JP2009248595A - Preload clearance measuring method for wheel rolling bearing device - Google Patents

Preload clearance measuring method for wheel rolling bearing device Download PDF

Info

Publication number
JP2009248595A
JP2009248595A JP2008095255A JP2008095255A JP2009248595A JP 2009248595 A JP2009248595 A JP 2009248595A JP 2008095255 A JP2008095255 A JP 2008095255A JP 2008095255 A JP2008095255 A JP 2008095255A JP 2009248595 A JP2009248595 A JP 2009248595A
Authority
JP
Japan
Prior art keywords
rolling bearing
caulking
amount
preload
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008095255A
Other languages
Japanese (ja)
Inventor
Yoshibumi Shige
義文 重
Kazuhisa Kajiwara
一寿 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2008095255A priority Critical patent/JP2009248595A/en
Publication of JP2009248595A publication Critical patent/JP2009248595A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure the characteristic value frequencies of a wheel rolling bearing device before and after assembling, and then precisely find a variation in the preload clearance of a rolling element from a variation in the characteristic value frequencies thereof. <P>SOLUTION: A hub unit 10 of the wheel rolling bearing device has balls 22 arranged between an outer ring part 18 and an inner ring part 20, and the inner ring part 18 is fixed and assembled to the end of a hub shaft part 14 with caulking work. The preload clearance measuring method includes: previously finding the inherent characteristics of the variation in the characteristic value frequency of the configured wheel rolling bearing device with a variation in the preload clearance amount of the balls 22; measuring the characteristic value frequencies of the individual wheel rolling bearing device to be measured, before and after caulking the end of the hub shaft part 14; and also measuring the variation in the preload clearance of the rolling element before and after caulked in accordance with the previously found inherent characteristics from the variation in the characteristic value frequencies thereof before and after caulking it. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は車輪用転がり軸受装置の予圧すきま測定方法に関する。更に詳しくは、外輪部と内輪部との間に転動体が配され、内輪部がハブ軸部の端部のかしめ加工により固定されて組付けられる車輪用転がり軸受装置の予圧すきま測定方法に関する。   The present invention relates to a method for measuring a preload clearance of a rolling bearing device for a wheel. More specifically, the present invention relates to a method for measuring a preload clearance of a rolling bearing device for a wheel in which rolling elements are arranged between an outer ring portion and an inner ring portion, and the inner ring portion is fixed and assembled by caulking of an end portion of a hub shaft portion.

従来、自動車の車輪用転がり軸受装置は、外輪と内輪との間にボールの転動体が複数列配列されて構成される。この場合、転動体は外輪と内輪の転動面に対して負のすきまが与えられた状態として組立てられる。この転動体に対する予圧すきま量の設定は、通常は内輪を軸方向に締め付けることにより行われる。
内輪の軸方向の締め付けは、ハブ軸部の軸部に対して軸方向に締め付けることにより行われるものであり、ナットの螺合締め付けにより行われる方法もあるが、最近では、ハブ軸部の軸部端部を内輪に対してかしめ加工することにより行う方法がとられるようになった。
かしめ加工により組立てられる転がり軸受装置の負の予圧すきま量を測定する方法としては、例えば、下記特許文献1による方法がある。この測定方法は、かしめ加工により組立てられた外輪を回転させると、その回転トルクが予圧状態に応じて変動することから、組立て後の外輪の回転トルクにより予圧すきま量を測定するものである。
2. Description of the Related Art Conventionally, a rolling bearing device for a wheel of an automobile is configured by arranging a plurality of ball rolling elements between an outer ring and an inner ring. In this case, the rolling elements are assembled in a state where a negative clearance is given to the rolling surfaces of the outer ring and the inner ring. The preload clearance amount for the rolling elements is usually set by tightening the inner ring in the axial direction.
The inner ring is tightened in the axial direction with respect to the shaft portion of the hub shaft portion, and there is a method in which the nut is screwed and tightened. A method has been adopted in which the end of the part is caulked to the inner ring.
As a method for measuring the negative preload clearance amount of the rolling bearing device assembled by caulking, for example, there is a method according to Patent Document 1 below. In this measurement method, when the outer ring assembled by caulking is rotated, the rotational torque varies according to the preload state, and therefore, the preload clearance amount is measured by the rotational torque of the outer ring after assembly.

なお、車輪用転がり軸受装置における負の予圧すきま量の管理は、周知の如く、重要なものである。すなわち。もし、予圧すきま量が適正値より小さい場合は軸受剛性が不足し、著しく小さい場合はハブが振動して騒音が発生する等の事態に至る恐れもある。また、逆に、予圧すきま量が適正値より大きい場合は、回転抵抗の増大により自動車の動力性能や燃費が低下する恐れもある。したがって、かかる弊害を生じないように、軸受の製造工程においては、所望の適正な予圧すきま量が付与されているかどうかを正確に確認する必要があり、適正な予圧すきま量範囲に管理することは重要となっている。
特開平11−44319号公報
As is well known, the management of the negative preload clearance amount in the wheel rolling bearing device is important. That is. If the preload clearance is smaller than the appropriate value, the bearing rigidity is insufficient. If the preload clearance is extremely small, the hub may vibrate and noise may occur. On the other hand, if the preload clearance is larger than the appropriate value, the power performance and fuel consumption of the automobile may be reduced due to the increase in rotational resistance. Therefore, in order to prevent such adverse effects, in the bearing manufacturing process, it is necessary to accurately check whether or not the desired and appropriate preload clearance amount is given. It is important.
JP 11-44319 A

上述したような従来の測定方法によれば、かしめ加工により組立てられた転がり軸受装置の一応の予圧すきま量は測定することできるが、精度に欠けるものであった。
すなわち、上述したような回転トルクによる予圧すきまの測定方法の場合、回転トルクに影響する要因が予圧すきま以外にも、転がり軸受装置に取付けられた密封装置の摺動抵抗や、グリースなどの潤滑剤の攪拌に伴う攪拌抵抗などがあり、これらの要因による回転トルクも加味されるため、純粋な予圧のみによる回転トルクではなく、転動体の軌道面に対する正確な負のすきまを測定していることにはならなかった。
According to the conventional measuring method as described above, the temporary preload clearance amount of the rolling bearing device assembled by caulking can be measured, but the accuracy is insufficient.
That is, in the case of the method for measuring the preload clearance by the rotational torque as described above, the factors affecting the rotational torque are not only the preload clearance, but also the sliding resistance of the sealing device attached to the rolling bearing device, or a lubricant such as grease. In addition to the rotational torque due to these factors, the rotational torque due to these factors is also taken into account, so the accurate negative clearance with respect to the raceway surface of the rolling element is measured, not the rotational torque due to pure preload alone. I didn't.

