JPH1068215A - Floor base isolation construction - Google Patents

Floor base isolation construction

Info

Publication number
JPH1068215A
JPH1068215A JP22518096A JP22518096A JPH1068215A JP H1068215 A JPH1068215 A JP H1068215A JP 22518096 A JP22518096 A JP 22518096A JP 22518096 A JP22518096 A JP 22518096A JP H1068215 A JPH1068215 A JP H1068215A
Authority
JP
Japan
Prior art keywords
floor
seismic isolation
isolation structure
gantry
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22518096A
Other languages
Japanese (ja)
Inventor
Norio Nishikawa
典男 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP22518096A priority Critical patent/JPH1068215A/en
Publication of JPH1068215A publication Critical patent/JPH1068215A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Floor Finish (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to make natural period of a floor material a long period even if the spring constant is not made lower and to reduce cost. SOLUTION: This floor quake relieving construction is of a structure to intervene a plural number of laminated rubbers 15 between a floor slab 12 and a frame 14 including a floor material 13 arranged at intervals. In this case, an oscillation period in the horizontal direction is designed to be prolonged by reducing the number of arrangements of the laminated rubbers 15 and increasing the load of the respective laminated rubbers and frame 14 deflection is prevented by arranging sliding bearings 16 of friction coefficient as close as possible to zero by the reduced quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層ゴム等の免震
構造体を用いた床免震構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a floor seismic isolation structure using a seismic isolation structure such as laminated rubber.

【0002】[0002]

【従来の技術】床免震構造は、コンピュータなどの精密
機器の設置床や手術室の床など、地震、あるいは振動を
嫌う施設に対し、建物全体ではなく、床単位で免震化を
行い、入力地震波に対して免震床の応答加速度を低減す
る場合に使用されている。
2. Description of the Related Art A floor seismic isolation structure is designed to provide seismic isolation not for the entire building but for the floor, not for the entire building, such as floors for precision equipment such as computers and operating room floors. It is used to reduce the acceleration of seismic isolation floor against seismic waves.

【0003】従来の床免震構造としては、柔らかい積層
ゴム等の免震構造体を用いて、建物の固有の振動周期に
対し、床の固有振動周期を長周期側にずらして、水平方
向の応答加速度を低減させる方式が一般的に採用されて
いる。また、床の応答変位を抑えるために、オイルダン
パーを使用して建物から床に入力される地震エネルギー
を吸収し、床の振動を抑える方式も採用されている。
As a conventional floor seismic isolation structure, a natural vibration period of the floor is shifted to a long period side with respect to a vibration period peculiar to the building by using a seismic isolation structure such as a soft laminated rubber, so that a horizontal direction is obtained. A method of reducing response acceleration is generally adopted. Further, in order to suppress the response displacement of the floor, a method of absorbing seismic energy input from the building to the floor by using an oil damper to suppress vibration of the floor has been adopted.

【0004】図4及び図5に基づいて、従来の床免震構
造を説明する。図4は従来の床免震構造の平面図、図5
は同じくその正面図である。図のごとく、従来の床免震
構造は、床スラブ1とH形鋼等からなる架台2との間に
複数個の積層ゴム3が介在配置されており、架台2の上
側に敷設される床材4には、振動に弱いコンピュータ機
器5が設置されている。また、床材4を含む架台2の地
震等に対する応答変位を抑えるための制振構造として、
オイルダンパー6が各床スラブ1と架台との間に設置さ
れている。
A conventional floor seismic isolation structure will be described with reference to FIGS. 4 and 5. FIG. FIG. 4 is a plan view of a conventional floor seismic isolation structure, and FIG.
FIG. As shown in the figure, in the conventional floor seismic isolation structure, a plurality of laminated rubbers 3 are interposed between a floor slab 1 and a mount 2 made of H-section steel or the like, and a floor laid on the upper side of the mount 2 is provided. The material 4 is provided with a computer device 5 that is vulnerable to vibration. In addition, as a vibration damping structure for suppressing a response displacement of the gantry 2 including the floor material 4 to an earthquake or the like,
An oil damper 6 is installed between each floor slab 1 and the gantry.

【0005】この床免震構造により、建物の固有周期に
対して床材を含む架台2の固有周期を水平方向に柔らか
い積層ゴム3を用いて長周期側にずらして、水平方向の
応答加速度を低減するようにしていた。
[0005] With this floor seismic isolation structure, the natural period of the gantry 2 including the floor material is shifted in the horizontal direction to the long period side using the soft laminated rubber 3 with respect to the natural period of the building, and the response acceleration in the horizontal direction is reduced. Had to be reduced.

