JP2007186961A - Double structure of structure - Google Patents

Double structure of structure Download PDF

Info

Publication number
JP2007186961A
JP2007186961A JP2006007633A JP2006007633A JP2007186961A JP 2007186961 A JP2007186961 A JP 2007186961A JP 2006007633 A JP2006007633 A JP 2006007633A JP 2006007633 A JP2006007633 A JP 2006007633A JP 2007186961 A JP2007186961 A JP 2007186961A
Authority
JP
Japan
Prior art keywords
floor
panel
double
damper
viscoelastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006007633A
Other languages
Japanese (ja)
Other versions
JP4901220B2 (en
Inventor
Mikinori Yairi
幹記 矢入
Atsuo Minemura
敦雄 峯村
Hiroshi Yamazaki
浩 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
JSP Corp
Original Assignee
Kajima Corp
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, JSP Corp filed Critical Kajima Corp
Priority to JP2006007633A priority Critical patent/JP4901220B2/en
Publication of JP2007186961A publication Critical patent/JP2007186961A/en
Application granted granted Critical
Publication of JP4901220B2 publication Critical patent/JP4901220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double structure (a double floor structure and a double ceiling structure) efficiently reducing the impulsive sound of a heavy floor over a wide band and easily and positively constructed without making structural load to a structure excessive. <P>SOLUTION: The double floor structure 10 of the structure has a floor foundation bed 12 of the structure, a plurality of support legs 20 arranged on the floor foundation bed 12, and floor panels 13 supported facing the floor foundation bed 12 by the support legs 20. A plurality of dampers 30 each provided with a fixed layer 31 higher in Young's modulus than a viscoelastic body 32, on the surface of the viscoelastic body 32 is adhesively joined to the floor foundation bed 12, and the fixed layer 31 and the floor panel 13 are connected by screw spikes 35. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は構造物の二重構造に関し、特に構造物の床基盤とパネル材とが空間を隔てて対向して設けられた二重床構造または二重天井構造において重量床衝撃音の遮断性能を向上する構造に関する。   The present invention relates to a double structure of a structure, and in particular, in a double floor structure or a double ceiling structure in which a floor base and a panel material of a structure are opposed to each other with a space therebetween, a heavy floor impact sound blocking performance. It relates to an improved structure.

アパートやマンションなどの集合住宅においては、図6(a)に示すように、コンクリートスラブなどの床基盤112の上に支持脚120などの支持体を複数本配置し、これにより所定の高さの空間116を隔ててパーティクルボード等の床パネル113を支持し、さらに床パネル113の上にフローリング材等の仕上げ材を敷設する二重床構造110が広く採用されている。支持脚120は高さ調整可能なボルト122と、その上下にてボルト122を嵌合する支持板121および弾性台座123とからなることが一般的である。また、床基盤112の下方に空間を隔ててプラスターボード等の天井パネルを対向させ、これを吊りボルトなどの支持体にて支持する二重天井構造もまた広く採用されている。   In apartment houses such as apartments and condominiums, as shown in FIG. 6 (a), a plurality of supports such as support legs 120 are arranged on a floor base 112 such as a concrete slab so that a predetermined height is achieved. A double floor structure 110 is widely used in which a floor panel 113 such as a particle board is supported across a space 116 and a finishing material such as a flooring material is laid on the floor panel 113. The support leg 120 is generally composed of a bolt 122 whose height is adjustable, and a support plate 121 and an elastic pedestal 123 that fit the bolt 122 above and below. Further, a double ceiling structure in which a ceiling panel such as a plaster board is opposed to the floor base 112 with a space therebetween and supported by a support such as a suspension bolt is also widely used.

二重床構造や二重天井構造は、床パネルや天井パネルを床基盤に直接敷設する直貼り構造に比べ、均一な高さの床面や天井面を容易に得ることができるほか、空間116に配管や配線を通すことが容易でありリフォーム性に優れる。また、二重床構造110についていえば、弾性台座123により床パネル113と床基盤112との間に適度な弾力が生じるため、適度な歩行感が得られるとともに、例えば人が転倒した場合も床基盤112への直接的な衝撃が防止できるという利点がある。   The double floor structure and the double ceiling structure can easily obtain a floor surface and a ceiling surface having a uniform height as compared with the direct bonding structure in which the floor panel or the ceiling panel is directly laid on the floor base. It is easy to let piping and wiring pass through and has excellent remodeling properties. Further, regarding the double floor structure 110, an appropriate elasticity is generated between the floor panel 113 and the floor base 112 by the elastic pedestal 123, so that an appropriate walking feeling can be obtained. There is an advantage that a direct impact to the base 112 can be prevented.

しかし、二重床構造や二重天井構造は、上下階の床衝撃音を十分に遮断できない場合があり、特に衝撃力の大きい重量床衝撃音(例えば、上階において人が飛び跳ねる音や重量物の落下衝撃音など)に対する遮断性能が、直貼り構造に比べて10dB程度も悪化することがある。床衝撃音には大別して上記の重量床衝撃音と、衝撃力の小さい軽量床衝撃音(例えば、上階における金属食器などの軽量物の落下衝撃音)とがある。前者は床パネル全体が振動することで発生する音波であり、後者は床パネルが局所的に振動することにより発生する音波であり、いずれも床基盤112を通じて下階などに伝播する。   However, the double floor structure and double ceiling structure may not be able to sufficiently block the floor impact sound on the upper and lower floors, especially heavy floor impact sound with a large impact force (for example, the sound of a person jumping on the upper floor and heavy objects) In some cases, the blocking performance against a drop impact sound, etc.) may be deteriorated by about 10 dB as compared with the direct attachment structure. The floor impact sound is roughly classified into the above-described heavy floor impact sound and a light floor impact sound with a small impact force (for example, a drop impact sound of a lightweight object such as metal tableware on the upper floor). The former is a sound wave generated when the entire floor panel vibrates, and the latter is a sound wave generated when the floor panel vibrates locally, both of which propagate through the floor base 112 to the lower floor or the like.

直貼り構造と比較して、二重床構造や二重天井構造において重量床衝撃音の遮断性能が低下するメカニズムは完全には明らかにされていないが、例えば一般的な二重床構造110の場合、二重床を構成する弾性台座123の弾性、床パネル113や天井パネルの比剛性、さらには空間116による空気バネの効果などの各要素からなる共振系(二重構造の共振系)による床衝撃音の増幅が原因であると考えられている。特に、31.5〜250Hz帯域の衝撃音が顕著に増幅されることにより、重量床衝撃音全体の遮断性能が低下するといわれている。   Although the mechanism by which the heavy floor impact sound blocking performance is reduced in the double floor structure and the double ceiling structure as compared with the direct attachment structure is not completely clarified, for example, the general double floor structure 110 In this case, due to the resonance system (double structure resonance system) composed of various elements such as the elasticity of the elastic pedestal 123 constituting the double floor, the specific rigidity of the floor panel 113 and the ceiling panel, and the effect of the air spring by the space 116 It is thought to be caused by amplification of floor impact sound. In particular, it is said that when the impact sound in the 31.5 to 250 Hz band is significantly amplified, the interruption performance of the entire heavy floor impact sound is lowered.

かかる重量床衝撃音の増幅を低減するため、従来さまざまな試みがなされている。以下、二重床構造を例にとり説明する。
第一として、振動の伝播する床基盤や、振動を生じる床パネル自体を厚くすることで重量衝撃音の発生を抑制する試みである。しかし、かかる対策は重量構造物である床基盤や床パネルの負荷が過大となり、強度上の観点から実現が難しく、また従来の構造物に対してこれらの主要な構造部材を設計変更することは容易ではないという問題がある。
第二として、二重床の床パネルの周囲に空気抜きの孔を設け、床パネルと床基盤との間で生じる空気バネの効果を低減する試みである。しかし、かかる対策は床面積が大きくなるとその中央部分の空気抜きが容易ではないため、対策の効果が相対的に小さくなる。また床パネルの周囲に設けた孔が建築意匠上、問題になる。
第三として、支持脚120の弾性台座123の硬度を下げることで床パネルと床基盤との間の振動伝達率を低下させる試みである。しかし、かかる対策では二重床構造全体の剛性が低下するため家具等の傾きが発生する虞がある。
第四として、下記特許文献1および2に記載の二重床では、図6(b)に示すように、床パネル113の裏面に密着してまたは所定の空隙をあけて、プラスチック発泡体などの多孔質材料131を設けることにより、床衝撃音の防音性を向上させる試みがなされている。また、特許文献1に記載の二重床においては、さらに多孔質材料からなる他の吸音体132を床基盤112上に載置して、伝播しようとする床衝撃音の音響減衰を図っている。
Various attempts have been made in the past to reduce amplification of such heavy floor impact sound. Hereinafter, a double floor structure will be described as an example.
First, it is an attempt to suppress the generation of heavy impact sound by increasing the thickness of the floor base where vibrations propagate and the floor panel itself that generates vibrations. However, this measure is difficult to realize from the viewpoint of strength because the load on the floor base and floor panel, which are heavy structures, is excessive, and it is not possible to redesign these main structural members with respect to conventional structures. There is a problem that it is not easy.
The second is an attempt to reduce the effect of the air spring generated between the floor panel and the floor base by providing air vent holes around the floor panel of the double floor. However, when the floor area is increased, it is not easy to remove the air from the central portion, so the effect of the countermeasure is relatively reduced. Moreover, the hole provided in the circumference | surroundings of a floor panel becomes a problem on an architectural design.
Third, it is an attempt to reduce the vibration transmissibility between the floor panel and the floor base by lowering the hardness of the elastic pedestal 123 of the support leg 120. However, with such a countermeasure, the rigidity of the entire double floor structure is lowered, so that there is a risk that furniture or the like may be inclined.
Fourthly, in the double floor described in Patent Documents 1 and 2 below, as shown in FIG. 6 (b), it is in close contact with the back surface of the floor panel 113 or has a predetermined gap, such as a plastic foam. Attempts have been made to improve the soundproofing property of the floor impact sound by providing the porous material 131. In addition, in the double floor described in Patent Document 1, another sound absorber 132 made of a porous material is further placed on the floor base 112 to achieve acoustic attenuation of the floor impact sound to be propagated. .