そこで、本発明者らは、製品のバラツキに影響されない予圧すきま量の測定要素の研究に着目し、鋭意研究した結果、製品のバラツキの有無にかかわりなく、車両用転がり軸受装置がとる構造形態毎に、転動体の予圧すきまの変化量と当該転がり軸受装置の固有値周波数の変化量には一定の比例関係があることを見出した。
而して、本発明が解決しようとする課題は、車輪用転がり軸受装置の組立て前後の固有値周波数を測定し、その固有値周波数の変化量から転動体の予圧すきまの変化量を精度良く求めることにある。
Therefore, the present inventors paid attention to the research on the measurement element of the preload clearance amount that is not affected by the product variation, and as a result of earnest research, the present inventors found that each structural form taken by the rolling bearing device for a vehicle regardless of the presence or absence of product variation. Furthermore, it has been found that there is a certain proportional relationship between the amount of change in the preload clearance of the rolling element and the amount of change in the natural frequency of the rolling bearing device.
Therefore, the problem to be solved by the present invention is to measure the eigenvalue frequency before and after the assembly of the rolling bearing device for the wheel and to obtain the change amount of the preload clearance of the rolling element with high accuracy from the change amount of the eigenvalue frequency. is there.

上記課題を達成するために、本発明に係る車輪用転がり軸受装置の予圧すきま測定方法は次の手段をとる。
先ず、本発明の第1の発明は、外輪部と内輪部との間に転動体が配され、内輪部がハブ軸部の端部のかしめ加工により固定されて組付けられる車輪用転がり軸受装置の予圧すきま測定方法であって、当該車輪用転がり軸受装置がとる構造形態における転動体の予圧すきま量の変化量に対する固有値周波数の変化量の固有特性を予め求めておき、測定対象の個々の車輪用転がり軸受装置について、前記ハブ軸部の端部のかしめ加工前と加工後の固有値周波数を測定し、このかしめ加工前後の固有値周波数の変化量から前記予め求めた固有特性に基づいて転動体のかしめ加工前後の予圧すきまの変化量を測定するものである。
In order to achieve the above object, the preload clearance measuring method for a wheel rolling bearing device according to the present invention takes the following means.
First, a first aspect of the present invention is a rolling bearing device for a wheel in which a rolling element is disposed between an outer ring portion and an inner ring portion, and the inner ring portion is fixed and assembled by caulking processing of an end portion of a hub shaft portion. In this method, the characteristic characteristic of the change amount of the eigenvalue frequency with respect to the change amount of the preload clearance amount of the rolling element in the structural form taken by the rolling bearing device for the wheel is obtained in advance, and the individual wheel to be measured is measured. For the rolling bearing device for use, the eigenvalue frequency before and after the caulking process of the end portion of the hub shaft is measured, and the rolling element of the rolling element is determined based on the characteristic characteristic obtained in advance from the amount of change in the eigenvalue frequency before and after the caulking process. The amount of change in the preload clearance before and after caulking is measured.

この第1の発明によれば、次のようにして車輪用転がり軸受装置のかしめ加工前後の予圧すきまの変化量を求めることができる。
先ず、予め、車輪用転がり軸受装置がとる構造形態における転動体の予圧すきま量の変化量に対する固有値周波数の変化量の固有特性を求めておく、この固有特性が本発明者らが鋭意研究した結果、見出したものである。
上記により求めた固有特性に基づき、測定対象の個々の車輪用転がり軸受装置について、ハブ軸部端部のかしめ加工前と加工後の固有値周波数を測定して、かしめ加工前後の固有値周波数の変化量を求め、この固有値周波数の変化量からかしめ加工前後の転動体の予圧すきまの変化量を測定することができる。この求められる変化量は、かしめ加工前後における予圧すきま量の絶対値を測定するものではなく、かしめ加工により転動体に対する負の予圧すきま量がどの程度進行したのかのレベルを示すものである。
According to the first aspect of the present invention, the amount of change in the preload clearance before and after the caulking process of the wheel rolling bearing device can be obtained as follows.
First, the characteristic characteristic of the change amount of the eigenvalue frequency with respect to the change amount of the preload clearance amount of the rolling element in the structural form taken by the rolling bearing device for the wheel is obtained in advance. , Is what we found.
Based on the eigencharacteristics obtained above, for each wheel rolling bearing device to be measured, the eigenvalue frequency before and after caulking at the end of the hub shaft is measured, and the change in eigenvalue frequency before and after caulking And the amount of change in the preload clearance of the rolling element before and after caulking can be measured from the amount of change in the eigenvalue frequency. The required amount of change does not measure the absolute value of the preload clearance before and after caulking, but indicates the level of progress of the negative preload clearance for the rolling elements by caulking.

次に、本発明の第2の発明は、上記第1の発明の車輪用転がり軸受装置の負すきま測定方法であって、外輪部と内輪部との間に配される転動体はボールからなり、このボール列は二列に配列されている複列アンギュラ玉軸受であることを特徴とする。
この第2の発明によれば、普通には車輪用転がり軸受装置の転動体はボールが用いられており、かつ、このボールは軸方向に2列配列された構成のものであるので、かかる構成の複列アンギュラ玉軸受からなる車輪用転がり軸受装置について予圧すきま測定を精確に行うことができる。
Next, a second invention of the present invention is a negative clearance measuring method for a rolling bearing device for a wheel according to the first invention, wherein the rolling elements arranged between the outer ring portion and the inner ring portion are made of balls. The ball train is a double row angular contact ball bearing arranged in two rows.
According to the second aspect of the invention, normally, the rolling elements of the wheel rolling bearing device use balls, and the balls are arranged in two rows in the axial direction. Preload clearance measurement can be accurately performed for a rolling bearing device for a wheel comprising a double-row angular contact ball bearing.