【0006】[0006]

【発明が解決しようとする課題】ところで、床の免震構
造における固有周期Tは、積層ゴム等の弾性体の水平方
向でのばね定数K、床等の質量をMとすると次式で表さ
れる。 T=2π(M/K)1/2 ………(1) (1)式から、床等の固有周期を長周期化するには、床等
の質量Mを大きくするか、又はばね定数Kを小さくすれ
ばよい。
By the way, the natural period T in the seismic isolation structure of the floor is expressed by the following equation, where the spring constant K of the elastic body such as laminated rubber in the horizontal direction and the mass of the floor etc. are M. You. T = 2π (M / K) 1/2 (1) From equation (1), in order to increase the natural period of the floor or the like, the mass M of the floor or the like is increased or the spring constant K is increased. Should be reduced.

【0007】建物や橋梁などのように搭載重量(ばね上
質量)が大きい場合は固有周期を長周期化するためのば
ね定数は比較的大きく、通常の積層ゴムの設計の範囲に
入るが、床免震の場合は、ばね上質量が建物全体などに
比べて極めて小さいので、免震ゴムで床の固有周期を長
周期化するには、ばね上質量をわざわざ質量部材を付設
して大きくするか、または免震ゴムのばね定数を軽量の
床に合わせてかなり小さくする必要がある。質量を付加
した場合は、質量部材の付設コストが高くなる難点があ
る。
[0007] When the mounting weight (mass on the sprung mass) is large, such as in a building or a bridge, the spring constant for prolonging the natural period is relatively large, and is within the range of the design of a normal laminated rubber. In the case of seismic isolation, the sprung mass is extremely smaller than that of the entire building, etc.In order to extend the natural period of the floor with seismic isolation rubber, it is necessary to increase the sprung mass by adding a mass member. , Or the spring constant of the seismic isolation rubber must be considerably smaller for lighter floors. When the mass is added, there is a problem that the cost of attaching the mass member is increased.

【0008】このため、床免震の場合は免震ゴムのばね
定数を軽量の床に合わせて小さくすることを選択するこ
とになるが、積層ゴムの水平方向のばね定数を小さくす
るには積層ゴムの高さを高くする、すなわち積層数を増
加することになる。しかし、積層ゴムの高さが高く、ば
ね定数が小さいと、水平変位が大きくなり、積層ゴムの
鉛直方向の荷重中心が大きくずれて、いわゆる座屈現象
が発生する。従って、従来の積層ゴムだけで、床免震に
おける固有周期を長周期化することは困難となる。
For this reason, in the case of floor seismic isolation, the spring constant of the seismic isolation rubber must be selected to be small in accordance with the lightweight floor. This increases the height of the rubber, that is, increases the number of layers. However, when the height of the laminated rubber is high and the spring constant is small, the horizontal displacement becomes large, the center of the load in the vertical direction of the laminated rubber is largely shifted, and a so-called buckling phenomenon occurs. Therefore, it is difficult to increase the natural period in floor seismic isolation using only the conventional laminated rubber.

【0009】そこで、本発明は、床免震において必要以
上にばね定数を小さくしなくても、かつ床構造の固有周
期を長周期化できる低コストな床免震構造の提供を目的
としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a low-cost seismic isolation structure that can extend the natural period of the floor structure without reducing the spring constant more than necessary in the seismic isolation of the floor.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明者は、鋭意研究した結果、積層ゴム等の免震
構造体のばね定数を従来と変わらない構造のものを採用
しつつ、個々の免震構造体にかかる荷重の増大を図る点
に着眼した。すなわち、床を含む架台は複数個の免震構
造体によって支持された構造であるため、上記従来の質
量部材の付設構造に代わり、免震構造体の個数を減ら
し、個々の免震構造体にかかる荷重を大きくする方式を
採用した。これにより、床材を含む架台の水平方向の固
有周期が長周期化し、免震性能が向上するとの知見が得
られた。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies and as a result, while adopting a structure having the same spring constant of a seismic isolation structure such as laminated rubber as before, The focus was on increasing the load on individual seismic isolation structures. That is, since the gantry including the floor is a structure supported by a plurality of seismic isolation structures, the number of seismic isolation structures is reduced in place of the conventional structure with mass members, and A method of increasing the load was adopted. As a result, it was found that the natural period of the gantry including the floor material in the horizontal direction was prolonged, and the seismic isolation performance was improved.

