JP3639421B2 - Preload measurement method for double row rolling bearings - Google Patents

Preload measurement method for double row rolling bearings Download PDF

Info

Publication number
JP3639421B2
JP3639421B2 JP30359497A JP30359497A JP3639421B2 JP 3639421 B2 JP3639421 B2 JP 3639421B2 JP 30359497 A JP30359497 A JP 30359497A JP 30359497 A JP30359497 A JP 30359497A JP 3639421 B2 JP3639421 B2 JP 3639421B2
Authority
JP
Japan
Prior art keywords
preload
outer ring
hub
inner ring
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30359497A
Other languages
Japanese (ja)
Other versions
JPH10185717A (en
Inventor
康裕 宮田
啓款 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP30359497A priority Critical patent/JP3639421B2/en
Publication of JPH10185717A publication Critical patent/JPH10185717A/en
Application granted granted Critical
Publication of JP3639421B2 publication Critical patent/JP3639421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2229/00Setting preload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Support Of The Bearing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、転動体が軸方向に複数列設けられた複列転がり軸受において、付与された予圧を測定する方法に関する。
【0002】
【従来の技術】
例えば、自動車の車輪を懸架装置に支持するための装置として、図5に示すような複列転がり軸受からなるハブユニット1が使用されている。図において、外輪2は、そのフランジ部2aが懸架装置(図示せず)に取り付けられて、軸受の固定側を成す部材である。外輪2の内部には、軸受の可動側を成すハブ3のスピンドル部3aが挿入され、外側(図の左側)の環状列を形成する複数個の転動体(以下、外側転動体という。)4e及び内側(図の右側)の環状列を形成する複数個の転動体(以下、内側転動体という。)4iを介して、回転自在に保持されている。スピンドル部3aの、内側転動体4iに対向する部分は、他の部分より小径な円柱部3bとして形成され、そこからさらに先端部には雄ねじ部3cが形成されている。円柱部3bには内輪5が外嵌固定され、さらにナット6が雄ねじ部3cに締め込まれている。
【0003】
上記の外側転動体4eは、外輪2の内周部に形成された第1の外輪軌道2eと、スピンドル部3aの外周部に形成された第1の内輪軌道3eとの間に、転動自在に保持されている。また、内側転動体4iは、外輪2の内周部に形成された第2の外輪軌道2iと、内輪5の外周部に形成された第2の内輪軌道5iとの間に、転動自在に保持されている。ハブ3の外周端部にはフランジ部3dが形成され、このフランジ部3dに複数のボルト7が固定されている。車輪のホイール(図示せず)は、このボルト7とナット(図示せず)により、ハブ3に固定され、ハブ3とともに回転する。外輪2の外側(図1における左側)端部の内周面には弾性体からなるシール8が取り付けられ、回転するハブ3と摺接して、水や異物が外輪2の内部へ侵入することを防いでいる。
なお、ハブユニットによっては、フランジ部3dにボルト7を設ける代わりにネジ孔を形成して、このネジ孔とボルトとによってホイールをハブ3に固定する形態のものもある。
【0004】
上記のように構成されたハブユニット1においては、ナット6を所定のトルクで雄ねじ部3cに緊締したとき、外側転動体4eとその外輪軌道2e及び内輪軌道3eとの間、並びに、内側転動体4iとその外輪軌道2i及び内輪軌道5iとの間に適正な予圧が付与されるように、各部の寸法が調整されている。もし予圧が適正値より小さい場合は軸受剛性が不足し、著しく小さい場合はハブ3が振動して自動車の走行安定性が損なわれたり、騒音が発生する等の事態に至る。また、逆に、予圧が適正値より大きい場合は、回転抵抗の増大により自動車の動力性能や燃費が低下し、ハブユニット1の寿命も短くなる。従って、かかる弊害を生じないように、軸受の製造工程においては、所望の適正な予圧が付与されているかどうかを確認する必要がある。
【0005】
そこで、従来は、軸受に付与された予圧と、当該軸受の軸受トルクとの間に一定の関係があることを利用して、外輪2とハブ3との相対回転に要する軸受トルクを測定し、この軸受トルクに基づいて、適正な予圧が付与されているか否かを確認していた。
【0006】
【発明が解決しようとする課題】
しかし、上記の方法により軸受トルクを測定する場合、軸受自体が有する回転抵抗よりもシール8による摩擦抵抗の方がはるかに大きく、しかもこの摩擦抵抗のばらつきが大きいことから、軸受トルクの測定値の誤差が大きかった。従って、予圧を正確に測定することができず、適正な予圧が付与されていない軸受装置を発見することが困難であるという問題点があった。
【0007】
上記のような従来の問題点に鑑み、本発明は、軸受に付与されている予圧を測定して、その適否を正確に把握することができる方法の提供を目的とする。
【0008】
【課題を解決するための手段】
本発明においては、付与された予圧と予圧隙間との一定の関係に基づいて、予圧隙間を測定することにより等価的に予圧を測定して、予圧の適否を把握する。ここで、予圧隙間とは、予圧が付与されていない状態から予圧が付与された状態に転じたとき、軸受の転動体及びこれに関連した各部材の弾性変形により形成される負の「隙間」をいう。
【0009】
すなわち、本発明は外輪と、当該外輪に挿入されたハブと、当該ハブの前記外輪と対向する部分に外嵌固定された内輪とを備え、前記外輪の内周部には第1の外輪軌道と第2の外輪軌道とが形成され、前記ハブの前記第1の外輪軌道と対向する部分には第1の内輪軌道が形成され、前記内輪の前記第2の外輪軌道と対向する部分には第2の内輪軌道が形成され、前記第1の外輪軌道と前記第1の内輪軌道との間には複数の外側転動体が配置され、前記第2の外輪軌道と前記第2の内輪軌道との間には複数の内側転動体が配置された複列転がり軸受の予圧を測定する方法であって、