本発明の車輪用転がり軸受装置の負すきま測定方法は上述した手段をとることにより次の効果を得ることができる。
先ず、上述した第1の発明によれば、車輪用転がり軸受装置の組立て前後の固有値周波数を測定し、その固有値周波数の変化量から転動体の予圧すきま量の変化量を精度良く求めることができる。
次に、上述した第2の発明によれば、上述した第1の発明による測定を、車輪用転がり軸受装置として普通に構成される複列アンギュラ玉軸受に適用して、その測定を精度良く行うことができる。
The method for measuring the negative clearance of the rolling bearing device for a wheel according to the present invention can obtain the following effects by taking the above-described means.
First, according to the first aspect described above, the eigenvalue frequency before and after assembly of the rolling bearing device for a wheel can be measured, and the amount of change in the preload clearance amount of the rolling element can be accurately obtained from the amount of change in the eigenvalue frequency. .
Next, according to the second invention described above, the measurement according to the first invention described above is applied to a double-row angular contact ball bearing that is normally configured as a wheel rolling bearing device, and the measurement is performed with high accuracy. be able to.

以下に、本発明に係る測定方法を実施するための最良の形態の一実施例を、図面を用いて説明する。なお、この実施例では、ハブユニットに備えられる転がり軸受がいわゆる複列アンギュラ玉軸受となっている。
図1は本発明にかかる測定方法を適用する一実施例の複列転がり軸受からなるハブユニットを示し、(A)は上面図、(B)は断面図を示す。
ハブユニット10はハブ12のハブ軸部14の外周に転がり軸受16が構成されてなっている。転がり軸受16は外輪部18と内輪部20との間に転動体としてのボール22が介在されて構成されている。ボール22は軸方向に2列に配列されている。各列のボール22はそれぞれ保持ケージにより保持されて配列されている。
An embodiment of the best mode for carrying out the measuring method according to the present invention will be described below with reference to the drawings. In this embodiment, the rolling bearing provided in the hub unit is a so-called double row angular ball bearing.
FIG. 1 shows a hub unit composed of a double row rolling bearing of one embodiment to which a measuring method according to the present invention is applied, wherein (A) shows a top view and (B) shows a sectional view.
In the hub unit 10, a rolling bearing 16 is formed on the outer periphery of the hub shaft portion 14 of the hub 12. The rolling bearing 16 is configured by interposing a ball 22 as a rolling element between an outer ring portion 18 and an inner ring portion 20. The balls 22 are arranged in two rows in the axial direction. The balls 22 in each row are held and arranged by holding cages.

外輪部18は、後述する内輪部20を形成するハブ軸部14を挿入することのできる概略円筒状部材として形成されている。図1(B)で見て、円筒の内周面の上下位置には2列に配設されるボール22の転動面が形成されている。また、円筒の外周面の上方位置にはフランジ24が一体的に形成されている。このフランジ24は車体側部材の懸架装置のナックルアームに取付けられ、これによりハブユニット10が車体側に支持される。
内輪部20は、この実施例では、ハブ軸部14自体の外周面と、別に独立構成部品として形成した内輪部材26とによって構成されている。詳細には、図1(B)で見て、下方位置に配列されるボール22の転動面を形成する内輪部20はハブ軸部14の外周面により直接形成される構成となっており、上方位置に配列されるボール22の転動面を形成する内輪部20は別途形成された内輪部材26の外周面で構成されている。内輪部材26はハブ軸部14に外嵌する筒状形状とされており、ハブ軸部14に嵌合して取付けられる。
内輪部材26が嵌合されて取付けられるハブ軸部14a部分は、その外径が内輪部材26が嵌合する厚み分だけ小径に形成されており、嵌合先端部が断面で見て段付き28形状となっている。
なお、ハブ軸部14の他端側(図1(B)で下方)には、フランジ30が径方向に延出して形成されている。このフランジには、周知の如く、図示を省略したブレーキディスクや車輪が取付けられる。
The outer ring portion 18 is formed as a substantially cylindrical member into which a hub shaft portion 14 that forms an inner ring portion 20 described later can be inserted. As shown in FIG. 1B, rolling surfaces of the balls 22 arranged in two rows are formed at the upper and lower positions of the inner peripheral surface of the cylinder. A flange 24 is integrally formed at a position above the outer peripheral surface of the cylinder. The flange 24 is attached to the knuckle arm of the suspension device for the vehicle body side member, whereby the hub unit 10 is supported on the vehicle body side.
In this embodiment, the inner ring portion 20 is constituted by an outer peripheral surface of the hub shaft portion 14 itself and an inner ring member 26 formed as an independent component. Specifically, as shown in FIG. 1B, the inner ring portion 20 that forms the rolling surface of the balls 22 arranged at the lower position is directly formed by the outer peripheral surface of the hub shaft portion 14, The inner ring portion 20 that forms the rolling surface of the balls 22 arranged in the upper position is composed of an outer peripheral surface of an inner ring member 26 that is separately formed. The inner ring member 26 has a cylindrical shape that is fitted on the hub shaft portion 14, and is fitted and attached to the hub shaft portion 14.
The hub shaft portion 14a portion to which the inner ring member 26 is fitted and attached has an outer diameter that is as small as the thickness to which the inner ring member 26 is fitted. It has a shape.
A flange 30 is formed to extend in the radial direction on the other end side of the hub shaft portion 14 (downward in FIG. 1B). As is well known, a brake disk and wheels (not shown) are attached to the flange.