【0011】ただ、この場合、床支持部である免震構造
体間の間隔が大きくなり過ぎ、架台の撓みが発生する可
能性が高くなる。架台の撓みを抑えるには、架台あるい
は床強度を大にする方式が考えられるが、この場合、コ
ストが高くなる難点があるため採用できない。
[0011] However, in this case, the space between the seismic isolation structures serving as floor supports becomes too large, and the possibility that the gantry is bent is increased. In order to suppress the deflection of the gantry, a method of increasing the gantry or the floor strength can be considered.

【0012】そこで、積層ゴム等の免震構造体間に、減
じた免震構造体に代わる支持部材を配置し、かつ免震性
能の維持を図る構造に着眼した。ただ、この支持部材と
しては、積層ゴム等の免震構造体の応答変位に対応して
変位可能であり、かつ積層ゴム等の免震構造体の性能を
十分発揮する上で、入力振動に対して水平方向での制振
機能を極力抑え得る部材であることが望まれる。
In view of the above, the present inventors have focused on a structure in which a supporting member in place of the reduced seismic isolation structure is disposed between the seismic isolation structures such as laminated rubber, and the seismic isolation performance is maintained. However, this support member can be displaced in response to the response displacement of the seismic isolation structure such as laminated rubber, and in order to sufficiently exhibit the performance of the seismic isolation structure such as laminated rubber, It is desired that the member be capable of suppressing the vibration damping function in the horizontal direction as much as possible.

【0013】本発明者は、これらの条件を満足する免震
構造として、免震構造体間に、減じた免震構造体の代わ
りにすべり支承体を配置する構造を採用するに至った。
このすべり支承体を採用すれば、各積層ゴム等の免震構
造体にかかる荷重が増加してその水平方向での固有周期
の長周期化が図れるとともに、各免震構造体の荷重分布
の増加に伴い免震構造体間の間隔が大きくなっても床の
撓みも防止できる支持構造となる。
The present inventor has adopted a structure in which a slip bearing is disposed between the seismic isolation structures instead of the reduced seismic isolation structure as a seismic isolation structure satisfying these conditions.
If this sliding bearing is adopted, the load on each seismic isolation structure such as laminated rubber will increase, and the natural period in the horizontal direction can be extended, and the load distribution of each seismic isolation structure will increase. Accordingly, the support structure can prevent the floor from bending even if the space between the seismic isolation structures increases.

【0014】そこで、本発明においては、床スラブと床
を含む架台との間に複数個の免震構造体が間隔をおいて
配列介在された床免震構造において、水平方向の長周期
化を図るために前記免震構造体の配列数を減じ、この免
震構造体の減少分、前記免震構造体間に架台の撓みを防
止するためのすべり支承体を配置した床免震構造を採用
したものである。
Therefore, in the present invention, in a floor seismic isolation structure in which a plurality of seismic isolation structures are arranged at an interval between a floor slab and a gantry including a floor, the period in the horizontal direction is increased. In order to reduce the number of the seismic isolation structures, a floor seismic isolation structure is adopted, in which a sliding bearing is arranged between the seismic isolation structures to prevent bending of the gantry. It was done.

【0015】ここで、免震構造体としては、剛性を有す
る硬質板と粘弾性的性質を有する軟質板とを多数個交互
に積層したものが一般的であり、硬質板としては、金
属、セラミック、プラスチック、硬質ポリウレタン、木
材、紙板等の剛性を有する材料を使用することができ
る。また、軟質板としては、熱可塑性ゴム、ウレタンゴ
ム、各種加硫ゴム、未加硫ゴム等以外に、プラスチッ
ク、粘土などを使用することもできる。ただ、未加硫ゴ
ムや粘土では粘性があっても弾性がなければ復元力が得
られない。そこで、これらの素材には、弾性のある材料
と併用することが考えられる。
Here, as the seismic isolation structure, a structure in which a large number of hard plates having rigidity and soft plates having viscoelastic properties are alternately laminated is generally used. Rigid materials such as plastic, hard polyurethane, wood, and paper board can be used. Further, as the soft plate, plastic, clay, and the like can be used in addition to thermoplastic rubber, urethane rubber, various vulcanized rubbers, unvulcanized rubber, and the like. However, in the case of unvulcanized rubber or clay, a restoring force cannot be obtained without elasticity even if it is viscous. Therefore, it is conceivable to use these materials together with an elastic material.