前記内輪を前記ハブに仮組みした状態で、前記外側転動体及び外輪に予圧をかけない程度の軸方向荷重を前記外輪に加え、このときの前記外輪と前記ハブとの距離Aを測定し、
前記内側転動体及び内輪に予圧をかけない程度の軸方向荷重を前記外輪に加え、このときの前記内輪と前記ハブとの距離Bを測定し、
前記内輪を、前記ハブに所定の予圧が付与される状態まで圧入した状態で、前記外輪と前記ハブとの距離A’と、前記内輪と前記ハブとの距離B’とを測定し、
前記距離AとA’との差から第1の予圧隙間を求め、
前記距離BとB’との差から第2の予圧隙間を求め、
前記第1の予圧隙間と前記第2の予圧隙間とを合計して全体の予圧隙間を求めることを特徴とするものである。
このように、転動体の列ごとに予圧隙間を求めてこれらを合計することにより軸受全体の正確な予圧隙間を測定することができる。予圧隙間は、付与された予圧に応じて形成された弾性変形量であるため、正確な予圧隙間を測定することは正確な予圧を測定することと等価である。従って、予圧隙間の測定値に基づき、軸受に適正な予圧が付与されているかどうかを正確に把握することができる。
【0010】
また、前記各距離を測定する前に、前記外輪又はハブを回転させるようにしても良い。
荷重を加えた直後及び予圧を付与した直後は、転動体が軌道上に整列配置されずに、位置が上下にずれていることが多く、そのままの状態で各距離を測定すると、測定値が不正確になることがあるが、このように、測定前に内輪又はハブを回転させておくと、転動体が軌道面上に整列配置されて、正確な測定値を得ることができる。
【0011】
【発明の実施の形態】
図1は、本発明の第1の実施形態による複列転がり軸受の予圧測定方法に基づいて、ハブユニット1の予圧隙間を測定する手順を示す断面図である。本実施形態においては、付与された予圧と予圧隙間との一定の関係に基づいて、予圧隙間を測定することにより等価的に予圧を測定する。ここで、予圧隙間とは、予圧が付与されていない状態から予圧が付与された状態に転じたとき、軸受の転動体及びこれに関連した各部材の弾性変形により形成される負の「隙間」をいう。また、予圧が付与されていない状態を正隙間の状態という。
図1において、ハブユニット1は図5に示す構成と同一であるので、前述の従来の技術における図5に関する説明を適用して、ここでは説明を省略する。
以下、ハブユニット1について、予圧隙間を測定する手順について説明する。
【0012】
まず、図1の(a)において、内輪5を仮組みした状態(正隙間の状態となるように内輪5をハブ3の円柱部3bに浅く圧入し、ナット6も緊締していない状態)で、外側転動体4e及び外輪2に予圧をかけない程度の軸方向外側(図1における下方)への荷重Fを、外輪2のフランジ部2aにかける。そして、このときの外輪2のフランジ部2aの軸方向内側(図1における上方)の面2a1とハブ3のフランジ部3dの軸方向外側の面3d1との距離Aを測定する。
【0013】
次に、(b)に示すように、内側転動体4i及び内輪5に予圧をかけない程度の軸方向内側への荷重Fを、外輪2のフランジ部2aにかける。そして、このときの外輪2のフランジ部2aの軸方向内側の面2a1と内輪5の内側端面5aとの距離Bを測定する。
【0014】
次に、(c)に示すように、ナット6を緊締して内輪5をハブ3の円柱部3bに完全に外嵌し且つ圧入した状態、すなわち所定の予圧が付与された状態で、外輪2のフランジ部2aの軸方向内側の面2a1とハブ3のフランジ部3dの軸方向外側の面3d1との距離A’、並びに、外輪2のフランジ部2aの軸方向内側の面2a1と内輪5の内側端面5aとの距離B’を測定する。
【0015】
なお、上記各距離の測定に際しては、外輪2を回転(例えば、1回転〜1/20回転を行わせる。)させてA、B、A’及びB’を複数回測定し、それらの平均値を求めることが好ましい。これは、外輪2の軸がハブ3や内輪5の軸に対して傾斜している場合(固定側部材の軸と可動側部材の軸とがずれている場合)などに測定が不正確になるからである。このように平均値をとることにより、誤差を低減して正確な測定値を得ることができる。
また、上記各距離を測定する前に、外輪2又はハブ3を回転させる工程を加えることが好ましい。これは、図1の(a)及び(b)において荷重Fを加えた直後及び図1の(c)において予圧を付与した直後は、転動体4e及び4iが内輪5やハブ3の軌道上に整列配置されずに、転動体4e及び4iの位置が上下にずれていることが多く、そのままの状態で上記各距離を測定すると、測定値が不正確になるからである。このように、測定前に内輪5又はハブ3を回転させておくと、転動体4e及び4iが軌道面上に整列配置されて、正確な測定値を得ることができる。
【0016】
上記のようにして求めた距離A、A’、B及びB’から予圧隙間dは、
d=(A−A’)+(B−B’) ・・・(1)
として得ることができる。すなわち、外側転動体4e及び内側転動体4iの各列についての予圧隙間(A−A’)及び(B−B’)を合計することにより、軸受全体の予圧隙間dが求められる。予圧が付与された状態において、上記各転動体4e及び4iと各軌道(図1の外輪軌道2e及び2i並びに内輪軌道3e及び5i)との当接面間には、実際には隙間が存在せず、当接面を構成する各部材の弾性変形により、負の「隙間」が形成される。この負の隙間を軸方向に合計したものが上記の予圧隙間である。このようにして求めた予圧隙間が適正な予圧に対応する予圧隙間及びその許容範囲内の値であれば、予圧は適正であることがわかる。また、そのような値でなければ、予圧が適正に付与されていないことがわかる。
【0017】
上記実施形態によれば、図1の(c)においてナット6を最終的に緊締し、それによって内輪5をハブ3の円柱部3bに完全に圧入するようにした。しかしながら、ハブユニットによっては、軸受メーカーでハブユニットの組立を行うものの、ナット6の緊締を行わないまま、自動車メーカーに納入する場合がある。この場合、最終的なナット6の緊締は自動車メーカーが行う。
図2は、第2の実施形態として、ナット6なしでハブユニット1の予圧隙間を測定する手順を示す断面図である。この第2の実施形態では、予圧隙間測定時の内輪5の圧入にナット6を用いる代わりに圧入治具9を用いる。この圧入治具9はハブユニット1の上方に昇降自在に配置されている。すなわち、圧入治具9は図示しない駆動手段の下端部に結合され、この駆動手段によって上下動させられる。この駆動手段としては、圧入治具9を圧入に必要な大きな力で上下方向に押し引きできて、なおかつ、圧入治具9の上下方向の位置を微妙に調整できる構造のもの、例えば、油圧シリンダ、送りねじ機構等が使用できる。圧入治具9は円筒カップ状に形成され、開口側の下端部が内輪5の内側端面5aに当接するようになっている。
【0018】
以下、第2の実施形態のハブユニット1における予圧隙間の測定方法について説明する。
図2の(a)において、圧入治具9によって内輪5をハブ3の円柱部3bに、正隙間の状態となるように浅く圧入し、仮組みする。ここで、一旦圧入治具9を一点鎖線で示す位置まで上げて内輪5から外す。そして、外側転動体4e及び外輪2に予圧をかけない程度の軸方向内側(図2における上方)への荷重Fを、ハブ3のフランジ部3dの軸方向外側の面3d1にかける。このときの外輪2の軸方向内側(図2における上方)の一端面2bとハブ3の雄ねじ部3cの先端面3c1との距離Gを測定する。
【0019】