ハブユニット10として組立てるための外輪部18と内輪部20の組付けは、図1(B)で見て、先ず、内輪部20としてのハブ軸部14と外輪部18との間に上下2列にボール22を配列した状態とする。この状態で、ハブ軸部14の端部の小径のハブ軸部14aに別部品として形成した内輪部材26を嵌合させて、ハブ軸部14aの端部を内輪部材26の端面に対してかしめ加工する。このかしめ加工によりハブ軸部14が回転可能状態として組み付けられる。かしめ加工された後の状態が図1(B)にハブ軸部14aを実線で示す状態である。
この組立てにおけるハブ軸部14aの端部のかしめ加工は、内輪部材26を小径のハブ軸部14aの段付き28に対して圧し込む、いわゆる軸方向へ荷重をかける加工として行われる。この加工によりボール22の外輪部18及び内輪部20の転動面に対する予圧すきまは、いわゆる予圧が与えられた負のすきまとなる。
The assembly of the outer ring portion 18 and the inner ring portion 20 for assembling as the hub unit 10 will be described with reference to FIG. 1B. First, two rows in the upper and lower rows are provided between the hub shaft portion 14 and the outer ring portion 18 as the inner ring portion 20. In this state, the balls 22 are arranged in the state. In this state, the inner ring member 26 formed as a separate part is fitted to the small-diameter hub shaft portion 14 a at the end of the hub shaft portion 14, and the end portion of the hub shaft portion 14 a is caulked against the end surface of the inner ring member 26. Process. By this caulking, the hub shaft portion 14 is assembled in a rotatable state. The state after the caulking process is a state where the hub shaft portion 14a is shown by a solid line in FIG.
The caulking process of the end of the hub shaft part 14a in this assembly is performed as a process of applying a load in the axial direction in which the inner ring member 26 is pressed against the step 28 of the hub shaft part 14a having a small diameter. By this processing, the preload clearance with respect to the rolling surfaces of the outer ring portion 18 and the inner ring portion 20 of the ball 22 becomes a negative clearance to which a so-called preload is applied.

次に、上記ハブユニット10として組込まれた転がり軸受16の予圧すきまを測定する方法を説明する。
先ず、上記ハブユニット10に組込まれる転がり軸受の構造形態の基準となる転がり軸受(以下この基準の転がり軸受を意味する場合は16Mの符号を付する)を準備する。この基準の転がり軸受16Mについて内輪部材26を徐々に軸方向に圧し込んでいく、この圧し込んでいく軸方向の各位置において、その各位置における固有値周波数Hzを測定すると共に、その各位置におけるボール22の負のすきま量μmを測定し、これら測定値から固有値周波数の変化量と負の予圧すきまの変化量との比例関係の固有特性を求める。この固有特性を定性的に示したのが、図2の線図である。
なお、上記における基準の転がり軸受16Mの軸方向への内輪部材26の圧し込み各位置における固有値周波数と負のすきま量の測定は次のようにして行うのが良い。図1(B)におけるハブ軸部14aの端部をかしめ加工により圧し込むのを、基準の転がり軸受16Mではナットによるねじ締め付け構成として、ナットの締め付け量をボールの転動面に対する負のすきま量の増加量として測定するとともに、その各締め付け位置において固有値周波数を測定する。
Next, a method for measuring the preload clearance of the rolling bearing 16 incorporated as the hub unit 10 will be described.
First, a rolling bearing serving as a reference for the structure of the rolling bearing incorporated in the hub unit 10 (hereinafter, the rolling bearing of this reference is denoted by 16M) is prepared. The inner ring member 26 is gradually pressed in the axial direction with respect to the reference rolling bearing 16M, and the eigenvalue frequency Hz is measured at each position in the axial direction where the inner ring member 26 is pressed, and the ball at each position is measured. The negative clearance amount μm of 22 is measured, and the characteristic characteristic of the proportional relationship between the change amount of the eigenvalue frequency and the change amount of the negative preload clearance is obtained from these measured values. This characteristic is qualitatively shown in the diagram of FIG.
The eigenvalue frequency and the negative clearance amount at each position where the inner ring member 26 is pressed in the axial direction of the reference rolling bearing 16M are preferably measured as follows. In FIG. 1 (B), the end of the hub shaft portion 14a is pressed by caulking, and the standard rolling bearing 16M has a screw tightening configuration with a nut. The tightening amount of the nut is a negative clearance with respect to the ball rolling surface. And an eigenvalue frequency at each tightening position.

固有値周波数の測定は、図1の外輪部18のフランジ24をハンマーリングで振動を与え、対称位置で加速度をピックアップして、その固有値周波数を測定する。この実施例の場合は、図1に黒三角印で示すK点がハンマリング位置であり、黒丸印で示すP点が加速度ピック位置である。K点位置とP点位置とは180度離れた対称位置となっている。なお、この両点の位置はこの実施例の位置に限定されるものではなく、適宜可能な位置に設定すれば良いものである。例えば、この実施例では、両点位置を外輪部18のフランジ24に設定したが、ハブ12のフランジ30に設定しても良い。
上記のようにして測定された固有値周波数と負の予圧すきま量に基づいて本発明者らは鋭意研究した結果、その固有値周波数の変化量と負の予圧すきまの変化量には、転がり軸受のとる構造形態毎に一定の比例関係にあることを見出したものである。これは、転がり軸受は外輪部、ボール、内輪部間にバネ系が成立しており、予圧すきま量の変化によってバネ定数も変化する事に着目し、外輪部もしくは内輪部の固有値周波数から予圧すきま量の変化を測定できることを見出したものである。この考え方の基に上記両者の関係を定性的に線図として示したのが図2の固有特性線図である。この図2の固有特性線図に示すように、固有値周波数変化量Xcが大きければ大きいほど負の予圧すきま変化量Ycも大きくなる関係にある。この線図の傾きは転がり軸受がとる構造形態が異なれば異なった傾きになるものである。
For measuring the eigenvalue frequency, the flange 24 of the outer ring portion 18 in FIG. 1 is vibrated with a hammer ring, acceleration is picked up at a symmetrical position, and the eigenvalue frequency is measured. In this embodiment, a point K indicated by a black triangle in FIG. 1 is a hammering position, and a point P indicated by a black circle is an acceleration pick position. The K point position and the P point position are symmetrical positions separated by 180 degrees. Note that the positions of these two points are not limited to the positions in this embodiment, and may be set as appropriate as possible. For example, in this embodiment, the positions of both points are set on the flange 24 of the outer ring portion 18, but may be set on the flange 30 of the hub 12.
As a result of intensive studies based on the eigenvalue frequency and the negative preload clearance measured as described above, the present inventors have determined that the amount of change in the eigenvalue frequency and the change in the negative preload clearance is determined by the rolling bearing. It has been found that there is a fixed proportional relationship for each structural form. This is because the rolling bearing has a spring system between the outer ring, ball, and inner ring, and the spring constant changes with the change in the preload clearance, and the preload clearance is determined from the natural frequency of the outer ring or inner ring. It has been found that changes in quantity can be measured. Based on this concept, the relationship between the two is shown qualitatively as a diagram in FIG. As shown in the characteristic graph of FIG. 2, the larger the eigenvalue frequency change amount Xc, the larger the negative preload clearance change amount Yc. The slope of this diagram will be different if the structure of the rolling bearing is different.