【0016】免震構造体として、最も一般的なものとし
ては、積層ゴムが採用でき、この積層ゴムは、多数枚の
ゴム板と金属板が交互に積層された構造のものを採用す
ることができる。
As the most common seismic isolation structure, laminated rubber can be used, and this laminated rubber may have a structure in which a large number of rubber plates and metal plates are alternately laminated. it can.

【0017】すべり支承体としては、例えば架台側に固
定され下端に滑り材が固定された柱状部材と、床スラブ
側に固定された滑り板とから構成することができる。た
だ、免震構造体の性能を十分発揮する上においては、す
べり支承体は架台支持のみの機能を有することが望まし
い。
The sliding bearing can be composed of, for example, a columnar member fixed to the gantry side and a sliding material fixed to the lower end, and a sliding plate fixed to the floor slab side. However, in order to sufficiently exhibit the performance of the seismic isolation structure, it is desirable that the slide bearing has a function of only supporting the gantry.

【0018】すなわち、本発明は、鉛直方向の荷重を免
震構造体とすべり支承体で分担し、水平方向の剛性(ば
ね定数)が作用するものとして、上下両面が固定された
免震構造体(積層ゴム)のみとし、すべり支承体の可動
面を固定面に対して滑らすことにより、すべり支承体で
水平方向の剛性(ばね定数)が作用しないようにするこ
とにある。
That is, the present invention provides a seismic isolation structure in which both the upper and lower surfaces are fixed, assuming that the vertical load is shared between the seismic isolation structure and the slide bearing, and the horizontal rigidity (spring constant) acts. (Laminated rubber) only, and by sliding the movable surface of the sliding bearing relative to the fixed surface, the rigidity (spring constant) in the horizontal direction does not act on the sliding bearing.

【0019】従って、すべり支承体は鉛直方向の分担荷
重を受けた状態で水平方向に動きやすくするため、すべ
り支承体の可動面と固定面とを相対的に滑りやすい材料
の組合せにより構成する必要がある。そのため、すべり
支承体の可動面と固定面とは、限りなく摩擦係数の小さ
い材料の選択が望まれるところである。
Therefore, in order to make the sliding bearing body easily move in the horizontal direction under the load shared in the vertical direction, the movable surface and the fixed surface of the sliding bearing member must be made of a combination of relatively slippery materials. There is. For this reason, it is desired that the movable surface and the fixed surface of the sliding bearing body be selected from materials having an extremely small coefficient of friction.

【0020】そこで、本発明では、すべり支承体の摩擦
係数が可及的に零に近付く構造を採用可能とした。この
構造としては、滑り材にポリテトラフルオロエチレンな
どの摩擦を減ずる材料を選定し、かつ滑り板として、ス
テンレス板などの鏡面状の平滑板を用いれば、摩擦係数
を0.05程度までに減ずることができる。
Therefore, in the present invention, it is possible to adopt a structure in which the friction coefficient of the sliding bearing body approaches zero as much as possible. For this structure, if a material that reduces friction such as polytetrafluoroethylene is selected for the sliding material, and a mirror-like smooth plate such as a stainless steel plate is used as the sliding plate, the friction coefficient can be reduced to about 0.05. be able to.

【0021】[0021]

【発明の実施の形態】以下、本発明の一実施の形態を図
面に基づいて説明する。図1は本発明の実施の形態を示
す床免震構造の平面図、図2は同じくその正面図、図3
は同じく要部拡大正面図である。
An embodiment of the present invention will be described below with reference to the drawings. 1 is a plan view of a floor seismic isolation structure showing an embodiment of the present invention, FIG. 2 is a front view thereof, and FIG.
FIG.

【0022】図示のごとく、本発明にかかる床免震構造
11は、床スラブ12と床材13を含む架台14との間
に複数個の免震構造体としての積層ゴム15が間隔をお
いて配列介在された床免震構造において、水平方向の長
周期化を図るために前記積層ゴム15の配列数が減じら
れ、該積層ゴム15の減少分、前記積層ゴム15間に架
台14の撓みを防止するためのすべり支承体16が配置
されたものである。
As shown in the figure, a floor seismic isolation structure 11 according to the present invention has a plurality of laminated rubber 15 as a seismic isolation structure between a floor slab 12 and a gantry 14 including a floor member 13. In the floor seismic isolation structure with the arrangement interposed therebetween, the number of the laminated rubbers 15 is reduced in order to increase the horizontal period, and the bending of the gantry 14 between the laminated rubbers 15 is reduced by the reduced number of the laminated rubbers 15. The sliding bearing body 16 for prevention is arranged.