次に、図2の(b)に示すように、内側転動体4i及び内輪5に予圧をかけない程度の軸方向外側(図2における下方)への荷重Fを、ハブ3の雄ねじ部3cの先端面3c1にかける。そして、このときの外輪2の軸方向内側の一端面2bと内輪5の内側端面5aとの距離Hを測定する。
次に、図2の(c)に示すように、再び圧入治具9を内輪5に当てて、内輪5をハブ3の円柱部3bに完全に外嵌し、かつ、圧入した状態、すなわち所定の予圧が付与された状態とする。そして、圧入治具9を上方に上げて、このときの外輪2の軸方向内側の一端面2bとハブ3の雄ねじ部3cの先端面3c1との距離G’、並びに、外輪2の軸方向内側の一端面2bと内輪5の内側端面5aとの距離H’を測定する。
【0020】
上記第2の実施形態によれば、距離を測定する際に3つの基準面が用いられている。1つは、外輪2の軸方向内側の一端面2bであり、他の1つは、内輪5の内側端面5aであり、そしてもう1つは雄ねじ部3cの先端面3c1である。これら3つの面は機械加工により平滑にされているので、測定精度をより高めることができる。
【0021】
なお、上記第2の実施形態においても、第1の実施形態と同様に、各距離の測定に際して、ハブ3又は外輪2を回転させて、G、H、G’及びH’を複数回測定してその平均値を求めることが好ましい。また、第1の実施形態と同様に、各距離を測定する前に外輪2又はハブ3を回転させる工程を加えることが好ましい。
上記のようにして求めた距離G、H、G’及びH’から予圧隙間dは、
d=(G’−G)+(H’−H) ・・・(2)
として得ることができる。すなわち、外側転動体4e及び内側転動体4iの各列についての予圧隙間(G’−G)及び(H’−H)を合計することにより、軸受全体の予圧隙間dが求められる。
【0022】
なお、上記2つの実施形態を考慮して、それぞれの方法を組み合わせることもできる。すなわち、第2の実施形態で説明したような距離G、H、G’及びH’に基づいて予圧隙間を測定する方法を、第1の実施形態で説明したようにハブ3を固定して外輪2に荷重Fをかける場合に適用することもできる。また、第1の実施形態で説明したような距離A、B、A’及びB’に基づいて予圧隙間を測定する方法を、第2の実施形態で説明したように外輪2を固定してハブ3に荷重Fをかける場合に適用することもできる。
【0023】
上記のような予圧隙間測定方法は、エンジンからの駆動軸が取り付けられる駆動輪用のハブユニットにも適用できる。図3は駆動輪用のハブユニットを示す断面図である。図3において、ハブ32の中心部には、内周面にスプライン33が形成されたスプライン孔32aが形成されている。図示しないエンジンからの駆動力を伝える駆動軸が、このスプライン孔32aに嵌合される。このようなハブユニットの場合、予圧隙間dは第1の実施形態の場合と同様にして求めることができる。図3に示すように、外輪2の軸方向内側の一端面2bとハブ32のフランジ部32dの軸方向外側の一端面32d1との間で、内輪5の圧入前及び圧入後の距離J及びJ’を測定し、かつ、外輪2の軸方向内側の一端面2bと内輪5の内側端面5aとの間で、内輪5の圧入前及び圧入後の距離K及びK’を測定する。そして、
d=(J−J’)+(K’−K) ・・・(3)
の式によって予圧隙間dを求めることが可能である。
【0024】
また、第2の実施形態の場合と同様にして予圧隙間dを求めることもできる。図4において、外輪2の軸方向内側の一端面2bとハブ32の軸方向内側の一端面32eとの間で、内輪5の圧入前及び圧入後の距離L及びL’を測定し、かつ、外輪2の軸方向内側の一端面2bと内輪5の内側端面5aとの間で、内輪5の圧入前及び圧入後の距離M及びM’を測定する。そして、
d=(L−L’)+(M’−M) ・・・(4)
の式によって予圧隙間dを求めることも可能である。
【0025】
【発明の効果】
以上のように構成された本発明は以下の効果を奏する。
【0026】
本発明の複列転がり軸受の予圧測定方法は、一方の列の転動体と当該転動体に対応する軌道との第1の予圧隙間と、他方の列の転動体と当該転動体に対応する軌道との第2の予圧隙間とを別々に測定して、第1の予圧隙間及び第2の予圧隙間を合計することにより、軸受全体の正確な予圧隙間を得ることができる。予圧隙間は、付与された予圧に応じて形成された弾性変形量であるため、正確な予圧隙間を測定することは正確な予圧を測定することと等価である。従って、予圧隙間の測定値に基づき、軸受に適正な予圧が付与されているかどうかを正確に把握することができる。
【0027】
また、各距離を測定する前に外輪又はハブを回転させることにより、荷重を加えた直後及び予圧を付与した直後でも、転動体が軌道面上に整列配置されて、正確な測定値を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態による複列転がり軸受の予圧測定方法に基づいて、ハブユニットの予圧隙間を測定する手順を示す断面図である。
【図2】本発明の第2の実施形態による複列転がり軸受の予圧測定方法に基づいて、ハブユニットの予圧隙間を測定する手順を示す断面図である。
【図3】異なるタイプのハブユニットに本発明の第1の実施形態が適用された状態を示す断面図である。
【図4】図3と同タイプのハブユニットに本発明の第2の実施形態が適用された状態を示す断面図である。
【図5】複列転がり軸受の構造を示す断面図である。
【符号の説明】
1 ハブユニット
2 外輪
2i,2e 外輪軌道
3,32 ハブ
3e,5i 内輪軌道
4e 外側転動体
4i 内側転動体
5 内輪
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring an applied preload in a double row rolling bearing in which a plurality of rolling elements are provided in the axial direction.
[0002]
[Prior art]
For example, a hub unit 1 composed of a double-row rolling bearing as shown in FIG. 5 is used as a device for supporting automobile wheels on a suspension device. In the drawing, the outer ring 2 is a member that forms a fixed side of the bearing with its flange portion 2a attached to a suspension device (not shown). A spindle portion 3a of the hub 3 that constitutes the movable side of the bearing is inserted into the outer ring 2, and a plurality of rolling elements (hereinafter referred to as outer rolling elements) 4e forming an outer (left side in