基準となる転がり軸受16Mにより測定した固有特性線図より、測定対象とする個々の転がり軸受16におけるかしめ加工前後の固有値周波数Xを測定することにより予圧すきま変化量Ycを精度良く求めることができる。その方法を順次説明する。
先ず、かしめ加工前の測定対象とする転がり軸受16を備えたハブユニット10をかしめ加工する加工装置台にセットする。加工装置台にセットされた転がり軸受16の内輪部材26に対して、予め適宜手段により軸方向に圧し込み力をかけて、ボール22の転動面における遊び等の転がり軸受16の遊びすきまを無くしておく。この状態がかしめ加工の加工前状態である。この状態を図1(B)にハブ軸部14aの端部を破線で示した状態である。
次に、上記かしめ加工前状態の転がり軸受16に対して、上述した基準の転がり軸受16Mに対して測定したのと同じようにして固有値周波数を測定する。すなわち、図1において、外輪部18のフランジ24に黒三角印で示すK点をハンマーリングで振動を与え、対称位置の黒丸印で示すP点で加速度をピックアップして、その固有値周波数を測定する。これにより測定されたかしめ加工前の固有値周波数をX1(Hz)とする。
By measuring the natural value frequency X before and after caulking in each rolling bearing 16 to be measured from the characteristic chart measured by the reference rolling bearing 16M, the preload clearance change amount Yc can be obtained with high accuracy. The method will be described sequentially.
First, the hub unit 10 provided with the rolling bearing 16 to be measured before caulking is set on a processing apparatus table for caulking. The inner ring member 26 of the rolling bearing 16 set on the processing apparatus base is preliminarily pressed in the axial direction by appropriate means to eliminate the play clearance of the rolling bearing 16 such as play on the rolling surface of the ball 22. Keep it. This state is a state before the caulking process. FIG. 1B shows this state in which the end portion of the hub shaft portion 14a is indicated by a broken line.
Next, the eigenvalue frequency is measured for the rolling bearing 16 in the state before the caulking process in the same manner as that measured for the reference rolling bearing 16M described above. That is, in FIG. 1, the flange 24 of the outer ring portion 18 is vibrated by a hammer ring at a point K indicated by a black triangle mark, and acceleration is picked up at a point P indicated by a black circle mark at a symmetrical position, and its eigenvalue frequency is measured. . The eigenvalue frequency before caulking processing thus measured is set to X1 (Hz).

上記によりかしめ加工前の固有値周波数X1を測定した後、ハブ軸部14aの端部を内輪部材26に対して予め定められた加圧に基づいてかしめ加工を行って、内輪部材26を軸方向に圧し込んでボール22の負の予圧すきまを増加させて加工を終了する。この状態がかしめ加工の加工後状態である。この状態が図1(B)にハブ軸部14aの端部を実線で示す状態である。
このかしめ加工の加工後状態で、再度、加工前状態の測定と同じようにして加工後状態の固有値周波数を測定する。すなわち、図1において、外輪部18のフランジ24に黒三角印で示すK点をハンマーリングで振動を与え、対称位置の黒丸印で示すP点で加速度をピックアップして、その固有値周波数を測定する。これにより測定されたかしめ加工後 の固有値周波数をX2(Hz)とする。
After the eigenvalue frequency X1 before caulking is measured as described above, the end of the hub shaft portion 14a is caulked on the inner ring member 26 based on a predetermined pressure, and the inner ring member 26 is moved in the axial direction. The processing is terminated by increasing the negative preload clearance of the ball 22 by pressing. This state is a state after the caulking process. This state is a state where the end portion of the hub shaft portion 14a is indicated by a solid line in FIG.
In the post-machining state of this caulking, the eigenvalue frequency in the post-machining state is measured again in the same manner as in the pre-machining state. That is, in FIG. 1, the flange 24 of the outer ring portion 18 is vibrated by a hammer ring at a point K indicated by a black triangle mark, and acceleration is picked up at a point P indicated by a black circle mark at a symmetrical position, and its eigenvalue frequency is measured. . The eigenvalue frequency after caulking is measured as X2 (Hz).