【0023】床スラブ12は、一般的に建物の基礎上あ
るいは梁上に打設されたコンクリート床であって、この
床スラブ12の上側に床免震構造11を介して架台14
が敷設されている。架台14は、H形鋼を格子状に配列
したものであり、この上側にペデスタル17を介して床
材13を敷設されている。ペデスタル17は、床材13
の平坦土を調整する調整ボルトを有する周知構造のもの
であり、このペデスタル17によって架台14と床材1
3との間に形成された空間部に電気配線などが張り巡ら
されている。
The floor slab 12 is a concrete floor generally cast on a foundation or a beam of a building, and a pedestal 14 is provided above the floor slab 12 via a floor isolation structure 11.
Is laid. The gantry 14 is formed by arranging H-shaped steels in a lattice, and a floor material 13 is laid on the upper side of the pedestal 17 via a pedestal 17. The pedestal 17 is a floor material 13
Of a well-known structure having an adjustment bolt for adjusting the flat soil of the pedestal 17.
Electrical wiring and the like are laid in a space formed between the first and third wires.

【0024】積層ゴム15は、図4に示す従来の積層ゴ
ム3の配列数6個よりも2個減じて架台14の中間部の
積層ゴムを廃止し、これに代わり、架台14の中間部に
すべり支承体16を配置したもので、各積層ゴム15に
かかる荷重を図4に示す積層ゴム3よりも大きくするよ
うにしたものである。すなわち、図4に示す積層ゴムと
同特性の積層ゴムを使用しているにも拘わらず、積層ゴ
ムの配列数を減ずることにより、1個の積層ゴムで負担
する荷重を大としたものである。
The laminated rubber 15 is reduced by two from the conventional arrangement of six laminated rubbers 3 shown in FIG. 4 to eliminate the laminated rubber at the intermediate portion of the pedestal 14. The sliding bearing body 16 is arranged so that the load applied to each laminated rubber 15 is made larger than that of the laminated rubber 3 shown in FIG. That is, although the laminated rubber having the same characteristics as the laminated rubber shown in FIG. 4 is used, the load borne by one laminated rubber is increased by reducing the number of laminated rubbers. .

【0025】この積層ゴム15の構造は、図4に示す従
来のものと変わらないので、簡単に構造を説明すると、
積層ゴム15は、上下のフランジ18、19間に多数枚
のゴム板20と金属板21とが交互に積層された円筒形
状のものである。この積層ゴム15は、上下のフランジ
18、19、ゴム板20及び金属板21がゴム板の加硫
時に一体的に接着されたものである。そして、積層ゴム
15の上端フランジ18が架台14に固定され、また下
端フランジ19が床スラブ12に固定されている。
The structure of the laminated rubber 15 is not different from that of the conventional rubber shown in FIG.
The laminated rubber 15 has a cylindrical shape in which a large number of rubber plates 20 and metal plates 21 are alternately laminated between upper and lower flanges 18 and 19. The laminated rubber 15 is formed by integrally bonding upper and lower flanges 18, 19, a rubber plate 20, and a metal plate 21 when the rubber plate is vulcanized. The upper end flange 18 of the laminated rubber 15 is fixed to the gantry 14, and the lower end flange 19 is fixed to the floor slab 12.

【0026】この積層ゴム15は、軽負荷用の免震構造
体として適宜その性能を選定して製造されるもので、外
径が100〜400mm、高さが150〜350mmの
範囲内で設定される。床スラブ12から床材13までの
高さは概ね500〜600mmに抑えられているので、
架台14の高さ(150〜200mm)、ペデスタル1
7の高さ(200mm程度)を考慮すれば、積層ゴム1
5の高さが自ずから設定されるからである。
The laminated rubber 15 is manufactured by appropriately selecting its performance as a light-load seismic isolation structure, and has an outer diameter of 100 to 400 mm and a height of 150 to 350 mm. You. Since the height from the floor slab 12 to the floor material 13 is generally suppressed to 500 to 600 mm,
Height of gantry 14 (150-200 mm), pedestal 1
7 (about 200 mm), the laminated rubber 1
This is because the height of 5 is naturally set.