the drawing) annular row. And a plurality of rolling elements (hereinafter referred to as inner rolling elements) 4i forming an inner (right side in the figure) annular row are rotatably held. A portion of the spindle portion 3a facing the inner rolling element 4i is formed as a cylindrical portion 3b having a smaller diameter than the other portions, and a male screw portion 3c is further formed at the tip portion thereof. An inner ring 5 is fitted and fixed to the cylindrical portion 3b, and a nut 6 is fastened to the male screw portion 3c.
[0003]
The outer rolling element 4e is rollable between the first outer ring raceway 2e formed on the inner peripheral portion of the outer ring 2 and the first inner ring raceway 3e formed on the outer peripheral portion of the spindle portion 3a. Is held in. Further, the inner rolling element 4i can freely roll between a second outer ring raceway 2i formed on the inner peripheral portion of the outer ring 2 and a second inner ring raceway 5i formed on the outer peripheral portion of the inner ring 5. Is retained. A flange portion 3d is formed at the outer peripheral end portion of the hub 3, and a plurality of bolts 7 are fixed to the flange portion 3d. A wheel (not shown) of the wheel is fixed to the hub 3 by the bolts 7 and nuts (not shown) and rotates together with the hub 3. A seal 8 made of an elastic body is attached to the outer peripheral surface of the outer ring 2 (on the left side in FIG. 1), and is in sliding contact with the rotating hub 3 to prevent water and foreign matter from entering the outer ring 2. It is preventing.
Depending on the hub unit, a screw hole may be formed instead of providing the bolt 7 in the flange portion 3d, and the wheel may be fixed to the hub 3 by the screw hole and the bolt.
[0004]
In the hub unit 1 configured as described above, when the nut 6 is fastened to the male screw portion 3c with a predetermined torque, the outer rolling element 4e and the outer ring raceway 2e and the inner ring raceway 3e, as well as the inner rolling element. The dimensions of each part are adjusted so that an appropriate preload is applied between 4i and its outer ring raceway 2i and inner ring raceway 5i. If the preload is smaller than the appropriate value, the bearing rigidity is insufficient. If the preload is extremely small, the hub 3 vibrates and the running stability of the automobile is impaired, or noise is generated. On the other hand, when the preload is larger than the appropriate value, the rotational performance increases and the power performance and fuel consumption of the automobile decrease, and the life of the hub unit 1 is shortened. Therefore, it is necessary to confirm whether or not a desired appropriate preload is applied in the bearing manufacturing process so as not to cause such harmful effects.
[0005]
Therefore, conventionally, the bearing torque required for the relative rotation between the outer ring 2 and the hub 3 is measured by using a certain relationship between the preload applied to the bearing and the bearing torque of the bearing, Based on this bearing torque, it was confirmed whether or not an appropriate preload was applied.