次に、上記により測定したかしめ加工前後の固有値周波数X1,X2から、かしめ加工前後のその固有値周波数変動量Xcを求める。固有値周波数変動量Xcは次式により求められる。
Xc(Hz)=X2−X1・・・(1)
上記(1)式によりかしめ加工前後の固有値周波数変動量Xcが求められると、上述した基準となる転がり軸受を測定して得られた図2に示す固有特定線図から、個々の測定対象とする転がり軸受16の負の予圧すきま変化量を求めることができる。例えば、上記(1)式により求められた測定対象の転がり軸受16の固有値周波数変動量Xcが図2に示すXc1であった場合には、線図上のa点となり、a点に対応する負の予圧すきま変化量はYc1(μm)となる。すなわち、かしめ加工前の遊びすきまを無くした状態からYc1(μm)のすきま量だけ負のすきまが増大したことを測定できたことになる。同様にして、上記(1)式により求められた測定対象の転がり軸受16の固有値周波数変動量Xcが図2に示すXc2であった場合には、線図上のb点となり、a点に対応するYc2(μm)のすきま量だけ負のすきまが増大したことを測定できたことになる。
この測定された負のすきま変化量Ycは製品の製造上のばらつきによるすきま変化量が除かれたものであり、精度の良い負のすきまを測定したことになるものである。
Next, the eigenvalue frequency fluctuation amount Xc before and after caulking is obtained from the eigenvalue frequencies X1 and X2 measured before and after caulking. The eigenvalue frequency fluctuation amount Xc is obtained by the following equation.
Xc (Hz) = X2-X1 (1)
When the natural frequency fluctuation amount Xc before and after caulking is obtained by the above equation (1), it is determined from the specific specific diagram shown in FIG. 2 obtained by measuring the above-described reference rolling bearing as individual measurement objects. The amount of change in the negative preload clearance of the rolling bearing 16 can be obtained. For example, when the eigenvalue frequency fluctuation amount Xc of the rolling bearing 16 to be measured obtained by the above equation (1) is Xc1 shown in FIG. 2, it becomes point a on the diagram, and the negative value corresponding to point a. The amount of change in the preload clearance is Yc1 (μm). That is, it was possible to measure that the negative clearance increased by the clearance amount Yc1 (μm) from the state where the clearance before the caulking process was eliminated. Similarly, when the eigenvalue frequency fluctuation amount Xc of the rolling bearing 16 to be measured obtained by the above equation (1) is Xc2 shown in FIG. 2, it becomes a point b on the diagram and corresponds to the point a. It can be measured that the negative clearance is increased by the clearance amount of Yc2 (μm).
The measured negative gap change amount Yc is obtained by removing the gap change quantity due to the manufacturing variation of the product and measuring the negative gap with high accuracy.

上記により測定される負のすきま量は、転動体としてのボール22に対するかしめ加工前後で変化した負の予圧すきま変化量であり、かしめ加工後におけるハブユニット10に組込まれた転がり軸受16の絶対的な予圧すきま量を測定したものではない。絶対的なかしめ予圧すきま量の測定が必要な場合には、次のように追加測定すれば測定することができる。
この場合には、前述の加工装置台にセットされたかしめ加工の加工前状態で、先ず、当該加工前状態における転がり軸受16の絶対的な予圧すきま量を測定する。このかしめ加工前の予圧すきまの測定は、ボール22と転動面との間に荷重があまり作用していない状態の測定であることから、既存の測定方法でも比較的精度良くその予圧すきま量を測定することができるものである。例えば、特開2000−9562号公報(前掲の特許文献2)に開示されているような測定方法で測定することができる。そして、このかしめ加工前状態で測定した予圧すきま量をYbとすると、この予圧すきま量Ybに上記により測定したかしめ加工前後の予圧すきま変化量Ycを加えたものが、かしめ加工後の絶対的な負の予圧かしめ量Ytとして測定される。
Yt(−μm)=Yb+Yc・・・(2)
これにより測定された最終的製品としてのかしめ加工後の絶対的な負の予圧かしめ量Ytは従来の測定方法により測定された予圧かしめ量に比べ、精度の良いものとなっている。すなわち、かしめ加工前後の予圧かしめ変化量は製品のバラツキの影響を受けないものであり、かしめ加工前に測定した絶対的な予圧すきま量は前述したように比較的精度良く測定できるものであることから、トータルとして測定されるかしめ加工後の絶対的な負の予圧かしめ量も精度の良いものとなっている。
The negative clearance amount measured as described above is a negative preload clearance change amount that has changed before and after the caulking process on the ball 22 as a rolling element, and is an absolute value of the rolling bearing 16 incorporated in the hub unit 10 after the caulking process. It is not a measurement of the amount of preload clearance. If absolute caulking preload clearance needs to be measured, it can be measured by additional measurement as follows.
In this case, first, the absolute preload clearance amount of the rolling bearing 16 in the pre-working state is measured in the pre-working state of the caulking work set on the above-described processing device stand. This pre-load clearance measurement before caulking is a measurement in which a load is not acting between the ball 22 and the rolling surface, so that even with existing measurement methods, the pre-load clearance can be determined with relatively high accuracy. It can be measured. For example, it can be measured by a measurement method as disclosed in Japanese Patent Laid-Open No. 2000-9562 (Patent Document 2 described above). If the preload clearance amount measured in the state before caulking is Yb, the preload clearance amount Yc measured before and after the caulking is added to the preload clearance amount Yb to obtain the absolute value after caulking. It is measured as a negative preload caulking amount Yt.
Yt (−μm) = Yb + Yc (2)
As a result, the absolute negative preload caulking amount Yt after caulking as the final product measured is more accurate than the preload caulking amount measured by the conventional measuring method. In other words, the amount of change in pre-pressure caulking before and after caulking is not affected by product variations, and the absolute pre-load clearance measured before caulking can be measured with relatively high accuracy as described above. Therefore, the amount of absolute negative preload caulking after caulking, which is measured as a total, is also accurate.