【0027】そして、この積層ゴム15は、所望の特性
を得るため、適宜ゴム特性が選定されている。例えば、
垂直荷重1.5トン用の積層ゴム15においては、外径
170mm、内径140mm、高さ250mm、ゴム総
厚171mmに選定すれば、ゴム特性に応じて、面圧1
2kgf/cm2 、水平方向許容変形量150mm、水
平方向固有振動数1.62Hz、水平剛性22.9kg
f/cmが得られる。また、5.0トン用の積層ゴム1
5においては、外径290mm、内径200mm、高さ
273mm、ゴム総厚175mmに選定すれば、ゴム特
性に応じて、面圧16.5kgf/cm2 、水平方向
許容変形量180mm、水平方向固有振動数2.2H
z、水平剛性42kgf/cmが得られる。なお、積層
ゴム15は、上記の具体例に示す寸法・特性に限らず、
軽負荷用に適した寸法・特性を適宜選択し得ることは勿
論である。表1にその一例を示す。
The rubber properties of the laminated rubber 15 are appropriately selected in order to obtain desired properties. For example,
In the case of the laminated rubber 15 for a vertical load of 1.5 tons, if the outer diameter is 170 mm, the inner diameter is 140 mm, the height is 250 mm, and the total rubber thickness is 171 mm, the surface pressure is 1 depending on the rubber characteristics.
2 kgf / cm 2 , horizontal allowable deformation 150 mm, horizontal natural frequency 1.62 Hz, horizontal rigidity 22.9 kg
f / cm is obtained. In addition, laminated rubber 1 for 5.0 tons
In No. 5, if the outer diameter is 290 mm, the inner diameter is 200 mm, the height is 273 mm, and the total rubber thickness is 175 mm, the surface pressure is 16.5 kgf / cm 2 , the allowable deformation in the horizontal direction is 180 mm, and the natural vibration in the horizontal direction is determined according to the rubber characteristics. Number 2.2H
z, a horizontal rigidity of 42 kgf / cm is obtained. The laminated rubber 15 is not limited to the dimensions and characteristics shown in the above specific examples,
It goes without saying that dimensions and characteristics suitable for light loads can be appropriately selected. Table 1 shows an example.

【0028】[0028]

【表1】 [Table 1]

【0029】すべり支承体16は、架台13側に固定さ
れ下端に滑り材22が固定された鋼板製の可動部として
の柱状部材23と、床スラブ12側に固定された固定部
としての滑り板24とから構成されている。滑り材22
には、ポリテトラフルオロエチレン(商標名:テフロ
ン)などの摩擦を減ずる材料が選定され、また、滑り板
24は、ステンレス板(SUS304)などの鏡面状の
平滑板が用いられ、摩擦係数μが0.05程度までに減
ずる構成が採用されている。
The sliding bearing body 16 is fixed to the gantry 13 and has a sliding member 22 fixed at the lower end as a columnar member 23 as a movable part made of a steel plate, and a sliding plate as a fixed part fixed to the floor slab 12 side. 24. Sliding material 22
A material that reduces friction, such as polytetrafluoroethylene (trade name: Teflon), is selected. The sliding plate 24 is a mirror-like smooth plate, such as a stainless steel plate (SUS304), and has a friction coefficient μ. The configuration is reduced to about 0.05.

【0030】すなわち、すべり支承体16は、床材13
及び架台14からの荷重をほとんど受けない状態に設定
されており、地震などの振動入力時においては、ほとん
ど制振機能を発揮しないように設定され、専ら架台14
及び床材13上の撓みを補強するためにのみ性能を発揮
するように設置されている。従って、滑り材22と滑り
板24との材料の選定により、すべり支承体16による
摩擦係数を限りなく零に近付けることができる。
That is, the sliding support 16 is provided with the floor material 13.
And is set so as to hardly receive the load from the gantry 14. At the time of vibration input such as an earthquake, the gantry 14 is set so as to hardly exhibit the vibration damping function.
And, it is installed so as to exhibit performance only to reinforce the deflection on the floor material 13. Therefore, by selecting the material of the sliding member 22 and the sliding plate 24, the friction coefficient of the sliding support 16 can be made as close to zero as possible.

