時の固有振動数と軸受隙間量との相関関係から、押し込まれる際の軸受隙間量を算出し、この算出した軸受隙間量に基づいて前記内輪の押し込み量を調整する請求項2記載の車軸用軸受装置の軸受隙間付与方法。   The rolling bearing portion obtained in advance was rotated or excited by measuring the natural frequency by applying a predetermined rotation or a predetermined vibration to the rolling bearing portion while pushing the inner ring into the stepped portion. The axle clearance according to claim 2, wherein a bearing clearance amount when being pushed in is calculated from a correlation between a natural frequency at the time and a bearing clearance amount, and the pushing amount of the inner ring is adjusted based on the calculated bearing clearance amount. A bearing clearance imparting method for a bearing device.
JP2006006409A 2006-01-13 2006-01-13 Bearing device for axle and bearing clearance provision method Pending JP2007187264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006006409A JP2007187264A (en) 2006-01-13 2006-01-13 Bearing device for axle and bearing clearance provision method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006006409A JP2007187264A (en) 2006-01-13 2006-01-13 Bearing device for axle and bearing clearance provision method

Publications (1)

Publication Number Publication Date
JP2007187264A true JP2007187264A (en) 2007-07-26

Family

ID=38342567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006006409A Pending JP2007187264A (en) 2006-01-13 2006-01-13 Bearing device for axle and bearing clearance provision method

Country Status (1)

Country Link
JP (1) JP2007187264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112989513A (en) * 2021-03-04 2021-06-18 河南科技大学 Method for obtaining bearing working clearance by combining test and numerical calculation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225606A (en) * 2000-02-17 2001-08-21 Ntn Corp Wheel bearing device, and method of controlling bearing clearance gap
JP2002021847A (en) * 2000-07-10 2002-01-23 Koyo Seiko Co Ltd Bearing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225606A (en) * 2000-02-17 2001-08-21 Ntn Corp Wheel bearing device, and method of controlling bearing clearance gap
JP2002021847A (en) * 2000-07-10 2002-01-23 Koyo Seiko Co Ltd Bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112989513A (en) * 2021-03-04 2021-06-18 河南科技大学 Method for obtaining bearing working clearance by combining test and numerical calculation

Similar Documents

Publication Publication Date Title
EP2722548B1 (en) Method for producing wheel bearing device
EP2008057A1 (en) Method of measuring a clearance of a hub bearing for vehicles
JPH06221326A (en) Pre-loaded rolling bearing device and its manufacture
JP2018021613A (en) Clearance measurement method of hub unit bearing
JP2008089122A (en) Wheel bearing device assembling method
JP2004162729A (en) Double row ball bearing and preload providing method for double row ball bearing
JP3658994B2 (en) Method for manufacturing pre-loaded double row rolling bearing device
JP2009248595A (en) Preload clearance measuring method for wheel rolling bearing device
JP2020098163A (en) Starting torque measurement method of bearing device
JPH10115315A (en) Method for reducing shaft run out of rolling bearing unit and rolling bearing unit reduced in shaft runout
JP2008265361A (en) Bearing device for wheel
JP2005265175A (en) Bearing device for wheel
KR20100095856A (en) Method for measuring clearance of multi-rows bearing
JP2001225606A (en) Wheel bearing device, and method of controlling bearing clearance gap
JP2007187264A (en) Bearing device for axle and bearing clearance provision method
JP2006064082A (en) Rolling bearing unit
US8167498B2 (en) Bearing apparatus for axle and method of manufacturing the same
JP5071136B2 (en) Rolling bearing unit with rotation detector
JP2008014471A (en) Rolling bearing device with sensor
JP2008298564A (en) Manufacturing method for roll bearing unit equipped with physical quantity measuring device
JP4962014B2 (en) Manufacturing method of hub unit
JP2005283323A (en) Load measuring instrument for roller bearing unit
JP2007205392A (en) Wheel supporting rolling bearing unit with load measuring device and its manufacturing method
JP2006112595A (en) Rolling bearing unit
WO2022039204A1 (en) Rotational torque inspection method for wheel bearing device, and rotational torque inspection device for wheel bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301