図3はかしめ加工後の固有値周波数のみで負の予圧すきま量を測定する場合の予圧すきま量のばらつきを説明するための線図である。この線図の2本の線は製品のバラツキによるばらつき幅を表わしている。今、かしめ加工後に測定される固有値周波数をX2とすると、図3の線図から分かるように負の予圧すきま量はYt1からYt2の幅の範囲にあることになり、その測定対象とする個々の転がり軸受16の負の予圧すきま量を精確に把握することができない。これに対して上述の測定方法で測定した場合には、このYt1からYt2の幅の中の特定の点として測定することができ、精度良く測定することができるものである。
したがって、測定対象とする個々の転がり軸受の最終製品としての合否判断も精度良く行うことができる。その結果、製品の予圧すきまのばらつきの縮小につながり、製品間の性能ばらつきの縮小が可能となる。
なお、最終製品としての合否判断はかしめ加工後の絶対的な負の予圧すきま量により判断するものであるが、場合によってはかしめ加工前後の予圧すきま変化量Yc又はかしめ加工前状態の予圧すきま量Ybで判断しても良い。すなわち、かしめ加工前後における固有値周波数の変化量から求めた予圧すきま量の変化量自体の数値が異常な数値であれば、その段階で事前に製品としての不合格を判断することもできる。同様に、適宜方法で求めたかしめ加工前の予圧すきま量の絶対的数値が異常な数値であれば、その段階で事前に製品としての不合格を判断することもできる。
FIG. 3 is a diagram for explaining the variation in the preload clearance amount when the negative preload clearance amount is measured only by the natural frequency after the caulking. The two lines in this diagram represent the variation width due to product variation. Assuming that the eigenvalue frequency measured after caulking is X2, the negative preload clearance amount is in the range of Yt1 to Yt2 as can be seen from the diagram of FIG. The negative preload clearance amount of the rolling bearing 16 cannot be accurately grasped. On the other hand, when measured by the above-described measuring method, it can be measured as a specific point in the width from Yt1 to Yt2, and can be measured with high accuracy.
Therefore, the pass / fail judgment as the final product of each rolling bearing to be measured can be performed with high accuracy. As a result, the variation in the preload clearance of the product is reduced, and the performance variation between products can be reduced.
In addition, the acceptance / rejection judgment as the final product is judged by the absolute negative preload clearance after caulking, but depending on the case, the preload clearance change amount Yc before and after caulking or the preload clearance before the caulking You may judge by Yb. That is, if the numerical value of the change amount of the preload clearance obtained from the change amount of the eigenvalue frequency before and after the caulking is an abnormal value, it is possible to determine in advance that the product is rejected at that stage. Similarly, if the absolute value of the preload clearance before caulking is appropriately determined by an appropriate method, an unacceptable product can be determined in advance at that stage.

以上、本発明の一実施例の測定方法について説明したが、本発明はその他各種の実施形態が考えられるものである。
例えば、上記の実施例では、いわゆる複列アンギュラ玉軸受の構造形態の負の予圧すきま量を測定する場合について説明したが、対象とする転がり軸受はその他周知の各種の転がり軸受に適用することができるものである。
The measurement method according to one embodiment of the present invention has been described above, but various other embodiments can be considered for the present invention.
For example, in the above-described embodiment, the case of measuring the negative preload clearance amount of the so-called double row angular contact ball bearing structure is described, but the target rolling bearing can be applied to various other known rolling bearings. It can be done.

一実施例の複列転がり軸受のハブユニットを示し、(A)は上面図、(B)は断面図である。The hub unit of the double row rolling bearing of one Example is shown, (A) is a top view, (B) is sectional drawing. 固有値周波数変化量と予圧すきま変化量の関係を示す固有特性線図である。It is an eigen-characteristic diagram which shows the relationship between eigenvalue frequency variation | change_quantity and a preload clearance variation. 加工後の絶対的固有値周波数に対する予圧すきま量のばらつきを示す線図である。It is a diagram which shows the dispersion | variation in the amount of preload clearances with respect to the absolute eigenvalue frequency after a process.

符号の説明Explanation of symbols

10 ハブユニット
12 ハブ
14 ハブ軸部
14a 小径部
16 転がり軸受
18 外輪部
20 内輪部
22 ボール(転動体)
24 フランジ
26 内輪部材
28 段付き
30 フランジ
X 固有値周波数
Xc 固有値周波数変化量
Y 予圧すきま量
Yc 予圧すきま変化量
K点 ハンマリング位置
P点 加速度ピック位置
DESCRIPTION OF SYMBOLS 10 Hub unit 12 Hub 14 Hub axial part 14a Small diameter part 16 Rolling bearing 18 Outer ring part 20 Inner ring part 22 Ball (rolling element)
24 Flange 26 Inner ring member 28 Stepped 30 Flange X Eigenvalue frequency Xc Eigenvalue frequency change Y Preload clearance Yc Preload clearance change K point Hammering position P point Acceleration pick position

Claims (2)

外輪部と内輪部との間に転動体が配され、内輪部がハブ軸部の端部のかしめ加工により固定されて組付けられる車輪用転がり軸受装置の予圧すきま測定方法であって、
当該車輪用転がり軸受装置がとる構造形態における転動体の予圧すきま量の変化量に対する固有値周波数の変化量の固有特性を予め求めておき、
測定対象の個々の車輪用転がり軸受装置について、前記ハブ軸部の端部のかしめ加工前と加工後の固有値周波数を測定し、このかしめ加工前後の固有値周波数の変化量から前記予め求めた固有特性に基づいて転動体のかしめ加工前後の予圧すきまの変化量を測定することを特徴とする車輪用転がり軸受装置の予圧すきま測定方法。
A rolling element is disposed between an outer ring part and an inner ring part, and the inner ring part is fixed by caulking at the end of the hub shaft part and assembled, and is a preload clearance measuring method for a wheel rolling bearing device,
The characteristic characteristic of the change amount of the eigenvalue frequency with respect to the change amount of the preload clearance amount of the rolling element in the structural form taken by the wheel rolling bearing device is obtained in advance,
For each wheel rolling bearing device to be measured, the eigenvalue frequency before and after the caulking process of the end of the hub shaft is measured, and the eigenvalue obtained in advance from the amount of change in the eigenvalue frequency before and after the caulking process. A preload clearance measuring method for a rolling bearing device for a wheel, characterized in that the amount of change in the preload clearance before and after caulking of the rolling element is measured based on the above.
請求項1に記載の車輪用転がり軸受装置の予圧すきま測定方法であって、
前記外輪部と内輪部との間に配される転動体はボールからなり、該ボール列は二列に配列されている複列アンギュラ玉軸受であることを特徴とする車輪用転がり軸受装置の予圧すきま測定方法。
A preload clearance measuring method for a rolling bearing device for a wheel according to claim 1,
A rolling element disposed between the outer ring portion and the inner ring portion comprises a ball, and the ball row is a double row angular contact ball bearing arranged in two rows. Clearance measurement method.
JP2008095255A 2008-04-01 2008-04-01 Preload clearance measuring method for wheel rolling bearing device Pending JP2009248595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095255A JP2009248595A (en) 2008-04-01 2008-04-01 Preload clearance measuring method for wheel rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095255A JP2009248595A (en) 2008-04-01 2008-04-01 Preload clearance measuring method for wheel rolling bearing device