特開平9−32246号公報JP-A-9-32246 特開平10−2094号公報Japanese Patent Laid-Open No. 10-2094

しかし、上記特許文献1または2に記載の発明に用いられる多孔質吸音材は、軽量床衝撃音の主因となる比較的高い周波数の音の遮断には有効であるものの、比較的周波数の低い重量床衝撃音の遮断という観点からはその効果は十分ではなかった。一般に、床衝撃音の周波数ωと二重構造の共振周波数ω0とが一致または近接する場合、かかる周波数の床衝撃音は高い振動伝達率による増幅を受けるところ、上記特許文献にかかる二重床は、床パネルの裏面に多孔質材料を設けることで二重構造の共振周波数ω0を低域にシフトさせ、該床衝撃音の周波数ωと乖離させることで振動の増幅を抑える技術に基づいている。
しかし、二重床構造によって生じる重量床衝撃音は特定の周波数ωのみを有するものではなく、音圧レベルの高い周波数は31.5〜250Hzという広帯域にわたって広く分布している。このため、二重床構造の共振周波数ω0を低下させ、特定の周波数ωの音波の増幅を抑制することができたとしても、新たなω0に近接する周波数を有する別の衝撃音の振動伝達率が逆に上昇してしまうため、かかる従来の方法では広帯域にわたる重量床衝撃音を全体に抑制することは困難である。
However, the porous sound-absorbing material used in the invention described in Patent Document 1 or 2 is effective for blocking a relatively high frequency sound, which is a main cause of a light floor impact sound, but has a relatively low weight. The effect was not sufficient from the viewpoint of blocking floor impact sound. In general, when the frequency ω of the floor impact sound and the resonance frequency ω 0 of the double structure are coincident or close to each other, the floor impact sound of such frequency is amplified by a high vibration transmissibility. Is based on a technology that suppresses the amplification of vibration by shifting the resonance frequency ω 0 of the double structure to a low frequency by providing a porous material on the back surface of the floor panel and by separating it from the frequency ω of the floor impact sound. Yes.
However, the heavy floor impact sound generated by the double floor structure does not have only a specific frequency ω, and the frequency with a high sound pressure level is widely distributed over a wide band of 31.5 to 250 Hz. For this reason, even if the resonance frequency ω 0 of the double floor structure is reduced and the amplification of the sound wave of the specific frequency ω can be suppressed, the vibration of another impact sound having a frequency close to the new ω 0 Since the transmissibility increases conversely, it is difficult to suppress the heavy weight floor impact sound over a wide band by such a conventional method.

また、特許文献1に記載の二重床構造110(図6(b)参照)のように、吸音体132を床基盤112に載置した場合、吸音体の配置如何では吸音体132と床パネル113との間に形成される空間116において重量床衝撃音が増幅され、むしろ遮断性能が低下する場合もあることが報告されている。   Further, as in the double floor structure 110 described in Patent Document 1 (see FIG. 6B), when the sound absorber 132 is placed on the floor base 112, the sound absorber 132 and the floor panel are arranged depending on the arrangement of the sound absorber. It has been reported that the heavy floor impact sound is amplified in the space 116 formed between the control unit 113 and the shut-off performance.

なお、重量床衝撃音の低減を目的とする上記従来技術における各課題は、床基盤と天井パネルとが空間を隔てて構成される二重天井構造においても同様に生じ得る問題である。そこで本発明は、広帯域にわたって重量床衝撃音を効率的に低減することができ、かつ構造物への構造上の負荷を過大とすることなく、さらに施工が容易かつ確実である二重構造(二重床構造および二重天井構造)を提供することを目的とする。   In addition, each subject in the above-described prior art aiming at reducing heavy floor impact sound is a problem that can occur in a double ceiling structure in which a floor base and a ceiling panel are separated from each other. Therefore, the present invention can effectively reduce heavy-weight floor impact sound over a wide band, and can be easily and surely constructed without increasing the structural load on the structure. The purpose is to provide a heavy floor structure and a double ceiling structure.

本発明は、二重構造の共振周波数を低域側にシフトさせたり、空間伝播する重量床衝撃音を吸音材に吸収させてその粘性摩擦により音響減衰させたりするのではなく、床パネルや天井パネルなどのパネル材と床基盤とを損失係数の高い粘弾性体によって直接結合することにより、パネル材と床基盤との間の振動伝達率を低減するとともに、パネル材に生じた振動を速やかに減衰させて熱エネルギーとして散逸させるというまったく新しい技術思想に基づいてなされたものである。   The present invention does not shift the resonance frequency of the dual structure to the low frequency side, or absorb the heavy floor impact sound that propagates in space by the sound absorbing material and attenuate the sound by its viscous friction, but does not attenuate the floor panel or ceiling. By directly connecting panel materials such as panels to the floor base with a viscoelastic body with a high loss coefficient, the vibration transmission rate between the panel material and the floor base is reduced, and vibration generated in the panel material is promptly reduced. It was based on a completely new technical idea of attenuating and dissipating as thermal energy.

すなわち本発明は、
(1)構造物の床基盤と、該床基盤の上または下に配置された複数の支持体と、該支持体により床基盤と対向して支持されるパネル材とを有する構造物の二重構造であって、
粘弾性体の表面に該粘弾性体よりもヤング率の高い固定層が設けられた複数のダンパーが床基盤に接合されるとともに、前記固定層とパネル材とが連結具により結合されてなることを特徴とする二重構造;
(2)固定層が、前記粘弾性体の表面に積層接着された板材であり、かつ、前記ダンパーと床基盤とが接着剤により接合されてなることを特徴とする上記(1)に記載の二重構造;
(3)粘弾性体が、発泡プラスチック、ゴム、エラストマーまたは繊維のいずれか1種以上からなることを特徴とする上記(1)または(2)に記載の二重構造;
(4)連結具が、パネル材を貫通して固定層に挿入されるねじ釘である上記(1)から(3)のいずれかに記載の二重構造;
を要旨とする。
That is, the present invention
(1) A duplex structure having a floor base of the structure, a plurality of supports disposed above or below the floor base, and a panel member supported by the support to face the floor base. Structure,
A plurality of dampers provided with a fixed layer having a higher Young's modulus than the viscoelastic body on the surface of the viscoelastic body are joined to the floor base, and the fixed layer and the panel material are joined by a connector. A double structure characterized by:
(2) The fixed layer is a plate material laminated and bonded to the surface of the viscoelastic body, and the damper and the floor base are joined by an adhesive, as described in (1) above Double structure;
(3) The double structure according to (1) or (2) above, wherein the viscoelastic body is made of one or more of foamed plastic, rubber, elastomer, or fiber;
(4) The double structure according to any one of (1) to (3), wherein the connector is a screw nail that passes through the panel material and is inserted into the fixed layer;
Is the gist.

本発明によれば、パネル材の高さを均一にするのが容易であり、かつ配管や配線の敷設性に優れるという二重構造の利点を損なうことなく、パネル材と床基盤との間の振動伝達率を低減し、かつパネル材に生じた振動を速やかに減衰させることができる。また本発明は、粘弾性体の表面にヤング率の高い固定層を設け、これと床パネルとを結合していることから、床パネルに生じた振動を効率的にダンパーの粘弾性体に伝達できるとともに、パネル材の共振を抑制し重量床衝撃音の発生そのものを低減することが可能である。かかる振動伝達率の低減や、共振の減衰および抑制の効果は、特定の周波数の音波にのみ作用するものではなく、31.5〜250Hzという広帯域にわたって重量床衝撃音を全体に遮断することができる。   According to the present invention, it is easy to make the height of the panel material uniform, and without damaging the advantage of the double structure that is excellent in the laying property of piping and wiring, between the panel material and the floor base. It is possible to reduce the vibration transmissibility and quickly attenuate the vibration generated in the panel material. In addition, the present invention provides a fixed layer having a high Young's modulus on the surface of the viscoelastic body and connects it to the floor panel, so that vibration generated in the floor panel is efficiently transmitted to the viscoelastic body of the damper. In addition, it is possible to suppress the resonance of the panel material and reduce the occurrence of heavy floor impact sound itself. Such vibration transmissibility reduction and resonance attenuation and suppression effects do not act only on sound waves of a specific frequency, but can block the entire heavy floor impact sound over a wide band of 31.5 to 250 Hz. .