【0031】なお、架台14の地震等に対する応答変位
を抑えるための制振構造として、周知構造のオイルダン
パー26が床スラブ12と架台14との間に設置されて
いる。また、図3においては、床材13の上にコンピュ
ータ機器27を設置した状態を示している。
An oil damper 26 having a well-known structure is provided between the floor slab 12 and the gantry 14 as a vibration damping structure for suppressing a displacement of the gantry 14 in response to an earthquake or the like. FIG. 3 shows a state in which the computer device 27 is installed on the floor material 13.

【0032】上記構成においては、免震構造体としての
積層ゴム15の配列数が図4に示す従来の免震構造に比
べて減じられているから、その減じられている分、各積
層ゴム15にかかる負荷荷重が増大することになる。こ
れを床などの質量M、積層ゴム15の水平方向ばね定数
Kとして床免震構造における固有周期Tを表した(1)
式に当てはめると、固有周期Tは増大することになる。 T=2π(M/K)1/2 ………(1)
In the above structure, the number of laminated rubbers 15 as the seismic isolation structure is reduced as compared with the conventional seismic isolation structure shown in FIG. Is increased. The natural period T in the floor seismic isolation structure is expressed as the mass M of the floor or the like and the horizontal spring constant K of the laminated rubber 15 (1).
When applied to the equation, the natural period T will increase. T = 2π (M / K) 1/2 ............ (1)

【0033】従って、図4の示す従来の床免震構造に比
べて免震性能が向上した。このことは、従来のように、
ダミー質量として、架台14や床材13等に重量物を使
用しなくても良いことになり、架台重量などとして軽量
物を採用できることになり、低コストが実現できる。
Accordingly, the seismic isolation performance is improved as compared with the conventional floor seismic isolation structure shown in FIG. This is, as before,
As the dummy mass, it is not necessary to use a heavy material for the gantry 14, the floor material 13, and the like, and a lightweight material can be used as the gantry weight, so that low cost can be realized.

【0034】また、図4における床免震構造において、
本発明と同等な免震性能を発揮させる場合には、積層ゴ
ム15の高さを本発明に比べて高くしなければならない
が、そうすると、床高さを抑える意味から架台自身の設
計にも配慮する必要が生じる。この点、本発明において
は、積層ゴムの数を減じただけの簡単な構成で免震性能
を向上させているから、架台の設計・製作も容易とな
り、免震構造の施工なども容易に行い得、全体のコスト
も低く抑えることが可能となった。
In the floor seismic isolation structure shown in FIG.
In order to exert the seismic isolation performance equivalent to the present invention, the height of the laminated rubber 15 must be higher than that of the present invention, but in this case, the stand itself must be designed in order to suppress the floor height. Need to be done. In this regard, in the present invention, since the seismic isolation performance is improved with a simple configuration merely by reducing the number of laminated rubbers, the design and manufacture of the gantry becomes easy, and the construction of the seismic isolation structure is also easily performed. As a result, the overall cost can be kept low.

【0035】さらに、積層ゴム15の配列数の減少に伴
い架台14の中央に生じ得る撓みもすべり支承体16の
採用により性能維持を図ることができ、床自体の強度も
十分満足できることになる。
Furthermore, with the decrease in the number of the laminated rubbers 15, the deflection which may occur in the center of the gantry 14 can be maintained by the use of the slide bearings 16, and the strength of the floor itself can be sufficiently satisfied.

【0036】[0036]

【発明の効果】以上の説明から明らかな通り、本発明に
よると、従来に比べて積層ゴムなどの免震構造体の配列
数を減じただけの簡単な構成により、免震性能の大幅な
向上が図れ、しかも免震構造体の減少に伴う架台の強度
も減じた免震構造体に代わり、専ら架台の撓み防止用と
してのみ機能するすべり支承体を配置した構成であるか
ら、架台の設計・製作が容易でかつ床自体の強度も十分
満足できる床免震構造を提供できる。
As is apparent from the above description, according to the present invention, the seismic isolation performance is greatly improved by a simple configuration in which the number of seismic isolation structures, such as laminated rubber, is reduced compared to the prior art. In addition to the seismic isolation structure, which has reduced the strength of the gantry due to the decrease of the seismic isolation structure, a sliding bearing that functions only to prevent deflection of the gantry is used. It is possible to provide a floor seismic isolation structure which is easy to manufacture and can sufficiently satisfy the strength of the floor itself.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す床免震構造の平面図FIG. 1 is a plan view of a floor seismic isolation structure showing an embodiment of the present invention.

【図2】同じくその正面図FIG. 2 is a front view of the same.