[0006]
[Problems to be solved by the invention]
However, when the bearing torque is measured by the above method, the friction resistance by the seal 8 is much larger than the rotation resistance of the bearing itself, and the variation in the friction resistance is large. The error was large. Therefore, the preload cannot be accurately measured, and there is a problem that it is difficult to find a bearing device to which an appropriate preload is not applied.
[0007]
In view of the conventional problems as described above, an object of the present invention is to provide a method capable of measuring the preload applied to the bearing and accurately grasping the suitability thereof.
[0008]
[Means for Solving the Problems]
In the present invention, the preload is equivalently measured by measuring the preload gap based on a predetermined relationship between the applied preload and the preload gap, and the suitability of the preload is grasped. Here, the preload gap is a negative “gap” formed by elastic deformation of the rolling element of the bearing and each member related thereto when the preload is changed from the state where the preload is not applied. Say.
[0009]
That is, the present onset Ming, outer ring and a hub that is inserted into the outer ring, and a fitted fixed inner ring to the outer ring and the opposed portions of the hub, the first of the inner peripheral portion of the outer ring An outer ring raceway and a second outer ring raceway are formed, a portion of the hub facing the first outer ring raceway is formed with a first inner ring raceway, and a portion of the inner ring facing the second outer ring raceway A second inner ring raceway is formed, and a plurality of outer rolling elements are disposed between the first outer ring raceway and the first inner ring raceway, and the second outer ring raceway and the second inner ring raceway are arranged. A method for measuring the preload of a double row rolling bearing in which a plurality of inner rolling elements are arranged between the raceway and
With the inner ring temporarily assembled to the hub, an axial load is applied to the outer ring so as not to preload the outer rolling elements and the outer ring, and a distance A between the outer ring and the hub at this time is measured.
An axial load that does not preload the inner rolling element and the inner ring is applied to the outer ring, and a distance B between the inner ring and the hub at this time is measured.
In a state where the inner ring is press-fitted until a predetermined preload is applied to the hub, a distance A ′ between the outer ring and the hub and a distance B ′ between the inner ring and the hub are measured,
A first preload gap is obtained from the difference between the distances A and A ′,
A second preload gap is determined from the difference between the distances B and B ′,
The first preload gap and the second preload gap are summed to obtain the entire preload gap.
Thus, the exact preload clearance of the whole bearing can be measured by obtaining the preload clearance for each row of rolling elements and adding them up. Since the preload gap is the amount of elastic deformation formed according to the applied preload, measuring an accurate preload gap is equivalent to measuring an accurate preload. Therefore, it is possible to accurately grasp whether or not an appropriate preload is applied to the bearing based on the measured value of the preload gap.
[0010]
The outer ring or the hub may be rotated before measuring each distance .
Immediately after applying the load and immediately after applying the preload, the rolling elements are often not aligned on the track and the position is often shifted up and down. In this way, if the inner ring or the hub is rotated before the measurement, the rolling elements are aligned on the raceway surface to obtain an accurate measurement value.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view showing a procedure for measuring a preload clearance of the hub unit 1 based on a preload measuring method for a double row rolling bearing according to the first embodiment of the present invention. In the present embodiment, the preload is equivalently measured by measuring the preload gap based on a certain relationship between the applied preload and the preload gap. Here, the preload gap is a negative “gap” formed by elastic deformation of the rolling element of the bearing and each member related thereto when the preload is changed from the state where the preload is not applied. Say. A state where no preload is applied is referred to as a positive gap state.
In FIG. 1, the hub unit 1 has the same configuration as that shown in FIG. 5. Therefore, the description related to FIG.
Hereinafter, the procedure for measuring the preload gap for the hub unit 1 will be described.
[0012]
First, in FIG. 1 (a), the inner ring 5 is temporarily assembled (the inner ring 5 is shallowly press-fitted into the cylindrical portion 3b of the hub 3 so that a positive clearance is obtained, and the nut 6 is not tightened). A load F to the outside in the axial direction (downward in FIG. 1) that does not preload the outer rolling element 4 e and the outer ring 2 is applied to the flange portion 2 a of the outer ring 2. At this time, the distance A between the axially inner surface 2a1 of the flange portion 2a of the outer ring 2 and the axially outer surface 3d1 of the flange portion 3d of the hub 3 is measured.
[0013]
Next, as shown in (b), an axially inward load F that does not preload the inner rolling element 4 i and the inner ring 5 is applied to the flange portion 2 a of the outer ring 2. At this time, the distance B between the axially inner surface 2a1 of the flange portion 2a of the outer ring 2 and the inner end surface 5a of the inner ring 5 is measured.
[0014]
Next, as shown in (c), the outer ring 2 is tightened by tightening the nut 6 and completely fitting the inner ring 5 to the cylindrical portion 3b of the hub 3 and press-fitting it, that is, in a state where a predetermined preload is applied. The distance A ′ between the axially inner surface 2a1 of the flange portion 2a and the axially outer surface 3d1 of the flange portion 3d of the hub 3, and the axially inner surface 2a1 of the flange portion 2a of the outer ring 2 and the inner ring 5 The distance B ′ from the inner end surface 5a is measured.
[0015]
In measuring each distance, the outer ring 2 is rotated (for example, 1 to 1/20 rotation is performed), and A, B, A ′, and B ′ are measured a plurality of times, and the average value thereof is measured. Is preferably obtained. This is because the measurement becomes inaccurate when the axis of the outer ring 2 is inclined with respect to the axis of the hub 3 or the inner ring 5 (when the axis of the fixed side member is shifted from the axis of the movable side member). Because. By taking the average value in this way, it is possible to reduce the error and obtain an accurate measurement value.