本発明は、床基盤とパネル材とを結合するダンパーを複数設ける方式であるため、その数を増やすことにより広いパネル面積に対しても効率的に重量衝撃音の低減を図ることができる。また本発明にかかる二重構造は、二重床構造のほか二重天井構造に適用した場合も同様の効果を得ることができる。   Since the present invention is a system in which a plurality of dampers for coupling the floor base and the panel material are provided, the weight impact sound can be efficiently reduced even for a large panel area by increasing the number of dampers. The double structure according to the present invention can obtain the same effect when applied to a double ceiling structure as well as a double ceiling structure.

また本発明に用いるダンパーは粘弾性体の表面に、よりヤング率の高い固定層を設けてこれをパネル材と結合することを特徴とする。これにより、重量床衝撃によって生じたパネル材の振動が固定層に直接伝えられることになり、粘弾性体による振動の減衰効果を十分に享受することができる。   The damper used in the present invention is characterized in that a fixed layer having a higher Young's modulus is provided on the surface of a viscoelastic body and is bonded to a panel material. Thereby, the vibration of the panel material caused by the heavy floor impact is directly transmitted to the fixed layer, and the vibration damping effect by the viscoelastic body can be fully enjoyed.

さらに本発明は、固定層とパネル材とを所定の長さをもつ連結具により結合してなるものであるため、床基盤に部分的な凹凸(不陸)があったり、ダンパーの高さ寸法にばらつきがあったりしても、連結具の取り付け深さを調整することで固定層とパネル材とを確実に結合することができる。これにより、パネル材とダンパーとの力学的な結合が不十分となることがなく、パネル材の全体に重量床衝撃音に対する均一な遮断性能を与えることができる。   Furthermore, since the present invention is formed by connecting the fixed layer and the panel material with a connecting tool having a predetermined length, the floor base has partial unevenness (unevenness) or the height of the damper. Even if there are variations, the fixing layer and the panel material can be reliably bonded by adjusting the attachment depth of the coupling tool. Thereby, the mechanical coupling | bonding of a panel material and a damper does not become inadequate, and the uniform interruption | blocking performance with respect to a heavy floor impact sound can be given to the whole panel material.

以下、本発明にかかる構造物の二重構造を実施するための最良の形態につき、図面を用いて具体的に説明する。図1は本発明の第一の実施の形態にかかる二重床構造の説明図であり、同図(a)は平面図、(b)はそのb−b断面図である。また図1(b)の円Xの拡大図を図2に示す。10は本実施の形態にかかる二重床構造、12は床基盤、20は床基盤に配置された支持体の例としての支持脚、13は床基盤12と対向して支持されるパネル材の例としての床パネル、30は床基盤12と床パネル13とを結合するダンパー、35は連結具の例としてのねじ釘である。   Hereinafter, the best mode for carrying out the double structure of a structure according to the present invention will be specifically described with reference to the drawings. FIG. 1 is an explanatory view of a double floor structure according to a first embodiment of the present invention, in which FIG. 1 (a) is a plan view and FIG. 1 (b) is a bb cross-sectional view thereof. Moreover, the enlarged view of the circle | round | yen X of FIG.1 (b) is shown in FIG. 10 is a double floor structure according to the present embodiment, 12 is a floor base, 20 is a support leg as an example of a support disposed on the floor base, and 13 is a panel material supported opposite to the floor base 12. An example floor panel, 30 is a damper for connecting the floor base 12 and the floor panel 13, and 35 is a screw nail as an example of a connector.

本発明にかかる構造物としては、床基盤12と、これに対向するパネル材とを有し、重量床衝撃音の低減を目的とするものであれば特に限定されるものではなく、例えば鉄筋コンクリート製のマンションやアパート等を挙げることができる。
床基盤12には厚さ200mm程度のスラブ材を用いることが一般的であるが、その他の工法によって得られる構造物および床基盤12であってもよい。
The structure according to the present invention is not particularly limited as long as it has a floor base 12 and a panel material facing the floor base 12 and is intended to reduce heavy floor impact sound. Of apartments and apartments.
Generally, a slab material having a thickness of about 200 mm is used for the floor base 12, but a structure obtained by other methods and the floor base 12 may be used.

二重床構造の床パネル13としては、木材を小片に砕いて接着剤で高温圧縮成型したパーティクルボードや、木を繊維状に細かくし高温下でプレス成型加工したMDFボードが一般的である。床パネル13の上面側には、必要に応じてフローリング材、絨毯または畳等の仕上げ材(図1においては図示せず)や、遮音性シートなどを敷設する。   As the floor panel 13 having a double floor structure, a particle board obtained by crushing wood into small pieces and hot compression molding with an adhesive, or an MDF board obtained by making wood into a fiber shape and press-molding at a high temperature are generally used. On the upper surface side of the floor panel 13, a flooring material, a finishing material such as a carpet or a tatami mat (not shown in FIG. 1), a sound insulating sheet, and the like are laid.

二重床構造10は、床基盤12上に複数の支持脚20を互いに所定の間隔を隔てて立設し、その上に床パネル13を水平に載置してなる。さらに床基盤12と床パネル13との間に形成される空間16にはダンパー30が設けられ、床パネル13とダンパー30とはねじ釘35を介して機械的に結合され、一方、ダンパー30と床基盤12とは接着層33により接着接合されている。床パネル13は製造上および施工上の観点から複数枚に分割して構成されている。床パネル13の水平度を高くし、また床パネル13に負荷される荷重を支持脚20に効率的に伝えるロードパスとして、必要に応じて、角柱を組み合わせた根太部材15を支持脚20の上に固定し、その上に床パネル13を並べて載置してもよい。なお、図2では根太部材15の図示を省略している。   The double floor structure 10 has a plurality of support legs 20 standing on a floor base 12 at a predetermined interval and a floor panel 13 placed horizontally thereon. Furthermore, a damper 30 is provided in the space 16 formed between the floor base 12 and the floor panel 13, and the floor panel 13 and the damper 30 are mechanically coupled via screw nails 35, The floor base 12 is bonded and bonded by an adhesive layer 33. The floor panel 13 is divided into a plurality of sheets from the viewpoint of manufacturing and construction. As a load path that increases the level of the floor panel 13 and efficiently transmits the load applied to the floor panel 13 to the support leg 20, a joist member 15 combined with a prism is provided on the support leg 20 as necessary. The floor panel 13 may be placed side by side. Note that the joist member 15 is not shown in FIG.

本発明に用いる支持体の具体的な構成は特に限定されるものではなく、二重床構造では床基盤12の上に配置されて床パネル13を載置する支持脚20を用い、二重天井構造では床基盤12の下に設けられて天井パネル43を吊り下げ保持する吊りボルトを用いることが一般的である。本実施の形態にかかる二重床構造10では、支持脚20として、例えば高さ調整可能なボルト22と、その上下にてボルト22を嵌合する支持板21および弾性台座23とから構成するとよい。なお、ゴム材料などからなる弾性台座23はその材料の硬度を調整して所定の弾性を持たせるとよい。また、支持脚20は床パネル13に対して所定の間隔を隔てて配置されている。
図1では支持脚20を格子点状に並べ、各格子の中央(面心)にダンパー30を配置する構成を示している。ただし、支持脚20およびダンパー30の配置数およびその位置はこれに限られるものではない。
このように、格子点状に配置した複数の支持脚20に囲まれるパネルの区画の中央部分にダンパー30を設けることにより、パネルの一次振動(奇数次振動)の腹に相当する該中央部分の大きな振動をダンパー30で受け、かかる振動を効率的に減衰させることができる。
The specific configuration of the support used in the present invention is not particularly limited. In the double floor structure, a double ceiling is used by using support legs 20 that are arranged on the floor base 12 and on which the floor panel 13 is placed. In the structure, it is common to use suspension bolts provided below the floor base 12 to suspend and hold the ceiling panel 43. In the double floor structure 10 according to the present embodiment, the support leg 20 may be composed of, for example, a bolt 22 whose height can be adjusted, and a support plate 21 and an elastic base 23 on which the bolt 22 is fitted at the top and bottom. . The elastic pedestal 23 made of a rubber material or the like may have a predetermined elasticity by adjusting the hardness of the material. Further, the support legs 20 are arranged at a predetermined interval with respect to the floor panel 13.
FIG. 1 shows a configuration in which the support legs 20 are arranged in a lattice point and the damper 30 is arranged at the center (face center) of each lattice. However, the number and position of the support legs 20 and the dampers 30 are not limited to this.
In this way, by providing the damper 30 in the central portion of the section of the panel surrounded by the plurality of support legs 20 arranged in a lattice point shape, the central portion corresponding to the antinode of the primary vibration (odd-order vibration) of the panel is provided. Large vibrations are received by the damper 30, and such vibrations can be attenuated efficiently.

本実施の形態では、床パネル13の形状は図1(a)の上下方向を長手方向とする矩形板状をなし、その対向する長辺に沿って支持脚20が四脚ずつ配設され、ダンパー30は床パネル13の短手方向の中心線上に三式ずつ配設されている。これに対し、例えば床パネル13の短手方向の中心線上にも支持脚20を配設する構成としても、支持脚20および/またはダンパー30の配置パターンを格子点状以外としてもよい。   In the present embodiment, the shape of the floor panel 13 is a rectangular plate with the vertical direction in FIG. 1A as the longitudinal direction, and the supporting legs 20 are arranged on each of the four legs along the opposing long sides. Three dampers 30 are arranged on the center line of the floor panel 13 in the short direction. On the other hand, for example, the support legs 20 may be arranged on the center line in the short direction of the floor panel 13, and the arrangement pattern of the support legs 20 and / or the dampers 30 may be other than the lattice points.