Publications (1)

Publication Number Publication Date
JP2009248595A true JP2009248595A (en) 2009-10-29

Family

ID=41309707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095255A Pending JP2009248595A (en) 2008-04-01 2008-04-01 Preload clearance measuring method for wheel rolling bearing device

Country Status (1)

Country Link
JP (1) JP2009248595A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008832A (en) * 2014-06-23 2016-01-18 株式会社ジェイテクト Rolling bearing axial clearance measuring device and rolling bearing axial clearance measuring method
CN105372070A (en) * 2015-12-15 2016-03-02 新昌县羽林街道全顺机械厂 Bearing installation precision detection device
CN106500643A (en) * 2016-09-28 2017-03-15 重庆长江轴承股份有限公司 The negative clearance wheel measuring method of third generation hub-bearing unit
DE102017122510A1 (en) 2016-09-29 2018-03-29 Jtekt Corporation Rolling device for vehicle
JP2018059618A (en) * 2016-09-29 2018-04-12 株式会社ジェイテクト Rolling device for vehicle
WO2019138711A1 (en) 2018-01-10 2019-07-18 日本精工株式会社 Hub-unit-bearing manufacturing method, hub-unit-bearing manufacturing device, and vehicle manufacturing method
CN110744357A (en) * 2019-10-28 2020-02-04 河南科技大学 Device and method for testing transient pretightening force of main shaft bearing of machine tool
CN113366292A (en) * 2019-03-04 2021-09-07 Ntn株式会社 Method for inspecting preload of wheel bearing device and method for assembling wheel bearing device
JP7281571B1 (en) 2022-03-17 2023-05-25 上銀科技股▲分▼有限公司 Method for detecting deviations in the dynamic properties of feed systems

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008832A (en) * 2014-06-23 2016-01-18 株式会社ジェイテクト Rolling bearing axial clearance measuring device and rolling bearing axial clearance measuring method
CN105372070A (en) * 2015-12-15 2016-03-02 新昌县羽林街道全顺机械厂 Bearing installation precision detection device
CN106500643A (en) * 2016-09-28 2017-03-15 重庆长江轴承股份有限公司 The negative clearance wheel measuring method of third generation hub-bearing unit
JP2018059618A (en) * 2016-09-29 2018-04-12 株式会社ジェイテクト Rolling device for vehicle
KR20180035665A (en) * 2016-09-29 2018-04-06 가부시키가이샤 제이텍트 Rolling device for vehicle
CN107880995A (en) * 2016-09-29 2018-04-06 株式会社捷太格特 Tourelle for vehicle
DE102017122510A1 (en) 2016-09-29 2018-03-29 Jtekt Corporation Rolling device for vehicle
US10087985B2 (en) 2016-09-29 2018-10-02 Jtekt Corporation Rolling device for vehicle
KR102379991B1 (en) * 2016-09-29 2022-03-29 가부시키가이샤 제이텍트 Rolling device for vehicle
WO2019138711A1 (en) 2018-01-10 2019-07-18 日本精工株式会社 Hub-unit-bearing manufacturing method, hub-unit-bearing manufacturing device, and vehicle manufacturing method
CN113366292A (en) * 2019-03-04 2021-09-07 Ntn株式会社 Method for inspecting preload of wheel bearing device and method for assembling wheel bearing device
CN110744357A (en) * 2019-10-28 2020-02-04 河南科技大学 Device and method for testing transient pretightening force of main shaft bearing of machine tool
CN110744357B (en) * 2019-10-28 2021-05-14 河南科技大学 Device and method for testing transient pretightening force of main shaft bearing of machine tool
JP7281571B1 (en) 2022-03-17 2023-05-25 上銀科技股▲分▼有限公司 Method for detecting deviations in the dynamic properties of feed systems

Similar Documents

Publication Publication Date Title
JP2009248595A (en) Preload clearance measuring method for wheel rolling bearing device
US6460423B1 (en) Method of measuring preload in a multirow bearing assembly
JP6009149B2 (en) Manufacturing method of wheel bearing device
JP2008128640A (en) Rolling bearing device for wheel
JP5306577B2 (en) Bearing and load measuring method for automobile wheel
WO2020179670A1 (en) Preload inspection method and assembly method for wheel bearing device
JP2004360782A (en) Bearing for automotive wheel
JP3639421B2 (en) Preload measurement method for double row rolling bearings
JP7413311B2 (en) How to measure the axial clearance of a wheel bearing device
JP2005265175A (en) Bearing device for wheel
JP4887754B2 (en) Rolling bearing device with sensor
JP2008185592A (en) Method for predicting abnormal noise generation caused by fretting
JP2010090982A (en) Wheel bearing with sensor
JP4962014B2 (en) Manufacturing method of hub unit
JP2006226477A (en) Rolling bearing device with sensor
JP3459730B2 (en) Manufacturing method of axle bearing device
JP2804429B2 (en) Measuring method of bearing clearance of axle bearing device
JPH0874844A (en) Pre-pressure estimation method and device for bearing device for vehicular shaft
JP2007198814A (en) Wheel rolling bearing device
JP2005283323A (en) Load measuring instrument for roller bearing unit
WO2022039204A1 (en) Rotational torque inspection method for wheel bearing device, and rotational torque inspection device for wheel bearing device
JP2846545B2 (en) Wheel bearings
JPH07127634A (en) Bearing device for axle and measuring method for bearing clearance thereof
JP2002333016A (en) Manufacturing method of rolling bearing unit for wheel support
JP2022034925A (en) Preload inspection method of wheel bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120703