Moreover, it is preferable to add the process of rotating the outer ring | wheel 2 or the hub 3 before measuring each said distance. This is because the rolling elements 4e and 4i are on the tracks of the inner ring 5 and the hub 3 immediately after applying the load F in FIGS. 1A and 1B and immediately after applying the preload in FIG. This is because the positions of the rolling elements 4e and 4i are often shifted up and down without being aligned, and the measured values become inaccurate if the distances are measured as they are. Thus, if the inner ring 5 or the hub 3 is rotated before the measurement, the rolling elements 4e and 4i are aligned on the raceway surface, and an accurate measurement value can be obtained.
[0016]
From the distances A, A ′, B and B ′ determined as described above, the preload gap d is
d = (AA ′) + (BB ′) (1)
Can be obtained as That is, by adding the preload clearances (AA ′) and (BB ′) for each row of the outer rolling element 4e and the inner rolling element 4i, the preload clearance d of the entire bearing is obtained. In the state where the preload is applied, there is actually no gap between the contact surfaces of the rolling elements 4e and 4i and the tracks (the outer ring tracks 2e and 2i and the inner ring tracks 3e and 5i in FIG. 1). First, a negative “gap” is formed by elastic deformation of each member constituting the contact surface. The total of the negative gaps in the axial direction is the preload gap. If the preload gap thus obtained is a preload gap corresponding to an appropriate preload and a value within the allowable range, it is understood that the preload is appropriate. Moreover, if it is not such a value, it turns out that the preload is not provided appropriately.
[0017]
According to the above-described embodiment, the nut 6 is finally tightened in FIG. 1C, whereby the inner ring 5 is completely press-fitted into the cylindrical portion 3 b of the hub 3. However, depending on the hub unit, although the hub unit is assembled by the bearing manufacturer, it may be delivered to the automobile manufacturer without tightening the nut 6. In this case, the final tightening of the nut 6 is performed by the automobile manufacturer.
FIG. 2 is a cross-sectional view showing a procedure for measuring the preload gap of the hub unit 1 without the nut 6 as the second embodiment. In the second embodiment, a press-fitting jig 9 is used instead of the nut 6 for press-fitting the inner ring 5 at the time of measuring the preload gap. The press-fitting jig 9 is disposed above the hub unit 1 so as to be movable up and down. That is, the press-fitting jig 9 is coupled to a lower end portion of a driving means (not shown) and is moved up and down by the driving means. As this driving means, the press-fitting jig 9 can be pushed and pulled up and down with a large force required for press-fitting, and the vertical position of the press-fitting jig 9 can be finely adjusted, for example, a hydraulic cylinder A feed screw mechanism or the like can be used. The press-fitting jig 9 is formed in a cylindrical cup shape, and the lower end portion on the opening side comes into contact with the inner end surface 5 a of the inner ring 5.
[0018]
Hereinafter, a method for measuring the preload gap in the hub unit 1 of the second embodiment will be described.
2A, the inner ring 5 is shallowly press-fitted into the cylindrical portion 3b of the hub 3 by a press-fitting jig 9 so as to be in a positive gap, and temporarily assembled. Here, the press-fitting jig 9 is once raised to the position indicated by the alternate long and short dash line and removed from the inner ring 5. Then, an axially inner load (upward in FIG. 2) that does not preload the outer rolling element 4 e and the outer ring 2 is applied to the axially outer surface 3 d 1 of the flange portion 3 d of the hub 3. At this time, the distance G between the one end surface 2b on the inner side in the axial direction of the outer ring 2 (upward in FIG. 2) and the front end surface 3c1 of the male screw portion 3c of the hub 3 is measured.
[0019]
Next, as shown in FIG. 2 (b), a load F to the outside in the axial direction (downward in FIG. 2) that does not apply preload to the inner rolling element 4 i and the inner ring 5 is applied to the male thread 3 c of the hub 3. It is applied to the tip surface 3c1. Then, the distance H between the axially inner end surface 2b of the outer ring 2 and the inner end surface 5a of the inner ring 5 is measured.
Next, as shown in FIG. 2 (c), the press-fitting jig 9 is again applied to the inner ring 5, and the inner ring 5 is completely fitted over the cylindrical portion 3b of the hub 3 and press-fitted, that is, a predetermined state. The preload is applied. Then, the press-fitting jig 9 is raised upward, and at this time, the distance G ′ between the axially inner one end surface 2b of the outer ring 2 and the front end surface 3c1 of the male screw portion 3c of the hub 3, and the axially inner side of the outer ring 2 The distance H ′ between one end surface 2b of the inner ring 5 and the inner end surface 5a of the inner ring 5 is measured.
[0020]
According to the second embodiment, three reference planes are used when measuring the distance. One is an end surface 2b on the inner side in the axial direction of the outer ring 2, the other is an inner end surface 5a of the inner ring 5, and the other is a front end surface 3c1 of the male screw portion 3c. Since these three surfaces are smoothed by machining, the measurement accuracy can be further increased.
[0021]
In the second embodiment, as in the first embodiment, when measuring each distance, the hub 3 or the outer ring 2 is rotated, and G, H, G ′, and H ′ are measured a plurality of times. It is preferable to obtain the average value. Moreover, it is preferable to add the process of rotating the outer ring | wheel 2 or the hub 3 before measuring each distance similarly to 1st Embodiment.
From the distances G, H, G ′ and H ′ obtained as described above, the preload gap d is
d = (G′−G) + (H′−H) (2)
Can be obtained as That is, by adding the preload gaps (G′−G) and (H′−H) for each row of the outer rolling element 4e and the inner rolling element 4i, the preload gap d of the entire bearing is obtained.