以下、本発明の特徴的な構成要素であるダンパー30の構成および機能について詳細に説明する。
ダンパー30は、粘弾性体32の表面に、該粘弾性体よりもヤング率の高い固定層31が設けられていることを特徴とする。ダンパー30の具体的な構成を図3に斜視図にて例示する。粘弾性体32の表面に設けられる固定層31は、ねじ釘35などの連結具により十分な強度をもって床パネル13と粘弾性体32とを力学的に連結できるものであればよく、具体的には所定の厚みを有する木材などの板材を粘弾性体32に接着剤などにより貼り付けて構成するほか、粘弾性体32の表面側を熱硬化させるなどしてヤング率を向上させて設けてもよい。後者の場合、硬化させた粘弾性体32の表面に金属インサート等を埋設して連結具との結合力を高めることも好適である。また、粘弾性体32との接着性がよく、かつねじ釘35により高い結合力を得ることのできる材料の例として、紙とプラスチックとを粉砕混合して熱プレスし表面に布材を熱圧着したハイブリッド板材料を挙げることができる。
Hereinafter, the configuration and function of the damper 30 which is a characteristic component of the present invention will be described in detail.
The damper 30 is characterized in that a fixed layer 31 having a higher Young's modulus than that of the viscoelastic body is provided on the surface of the viscoelastic body 32. A specific configuration of the damper 30 is illustrated in a perspective view in FIG. The fixing layer 31 provided on the surface of the viscoelastic body 32 may be any material as long as it can mechanically connect the floor panel 13 and the viscoelastic body 32 with sufficient strength by a connector such as a screw nail 35. May be formed by attaching a plate material such as wood having a predetermined thickness to the viscoelastic body 32 with an adhesive or the like, or may be provided by improving the Young's modulus by thermosetting the surface side of the viscoelastic body 32 or the like. Good. In the latter case, it is also preferable to embed a metal insert or the like on the surface of the cured viscoelastic body 32 to increase the bonding force with the connector. In addition, as an example of a material that has good adhesiveness to the viscoelastic body 32 and can obtain a high bonding force with the screw nail 35, paper and plastic are pulverized and mixed, and then hot pressed to thermally press the cloth material onto the surface. Can be mentioned.

固定層31は、図3(a)のように一枚の板体であるほか、同図(b)のようにそれぞれ別離した複数のブロック材としてもよい。また固定層31の幅寸法wおよび奥行寸法dもまたこれらに限られるものではなく、同図(c)のように粘弾性体32を掩覆する大きさの幅および奥行寸法を有するものでもよい。   The fixed layer 31 may be a single plate as shown in FIG. 3A, or may be a plurality of block members that are separated from each other as shown in FIG. Further, the width dimension w and the depth dimension d of the fixed layer 31 are not limited to these, and may have a width and a depth dimension large enough to cover the viscoelastic body 32 as shown in FIG. .

粘弾性体32は、床基盤12と床パネル13とを力学的に結合することにより、二重床構造10の共振系に損失係数ηを付与するほか、床パネル13の振動の発生そのものを抑制する機能も有する。損失係数ηを大きくすることにより、二重床構造10の共振周波数ω0と等しい周波数の重量床衝撃が床パネル13に与えられた場合であっても床パネル13と床基盤12との間の振動伝達率が低減され、また生じた振動のエネルギーもすみやかに熱エネルギーに変換されて散逸する。
重量床衝撃音の遮断性能を高めるためには、粘弾性体32の損失係数ηをできるだけ高くするとよく、0.4以上とすることが好適である。また粘弾性体32のヤング率を極力小さくし、これを空気のヤング率(=1.4×105[N/m2])と同等またはその5〜6倍程度の範囲、すなわち2×105〜9×105[N/m2]とすることにより、二重床構造10の共振周波数ω0を実質的に高域側にシフトすることがない。
The viscoelastic body 32 mechanically couples the floor base 12 and the floor panel 13 to give a loss coefficient η to the resonance system of the double floor structure 10 and to suppress the vibration itself of the floor panel 13 itself. It also has a function to By increasing the loss factor η, even when a heavy floor impact having a frequency equal to the resonance frequency ω 0 of the double floor structure 10 is applied to the floor panel 13, the floor panel 13 and the floor base 12 are not affected. The vibration transmissibility is reduced, and the generated vibration energy is quickly converted into heat energy and dissipated.
In order to improve the performance of blocking heavy floor impact sound, the loss coefficient η of the viscoelastic body 32 is preferably as high as possible, and is preferably 0.4 or more. Further, the Young's modulus of the viscoelastic body 32 is made as small as possible, and this is equivalent to the Young's modulus of air (= 1.4 × 10 5 [N / m 2 ]) or in the range of about 5 to 6 times that, that is, 2 × 10. By setting 5 to 9 × 10 5 [N / m 2 ], the resonance frequency ω 0 of the double floor structure 10 is not substantially shifted to the high frequency side.

粘弾性体32の具体的な材料としては、発泡プラスチック、ゴム、エラストマーまたは繊維のいずれか1種以上を用いることができる。ゴムにはシリコンゴム、繊維にはグラスウールやロックウールなどの繊維系多孔質材料を用いることができる。このうち、特に重量床衝撃音のような振幅の大きい振動に対する高い損失係数を有する観点から低反発の発泡ポリエチレンその他の発泡プラスチックが好ましい。発泡プラスチックには、発泡倍率の調整により所望のヤング率を実現できるという利点もある。   As a specific material of the viscoelastic body 32, any one or more of foamed plastic, rubber, elastomer or fiber can be used. Silicon rubber can be used as the rubber, and fiber-based porous materials such as glass wool and rock wool can be used as the fiber. Among these, low repulsion foamed polyethylene and other foamed plastics are preferable from the viewpoint of having a high loss factor with respect to vibration with a large amplitude such as a heavy floor impact sound. Foamed plastics also have the advantage that a desired Young's modulus can be achieved by adjusting the expansion ratio.

好ましい発泡プラスチックの例としては、特開2003−165858号公報に記載のポリオレフィン系樹脂押出発泡体を挙げることができる。具体的には、ポリエチレン系またはポリプロピレン系樹脂押出発泡体であって、見掛け密度が90g/L以下のものがよい。また、かかる押出発泡体を積層接着して多層化して厚みを調整したものでもよい。さらに連続気泡率を40〜100%とするものが特に好適である。なお、上記連続気泡率はASTM−D2856−70の手順Cにより求められる値を意味するものである。   Examples of preferable foamed plastics include polyolefin resin extruded foams described in JP-A No. 2003-165858. Specifically, a polyethylene or polypropylene resin extruded foam having an apparent density of 90 g / L or less is preferable. Further, the extruded foam may be laminated and laminated to adjust the thickness. Further, those having an open cell ratio of 40 to 100% are particularly suitable. In addition, the said open cell rate means the value calculated | required by the procedure C of ASTM-D2856-70.

かかる粘弾性体32を備えるダンパー30は、表面側に固定層31が形成され、裏面側に接着層33が形成されている。なお、本発明において「表面」側とは、床基盤12の反対側の面をいう。
ダンパー30は、表面側が連結具を介して床パネル13と結合し、裏面側が接着層33を介して床基盤12と結合する。これにより、二重床構造10は共振周波数ω0を低域側にも高域側にも実質的にシフトさせることなくその損失係数ηを大きくすることができるため、広帯域にわたる重量床衝撃音の低減が実現できる。
The damper 30 including the viscoelastic body 32 has a fixed layer 31 formed on the front surface side and an adhesive layer 33 formed on the back surface side. In the present invention, the “surface” side refers to the surface on the opposite side of the floor base 12.
The damper 30 is coupled to the floor panel 13 on the front surface side via a connector, and is coupled to the floor base 12 on the back surface side via an adhesive layer 33. As a result, the double floor structure 10 can increase the loss coefficient η without substantially shifting the resonance frequency ω 0 to both the low frequency side and the high frequency side. Reduction can be realized.

ねじ釘35に例示される連結具は、床パネル13と固定層31とを結合し、両者を一体に共振させることのできるものであれば特に限定されずに用いることができる。例えば、上述のねじ釘(コーススレッドネジ)やボルトのような機械的な緊締具のほか、GLボンドやモルタル等の厚みのある湿式の接着剤を用いることもできる。ねじ釘は下孔が不要で施工性に優れ、かつ通常の釘に比べて5倍程度以上の結合力が得られることから特に好適に用いられる。   The coupling tool exemplified by the screw nail 35 can be used without particular limitation as long as it can couple the floor panel 13 and the fixed layer 31 and resonate them together. For example, in addition to the above-described mechanical fasteners such as screw nails (coarse thread screws) and bolts, a thick wet adhesive such as GL bond or mortar can be used. Screw nails are particularly preferably used because they do not require pilot holes, are excellent in workability, and have a binding force of about five times that of ordinary nails.