【図3】同じく要部拡大正面図FIG. 3 is an enlarged front view of the same main part.

【図4】従来の床免震構造の平面図FIG. 4 is a plan view of a conventional floor seismic isolation structure.

【図5】同じくその正面図FIG. 5 is a front view of the same.

【符号の説明】[Explanation of symbols]

11 床免震構造 12 床スラブ 13 床材 14 架台 15 積層ゴム 16 すべり支承体 17 ペデスタル 18 フランジ 19 フランジ 20 ゴム板 21 金属板 22 滑り材 23 滑り板 DESCRIPTION OF SYMBOLS 11 Floor seismic isolation structure 12 Floor slab 13 Flooring material 14 Stand 15 Laminated rubber 16 Slip support 17 Pedestal 18 Flange 19 Flange 20 Rubber plate 21 Metal plate 22 Slipper 23 Slipper

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 床スラブと床を含む架台との間に複数個
の免震構造体が間隔をおいて配列介在された床免震構造
において、水平方向の長周期化を図るために前記免震構
造体の配列数が減じられ、該免震構造体の減少分、前記
免震構造体間に架台の撓みを防止するためのすべり支承
体が配置されたことを特徴とする床免震構造。
1. A floor seismic isolation structure in which a plurality of seismic isolation structures are arranged at intervals between a floor slab and a gantry including a floor. A floor seismic isolation structure characterized in that the number of seismic structures is reduced, and a sliding bearing for preventing bending of a gantry is provided between the seismic isolation structures by the reduced number of seismic isolation structures. .
【請求項2】 前記すべり支承体の摩擦係数が可及的に
零に近付く構造とされた請求項1記載の床免震構造。
2. The floor seismic isolation structure according to claim 1, wherein the coefficient of friction of the sliding bearing body is as close to zero as possible.
JP22518096A 1996-08-27 1996-08-27 Floor base isolation construction Withdrawn JPH1068215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22518096A JPH1068215A (en) 1996-08-27 1996-08-27 Floor base isolation construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22518096A JPH1068215A (en) 1996-08-27 1996-08-27 Floor base isolation construction

Publications (1)

Publication Number Publication Date
JPH1068215A true JPH1068215A (en) 1998-03-10

Family

ID=16825223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22518096A Withdrawn JPH1068215A (en) 1996-08-27 1996-08-27 Floor base isolation construction

Country Status (1)

Country Link
JP (1) JPH1068215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291732A (en) * 1999-04-05 2000-10-20 Taisei Corp Compound base isolation unit and base isolation structure
JP2007186961A (en) * 2006-01-16 2007-07-26 Kajima Corp Double structure of structure
JP2009281559A (en) * 2008-05-26 2009-12-03 Toda Constr Co Ltd Base isolation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291732A (en) * 1999-04-05 2000-10-20 Taisei Corp Compound base isolation unit and base isolation structure
JP2007186961A (en) * 2006-01-16 2007-07-26 Kajima Corp Double structure of structure
JP2009281559A (en) * 2008-05-26 2009-12-03 Toda Constr Co Ltd Base isolation device

Similar Documents

Publication Publication Date Title
US8156696B2 (en) Seismically stable flooring
JP5079766B2 (en) Isolation platform
EP0583868B1 (en) Vibration damping device
JPH1130279A (en) Base isolator
JPH1068215A (en) Floor base isolation construction
JPH0925990A (en) Base isolation device
JP4057195B2 (en) Seismic isolation building
JPH09242818A (en) Base isolation structure for structure
JP2000064657A (en) Three-dimensional base isolation device and structure
JPH04343982A (en) Dynamic vibration reducer
JPH09196116A (en) Base isolator of structure
JP3626384B2 (en) System floor
JPS6286265A (en) Earthquake-proof floor construction method and floor earthquake-proof apparatus
JP5609000B2 (en) Damping method, damping structure, and seismic reinforcement method
JP2005249103A (en) Base isolation device
JP2907310B2 (en) Vibration isolation device
JP7083525B2 (en) Seismic isolation structure
JPH0960689A (en) Base isolation supporting body
JP2626759B2 (en) Base-isolated floor structure
JPH09242375A (en) Vibration isolating device for light load
JPH0332672Y2 (en)
JP6710086B2 (en) Vibration control equipment for building structures
JP2736435B2 (en) Base-isolated floor structure
JPH10331480A (en) Base isolation device
JPH07324517A (en) Vibration control structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104