[0022]
In consideration of the above two embodiments, the respective methods can be combined. That is, the method of measuring the preload gap based on the distances G, H, G ′ and H ′ as described in the second embodiment is the same as that described in the first embodiment with the hub 3 fixed and the outer ring. It can also be applied when a load F is applied to 2. In addition, a method for measuring the preload gap based on the distances A, B, A ′ and B ′ as described in the first embodiment, and a hub with the outer ring 2 fixed as described in the second embodiment. It can also be applied to the case where a load F is applied to 3.
[0023]
The preload clearance measuring method as described above can also be applied to a hub unit for a drive wheel to which a drive shaft from an engine is attached. FIG. 3 is a cross-sectional view showing a hub unit for driving wheels. In FIG. 3, a spline hole 32 a having a spline 33 formed on the inner peripheral surface is formed at the center of the hub 32. A drive shaft that transmits a driving force from an engine (not shown) is fitted into the spline hole 32a. In the case of such a hub unit, the preload gap d can be obtained in the same manner as in the first embodiment. As shown in FIG. 3, the distances J and J before the inner ring 5 and after the press-fitting of the inner ring 5 between the one end face 2 b on the inner side in the axial direction of the outer ring 2 and the one end face 32 d 1 on the outer side in the axial direction of the flange portion 32 d of the hub 32. And the distances K and K ′ before and after press-fitting the inner ring 5 are measured between the axially inner one end surface 2b of the outer ring 2 and the inner end surface 5a of the inner ring 5. And
d = (J−J ′) + (K′−K) (3)
The preload gap d can be obtained by the following equation.
[0024]
Further, the preload gap d can be obtained in the same manner as in the second embodiment. In FIG. 4, the distances L and L ′ before and after press-fitting the inner ring 5 are measured between one end face 2b on the inner side in the axial direction of the outer ring 2 and one end face 32e on the inner side in the axial direction of the hub 32; The distances M and M ′ before and after press-fitting of the inner ring 5 are measured between the end face 2 b on the inner side in the axial direction of the outer ring 2 and the inner end face 5 a of the inner ring 5. And
d = (L−L ′) + (M′−M) (4)
It is also possible to obtain the preload gap d by the following equation.
[0025]
【The invention's effect】
The present invention configured as described above has the following effects.
[0026]
The method for measuring the preload of the double row rolling bearing according to the present invention includes a first preload gap between a rolling element in one row and a track corresponding to the rolling member, and a track corresponding to the rolling element in the other row and the rolling member. And the second preloading gap are separately measured and the first preloading gap and the second preloading gap are summed, so that an accurate preloading gap of the entire bearing can be obtained. Since the preload gap is the amount of elastic deformation formed according to the applied preload, measuring an accurate preload gap is equivalent to measuring an accurate preload. Therefore, it is possible to accurately grasp whether an appropriate preload is applied to the bearing based on the measured value of the preload gap.
[0027]
In addition, by rotating the outer ring or hub before measuring each distance, the rolling elements are arranged and arranged on the raceway surface immediately after applying the load and immediately after applying the preload to obtain an accurate measurement value. Can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a procedure for measuring a preload clearance of a hub unit based on a preload measurement method for a double row rolling bearing according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a procedure for measuring a preload clearance of a hub unit based on a preload measurement method for a double row rolling bearing according to a second embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a state in which the first embodiment of the present invention is applied to different types of hub units.
4 is a cross-sectional view showing a state in which the second embodiment of the present invention is applied to the same type of hub unit as FIG. 3;
FIG. 5 is a cross-sectional view showing the structure of a double row rolling bearing.
[Explanation of symbols]
1 Hub unit 2 Outer ring 2i, 2e Outer ring raceway 3, 32 Hub 3e, 5i Inner ring raceway 4e Outer rolling element 4i Inner rolling element 5 Inner ring

Claims (2)

外輪と、当該外輪に挿入されたハブと、当該ハブの前記外輪と対向する部分に外嵌固定された内輪とを備え、前記外輪の内周部には第1の外輪軌道と第2の外輪軌道とが形成され、前記ハブの前記第1の外輪軌道と対向する部分には第1の内輪軌道が形成され、前記内輪の前記第2の外輪軌道と対向する部分には第2の内輪軌道が形成され、前記第1の外輪軌道と前記第1の内輪軌道との間には複数の外側転動体が配置され、前記第2の外輪軌道と前記第2の内輪軌道との間には複数の内側転動体が配置された複列転がり軸受の予圧を測定する方法であって、
前記内輪を前記ハブに仮組みした状態で、前記外側転動体及び外輪に予圧をかけない程度の軸方向荷重を前記外輪に加え、このときの前記外輪と前記ハブとの距離Aを測定し、
前記内側転動体及び内輪に予圧をかけない程度の軸方向荷重を前記外輪に加え、このときの前記内輪と前記ハブとの距離Bを測定し、
前記内輪を、前記ハブに所定の予圧が付与される状態まで圧入した状態で、前記外輪と前記ハブとの距離A’と、前記内輪と前記ハブとの距離B’とを測定し、
前記距離AとA’との差から第1の予圧隙間を求め、
前記距離BとB’との差から第2の予圧隙間を求め、
前記第1の予圧隙間と前記第2の予圧隙間とを合計して全体の予圧隙間を求めることを特徴とする複列転がり軸受の予圧測定方法。
An outer ring, a hub inserted into the outer ring, and an inner ring that is externally fitted and fixed to a portion of the hub facing the outer ring. A first outer ring raceway and a second outer ring are disposed on an inner periphery of the outer ring A first inner ring raceway is formed in a portion of the hub facing the first outer ring raceway, and a second inner ring raceway is formed in a portion of the inner ring facing the second outer ring raceway. A plurality of outer rolling elements are disposed between the first outer ring raceway and the first inner ring raceway, and a plurality of outer rolling elements are provided between the second outer ring raceway and the second inner ring raceway. A method of measuring a preload of a double row rolling bearing in which an inner rolling element of
With the inner ring temporarily assembled to the hub, an axial load is applied to the outer ring so as not to preload the outer rolling elements and the outer ring, and a distance A between the outer ring and the hub at this time is measured.