ダンパー30の固定層31において、ねじ釘35により床パネル13と結合される結合点34の配置を図3に示す。連結具として通常のねじ釘35を用いる場合、ダンパー30ごとにそれぞれ3箇所以上で床パネル13と結合することが好ましい。これにより、床パネル13からダンパー30に振動を効率的に伝達し、また粘弾性体32全体の粘弾性変形によってかかる振動を減衰させることができる。
なお、床パネル13と固定層31との結合箇所が少なすぎる場合などには、床パネル13の共振を十分に粘弾性体32に伝達することが困難となる場合がある。またかかる場合、固定層31の剛性を床パネル13に十分に付与することができないため、床パネル13全体の振動を抑制して重量床衝撃音の発生を低減することが困難となる場合がある。
一方、施工の工程数を削減するという観点からは、ねじ釘35の本数を減らすことが好ましく、両者のバランスから、固定層31と床パネル13とを結合するねじ釘35はダンパー30ひとつにつき3〜5本とすることが好ましい。また結合点34の配置は、それぞれサイコロの3〜5の目に相当するパターンとすることがもっとも力学的なバランスに優れる。
In the fixed layer 31 of the damper 30, the arrangement of the connection points 34 connected to the floor panel 13 by the screw nails 35 is shown in FIG. 3. When a normal screw nail 35 is used as a coupling tool, it is preferable that each damper 30 is coupled to the floor panel 13 at three or more locations. Thereby, vibration can be efficiently transmitted from the floor panel 13 to the damper 30, and the vibration can be attenuated by viscoelastic deformation of the entire viscoelastic body 32.
In addition, when there are too few coupling | bonding locations of the floor panel 13 and the fixed layer 31, it may become difficult to transmit the resonance of the floor panel 13 to the viscoelastic body 32 sufficiently. In this case, since the rigidity of the fixed layer 31 cannot be sufficiently imparted to the floor panel 13, it may be difficult to suppress the vibration of the entire floor panel 13 and reduce the generation of heavy floor impact sound. .
On the other hand, from the viewpoint of reducing the number of construction steps, it is preferable to reduce the number of screw nails 35. From the balance between them, the screw nails 35 that connect the fixing layer 31 and the floor panel 13 are 3 per damper 30. It is preferable to use ~ 5. In addition, the arrangement of the coupling points 34 is most excellent in the mechanical balance when a pattern corresponding to each of the third to fifth eyes of the dice is used.

粘弾性体32の形状は、図3各図に示す角柱状のほか、円柱状、角錐状、円錐状、角錐台形状、円錐台形状など任意の形状とすることができる。またダンパー30を図3(a)に示す角柱状とする場合、その幅寸法wと奥行寸法dについては特に限定されず、200〜250mm程度とすることが好適である。
粘弾性体32の横断面積とその個数については、以下の関係式(i)を満足することで、二重床構造10の共振周波数ω0を実質的に大きく変化させることがなく好適である。ただし下式において、粘弾性体32は柱状で、高さによらず横断面積は一定であるとし、また各粘弾性体32は同一の寸法であるとする。またAは総床面積、sは粘弾性体32の横断面積、nは粘弾性体32(すなわちダンパー30)の個数、Eは粘弾性体32のヤング率、ρ0は空間16の空気の密度、c0は空気中の音速である。
(数1)
sn/A=ρ00 2/(E+ρ00 2) (i);
なお、粘弾性体32の幅寸法wまたは奥行寸法dが著しく小さいと床パネル13との結合性に劣り、また著しく大きいと後述する不陸の問題に柔軟に対処することが困難となる。好ましい高さ寸法hについては、不陸の問題とともに後述する。
The shape of the viscoelastic body 32 may be an arbitrary shape such as a columnar shape, a pyramid shape, a cone shape, a truncated pyramid shape, and a truncated cone shape in addition to the prismatic shape shown in each drawing of FIG. Moreover, when making the damper 30 into prismatic shape shown to Fig.3 (a), it does not specifically limit about the width dimension w and the depth dimension d, It is suitable to set it as about 200-250 mm.
About the cross-sectional area and the number of the viscoelastic bodies 32, it is preferable that the following relational expression (i) is satisfied, so that the resonance frequency ω 0 of the double floor structure 10 is not substantially changed. However, in the following equation, the viscoelastic body 32 is columnar, the cross-sectional area is constant regardless of the height, and the viscoelastic bodies 32 have the same dimensions. A is the total floor area, s is the cross-sectional area of the viscoelastic body 32, n is the number of viscoelastic bodies 32 (ie, dampers 30), E is the Young's modulus of the viscoelastic body 32, and ρ 0 is the density of air in the space 16. , C 0 is the speed of sound in the air.
(Equation 1)
sn / A = ρ 0 c 0 2 / (E + ρ 0 c 0 2 ) (i);
In addition, if the width dimension w or the depth dimension d of the viscoelastic body 32 is remarkably small, the connectivity with the floor panel 13 is inferior, and if it is remarkably large, it becomes difficult to flexibly cope with the problem of unevenness described later. A preferred height dimension h will be described later along with the problem of unevenness.

ダンパー30を床基盤12に接合する方法は、図3各図に示す接着層33によるほか、例えば床基盤12の上面にクサビ状の凹凸を形成して粘弾性体32の裏面に突き刺して固定するなどの機械的な接合であってもよい。多孔質体などからなる粘弾性体32を均一に床基盤12に接合し、かつ施工が容易であるという観点から、粘弾性体32の裏面にクラフト紙などのシート材料を接着接合しておき、該シート材料と床基盤12の上面とを接着層33により接合するのが好適である。接着層33に用いる接着剤としては、ウレタン系やセルロース系などの有機系接着剤、またはGLボンドやモルタルなどの無機系接着剤をいずれも好適に用いることができる。   In addition to the adhesive layer 33 shown in each drawing of FIG. 3, for example, the damper 30 is joined to the floor base 12 by forming a wedge-shaped unevenness on the upper surface of the floor base 12 and piercing and fixing the back surface of the viscoelastic body 32. Such mechanical joining may be used. From the viewpoint that the viscoelastic body 32 made of a porous body or the like is uniformly bonded to the floor base 12 and the construction is easy, a sheet material such as kraft paper is bonded and bonded to the back surface of the viscoelastic body 32, It is preferable to join the sheet material and the upper surface of the floor base 12 with an adhesive layer 33. As the adhesive used for the adhesive layer 33, an organic adhesive such as urethane or cellulose, or an inorganic adhesive such as GL bond or mortar can be suitably used.

ここで、床基盤12に生じることのある不陸について説明する。図1(a),(b)および図2に模式的に示すように、床基盤12には施工精度上、平らな部分である陸(ろく)に対し、凹凸部分である不陸14が生じることは避け難い。不陸14の高さは、一般的な鉄筋コンクリート製のマンションやアパートでは最大20mm程度である。すなわち、床基盤12の高さの基準面となる陸において床基盤12と床パネル13との間に形成される空間16の高さをH[mm]とすると、不陸14の上方に形成される空間の高さは、H−想定される不陸の最大高さ[mm]乃至H+想定される不陸の最大高さ[mm](ただしH[mm]を除く)となる。
ここで、ダンパー30の高さをH[mm]とした場合、平らな陸の部分または凹の不陸の部分ではダンパー30は空間16に収まるため、支持脚20に載置された床パネル13と床基盤12によりダンパー30が圧縮されることはない。これに対し、凸の不陸14の部分にダンパー30が設けられた場合、空間16の高さはこれに満たないため、支持脚20に床パネル13を載置しようとすると、床パネル13と床基盤12によりダンパー30が圧縮されてしまう。すると、床パネル13の自重によりダンパー30の粘弾性体32は圧縮されるが、圧縮量が大きい場合には、逆に床パネル13はダンパー30との接触部分が上方に押し上げられ、不陸14に相当する部分には床パネル13の局所的な盛り上がりが生じてしまう。床パネル13のかかる局所的な盛り上がりは、床の平面度を低下させるために問題となる。粘弾性体32の圧縮量と床パネル13の盛り上がり量との比率は両者のヤング率によって決まり、仮に粘弾性体32のヤング率を空気と同等程度まで低くしたとしても、床パネル13の盛り上がりをゼロにすることはできない。
Here, the unevenness which may occur on the floor base 12 will be described. As schematically shown in FIGS. 1A, 1 </ b> B, and 2, the floor base 12 has unevenness 14 that is an uneven portion with respect to land that is a flat portion in terms of construction accuracy. It is hard to avoid. The height of the non-land 14 is about 20 mm at the maximum in general reinforced concrete apartments and apartments. That is, if the height of the space 16 formed between the floor base 12 and the floor panel 13 on the land that is the reference plane for the height of the floor base 12 is H [mm], the space 16 is formed above the non-land 14. The height of the space to be obtained is H−the maximum height [mm] of the assumed unevenness to H + the maximum height [mm] of the assumed unevenness (except H [mm]).
Here, when the height of the damper 30 is set to H [mm], the damper 30 is accommodated in the space 16 in a flat land portion or a concave uneven portion, and thus the floor panel 13 placed on the support leg 20 is placed. The damper 30 is not compressed by the floor base 12. On the other hand, when the damper 30 is provided in the convex uneven portion 14, the height of the space 16 is less than this, and therefore when the floor panel 13 is placed on the support leg 20, The damper 30 is compressed by the floor base 12. Then, the viscoelastic body 32 of the damper 30 is compressed by the dead weight of the floor panel 13, but when the amount of compression is large, the floor panel 13 is pushed upward at the contact portion with the damper 30, and the land 14 A local swell of the floor panel 13 occurs in a portion corresponding to. Such local swell of the floor panel 13 is problematic because it reduces the flatness of the floor. The ratio between the compression amount of the viscoelastic body 32 and the rising amount of the floor panel 13 is determined by the Young's modulus of both, and even if the Young's modulus of the viscoelastic body 32 is lowered to the same level as air, the rising of the floor panel 13 is increased. It cannot be zero.

そこでかかる不都合を解消するため、本発明においてはダンパー30の高さh[mm]をH−想定される不陸の最大高さ[mm]乃至H[mm]のうちのいずれかの値とすることで、凸の不陸14の高さを吸収し、ダンパー30の上記強い圧縮をより確実に回避可能としている。つまり、例えば本実施の形態にかかる二重床構造10において、床基盤12に生じている凸の不陸14の実際の高さが5mmである場合、ダンパー30の高さをH−想定される不陸の最大高さ[mm]乃至H−5[mm]とすることで、ダンパー30と床パネル13とが直接接触、或いはダンパー30が圧縮されることがなくなる。また、特にダンパー30の高さをH−想定される不陸の最大高さ[mm]とすることにより、一般的な鉄筋コンクリート製マンション等で生じる通常の不陸14の高さをいずれも吸収することができる。なお、想定される不陸の最大高さは、通常20mm以下、好ましくは10mm以下である。   Therefore, in order to eliminate such inconvenience, in the present invention, the height h [mm] of the damper 30 is set to one of the maximum heights [mm] to H [mm] of the assumed non-land. Thus, the height of the convex unevenness 14 is absorbed, and the strong compression of the damper 30 can be more reliably avoided. That is, for example, in the double floor structure 10 according to the present embodiment, when the actual height of the convex unevenness 14 generated on the floor base 12 is 5 mm, the height of the damper 30 is assumed to be H-. By setting the maximum unevenness height [mm] to H-5 [mm], the damper 30 and the floor panel 13 are not in direct contact with each other, or the damper 30 is not compressed. Further, in particular, by setting the height of the damper 30 to the H-estimated maximum non-land height [mm], any normal non-land 14 height generated in a general reinforced concrete apartment or the like is absorbed. be able to. In addition, the maximum height of the assumed unevenness is 20 mm or less normally, Preferably it is 10 mm or less.

本発明にかかる二重床構造10は、ダンパー30と床パネル13とを連結具により力学的に結合し、床パネル13の振動を固定層31を介して粘弾性体32に伝達するものである。したがって、ダンパー30の固定層31と床パネル13とが直接当接していなくとも、ねじ釘35に代表される連結具を用いて両者を結合することが可能である。連結具がねじ釘35の場合、床パネル13の上方から打ち込まれたねじ釘35の先端が固定層31の厚みの少なくとも中央まで達する長さであることが好ましい。なお、上記打ち込まれたねじ釘35の先端が固定層31を貫通して粘弾性体32の内部にまで達しても、粘弾性体32の振動減衰性能を低下させることはない。したがって、連結具としてねじ釘35を用いる場合、その長さを;
(1)(床パネル13の厚さ+固定層31の厚さ×0.5)mm以上とすることで、ダンパー30の高さhと空間16の高さHが等しい場合に十分な結合強度を得ることができ;
(2)(床パネル13の厚さ+固定層31の厚さ×0.5+想定される不陸の最大高さ)mm以上とすることで、床基盤12の陸部分に設けられたダンパー30と床パネル13とを十分な強度で結合することができ;
(3)(床パネル13の厚さ+固定層31の厚さ×0.5+2×想定される不陸の最大高さ)mm以上とすることで、ダンパー30が床基盤12の凹の不陸部分に設けられた場合も、これと床パネル13とを十分な強度で結合することができる。
In the double floor structure 10 according to the present invention, the damper 30 and the floor panel 13 are mechanically coupled to each other by a connector, and the vibration of the floor panel 13 is transmitted to the viscoelastic body 32 through the fixed layer 31. . Therefore, even if the fixed layer 31 of the damper 30 and the floor panel 13 are not in direct contact with each other, it is possible to couple them using a connector represented by the screw nail 35. When the connector is a screw nail 35, it is preferable that the length of the screw nail 35 driven from above the floor panel 13 reaches at least the center of the thickness of the fixed layer 31. Even if the tip of the screwed nail 35 that has been driven penetrates the fixed layer 31 and reaches the inside of the viscoelastic body 32, the vibration damping performance of the viscoelastic body 32 is not deteriorated. Therefore, when using a screw nail 35 as a connecting tool,
(1) (the thickness of the floor panel 13 + the thickness of the fixed layer 31 × 0.5) mm or more, so that the bonding strength sufficient when the height h of the damper 30 is equal to the height H of the space 16 Can be obtained;
(2) The damper 30 provided on the land portion of the floor base 12 by setting the thickness to be equal to or greater than (thickness of the floor panel 13 + thickness of the fixed layer 31 × 0.5 + presumed maximum height of the unevenness). Can be bonded to the floor panel 13 with sufficient strength;
(3) The thickness of the floor panel 13 + the thickness of the fixed layer 31 × 0.5 + 2 × the assumed maximum non-land height) mm or more, so that the damper 30 has a concave non-land surface of the floor base 12. Even when it is provided in the part, it can be bonded to the floor panel 13 with sufficient strength.

図4は、本実施の形態にかかる二重床構造10の施工手順を示す説明図である。同図(a)は局所的な凸の不陸14をもつ床基盤12と、その上に配置された支持脚20の正面図である。支持脚20には床パネル13が載置され、床基盤12と対向して設けられることとなる。支持脚20は支持板21、ボルト22および弾性台座23とからなり、ボルト22と弾性台座23との嵌合深さを捩り調整することにより、床パネル13と床基盤12との間に形成される空間16を所定の高さ(H[mm])としている。なお、不陸14の高さ5[mm]であり、したがって不陸14の上部に形成された空間16'の高さはH−5[mm]であるとする。   FIG. 4 is an explanatory diagram showing a construction procedure of the double floor structure 10 according to the present embodiment. FIG. 2A is a front view of the floor base 12 having the local convex unevenness 14 and the support legs 20 disposed thereon. The floor panel 13 is placed on the support leg 20 and provided to face the floor base 12. The support leg 20 includes a support plate 21, a bolt 22, and an elastic pedestal 23, and is formed between the floor panel 13 and the floor base 12 by adjusting the fitting depth between the bolt 22 and the elastic pedestal 23. The space 16 is set to a predetermined height (H [mm]). It is assumed that the height of the non-land 14 is 5 [mm], and therefore the height of the space 16 ′ formed above the non-land 14 is H-5 [mm].

次に、同図(b)に示すように、固定層31、粘弾性体32および接着層33からなり高さh=H−想定される不陸の最大高さ:10[mm]のダンパー30を床基盤12に接着接合して空間16および16'に収納し、その上から床パネル13(またはその下面に設けられた図示しない根太部材)を支持脚20の支持板21に載置する。これにより、床基盤12の陸部分においては床パネル13とダンパー30との間に10[mm]、不陸部分では同じく5[mm]の高さの空隙17、17'が形成される。
この状態から、同図(c)に示すように、ダンパー30ごとに三本のねじ釘35を床パネル13の上方から打ち込み、固定層31と床パネル13とを結合する。ねじ釘35の長さは、最大10[mm]の空隙17を介して床パネル13と固定層31とを十分な強度で結合できるよう、床パネル13の厚さ+固定層31の厚さ+10[mm]としている。
最後に、同図(d)に示すように、床パネル13の上に仕上げ材18を敷設し、二重床構造10の施工が完成する。
Next, as shown in FIG. 4B, the damper 30 is composed of a fixed layer 31, a viscoelastic body 32, and an adhesive layer 33, and has a height h = H−the assumed maximum uneven height: 10 [mm]. Are bonded to the floor base 12 and accommodated in the spaces 16 and 16 ′, and the floor panel 13 (or a joist member (not shown) provided on the lower surface thereof) is placed on the support plate 21 of the support leg 20 from above. As a result, gaps 17 and 17 ′ having a height of 10 mm are formed between the floor panel 13 and the damper 30 in the land portion of the floor base 12 and 5 mm in the non-land portion.
From this state, as shown in FIG. 3C, three screw nails 35 are driven from above the floor panel 13 for each damper 30 to join the fixed layer 31 and the floor panel 13 together. The length of the screw nail 35 is the thickness of the floor panel 13 + the thickness of the fixed layer 31 +10 so that the floor panel 13 and the fixed layer 31 can be coupled with a sufficient strength via the gap 17 of 10 [mm] at the maximum. [Mm].
Finally, as shown in FIG. 4D, the finishing material 18 is laid on the floor panel 13, and the construction of the double floor structure 10 is completed.

上記の方法によって二重床構造10を施工することにより、床基盤12に不陸14が生じている場合も、床パネル13とダンパー30とが浮いてしまう、すなわち力学的に切れた状態とはならず、また逆にダンパー30が床パネル13を押し上げてその平面度を低下させる虞もなく、均一な高さの二重床を得ることができる。   By constructing the double floor structure 10 by the above method, the floor panel 13 and the damper 30 are floated even when the unevenness 14 is generated in the floor base 12, that is, a state where it is mechanically cut off. On the contrary, the damper 30 pushes up the floor panel 13 to reduce its flatness, and a double floor having a uniform height can be obtained.