An axial load that does not apply preload to the inner rolling element and the inner ring is applied to the outer ring, and a distance B between the inner ring and the hub at this time is measured.
In a state where the inner ring is press-fitted until a predetermined preload is applied to the hub, a distance A ′ between the outer ring and the hub and a distance B ′ between the inner ring and the hub are measured,
A first preload gap is obtained from the difference between the distances A and A ′,
A second preload gap is determined from the difference between the distances B and B ′,
A method for measuring a preload of a double row rolling bearing, wherein the first preload gap and the second preload gap are summed to obtain an entire preload gap .
前記各距離を測定する前に、前記外輪又はハブを回転させることを特徴とする請求項1記載の複列転がり軸受の予圧測定方法。 2. The method for measuring a preload of a double row rolling bearing according to claim 1 , wherein the outer ring or the hub is rotated before each of the distances is measured .
JP30359497A 1996-11-05 1997-10-17 Preload measurement method for double row rolling bearings Expired - Lifetime JP3639421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30359497A JP3639421B2 (en) 1996-11-05 1997-10-17 Preload measurement method for double row rolling bearings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-310101 1996-11-05
JP31010196 1996-11-05
JP30359497A JP3639421B2 (en) 1996-11-05 1997-10-17 Preload measurement method for double row rolling bearings

Publications (2)

Publication Number Publication Date
JPH10185717A JPH10185717A (en) 1998-07-14
JP3639421B2 true JP3639421B2 (en) 2005-04-20

Family

ID=26563566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30359497A Expired - Lifetime JP3639421B2 (en) 1996-11-05 1997-10-17 Preload measurement method for double row rolling bearings

Country Status (1)

Country Link
JP (1) JP3639421B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507394B2 (en) * 1999-12-20 2010-07-21 日本精工株式会社 Manufacturing method of wheel bearing rolling bearing unit
JP4962014B2 (en) * 2006-01-20 2012-06-27 株式会社ジェイテクト Manufacturing method of hub unit
JP4607081B2 (en) * 2006-09-22 2011-01-05 Ntn株式会社 Drive axle bearing device
JP4658028B2 (en) * 2006-12-18 2011-03-23 Ntn株式会社 Manufacturing method of wheel bearing device
JP4957390B2 (en) * 2007-05-31 2012-06-20 日本精工株式会社 Method for manufacturing rolling bearing unit with physical quantity measuring device
JP6806827B2 (en) 2019-03-04 2021-01-06 Ntn株式会社 Preload inspection method and assembly method for wheel bearing equipment
JPWO2020203982A1 (en) * 2019-04-02 2020-10-08
JP7049297B2 (en) * 2019-09-26 2022-04-06 Ntn株式会社 Preload inspection method for wheel bearing devices
JP6880137B2 (en) * 2019-10-08 2021-06-02 Ntn株式会社 Axial clearance measurement method for wheel bearing devices
CN116057288A (en) 2020-08-19 2023-05-02 Ntn株式会社 Pre-pressing inspection method of bearing device for wheel
JP7498622B2 (en) 2020-08-19 2024-06-12 Ntn株式会社 Method and device for inspecting rotational torque of wheel bearing device
SE545453C2 (en) * 2021-11-01 2023-09-19 Scania Cv Ab Method and control arrangement for quality assurance when mounting bearings

Also Published As

Publication number Publication date
JPH10185717A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
KR100531442B1 (en) How to measure preload of multi-row rolling bearings
US6460423B1 (en) Method of measuring preload in a multirow bearing assembly
US6357925B2 (en) Automotive wheel bearing assembly and method for manufacturing the same
WO1995012072A1 (en) Axle bearing device and method for measuring a bearing gap
JP3174759B2 (en) Preload measurement method for double row rolling bearings
JP3639421B2 (en) Preload measurement method for double row rolling bearings
JP4345988B2 (en) Wheel bearing device
US6951146B1 (en) Method and apparatus for preloading pinion bearings
JP2005233406A (en) Double-row slant contact ball bearing and its preloading method
JP4075437B2 (en) Assembly method of double row rolling bearing
US20070204461A1 (en) Method of manufacturing bearing device for a wheel
JP3633961B2 (en) Preload measurement method and apparatus for axle bearing device
JPS6319311B1 (en)
JP2007045306A (en) Machining method of wheel bearing device
JP2001180211A (en) Wheel bearing device
JP2010230174A (en) Grease filling-up method for bearing device of wheel
JP2008106904A (en) Manufacturing method for wheel bearing device
JP2804429B2 (en) Measuring method of bearing clearance of axle bearing device
JP3459730B2 (en) Manufacturing method of axle bearing device
JP2846545B2 (en) Wheel bearings
JP2001311442A (en) Brake rotor and wheel bearing device provided with the same
JPH07127634A (en) Bearing device for axle and measuring method for bearing clearance thereof
JPWO2003064184A1 (en) Wheel bearing unit
WO2003064185A1 (en) Bearing unit for vehicle wheel
JP2022134633A (en) Bearing device for wheel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

EXPY Cancellation because of completion of term