また本実施の形態にかかる二重床構造10によれば、敷設に際し、ダンパー30の精度良い高さ出しを行う必要がない。すなわちダンパー30ごとにその上方に形成される空隙17(17')の高さが相違しても、床パネル13とダンパー30とをねじ釘35によって結合することができるため、きわめて施工が容易である。さらに、三本のねじ釘35によって床パネル13とダンパー30の固定層31とは機械的に強固に連結されているため、重量床衝撃音を生じる主因である床パネル13全体の振動が効率よく粘弾性体32に入力される。損失係数ηの高い粘弾性体32は、床パネル13と床基盤12との間の振動伝達率を低減して重量床衝撃音の発生を抑制し、また抑制された振動をすみやかに減衰させることができる。   Further, according to the double floor structure 10 according to the present embodiment, it is not necessary to accurately raise the damper 30 when laying. That is, even if the height of the gap 17 (17 ′) formed above each damper 30 is different, the floor panel 13 and the damper 30 can be coupled by the screw nails 35, so that the construction is extremely easy. is there. Furthermore, since the floor panel 13 and the fixed layer 31 of the damper 30 are mechanically firmly connected by the three screw nails 35, the vibration of the entire floor panel 13 which is the main cause of the heavy floor impact sound is efficiently generated. Input to the viscoelastic body 32. The viscoelastic body 32 having a high loss coefficient η reduces the vibration transmissibility between the floor panel 13 and the floor base 12 to suppress the generation of heavy floor impact sound, and to quickly attenuate the suppressed vibration. Can do.

図4に示す本実施の形態にかかる二重床構造10による重量床衝撃音の遮断効果を確認するため、ダンパー30の有無を相違させた試験体を製作し、階上の音源室と階下の受音室とに区画された実験棟を用いて床衝撃音の比較実験を行った。
床基盤12には厚さ150[mm]のスラブ素面、音源室の床パネル13には20[mm]のMDFボードをそれぞれ用い、仕上げ材18として6[mm]の遮音性シートと12[mm]のフローリング材を積層して用いた。床基盤と床パネルとの間の空間16高さは137[mm]とした。
一方、粘弾性体32として厚さ120[mm]、損失係数η=0.2、ヤング率E=5×105[N/m2]の発泡プラスチック(株式会社JSP製、商品名:ミラプランクレイヤーフレックス)、固定層31として厚さ10[mm]の紙−プラスチックハイブリッド板材料(アコス工業株式会社製、商品名:かみポリボード)、接着層33として下面にウレタン系接着剤を塗布した厚さ0.2[mm]のクラフト紙をそれぞれ用い、互いをウレタン系接着剤で接着積層してダンパー30を得た。ダンパー30は250mm四方の角柱状であり、その水平断面積の総計が総床面積のおよそ20%となるよう配置した。
In order to confirm the effect of blocking the heavy floor impact sound by the double floor structure 10 according to the present embodiment shown in FIG. 4, a test body having different dampers 30 was produced, and the sound source room on the floor and the floor on the lower floor were manufactured. A comparative experiment of floor impact sound was conducted using an experimental building partitioned into a sound receiving room.
The floor base 12 uses a 150 [mm] thick slab surface, the sound source room floor panel 13 uses a 20 [mm] MDF board, and the finishing material 18 has a sound insulation sheet of 6 [mm] and 12 [mm]. The flooring material of] was laminated and used. The height of the space 16 between the floor base and the floor panel was 137 [mm].
On the other hand, as the viscoelastic body 32, a foamed plastic having a thickness of 120 [mm], a loss coefficient η = 0.2, a Young's modulus E = 5 × 10 5 [N / m 2 ] (product name: Miraplank, manufactured by JSP Corporation) Layer flex), a 10-mm thick paper-plastic hybrid board material (manufactured by Akos Kogyo Co., Ltd., trade name: bite polyboard) as the fixed layer 31, and a thickness obtained by applying a urethane adhesive to the lower surface as the adhesive layer 33 Using 0.2 [mm] kraft paper, each was bonded and laminated with a urethane adhesive to obtain a damper 30. The damper 30 has a prismatic shape of 250 mm square, and is arranged so that the total horizontal sectional area is approximately 20% of the total floor area.

また、φ3.8[mm]×長さ41[mm]のコーススレッドネジを各ダンパーにつき3本ずつ用いて床パネル13と固定層31とを結合した。コーススレッドネジは、固定層31の対角線上に、中心および両側130[mm]幅位置に設けた。   Further, the floor panel 13 and the fixed layer 31 were connected using three coarse thread screws of φ3.8 [mm] × length 41 [mm] for each damper. The coarse thread screw was provided on the diagonal line of the fixed layer 31 at the center and both side 130 [mm] width positions.

かかる試験体に対し、重量床衝撃音発生用のバングマシーンにより音源室の床パネル13を打撃し、発生した床衝撃音の音圧レベルを受音室のマイクロフォンで測定し、受音装置で解析した。床衝撃音レベルの測定方法は、JISA1418(建築物の現場における床衝撃音レベルの測定方法)の規定に準じて行った。
かかる比較実験の結果、ダンパー30を設けない比較試験体に対し、本実施の形態にかかる試験体は、63Hz帯域において1.5dB、125Hz帯域において約5dB、250Hz帯域において約4dB程度の重量床衝撃音の低減効果が認められた。すなわち本発明の二重床構造10により、広帯域にわたる重量床衝撃音の顕著な遮断効果が得られるものといえる。
The test specimen was hit with the floor panel 13 of the sound source room by a bang machine for generating heavy floor impact sound, and the sound pressure level of the generated floor impact sound was measured with the microphone of the sound receiving room and analyzed with the sound receiving device. did. The method for measuring the floor impact sound level was performed in accordance with the provisions of JIS A1418 (method for measuring the floor impact sound level at the building site).
As a result of the comparison experiment, the test body according to the present embodiment is 1.5 dB in the 63 Hz band, about 5 dB in the 125 Hz band, and about 4 dB in the 250 Hz band as a result of the comparison experiment. Sound reduction effect was recognized. That is, it can be said that the double floor structure 10 of the present invention can provide a significant blocking effect of a heavy floor impact sound over a wide band.

図5は、本発明の第二の実施の形態にかかる二重天井構造40を説明する正面図である。固めた石膏に紙を貼って板状にしたプラスターボードなどの天井パネル43が吊りボルト50により吊り下げ支持され、床基盤12と対向して設けられている。床基盤12の下面には、接着層33により接着接合されたダンパー30が複数設けられ、またダンパー30は粘弾性体32と、その表面(本実施の形態では下面側に相当)に形成された固定層31とから構成されている。固定層31と天井パネル43とは三本のねじ釘35によりそれぞれ固定されている。また、天井パネル43の下面にはビニールクロス48が敷設され、下階から見た意匠性を向上している。   FIG. 5 is a front view for explaining a double ceiling structure 40 according to the second embodiment of the present invention. A ceiling panel 43 such as a plaster board formed by pasting paper on the hardened gypsum is suspended and supported by a suspension bolt 50 and is provided to face the floor base 12. A plurality of dampers 30 bonded and bonded by the adhesive layer 33 are provided on the lower surface of the floor base 12, and the dampers 30 are formed on the viscoelastic body 32 and the surface thereof (corresponding to the lower surface side in the present embodiment). It is composed of a fixed layer 31. The fixed layer 31 and the ceiling panel 43 are fixed by three screw nails 35, respectively. In addition, a vinyl cloth 48 is laid on the lower surface of the ceiling panel 43 to improve the design as viewed from the lower floor.

一般に二重天井構造40は、上階で生じた重量床衝撃音が、床基盤12を通じて下階に伝達される際に床基盤12と天井パネル43との間の空間16で増幅されて天井パネル43の全体を振動させ、高い音圧レベルの音声として下階の人間に空気伝播することが問題となる。しかし本実施の形態にかかる二重天井構造40によれば、ダンパー30の存在により床基盤12と天井パネル43との間の振動伝達率を低減し、また伝達される振動を粘弾性体32の粘弾性変形によりすみやかに減衰させることができるため、特に重量床衝撃音の高い遮断性を得ることができる。   Generally, in the double ceiling structure 40, when heavy floor impact sound generated on the upper floor is transmitted to the lower floor through the floor base 12, it is amplified in the space 16 between the floor base 12 and the ceiling panel 43, and the ceiling panel. It becomes a problem that the whole 43 is vibrated and air is propagated to a lower-level person as a sound with a high sound pressure level. However, according to the double ceiling structure 40 according to the present embodiment, the presence of the damper 30 reduces the vibration transmission rate between the floor base 12 and the ceiling panel 43, and transmits the transmitted vibration to the viscoelastic body 32. Since it can be quickly attenuated by viscoelastic deformation, it is possible to obtain a particularly high barrier property against heavy floor impact sound.

さらに本実施の形態にかかる二重天井構造40によれば、床基盤12に凹の不陸がある場合も、天井パネル43とダンパー30との結合が切れることがない。逆に床基盤12に凸の不陸14がある場合も、ダンパー30と天井パネル43とが直接接触してこれを下方に押し下げる虞がなく、天井パネル43の平面度を高く維持することが可能である。すなわちダンパー30の高さを精度良く微調整する必要がないため施工性に優れ、かつ天井パネル43と床基盤12とを力学的に確実に結合することができる。   Furthermore, according to the double ceiling structure 40 according to the present embodiment, the coupling between the ceiling panel 43 and the damper 30 is not broken even when the floor base 12 has a concave uneven surface. On the contrary, even when the floor base 12 has the convex unevenness 14, there is no possibility that the damper 30 and the ceiling panel 43 are in direct contact with each other and push it downward, and the flatness of the ceiling panel 43 can be maintained high. It is. That is, since it is not necessary to finely adjust the height of the damper 30 with high accuracy, the workability is excellent, and the ceiling panel 43 and the floor base 12 can be mechanically and reliably coupled.

本発明の第一の実施の形態にかかる二重床構造の説明図であり、(a)は平面図、(b)はその断面図である。It is explanatory drawing of the double floor structure concerning 1st embodiment of this invention, (a) is a top view, (b) is the sectional drawing. 図1(b)の部分拡大図である。It is the elements on larger scale of FIG.1 (b). ダンパーの具体的な構成を示す斜視図である。It is a perspective view which shows the specific structure of a damper. 二重床構造の施工手順を示す説明図である。It is explanatory drawing which shows the construction procedure of a double floor structure. 本発明の第二の実施の形態にかかる二重天井構造の説明図である。It is explanatory drawing of the double ceiling structure concerning 2nd embodiment of this invention. 従来の二重床構造の説明図である。It is explanatory drawing of the conventional double floor structure.

符号の説明Explanation of symbols

二重床構造 10、110
床基盤 12、112
床パネル 13、113
不陸 14
空間 16、16'、116
空隙 17、17'
支持脚 20、120
支持板 21、121
ボルト 22、122
弾性台座 23、123
ダンパー 30
固定層 31
粘弾性体 32
接着層 33
ねじ釘 35
二重天井構造 40
天井パネル 43
吊りボルト 5
Double floor structure 10,110
Floor base 12,112
Floor panel 13, 113
Inland 14
Space 16, 16 ', 116
Gap 17, 17 '
Support legs 20, 120
Support plate 21, 121
Bolt 22, 122
Elastic base 23, 123
Damper 30
Fixed layer 31
Viscoelastic body 32
Adhesive layer 33
Screw nails 35
Double ceiling structure 40
Ceiling panel 43
Hanging bolt 5

Claims (4)

構造物の床基盤と、該床基盤の上または下に配置された複数の支持体と、該支持体により床基盤と対向して支持されるパネル材とを有する構造物の二重構造であって、
粘弾性体の表面に該粘弾性体よりもヤング率の高い固定層が設けられた複数のダンパーが床基盤に接合されるとともに、前記固定層とパネル材とが連結具により結合されてなることを特徴とする二重構造。
It is a double structure of a structure having a floor base of the structure, a plurality of supports arranged above or below the floor base, and a panel member supported by the support to face the floor base. And
A plurality of dampers provided with a fixed layer having a higher Young's modulus than the viscoelastic body on the surface of the viscoelastic body are joined to the floor base, and the fixed layer and the panel material are joined by a connector. Double structure characterized by
固定層が、前記粘弾性体の表面に積層接着された板材であり、かつ、前記ダンパーと床基盤とが接着剤により接合されてなることを特徴とする請求項1に記載の二重構造。 2. The double structure according to claim 1, wherein the fixed layer is a plate material laminated and bonded to the surface of the viscoelastic body, and the damper and the floor base are bonded to each other by an adhesive. 粘弾性体が、発泡プラスチック、ゴム、エラストマーまたは繊維のいずれか1種以上からなることを特徴とする請求項1または2に記載の二重構造。 The double structure according to claim 1 or 2, wherein the viscoelastic body is made of one or more of foamed plastic, rubber, elastomer, and fiber. 連結具が、パネル材を貫通して固定層に挿入されるねじ釘である請求項1から3のいずれかに記載の二重構造。 The double structure according to any one of claims 1 to 3, wherein the connector is a screw nail that passes through the panel member and is inserted into the fixing layer.
JP2006007633A 2006-01-16 2006-01-16 Double structure of structure and construction method of double structure Expired - Fee Related JP4901220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007633A JP4901220B2 (en) 2006-01-16 2006-01-16 Double structure of structure and construction method of double structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007633A JP4901220B2 (en) 2006-01-16 2006-01-16 Double structure of structure and construction method of double structure

Publications (2)

Publication Number Publication Date
JP2007186961A true JP2007186961A (en) 2007-07-26
JP4901220B2 JP4901220B2 (en) 2012-03-21

Family

ID=38342307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007633A Expired - Fee Related JP4901220B2 (en) 2006-01-16 2006-01-16 Double structure of structure and construction method of double structure

Country Status (1)

Country Link
JP (1) JP4901220B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084885A (en) * 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd Vibration control device-adjusting method, vibration control device, and building floor structure
JP2009085788A (en) * 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd Method for identifying vibration of slab, vibration suppressing device, method for arranging vibration suppressing device, construction floor structure and vibration measuring apparatus
JP2009084937A (en) * 2007-10-02 2009-04-23 Taisei Corp Floor structure
JP2010024649A (en) * 2008-07-16 2010-02-04 Oki Semiconductor Co Ltd Seismic strengthening structure and seismic strengthening method for double floor
WO2021178679A1 (en) * 2020-03-05 2021-09-10 Connor Sports Flooring, Llc Adhesive anchoring of subfloor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148408A (en) * 1987-12-07 1989-06-09 Hitachi Ltd Spindle for rolling mill
JPH0416670A (en) * 1990-05-11 1992-01-21 Daiken Trade & Ind Co Ltd Heating floor construction
JPH1068215A (en) * 1996-08-27 1998-03-10 Toyo Tire & Rubber Co Ltd Floor base isolation construction
JP2002004554A (en) * 2000-06-19 2002-01-09 Saitama Rubber Kogyo Kk Structure and execution method for double floor
JP2003321930A (en) * 2002-04-30 2003-11-14 Sanyo Industries Ltd Double floor vibrationproof structure and floor vibrationproof member
JP2005240538A (en) * 2004-01-27 2005-09-08 Taisei Corp Damping structure for suspended ceiling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148408A (en) * 1987-12-07 1989-06-09 Hitachi Ltd Spindle for rolling mill
JPH0416670A (en) * 1990-05-11 1992-01-21 Daiken Trade & Ind Co Ltd Heating floor construction
JPH1068215A (en) * 1996-08-27 1998-03-10 Toyo Tire & Rubber Co Ltd Floor base isolation construction
JP2002004554A (en) * 2000-06-19 2002-01-09 Saitama Rubber Kogyo Kk Structure and execution method for double floor
JP2003321930A (en) * 2002-04-30 2003-11-14 Sanyo Industries Ltd Double floor vibrationproof structure and floor vibrationproof member
JP2005240538A (en) * 2004-01-27 2005-09-08 Taisei Corp Damping structure for suspended ceiling

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084885A (en) * 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd Vibration control device-adjusting method, vibration control device, and building floor structure
JP2009085788A (en) * 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd Method for identifying vibration of slab, vibration suppressing device, method for arranging vibration suppressing device, construction floor structure and vibration measuring apparatus
JP2009084937A (en) * 2007-10-02 2009-04-23 Taisei Corp Floor structure
JP2010024649A (en) * 2008-07-16 2010-02-04 Oki Semiconductor Co Ltd Seismic strengthening structure and seismic strengthening method for double floor
WO2021178679A1 (en) * 2020-03-05 2021-09-10 Connor Sports Flooring, Llc Adhesive anchoring of subfloor

Also Published As

Publication number Publication date
JP4901220B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
US8066097B2 (en) Acoustic enhancement device for underlayment of a covering
JP4901220B2 (en) Double structure of structure and construction method of double structure
JP3013315B2 (en) Soundproof floor structure
KR100801297B1 (en) Soundproof mat and establishment construction
JP4413344B2 (en) Soundproof floor structure
JP2016191298A (en) Soundproof floor structure, soundproof method of floor, and soundproof material
JP3227408U (en) Sound insulation structure of buildings
KR102108797B1 (en) Floor structure for reducing impact noise
JP5901204B2 (en) Sound insulation floor structure
JPH0355705Y2 (en)
JP2579050Y2 (en) Floor panel and soundproof floor structure
JP2009035925A (en) Sound isolation system of building
JP2008014073A (en) Soundproof structure
JP4301408B2 (en) Impact sound insulation type double structure
JPH022824Y2 (en)
JP4090835B2 (en) Soundproof floor structure
JP2005090090A (en) Sound insulation flooring
JP6868249B2 (en) Anti-vibration and sound insulation floor structure
JP5178937B2 (en) Sound insulation double floor and building
JP4121303B2 (en) Floor structure and skirting board used for floor structure
JPS63161257A (en) Float floor structure
JP6608626B2 (en) Joist, floor structure
JPH02161062A (en) Subfloor structure
KR200305599Y1 (en) Structure for noise isolation pad on floor in community houses
JP2024056420A (en) Floor structure, floor structure construction method and building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees